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SUMMARY

Ubiquitination is essential for protein degradation and signaling and pivotal to many physiological 

processes. Ubiquitination of a subset of G-protein-coupled receptors (GPCRs) by the E3 ligase 

NEDD4–2 is required for p38 activation, but how GPCRs activate NEDD4–2 to promote 

ubiquitinmediated signaling is not known. Here, we report that the GPCR protease-activated 

receptor-1 (PAR1) stimulates c-Src-mediated tyrosine phosphorylation and activation of NEDD4–

2 to promote p38 signaling and endothelial barrier disruption. Using mass spectrometry, we 

identified a unique phosphorylated tyrosine (Y)-485 within the 2,3-linker peptide between WW 

domain 2 and 3 of NEDD4–2 in agonist-stimulated cells. Mutation of NEDD4–2 Y485 impaired 

E3 ligase activity and failed to rescue PAR1-stimulated p38 activation and endothelial barrier 

permeability. The purinergic P2Y1 receptor also required c-Src and NEDD4–2 tyrosine 
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phosphorylation for p38 activation. These studies reveal a novel role for c-Src in GPCR-induced 

NEDD4–2 activation, which is critical for driving ubiquitin-mediated p38 inflammatory signaling.

In Brief

Grimsey et al. report that GPCRs stimulate activation of NEDD4–2 E3 ubiquitin ligase via c-Src to 

induce endothelial p38 inflammatory signaling. c-Src phosphorylates NEDD4–2 at tyrosine-485, 

releasing the autoinhibitory linker peptide that is critical for enhancing E3 ligase activity, and 

provides mechanistic insight of how GPCRs activate E3 ubiquitin ligases.

Graphical Abstract

INTRODUCTION

G-protein-coupled receptors (GPCRs) are a ubiquitously expressed family of signaling 

receptors that have critical functions in numerous physiological processes. Dysfunction of 

GPCR signaling has been implicated in multiple diseases making this receptor class the 

largest target for approved drugs (Sriram and Insel, 2018). Despite recent advances in 

defining GPCR structure and pharmacology, many fundamental processes that control 

GPCR biology remain poorly understood. Extensive studies examining the role of 

phosphorylation in controlling GPCR signaling (Tobin, 2008) indicate that post-translational 

modifications are critical for governing receptor function. However, in contrast to 

phosphorylation, there is limited understanding of how ubiquitination of GPCRs is 

regulated.

The covalent attachment of ubiquitin to target substrates is known to regulate various aspects 

of protein function including stability, localization, and activity. Although ubiquitin can 

engender diverse functions, ubiquitination of mammalian GPCRs has been largely ascribed 

to degradative trafficking (Dores and Trejo, 2014). However, our recent study showed that 

GPCR ubiquitination can also drive inflammatory signaling through the recruitment of 
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transforming growth factor-β-activated kinase-1 binding protein-2 (TAB2) and TAB1, which 

triggers p38 auto-phosphorylation and activation (Grimsey et al., 2015). However, the 

mechanisms by which GPCRs activate E3 ubiquitin ligases to promote ubiquitin-mediated 

inflammatory signaling is not known.

Ubiquitin is covalently attached to substrate proteins by the sequential actions of E1, E2, and 

E3 ubiquitin enzymes. The family of NEDD4 (neural precursor cell expressed, 

developmentally downregulated-4) HECT (homologous to E6AP carboxyl terminus) 

domain-containing E3 ligases, where the E3 ubiquitin ligase confers substrate specificity, 

control diverse cellular functions and have been linked to the regulation of GPCR trafficking 

(Buetow and Huang, 2016; Jean-Charles et al., 2016; Scheffner and Kumar, 2014). However, 

while numerous studies have implicated NEDD4 E3 ligases in regulating GPCR function, it 

is not known how NEDD4 E3 ligases are released from auto-inhibition to increase HECT 

ubiquitin ligase activity following GPCR stimulation.

NEDD4 E3 ligases share similar domain architectures including an N-terminal localized C2-

domain, two to four WW domains and a catalytic C-terminal HECT domain (Buetow and 

Huang, 2016). The activity of NEDD4 E3 ligases can be regulated through release of an 

auto-inhibited state, which occurs through allosteric mechanisms mediated by interactions 

with the C2 and WW domains (Bruce et al., 2008; Rotin and Kumar, 2009). Additionally, 

growth-factor-induced tyrosine phosphorylation of the C2 and HECT domain was shown to 

promote NEDD4–1 activation (Persaud et al., 2014), whereas serine phosphorylation of 

NEDD4 by various kinases inhibit activity (Rotin and Kumar, 2009). Two recent studies 

using biochemical, structural, and cellular analyses of overexpressed NEDD4 proteins 

unexpectedly discovered that peptide linkers tethering WW domains are critical regulators of 

E3 ligase catalytic activity. Specifically,Chen et al. showed that peptide linkers can lock the 

HECT domain in an inactive auto-inhibited state and propