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Abstract: Nasal cartilage pathologies are common; for example, deviated 

nasal septum conditions afflict up to 80% of people. Because cartilage 

provides the supportive framework of the nose, afflicted patients suffer 

low quality of life. To correct pathologies, graft cartilage is often 

required. Grafts are currently sourced from the patient's septum, ear, or 

rib. However, their use yields donor site morbidity and is limited by 

tissue quantity and quality. Additionally, rhinoplasty revision rates 

exceed 15%, exacerbating the shortage of graft cartilage. Alternative 

grafts, such as irradiated allogeneic rib cartilage, are associated with 

complications. Tissue-engineered neocartilage holds promise to address 

the limitations of current grafts. The engineering design process may be 

used to create suitable graft tissues. This process begins by identifying 

the surgeon's needs. Second, nasal cartilages properties must be 

understood to define engineering design criteria. Limited investigations 

have examined nasal cartilage properties; numerous additional studies 

need to be performed to examine topographical variations, for example. 

Third, tissue-engineering processes must be applied to achieve the 

engineering design criteria. Within the recent past, strategies have 

frequently utilized human septal chondrocytes. As autologous and 

allogeneic rib graft cartilage is used, its suitability as a cell source 

should also be examined. Fourth, quantitative verification of engineered 

neocartilage is critical to check for successful achievement of the 

engineering design criteria. Finally, following the FDA paradigm, 

engineered neocartilage must be orthotopically validated in animals. 

Together, these steps delineate a path to engineer functional nasal 

neocartilages that may, ultimately, be used to treat human patients. 

 

 

 

 



Nasal cartilage pathologies affect up to 80% of people and lead to diminished quality of life. The ability 

to correct pathologies is limited by cartilage graft quality and quantity, as well as donor site morbidity 

and surgical complications, such as infection and resorption. Despite the significance of nasal cartilage 

pathologies and high surgical revision rates (15%), little characterization and tissue-engineering work 

has been performed compared to other cartilages, such as articular cartilage. Furthermore, literature is 

published in clinical journals, with little in biomedical engineering. Therefore, this review summarizes 

current literature, discusses the current understanding of nasal cartilage properties, makes 

recommendations regarding tissue-engineering strategies, and aims to motivate innovation and 

progress toward engineering functional neocartilage grafts to address the current limitations. 
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Abstract: 

Nasal cartilage pathologies are common; for example, deviated nasal septum conditions afflict 

up to 80% of people. Because cartilage provides the supportive framework of the nose, afflicted 

patients suffer low quality of life. To correct pathologies, graft cartilage is often required. Grafts 

are currently sourced from the patient’s septum, ear, or rib. However, their use yields donor 

site morbidity and is limited by tissue quantity and quality. Additionally, rhinoplasty revision 

rates exceed 15%, exacerbating the shortage of graft cartilage. Alternative grafts, such as 

irradiated allogeneic rib cartilage, are associated with complications. Tissue-engineered 

neocartilage holds promise to address the limitations of current grafts. The engineering design 

process may be used to create suitable graft tissues. This process begins by identifying the 

surgeon’s needs. Second, nasal cartilages properties must be understood to define engineering 

design criteria. Limited investigations have examined nasal cartilage properties; numerous 

additional studies need to be performed to examine topographical variations, for example. 

Third, tissue-engineering processes must be applied to achieve the engineering design criteria. 

Within the recent past, strategies have frequently utilized human septal chondrocytes. As 

autologous and allogeneic rib graft cartilage is used, its suitability as a cell source should also be 

examined. Fourth, quantitative verification of engineered neocartilage is critical to check for 

successful achievement of the engineering design criteria. Finally, following the FDA paradigm, 

engineered neocartilage must be orthotopically validated in animals. Together, these steps 

delineate a path to engineer functional nasal neocartilages that may, ultimately, be used to 

treat human patients. 
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1: Introduction  

Damage or malformation of the cartilage structures of nose may lead to compromise in nasal 

airway function or distortion of shape (cosmesis), and may occur as a consequence of trauma, 

surgery, or congenital malformation.  Trauma to the nasal cartilages is prevalent among both 

civilians and military personnel.  The most common nasal deformation is the deviated nasal 

septum, which has been observed in up to 80% of the general population, and is a major 

contributor to airway obstruction [1].  Surgery to correct nasal airflow includes fracture repair, 

septoplasty, and functional rhinoplasty, all of which require the modification of native nasal 

cartilages, and in many cases, the use of cartilage grafts. Nasal reconstruction to replace 

missing components, for example, due to injury and cancer, also requires the use of cartilage 

grafts to reconstruct the framework provided by the nasal cartilages.  The nose is the most 

common site for skin cancer on the face (~36%), and resection of associated tumors may 

require removal of nasal cartilage to establish clear margins [2]. This may lead to profound 

disfigurement that also compromises the airway and often requires additional cartilage to 

reestablish nasal stability during reconstruction. The nose is frequently injured by burns; up to 

70% of patients at civilian burn centers have facial burns [3]. Burns to the nasal area, and 

subsequent infection, scarring, and contracture may lead to significant deformities of nasal 

cartilage structures [3]. Within the military, blast or burn injuries to the head, neck, and upper 

airway, including those to the face, account for 28.1% of the combat wounds veterans 

sustained in Iraq and Afghanistan between 2005 and 2009 [4]. Of the total number of military 

personnel evacuated from combat zones during Operation Enduring Freedom and Operation 

Iraqi Freedom, 42% were due to craniomaxillofacial injuries [5]. Fracture to the midface region, 
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including the nasal area, via explosive mechanisms were the most common, accounting for 44% 

of those with injures evacuated out of combat zones [5]. Additionally, concomitant facial burns 

were present in 10% of patients [5]. The prevalence and complexity of nasal trauma, damage, 

and pathology underscore the need for corrective nasal surgery and the availability of 

appropriate cartilage graft material. 

While nasal surgery is rarely performed in the context of a life-or-death situation, lack of 

a functioning nasal airway has significant negative effects on patient health, as well as social 

and psychological consequences. Nasal airway obstruction can lead to recurrent sinus 

infections, nosebleeds, headaches, insomnia, and sleep apnea, all of which greatly affect 

patient quality of life [1,6]. Obstruction of breathing may lead to a chronic hypoxic state, which 

is detrimental to cognitive function [6]. Normal social function in public and in one’s personal 

life is largely dictated by the aesthetics and utility of the nose [7]. Surveys have shown 

significant negative effects of facial deformities on perceived employability, honesty, 

trustworthiness, and effectiveness, as well as the resulting impediment to interpersonal 

development [7]. Perception in society is a large factor of self-esteem, and unsightliness of the 

nose, whether in the individual or others’ opinion, adversely affects self-image and self-value 

[8]. Effective rhinoplasty procedures are paramount to improving the quality of life for those 

with nasal dysfunctions and deformities. 

Craniomaxillofacial operations are amongst the most common reconstructive 

procedures performed in the United States, with the number of these procedures increasing 

each year [9]. Rhinoplasty is amongst the most common structural operation performed on the 

face. Specifically, over $1.1 billion was spent on rhinoplasty operations in the United States in 
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2016 [9]. However, it was recently shown that rates of complication, patient dissatisfaction, and 

subsequent surgical revision associated with rhinoplasty were 7.9%, 15.4%, and up to 15.5%, 

respectively [10,11]. Postoperatively, 13% of patients retained their anatomic nasal deformities 

[10]. The revision rate associated with rhinoplasty is influenced by this lack of anatomic 

correction [10] and is, notably, much higher than the revision rate for articular cartilage repair 

procedures (5.2%) and total knee arthroplasties (0.49%) [12,13]. Despite the evolution of 

surgical rhinoplasty techniques [14], the frequency of rhinoplasty operations, in combination 

with their high revision rates, highlights the importance and need for their continued 

refinement. Furthermore, there is a well-reported scarcity of suitable graft materials that can 

be employed to correct nasal deformities [15]. These limitations motivate the development of 

products to address the lack of native graft material, reduce rhinoplasty revision rates, or 

simplify revision surgery. There is a compelling need for a viable, biocompatible, and 

biomimetic equivalent to nasal cartilage, and tissue-engineering has the potential to address 

this need. 

This review discusses the role of tissue-engineering in nasal surgery by outlining the 

engineering design process as it applies to nasal cartilage. Data are presented regarding the 

structure, function, content, and mechanics of native nasal cartilages, followed by a discussion 

of the additional data needed to guide the field toward developing gold standards for nasal 

cartilage engineering. The use and type of grafts used in rhinoplasty are listed to inform the use 

and requirements of tissue-engineered nasal neocartilages. An up-to-date summary of current 

nasal cartilage engineering strategies and their successes is also reviewed. The importance of 

quantitative verification of engineered neocartilage, as well as a functionality index to perform 
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such verification, are discussed. The use of animal models to validate engineered neocartilage 

against surgeon and patient needs is also presented. Importantly, this review aims to guide the 

field by providing recommendations regarding the characterization of nasal cartilages, 

strategies to engineer biomimetic cartilage, and appropriate animal models. 

2: Nose Anatomical Structures, Interfaces, and Functions 

2.1: Nasal Cartilage Structures and Functions 

The structure and function of nasal cartilages are crucial to inform graft selection for 

rhinoplasty, as well as in guiding efforts to fabricate functional, tissue-engineered alternatives 

to native cartilage grafts. All nasal cartilages are hyaline and are categorized into three 

structures, the septum, the paired upper lateral cartilage (ULC), and paired lower lateral 

cartilage (LLC) (Figure 1). Structural integrity of the nasal cartilages is crucial for proper 

respiratory function because the nose is the only means to provide heated, humidified, and 

filtered air to the lungs [16,17]. The structure of each nasal cartilage and their relationship with 

one another should inform the shape and size requirements of engineered neocartilage. 

Additionally, the structure-function relationships of nasal cartilages must be preserved or 

restored within the nose when clinically utilizing engineered neocartilage. 

The septal cartilage, also known as the central septum, cartilaginous septum, and 

quadrangular cartilage (henceforth referred to as the septum) divides the nose into two nasal 

cavities, resists deformation, and acts as a beam providing midline structural support for the 

soft lateral sidewalls [18]. The ULC extends off the septum and interfaces with the nasal bones 

above and with the maxilla laterally. While the septum and ULC are referred to as distinct 



8 
 

structures, this is not anatomically accurate; the septum and ULC are one contiguous structure 

of the same embryonic origin [19]. The ULC and septum form the soft lateral sidewall 

(henceforth referred to as the lateral wall) and medial wall of the nasal vault, respectively. The 

lateral and medial walls, along with the anterior aspect of the inferior turbinate, form what 

clinicians refer to as the internal nasal valve [20]. The internal nasal valve maintains normal air 

flow through the nose and plays a major role in the overall anatomic shape of the nose [21].  

Alar cartilage consists of the paired greater alar cartilage, more commonly known as the 

lower lateral cartilage (LLC), and the sometimes-present minor or lesser alar cartilage, also 

known as sesamoid cartilage. The LLC consists of three regions: the lateral, intermediary, and 

medial crura. If the minor alar cartilage is present, it may be connected to the lateral crus of the 

LLC via a cartilaginous bridge, or it can be a distinct structure completely engulfed by fibro-fatty 

tissue [22]. The medial crura of the left and right LLC are joined by fibrous connections and 

support from surrounding connective tissue [23]. The triangle formed by the LLC, columella (the 

skin and distal portion of the septum that divides the nostrils), and the nasal spine (the anterior 

portion of the maxillary crest) (Figure 1) constitutes the external nasal valve [18]. Additional 

pieces of cartilage can exist between the ULC and LLC and are referred to as accessory cartilage. 

The accessory cartilage can reside freely or on the cephalic edge of the LLC. The region between 

the ULC and LLC is called the scroll region and is important because it is transected in many 

endonasal rhinoplasty and airway surgery operations. In this region, the junction between the 

ULC and LLC has a variable geometry: the caudal ends of the ULC and the cephalic ends of the 

LLC’s lateral crura can be simply overlapped, positioned end-to-end, hooked around one 
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another, or not interface directly at all. Additionally, the configuration of the right ULC and LLC 

interface does not necessarily mimic that of the left. 

2.2: Cartilage Interfaces and Surrounding Tissues 

The septum and ULC interface with several facial bones via osseocartilaginous junctions, or 

bone-cartilage interfaces. There are four osseocartilaginous junctions of the septum. These 

interfaces, moving in an anterior caudal to posterior cephalic manner, involve 1) the nasal 

spine, 2) the vomer bone which lies on top of the palatine process of the maxilla, 3) the 

perpendicular plate of the ethmoid bone, and 4) the nasal bones at the keystone region [24] 

(Figure 1). The keystone region is named as such because of its important role in structural 

stability of the nose [24]. The septum thickens at its anterior end and at its osseocartilaginous 

interfaces to reinforce these regions [24,25]. The interface of the ULC with the nasal bones 

provides mechanical strength and stability to the nose [24,26]. While osseocartilaginous 

junctions are crucial for stability within the nose, little is known about the nature of these 

interfaces and whether they mirror the osteochondral interfaces present with other hyaline 

cartilages, such as between the articular cartilage and subchondral bone of articulating joints. 

As will be discussed in Section 3.1, currently used grafts in rhinoplasty are largely cartilaginous 

and generally do not require surgical attachment to bony structures. Thus, toward tissue-

engineering of nasal cartilages, there does not appear to be a need to form osteochondral 

implants. 

In addition to nasal cartilages and bone, other tissues, divided into anatomical layers, 

also play a role in the functionality of the nose. Between the skin and osseocartilaginous 

structures lie the superficial fatty panniculus, the fibromuscular layer, the deep fatty layer, and 
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the periosteum or mucoperichondrium [27]. The superficial fatty layer panniculus is a 

subcutaneous layer of fat responsible for the flare of the nostrils and contributes to the 

flexibility of the nose [28]. The fibromuscular layer, also called the nasal superficial 

musculoaponeurotic system (SMAS), contains muscles, ligaments, and vasculature [23,28]. The 

deep fatty layer is a sub-SMAS layer of fibro-fatty tissue which makes direct contact with the 

cartilage and bone structures in the nose [28]. The mucoperichondrium is a general term given 

to the four layers of tissue which line the interior of the nasal vault and serve to protect the 

internal structures of the nose: The outermost layer is exposed to airflow and is composed of 

stratified, goblet, and basal cells and functions as a protective layer. The basal layer is 

composed of mostly of collagen fibers.  Within the lamina propria reside the tubuloalveolar 

glands, capillary vessels, and venous plexus. The innermost layer, the perichondrium, is a 

connective tissue layer that runs parallel and adjacent to the cartilage [29]. During septoplasty, 

surgeons must elevate the mucoperichondrium from the septum, and failure to elevate all 

layers can result in complications such as perforations or tears [30]. The tissues surrounding the 

nasal cartilages help define the shape and stability of the nose, as well as ensure proper nasal 

function. Therefore, great care must be taken to preserve the relationship between the nasal 

cartilages and their surrounding tissues when integrating new cartilage or altering native 

cartilages during rhinoplasties. Strategies to engineer the tissues surrounding nasal cartilage are 

under development and reviewed elsewhere [31,32]. 

2.4: Pathologies of Nasal Cartilages 

The etiology of nasal cartilage pathology is multifactorial and dependent on the affected 

structures. Septal deviations may be congenital or acquired [1]. Congenital septal defects may 
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occur due to compressive pressure across the maxilla during pregnancy or birth, hereditary 

factors, irregular growth or development of the maxilla and maxillary sinuses, such as cleft 

palate deformities and choanal atresia, eruption of permanent incisor teeth, or thumb-sucking 

behavior [1]. The most common cause of acquired septal deformity is trauma [1]. Fractures in 

the septum tend to occur above or anterior to the osseocartilaginous junctions [24]. Septal 

fractures commonly dislocate the septum off the maxillary crest and anterior nasal spine, 

making the keystone osseocartilaginous interface the critical interface with remaining structural 

integrity [24]. As the central structural support of the nose, septal deviation can obstruct airway 

patency and, in extreme circumstances, disarticulation can lead to full nasal collapse and the 

saddle nose deformation [33]. Avulsion of the ULC may occur from trauma, as well as excessive 

resection of the ULC or surgical treatment of adjacent structures during rhinoplasty [21,34]. 

Iatrogenic failure of the ULC is common and is due to lack of dorsal stabilization, leading to 

nasal airway encroachment, nasal collapse, and subsequent obstruction to the normal passage 

of air through the nose [21]. Together, the ULC and the surrounding skin are a deformable 

structure that may collapse upon excessive transmural pressure [35]. While fracture of the LLC 

is rare, deformation from trauma and excessive resection during rhinoplasty are common 

[36,37].  Deformation or over-resection of the LLC often results collapse, stenosis, external 

valve dysfunction, and airway impairment [37]. Structural integrity of all cartilaginous nasal 

structures is key in proper nasal function and airway patency. 
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3: Rhinoplasty and Septoplasty 

Rhinoplasty and septoplasty are the most common procedures performed on the nose. In 

rhinoplasty surgery, graft cartilage is used to alter the nasal framework or augment regions for 

reconstructive, functional, or cosmetic objectives. In reconstructive cases, rhinoplasty restores 

the form and function of a nose that has absent or severely compromised nasal cartilages 

following trauma, congenital defects, or medical procedures, such as tumor resections. 

Functional rhinoplasties are performed to alter the structural framework of the nose to restore 

or improve airflow [38]. Cosmetic rhinoplasty procedures aim to reconfigure the nose to meet 

an aesthetic goal. The delineation between these categories of rhinoplasty is not strict and may 

overlap; many cases of structural deformities or insufficiencies that require correction or 

reconstruction manifest in a patient’s cosmetic appearance and vice versa [39]. Septoplasty 

procedures are as common as functional rhinoplasty procedures. In septoplasty, deformed and 

obstructive nasal septa are either reshaped in situ, or more commonly, cartilage from the 

central area of the septum is removed. Generally, additional cartilage graft tissue is not 

required for this procedure. However, the need for graft cartilage tissue varies with each clinical 

application and patient. 

3.1: Graft Use 

In addition to reshaping or reconfiguring the nasal cartilages, surgeons utilize cartilage grafts to 

augment or to mechanically bolster the nasal framework. In general, grafts are sutured to 

already-present cartilage structures in the nose to add strength or to change their size and 

shape, known collectively as form factor. Non-load bearing grafts, such as diced-cartilage fascia 
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grafts (discussed further in Section 3.2), exist to play a largely cosmetic role and to simply 

occupy volume. However, most grafts serve a mechanical function and must resist both static 

(gravity, wound healing contracture) and dynamic (cyclical nasal valve deformation, muscle 

contraction) forces. For example, septal extension grafts are pieces of cartilage sutured to the 

caudal portion of the septum to extend its length and/or projection (Figure 2). The LLC is often 

sutured to this graft to change the shape and support of the nasal tip [40]. Therefore, the 

extension graft must exhibit high mechanical strength to resist the forces imposed upon it, and 

ideally be perfectly straight. Many surgical operations are designed to reduce ULC and LLC 

deformation either by stiffening the LLC and ULC or by increasing the cross-sectional area in the 

internal nasal valve, and, thus, reducing the transmural pressure difference. Alar batten grafts 

are placed at the site of maximum lateral wall deformation during inspiration to support that 

area and to prevent valve collapse. These grafts may extend cephalic or caudal to the lateral 

crus of the LLC to support the ULC or LLC, respectively [40]. Lateral crural strut grafts provide 

support to the LLC, counteract LLC retraction and collapse, and/or alter LLC shape or 

positioning. These grafts are placed beneath the lateral aspect of the LLC, forming a laminate 

structure that provides resistance to flexure. These grafts must reduce distal nasal sidewall 

flexure to improve the patency of the external nasal valve. 

Grafts may also require unique structural qualities, such as topographical changes in 

thickness, straightness, and resistance to flexure. When there is native curvature in grafts, their 

geometry may be exploited to counteract the abnormal curvature of native cartilage or 

abnormal mechanical forces in the recipient site. An extensive review on grafts currently used 

in rhinoplasty can be found elsewhere [40]. Based on how grafts are used in rhinoplasty, 



14 
 

stiffness, straightness, thickness, and uniformity are parameters that must be accounted for in 

cartilage tissue-engineering strategies. Additionally, the properties of currently used graft 

materials should not be used as benchmarks for nasal cartilage tissue-engineering because their 

they are not always used orthotopically, and, thus, their biomimicry, long-term efficacy, and 

suitability remain to be studied. With the exception of cases that involve large external forces, 

the properties of healthy, functional, native nasal cartilages should be used to inform tissue-

engineering strategies toward creating biomimetic engineered neocartilage. In specialized 

cases, such as complete nasal reconstructions in which grafts undergo large wound contraction 

forces, additional criteria, such as super-native stiffness or resistance to flexure, must also be 

accounted for. 

3.2: Autologous Grafts 

The use of autologous grafts is the gold standard for grafting in rhinoplasty due their lack of 

immunogenicity [41]. Septal cartilage is the preferred source of graft cartilage because it is stiff, 

straight, and accessible. However, the limited amount of septal cartilage that may be removed 

without compromising the structural integrity of the nose often creates a shortage of graft 

material in all types of rhinoplasty procedures [15]. This limitation is exacerbated by the body’s 

inability to regenerate hyaline cartilage, resulting in progressively less graft tissue available at 

each successive procedure. In revision surgery, septal cartilage is almost always exhausted. In 

all cases, harvesting a patient’s cartilage for grafting creates donor-site morbidity and may 

cause unnecessary weakness to the nasal framework, especially for patients who do not also 

require septoplasty. 
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In patients with depleted amounts of septal cartilage, or in those with acutely bent, 

weak, or thin septa, autologous ear (auricular) or rib (costal) cartilage is used [42]. While 

obtaining auricular cartilage for grafting is simpler than harvesting costal cartilage, the fact that 

auricular cartilage is curved, relatively thin, and may not be as stiff as septal cartilage can 

present difficulties when straight grafts are required [43]. However, in cases that require thin, 

curved pieces of cartilage, auricular cartilage may be desirable [40]. Despite its versatility and 

ease of harvest, the use of auricular cartilage for grafting is limited due to its size. Alternatively, 

a cartilaginous or an osseocartilaginous region can be isolated from a rib (typically 5th to the 

12th ribs) [44–50]. Costal cartilage is favorably used for grafts that require large or mechanically 

robust pieces of cartilage for dorsal augmentations [40] or for total nasal reconstructions, such 

as in cases of rhinectomy due to the presence of cancer [51]. Harvesting costal cartilage 

requires a small chest incision (1-8 cm, depending upon habitus) and can cause complications 

such as pneumothorax (collapsed lung; 0.9% of patients) [52], pleural tears and seromas (each 

0.6% of patients) [16], breast implant rupture, and infection at the recipient site (2.5% of 

patients) [16]. Other potential complications include scarring at the donor site and prolonged 

post-operative pain [52]. The most common difficulty associated with the use of costal cartilage 

is warping of the graft tissue which can greatly affect the structures of the nose if experienced 

post-implantation [53]. Costal cartilage graft warping has been observed up to 24 hours after 

graft isolation [54]. Composite grafts combining septal and auricular cartilage have also been 

used [55]. While autologous auricular and costal cartilages provide alternative graft sources to 

alleviate the scarcity of septal cartilage, neither tissue presents an ideal solution to providing 

the needed graft cartilage for nasal surgery. Limitations, such as graft tissue availability, tissue 
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form factor, and donor site morbidity still exist. Potential solutions to the limitations associated 

with the use of autologous graft tissues may be alleviated with allogeneic approaches, 

particularly allogeneic tissue-engineering approaches that use passaged cells. 

In addition to cartilage grafts, non-cartilaginous tissue and composite grafts containing 

cartilage and non-cartilaginous tissue are also used. Auricular cartilage and adherent skin 

(chondrocutaneous grafts) [56,57], as well as skin, fascia, or adipose tissue alone [57,58] have 

been used in rhinoplasty. For simple dorsal augmentation, finely diced cartilage wrapped in 

autologous fascia [59,60] or congealed in fibrin glue is used as an alternative to monoblock 

graft augmentation [61]. Surprisingly, diced cartilage has been reported to fuse into a semi-rigid 

graft over time [62]. Bone, typically isolated from the bony septum (vomer and ethmoid bones), 

is used as a batten to straighten moderately or severely deviated caudal septa [63,64], or in 

some cases, to form a rigid strut in total septal reconstruction (extracorporeal septoplasty) [65]. 

The variety of graft materials currently used in rhinoplasty bring to light the necessity of 

establishing distinct engineering design criteria for each graft type. 

3.3: Allogeneic Grafts 

Allografts, also known as homologous grafts, are used in rhinoplasty when sufficient amounts of 

autologous tissue are not available. An allogeneic approach is advantageous because there is 

only one surgical site. Cartilage, in general, exhibits low antigenicity due to the isolation of 

chondrocytes within lacunae [66]. Articular cartilage, for example, is considered to be 

immunoprivileged, and allografts are frequently used to repair focal defects in the knee [67,68]. 

However, the immunogenicity of an allogeneic approach in the nose is unstudied. These grafts 

also have potential to transmit disease, to become infected, and to resorb [41,69–73].  
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Irradiated homologous costal cartilage (IHCC) grafts or irradiated homologous rib grafts 

(IHRGs) are the principal allografts used in rhinoplasty. After isolation from the donor, these 

grafts are gamma-irradiated to kill the resident cells in an effort to eliminate the graft’s 

potential to stimulate an immune response in the recipient. However, it has been suggested 

that decellularization of tissues, including cartilage, does not remove all antigenic materials 

[74,75]. While the use of IHRGs is considered safe, the incidence of IHRG resorption (31%) has 

been reported to be significantly greater than that of autologous costal cartilage (3%) [73,76]. 

This resorption, however, may be due to the decellularization processing of the graft tissue or 

the absence of viable cells within the treated graft tissue and subsequent inability to remodel in 

vivo. Additional research should be conducted to determine the factors which may affect its 

variable success. 

Ultimately, it is unclear whether the cartilages of the nose also possess any degree of 

immunoprivilege akin to articular cartilage. Allogeneic approaches to tissue grafting in 

rhinoplasty should be further studied because they have the potential to greatly alleviate graft 

tissue shortage, mismatched tissue form factor, and donor site morbidity associated with 

autologous grafting. Furthermore, the use of allogeneic grafting motivates allogeneic tissue-

engineering strategies to further overcome graft limitations. 

3.4: Synthetic Grafts 

Synthetic or alloplastic nasal implants are commercially available as an alternative to tissue 

grafts. The most common implants are composed of silicone, porous high-density polyethylene 

(MedPor), or expanded polytetrafluoroethylene (Gore-Tex) [77,78]. Synthetic implants are 

readily available, making multiple procedures unnecessary, have ideal form factor or are easily 
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carved, and decrease surgical time and costs [77]. Despite these perceived advantages of using 

synthetic implants, they are frequently associated with complications including inflammation, 

infection, resorption, dislocation, and extrusion [77,79]. Infection rates associated with silicone, 

MedPor, and Gore-Tex implants have been reported at 3.9%, 20%, and 5.3%, respectively 

[77,80]. Silicone implants have an extrusion rate of 2.9% and have also led to capsular 

contracture in 71% of patients [77,81]. Extrusion has been reported in 12% of patients who 

received an alloplastic implant [80]. Despite containing diced autologous cartilage, the “Turkish 

delight” graft has also led to clinical failure because of its use of Surgicel, and is therefore no 

longer used [59,82]. Regardless of their convenience and availability, the complications and 

unpredictability associated with synthetic implants for rhinoplasty cause most surgeons in the 

United States and Europe to shy away from their use. Furthermore, the properties of these 

synthetic materials have not been quantitatively compared against those of native cartilage, 

and, therefore, the applicability of these materials and their long-term effectiveness and safety 

in replacing native tissue has not been shown. 

Synthetic fixture materials, such as resorbable polydioxanone (PDS) plates and foil, 

resorbable and non-resorbable sutures, and Kirschner wires (K-wires) are also used as support 

materials in rhinoplasty. While many consider PDS plates and synthetic suture materials to be 

safe, they are also not without complications [83–85]. Some have speculated that the 

enthusiasm over PDS plates and foil may lead to their “cavalier overuse” and subsequent 

complications including extrusion, septal cartilage loss, and prolonged postoperative edema 

and inflammation [86]. PDS sutures are amongst the most commonly used sutures in 

rhinoplasty and septoplasty, and they are thought to fully dissolve by the time wound healing 
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has stabilized. However, PDS sutures have also been reported to cause inflammation, 

hyperemia, and extrusion [85]. K-wires have been used as percutaneous pins to secure grafts, 

stabilize nasal bones, or form a rigid framework to prevent costal cartilage warping, but are also 

associated with extrusion and rarely used [59]. The complications associated with synthetic 

fixture materials are common, further underscoring the risk associated with alloplastic 

materials in rhinoplasty. 

Despite the obvious importance of rhinoplasty and septoplasty procedures to improve 

patients’ quality of life, the success of these procedures is limited by the availability of suitable 

graft tissue. Autologous, orthotopic sources of cartilage are the most desirable, but also the 

most limited in quantity. While heterotopic autologous cartilage, allogeneic cartilage, and 

synthetic materials have been used as alternatives to grafts of septal cartilage, their limitations 

are significant. Allogeneic sources, such as IHRGs, are more available, however, they are more 

susceptible to resorption and infection [73,76]. The use of synthetic materials is associated with 

many complications [83–85]. Ideally, graft tissue would have functional properties that match 

those of the recipient tissue or be able to withstand external forces in reconstructive 

circumstances, be biocompatible and bioactive to promote integration and healing, and be 

readily available without creating donor site morbidity. Graft tissues must also meet the needs 

of surgeons; for example, they must be easy to carve, shape, form, and secure at the recipient 

site. Tissue-engineering has the potential to address many of the challenges regarding graft 

sourcing for rhinoplasty, the morbidity associated with their isolation, and the currently 

nebulous properties of graft material. However, as evidenced by the wide variety of grafts in 

use, the quantitative requirements of graft tissue, and thus, the engineering design criteria for 
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nasal implants are unclear. Tissue-engineering via the engineering design process holds promise 

to create large amounts of mechanically robust, non-immunogenic, neocartilage in desired 

shapes and thicknesses from small amounts of heterotopic donor cartilage, but native nasal 

cartilage properties and quantitative engineering design criteria must first be developed. 

4: The Role of Tissue-engineering in Rhinoplasty and Septoplasty 

As with any engineering challenge, the engineering design process should be followed to yield 

suitable solutions. Adapting this approach to cartilage tissue-engineering, the process consists 

of 1) defining the needs of the users, e.g. surgeons, 2) using native cartilage properties and 

interpreting user needs to create quantitative engineering criteria, 3) applying tissue-

engineering processes to fabricate cartilage, 4) verifying engineered neocartilage against the 

engineering design criteria, and 5) validating engineered neocartilage against the original needs 

of the users (Figure 3). Critical review of progress during each step is important to ensure that 

the engineering criteria, and ultimately the needs of the users, are addressed. It is also 

important that the criteria are not adjusted to fit potential solutions. Using the engineering 

design process allows complex tissue-engineering challenges, such as creating engineered 

septal neocartilage, to be approached methodically and quantitatively, while keeping clinical 

needs in mind. 

4.1: Surgeon Needs 

While the ideal parameters of tissue-engineered graft neocartilage vary depending on the 

surgical indication, flat, mechanically robust cartilage is required in almost all cases. Septal 

cartilage is considered the ideal material and gold standard for grafting in rhinoplasty because 
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of its stiffness and straightness. Most grafts used in primary rhinoplasty are less than 25 mm in 

length, 15 mm in width, and are approximately 1.5 mm thick. Alternative sources of cartilage, 

such as ear or rib, are used when septal cartilage is not available or sufficient. Therefore, based 

on current surgical practices, the ideal tissue-engineered graft neocartilage for primary 

rhinoplasty would have similar thickness and mechanical properties to native septal cartilage. 

However, in revision rhinoplasty, the sizes and mechanics of grafts needed are more diverse. 

For example, grafts as long as 40 mm in length are often used. In complex reconstructions, graft 

cartilage is required to reestablish the entire nasal cartilage framework and is subjected to large 

forces from wound contracture or non-anatomic tissue transfers, such as a pedicle skin flap 

from the forehead or cheek. Therefore, tissue-engineered graft neocartilage must have 

adequate stiffness, perhaps above native values, to withstand these forces. While straight and 

stiff graft cartilage is universally required, the diversity of graft sizes used motivates the 

fabrication of large tissue-engineered neocartilage constructs of varying thicknesses so that 

surgeons may select and customize grafts for each case. 

4.2: Nasal Cartilage Engineering Design Criteria 

In cartilage tissue-engineering, the goal is almost always to achieve the properties of healthy 

native cartilage tissue that is to be repaired or replaced, known as biomimicry. Distinct 

interfaces or differences in properties between implanted neocartilage and native cartilage 

should not persist after implantation because abrupt changes in properties may lead to 

mechanical breakdown of the interface and surrounding tissues. Several aspects of native nasal 

cartilages, such as microstructure, biochemical content, and mechanics, have been studied, 



22 
 

which contribute to the establishment of engineering criteria for biomimetic nasal cartilage 

tissue-engineering. 

4.2.1: Microstructure 

Nasal cartilage has superficial and central zones, with the distinction between these zones 

being more evident in the LLC [87,88]. Chondrocytes in the superficial zone exhibit an elongated 

fibroblastic morphology and are oriented parallel with the cartilage surface [87]. Cells gradually 

become larger, more rounded, and less frequent in the central zone [87]. The superficial zone 

shows more intense collagen staining than the central zone, which is more evident in septal 

cartilage than LLC [87]. Septal cartilage contains thick sheets of highly organized collagen and 

exhibits anisotropic collagen arrangement [18]. Collagen fibers in close proximity to the 

maxillary crest are oriented perpendicularly to the interface, while fibers in the central area of 

the septum lack a definitive orientation [29]. In contrast, LLC has a looser, less organized 

arrangement of collagen with a more heterogeneous mixture of fiber thicknesses [18]. 

Information regarding ULC microstructure is unknown. While the septum and ULC constitute a 

contiguous piece of cartilage, the microstructural properties may vary and should be studied. 

Microstructure is reflected in the functionality of these tissues and should therefore also be 

reflected in the engineering criteria to preserve performance. 

4.2.2: Biochemical Content 

Hyaline cartilage is characterized by its significant collagen II content. As a hyaline cartilage, 

septal cartilage expectedly shows abundant immunohistochemical staining of collagen II, 

particularly in the central zone compared to the superficial zone, and little staining for collagen 
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I [87]. Septal cartilage also contains small amounts of collagen IX, X, and XI [29,87,89,90]. LLC 

also shows abundant immunohistochemical staining for collagen II and little staining for 

collagen I [87]. Identification of collagen types within ULC, as well as examining the presence of 

minor collagens in all nasal cartilages should be conducted. 

Unexpectedly, biochemical characterization of septal cartilage has yielded large ranges 

of collagen content, glycosaminoglycan (GAG) content, and cellularity, as well as inconsistent 

GAG-to-collagen ratios (Table 1). Topographical study of the septum indicates that there are no 

significant variations in GAG content, collagen content, or cellularity across six regions of the 

septum [91]. This is in contrast to human articular cartilage, also a hyaline cartilage, which is 

well studied and has a water content ranging from 70 - 80%, 10 - 15% collagen per wet weight, 

and 3-9% GAG per wet weight [92].  For human articular cartilage, collagen per dry weight 

ranges from 50 - 75% and GAG per dry weight ranges from 15 - 30% [92]. Information regarding 

the biochemical content of LLC or ULC is not available and, therefore, should be measured. Care 

should be taken to test for differences in biochemical contents of nasal cartilage across factors, 

such as age and sex. Because of the importance of biochemical data to serve as quantitative 

engineering criteria for nasal cartilage engineering efforts, additional studies should be 

performed to topographically characterize the biochemical content of LLC and ULC, as well as to 

rectifying discrepancies in reported values for septal cartilage. 

 

Table 1: Summary of human septal biochemical properties. Hydration, cell density per wet 

weight (WW), glycosaminoglycan (GAG) content per WW and dry weight (DW), and collagen 
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(Col) content per WW and dry weight DW and are listed. GAG:Col ratios were calculated based 

on available data. 

Hydration 
(%) 

Cells/WW 
(E6/g) 

GAG/WW 
(%) 

GAG/DW 
(%) 

Col/WW 
(%) 

Col/DW 
(%) 

GAG:Col 

77.65 [93] 27.75 2.91 13.02 (calc) 8.72 39.02 (calc) 0.33 (calc) 

n/a [94] n/a 4.3 n/a 1.99 n/a 2.16 (calc) 

n/a [91] 24.9 1.71 n/a 7.39 n/a 0.23 (calc) 

 

4.2.3: Mechanical Properties 

In terms of mechanical properties, the L-strut portion of the septum has been the most 

extensively characterized. The L-strut, named in reference to its shape, is the remaining intact 

region of the septum after submucous resection during septoplasty or graft harvesting (Figure 

1). To avoid nasal collapse, it is widely accepted that the minimum widths of the caudal and 

dorsal arms of the L-strut need to be 10 mm [95]. However, it has been shown that thickness of 

the L-strut has a greater impact on L-strut yield strength [25,95]. Despite its importance, 

thickness is rarely taken into account in L-strut mechanical strength modeling due to the 

complexity of accounting for both dimensions during rhinoplasty. When modeled as separate 

dorsal and caudal cantilevered beams, the compressive Young’s modulus of the overall L-strut 

ranges from 0.38 to 5.91 MPa [25]. In contrast to the understanding of L-strut mechanics, 

inadequate characterization of the material properties of nasal cartilages has been performed. 

The compressive elastic modulus values of the septum, ULC, and LLC are 2.72 ± 0.62, 0.98 ± 

0.29, and 2.09 ± 0.81 MPa, respectively [96]. Compressive stiffness of the septum ranges from 

0.41 ± 0.21 to 19.30 ± 6.80 MPa (at 50% strain/min) [97]. The tensile equilibrium modulus, 

dynamic modulus, and strength of human septum was 3.01 ± 0.39 MPa, 4.99 ± 0.49 MPa, 1.90 ± 
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0.24 MPa, respectively [98]. Importantly, the tensile failure strain of septal cartilage was 

reported to be 35%. This exceeds the mathematical assumptions of infinitesimal deformation 

and suggests that septal cartilage exhibits hyperelastic behavior. The flexure modulus based on 

three-point bending tests of septal cartilage is 1.97 ± 1.25 MPa [99]. The variety of published 

research results and inconsistency in format of presentation suggests the need to establish 

standardized testing methods for nasal cartilage. 

Nasal cartilage is predominantly modeled as a homogeneous, elastic material, but the 

mechanical testing methods for this tissue are not standardized. In contrast, modeling of both 

native and engineered articular neocartilage using mixture theories and gathering mechanical 

data using creep indentation or stress-relaxation are widely accepted [92]. Because both nasal 

and articular cartilages are hyaline with similar biochemical compositions, and because native-

like hyaline cartilages have been engineered by numerous groups, albeit not for nasal 

applications, it would be instructive to apply viscoelastic or biphasic theories to nasal cartilages. 

Due to its wide applicability, creep indentation testing should be used. Nasal cartilages 

experience tensile forces, for example under flexure, thus, measuring tensile properties is 

necessary to yield another quantitative means by which to compare engineered neocartilage to 

native cartilage. Care should be taken to test for differences in material properties of nasal 

cartilages across parameters, such as age, sex, and ethnicity. Due to the hyaline nature of nasal 

cartilages, their material properties should be obtained using testing methods common to 

other hyaline cartilages so that they may serve as engineering design criteria for nasal cartilage 

engineering efforts. 
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4.3: Nasal Cartilage Tissue-engineering 

In many ways, nasal cartilage engineering efforts are similar to the strategies applied to 

engineer other cartilages in that the goal is to produce biomimetic cartilage to repair, replace, 

or regenerate damaged native cartilage (Figure 4). The traditional tissue-engineering paradigm, 

consists of cells, scaffolds, and stimuli, is frequently inspired by native tissue development and 

maturation. Within recent years, a new paradigm has emerged in cartilage tissue-engineering, 

stating that in many cases, the only components required to form functional neocartilage are 

cells and stimuli. Stimuli, such as mechanical forces or growth factors, may be applied to 

improve neocartilage functional properties and organization [100]. It should be noted that both 

nasal and articular cartilages are hyaline and result from endochondral ossification [101]. 

Because of the developmental and tissue-level similarities of nasal cartilage and articular 

cartilage, tissue-engineering approaches should be shared between these fields. 

Nasal chondrocytes from ovine, rabbit, bovine, and human sources have been 

investigated for nasal cartilage engineering [102–104]. While cartilage engineering efforts 

typically use animal sources of cells because of availability and cost, human cells have been, 

surprisingly, the most frequently investigated for nasal cartilage engineering in recent 

literature. This usage is likely due to the availability of septal remnants from rhinoplasty 

surgeries. Low-passage (up to P3) human nasal septal chondrocytes have shown the capability 

to produce neocartilage containing GAG and type II collagen [89,90,99,105–107]. It has also 

been suggested that the superficial zone of septal cartilage contains a promising population of 

nasoseptal progenitor cells (NSPs) [108]. These cells are migratory and express surface markers, 

such as CD29, CD105, CD106, CD90, and CCD44, suggesting a state of differentiation between 
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mesenchymal stem cells (MSCs) and chondrocytes [109]. NSPs have been shown to 

differentiate to chondrogenic and osteogenic, but not adipogenic lineages [88] and show a 

greater proliferation potential than bone marrow- and adipose-derived MSCs [110]. The surface 

markers and differentiation potential of NSPs have been reported to remain unchanged after 

10 passages [108]. The use of both septal chondrocytes and NSPs are limited greatly by donor 

site morbidity and tissue availability. Alternatively, costal cartilage may serve as an abundant 

source of chondrocytes whose isolation does not create further pathology or weakness in the 

cartilage structures of the nose. Passaged costal chondrocytes have shown the ability to form 

neocartilage which is capable of remodeling in vivo to promote healing [111]. While costal 

cartilage is used clinically as graft material, it often warps when cut into grafts. However, when 

costal cartilage is used as a cell source, particularly for an allogeneic approach, issues of 

warping and donor site morbidity are eliminated. Costal cartilage represents a promising and 

unexplored source of cells for nasal cartilage engineering, the use of which overcomes current 

limitations with cell sourcing. 

Regarding the use of scaffolds, nasal cartilage engineering strategies again bear many 

similarities to those used for articular cartilage. The use of scaffolds, such as type I and III 

collagens, polycaprolactone, polylactic-co-glycolic acid (PLGA), and decellularized native 

cartilage have been explored [112–116]. However, similar to their prominence in articular 

cartilage engineering, scaffold-free techniques are the most commonly used tissue formation 

strategy for nasal cartilage. Passaged chondrocytes frequently undergo culture in alginate, 

dissociation, and seeding into Transwell plates to form neocartilage [72,90,99,106,107,117]. 

Scaffold-free nasal neocartilage engineered from human septal chondrocytes has been 
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reported to exhibit different properties depending on the study. For example, it has been 

reported to exhibit a flexure stiffness of 0.014 N/mm [99], a flexure modulus of 0.32 MPa [99], 

a compressive modulus of 5.6 kPa [106], an equilibrium modulus of 0.2 MPa [107], a tensile 

strength of 0.27 MPa [117], GAG per wet weight content of 1.07% [107], and collagen  per DNA 

content of 273 µg/µg [117]. Other techniques, such as pellet cultures and multilayered cell 

sheets are also used [88,118]. 

The choice of stimulus is equally as important as the cell type used. Culture 

supplementation with GDF-5 and IGF-I, as well as bFGF and TGF-β2 was shown to increase the 

histological staining intensity of GAG and type II collagen content in scaffold-free human nasal 

chondrocyte-derived neocartilage [89,106,117]. The use of IGF-I and GDF-5 increased the 

thickness of engineered neocartilage 12-fold over the untreated control [106] in scaffold-free 

nasal neocartilage engineered from human septal chondrocytes. Other stimulation regimens 

which increase the content of desirable matrix components and mechanical properties include 

the use of TGF-β3, BMP-14, platelet rich plasma, and subcutaneous implantation 

[90,114,115,118,119]. Culture of multilayered P1 human septal chondrocytes in a rotating 

bioreactor increased construct cellularity and GAG per wet weight content by 200%, as well as 

bulk modulus by 32.5-fold and elastic modulus by 22-fold of engineered constructs compared 

to static culture controls [105]. Notably, the bulk and elastic moduli reached 65% and 66% of 

those of native, human, pediatric septal cartilage [105]. Continuous flow bioreactors and other 

rotary bioreactors have also been used [89,90]. It would be instructive to examine other culture 

conditions and stimuli which have been successful in articular cartilage engineering, such as the 
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self-assembling process and the application lysyl oxidase, hydrostatic pressure, and tensile 

stimulation. 

4.4: Verification of Engineered Nasal Cartilages 

Quantitatively verifying the properties of engineered neocartilage against the engineering 

design criteria is crucial. The same quantitative assays used to characterize native cartilage 

must be used to evaluate engineered neocartilage and should be normalized in the same way 

to facilitate direct comparison of engineered to native cartilages. Common biochemical and 

mechanical assays used to evaluate cartilage include the dimethyl methylene blue assay for 

GAG content, chloramine-T hydroxyproline assay for collagen content, dye-binding assays for 

DNA content, creep indentation for compressive modulus, and uniaxial tension for tensile 

modulus [92]. In addition to using quantitative assays which are standard to the evaluation of 

both engineered and native cartilages, a functionality index (FI) may be used to yield a single 

quantitative measure of the overall quality of engineered neocartilage. The FI [120–122] is a 

powerful method to determine if, and to what degree, biomimicry and the engineering criteria 

have been satisfied (Eq 1). The FI is a value between 0 and 1 that represents the average 

difference between engineered (eng) and native cartilages (nat). An FI of 0 equates to no 

similarity between the tissues, and 1 indicates complete biomimicry. The basic FI accounts for 

GAG content (GAG), collagen content (Col), compressive aggregate modulus (EC), and tensile 

modulus (ET). However, parameters, such as flexure modulus, anisotropy, or geometry, may be 

included, excluded, or weighted differently to customize the FI and account for unique 

requirements and characteristics of different tissues or to reflect user needs [121]. By using 

standardized and quantitative procedures to evaluate the properties of both native nasal 
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cartilage and engineered neocartilage, direct comparisons may be made to verify the 

engineered neocartilage meets the engineering criteria set forth. 

 

Equation 1 [120]  

            
 

 

 
 
 
 
     

             

      
       

             

      
  

     
    

      
 

    
        

    
      

 

    
   

 
 
 
 
 

 

 

While the goal of engineering replacement cartilage is to achieve the functional 

properties of healthy native cartilage, complete biomimicry may not be necessary. For example, 

engineered temporomandibular joint (TMJ) disc implants with an FI of 0.42, or 42% of the 

native tissue’s biochemical and mechanical properties, successfully resulted in healing of a 

native TMJ discs in an in vivo mini-pig model [111]. These results suggest that replacement 

tissues may not need to completely recapitulate the properties of native tissue to elicit 

regeneration. The degree of biomimicry necessary is likely dependent on the native mechanical 

loading environment, tissue geometry, and manner in which the tissue is used, e.g., as a 

replacement, mechanical strut, or filler with minimal loading requirements. While parameters 

such as mechanical loading are often reflected in the mechanical properties of the native tissue, 

and are, thus, accounted for in the FI, the engineering criteria should be refined to include 

other factors, such as role of the implanted tissue, to determine what degree of biomimicry is 

necessary. 
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4.5: Validation of Engineered Nasal Cartilages 

Engineered tissues need to be orthotopically validated in animal models to determine if the 

needs of the users are met. Several animal models are used in rhinoplasty and nose cartilage 

tissue-engineering studies. Rabbit models are frequently used due to their affordability and 

availability, and surgical procedures for rabbits are well-defined [123,124]. However, leporine 

nasal cartilage is significantly less cellular and has different shapes and thicknesses than human 

cartilage [125]. Unlike human cartilage, rabbit hyaline cartilage also has the ability to 

regenerate hyaline cartilage post-injury or resection [126,127]. Rabbit nasal septal cartilage is 

also completely covered by nasal bones which must be removed for. The presence of these 

large nasal bones renders surgery time-consuming and labor-intensive [123]. 

Porcine models have been investigated in vitro due to the availability of porcine septum 

at a low cost [125]. While the porcine model shows promise in terms of the dimensions of the 

LLC [128], its septum exhibits different cellularity and form factor than the human septum 

[93,125]. Additionally, the porcine septum, like the rabbit, is protected by large thick nasal 

bones which may impede surgical access [125]. Alternatively, the ovine model has been 

suggested as a large animal model due to its more human-like form factor and for the 

comparative ease of surgical accessibility of the nasal cartilages [129]. Additionally, the ovine 

model is an FDA-recommended large animal model to generate pre-clinical data for knee 

articular cartilage [130]. Therefore, using an ovine animal model may accelerate the clinical 

translation of engineered nasal neocartilages. While promising, the ovine model is not well-

studied and requires full characterization of structural, biochemical, and mechanical properties. 
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A standardized animal model must be established to design consistent and informative 

in vivo studies. The variety of deformities requiring rhinoplasty in humans affects all cartilage 

structures of the nose. Therefore, the selected animal model would ideally have equivalent 

nasal structures for potential treatment. Or perhaps, different animal models may need to be 

established for each cartilage structure. The ability of animal studies to validate engineered 

nasal neocartilage for translation into human use greatly depends on the ability to extrapolate 

data from the animal model to the human. Therefore, it is of utmost importance to select an 

animal model that most closely resembles the human in terms of nasal cartilage structure, 

function, and properties. 

5: Perspectives and Future Directions  

This review has provided strong motivation for the role of cartilage tissue-engineering in nasal 

surgery, the engineering design process toward achieving biomimetic nasal cartilages, as well as 

a discussion of the current knowledge regarding nasal cartilages, what remains to be studied, 

and suggestions for future work. Following the engineering design process, further fundamental 

research must be performed to quantitatively characterize human nasal cartilages and fully 

define engineering design criteria for tissue-engineering. A wide range of pathologies affecting 

different cartilage structures occur in patients from diverse ages and ethnic backgrounds. 

Topographical examinations of the nasal cartilages and studies with respect to factors like 

gender, age, and ethnicity should be performed toward tissue-engineering biomimetic 

cartilages to match the diversity of rhinoplasty patients and procedures. It is crucial these 

studies be performed via quantitative methods best suited for cartilage and the mechanical 
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forces the nose experiences. For example, biphasic theory and the principles of hyperelasticity 

should be applied to model the mechanics of nasal cartilage. Bending and buckling mechanics 

of nasal cartilages should also be studied because these cartilages experience these forces. The 

complete and quantitative characterization of nasal cartilages is crucial to lay the groundwork 

and set the objectives for cartilage tissue-engineering. 

The great potential to overcome many of the limitations of grafting in reconstructive, 

functional, and aesthetic nasal surgery exists with an allogeneic engineering approach. 

Therefore, the degree of antigenicity of allografts and the potential for immunoprivilege must 

be well-researched. The purpose of irradiating allogeneic rib cartilage is to kill the resident 

chondrocytes in an effort to reduce the immune potential of the grafts. However, there is 

evidence that, despite cell death, antigen-containing cell remnants remain and are difficult to 

remove due to the density of the cartilaginous ECM [74,75]. While chondrocytes express major 

histocompatibility antigens (MHCs) types I and II which have the potential to trigger an immune 

response, chondrocytes reside in lacunae where they do not easily encounter immune cells. It 

has also been shown that antigens associated with the extracellular matrix may also provoke an 

immune response [74]. Despite the possible remaining antigens in IHRGs, these grafts are 

commonly used and considered to be well-tolerated. This strongly motivates the investigation 

of an allogeneic approach for tissue-engineered neocartilage. 

 Toward fabricating mechanically robust neocartilage to be used as nasal cartilage grafts, 

functional tissue engineering must be applied. A scaffold-free tissue-engineering approach will 

provide easily accessible, abundant, and robust cartilage, eliminating the need for 

uncharacterized grafts with known complications. The self-assembling process, innovatively, 
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using costal chondrocytes, has successfully generated neocartilage with functional properties 

on par with native cartilage. Albeit the application of self-assembling cartilage has been for 

articular, cartilage, knee meniscus, and temporomandibular joint disc applications, its success in 

engineering cartilages of multiple types motivates its investigation for nasal cartilage tissue-

engineering. Additionally, it would be instructive incorporate use of bioactive agents and 

biomechanical stimuli known to enhance functional properties and matrix organization because 

nasal cartilages are structures with mechanical roles. Chemical and bioactive stimuli, such as 

chondroitinase-ABC and lysyl oxidase-like 2, or biomechanical stimuli, such as direct 

compression, continuous tension (CoTense) [131], and fluid flow induced shear should be 

investigated. The self-assembling process and stimuli may also be used to engineer large, off-

the-shelf grafts and implants to replace the need for synthetic implants, potentially reducing 

the complexity of or eliminate difficult surgical maneuvers, leading to more consistent and 

better outcomes [132]. Furthermore, these methods may be integrated with osteochondral 

strategies [133] to form large implants and replacement tissues to treat large trauma or 

pathologies. 

While the goal of tissue-engineering is to create biomimetic tissues, recent work has 

suggested that complete biomimicry may not be necessary [111]. The degree of biomimicry 

required for implanted cartilage likely depends on its location, mechanical role, and the graft 

function within the larger tissue.  For example, some grafts in nasal surgery have no load 

bearing function and function as spacers to expand the airway or onlays to change soft tissue 

contour. Immature engineered neocartilage with a lower FI may be more amenable to 

integration into native cartilage. In contrast, mature neocartilage with a greater FI can 
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withstand mechanical loading upon implantation but may not be amenable to integration. 

Recently, it was shown that neocartilage with and FI of 0.42 implanted into a partial thickness 

defect in a minipig temporomandibular joint disc elicited regeneration and halted osteoarthritic 

changes compared to empty defect controls [111]. In this case, complete biomimicry was not 

required for healing. There is likely a balance between neocartilage maturity and bioactivity 

that must be found to implant neotissues that are mechanically robust enough to immediately 

handle loading but also maintain their ability to integrate and regenerate injuries. This balance, 

and subsequent target FI also likely depends on the target tissue. Therefore, additional work 

must be performed to determine the necessary degree of biomimicry, and thus, the 

engineering criteria for engineered nasal cartilage grafts. 

Achieving a high degree of customization in tissue-engineered neocartilage grafts may 

be desirable. Bespoke fabricated grafts with identical or improved form factor to a patient’s 

native structures would greatly improve reconstruction efforts, especially with over-resected 

LLC, for example. Additionally, in patients with native cartilage failure, custom shaped grafts 

with enhanced stiffness would be valuable to correct airway patency. While large, customized 

replacement cartilage is greatly needed for patients with autoimmune diseases which affect 

nasal cartilage and the surrounding tissues, these diseases will affect the performance of tissue-

engineered grafts. For example, relapsing polychondritis is a rare and potentially fatal 

autoimmune disease resulting in the destruction of nasal cartilage, amongst other tissues [134]. 

Therefore, tissue-engineered grafts which can withstand heightened immune environments or 

those with immunomodulatory properties should be considered in the future. 
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Steps necessary to facilitate the translation of engineered neocartilage to clinical 

products for rhinoplasty include the standardization of an animal model and creation of FDA 

guidance documents. The standardization of animal models for nasal reconstructions is crucial 

so that surgical techniques and outcomes can be compared across studies. The animal model 

selected should closely mimic human anatomy and accommodate the range of pathologies and 

treatments seen in human patients, or different animal models best suited to each nasal 

structure or pathology should be identified. Currently, no FDA guidance documents exist for 

nasal cartilage. Guidance documents provide investigators with recommendations for 

information that should be submitted to the FDA when submitting Investigational Device 

Exemption (IDE) or Investigational New Drug (IND) applications, such as mechanical properties 

of engineered neocartilage and animal toxicology, as well as make recommend large animal 

models for in vivo studies. The FDA recommends recommend the use of sheep, goats, and 

horses, for in vivo repair studies for replacement knee cartilage. Therefore, these models may 

be used as a starting point to determine suitable, FDA-accepted animal models for nasal 

cartilage repair. 

Finally, collaborations across disciplines and between surgeons and researchers are 

crucial to fully understanding surgeon needs, and thus, developing appropriate engineering 

design criteria for nasal neocartilage. It is important for rhinoplasty surgeons to publish their 

approaches, challenges, and successes in peer-reviewed, interdisciplinary journals to inform 

engineers. Additionally, attending conferences or mini-courses in rhinoplasty is a key way for 

engineers to learn first-hand and create collaborations. Interdisciplinary communication and 

collaboration is the foundational key to creating engineered nasal neocartilages that overcome 
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the limitations of current cartilage grafting strategies and that provide long-term, easy-to-

implement solutions for patients.  
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Figure 1: Anatomy of human nasal cartilages and surrounding tissues. A) Angled frontal view of the 

intact nose, B) angled frontal view with the skin removed to show the septum, upper lateral cartilage 

(ULC), lower lateral cartilage (LLC), minor alar cartilage, accessory cartilage, fibro-fatty tissue, and facial 

bones, C) frontal view with the skin removed to show the septum, ULC, LLC, fibro-fatty tissue, and facial 

bones, D) worm’s-eye view of the septum and LLC, E) angled frontal view with the skin and fibro-fatty 

tissue removed to show the septum, ULC, LLC and facial bones, F) angled frontal view of only the septal 

cartilage and bone-cartilage interfaces. 

Figure 2: Cartilage grafts commonly used in rhinoplasty procedures. A) Frontal view of the nose showing 

the anatomic placement of a septal extension graft, alar batten grafts, and lateral crural strut grafts, B) 

side view showing the anatomic placement of a septal extension graft with respect to the septum, C) 

side view showing the anatomic placement of an alar batten graft and lateral crural strut graft with 

respect to the upper lateral cartilage (ULC) and lower lateral cartilage (LLC). 

Figure 3: The engineering design process toward creating functional engineered cartilage. The first step 

of this process is to define the needs of the users, i.e., the rhinoplasty/septoplasty surgeons. The second 

step is to translate those needs to quantitative requirements, and incorporate native cartilage functional 

properties, such as structural anisotropy, biochemical contents, and mechanical properties to create 

engineering design criteria. In the third step, cartilage engineering processes should be applied with the 

objective of achieving the engineering design criteria. In step four, engineered neocartilage tissue should 

be quantitatively verified against the engineering design criteria. Once the engineering criteria are 

satisfied, the engineered neocartilage should be validated to ensure it addresses the needs of the users 

using relevant animal models (step 5). Throughout this system, critical review of inputs and processes 

must be performed. 
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Figure 4: Overview of nasal tissue-engineering. Chondrocytes sourced from the nasal septum or rib 

cartilage may be expanded and used to fabricate engineered neocartilage. Engineered neocartilage may 

then be implanted into a patient to correct nasal cartilage pathologies and restore functionality. To 

strive for biomimicry, the properties of native nasal cartilages should be used as gold standards when 

applying engineering strategies. 




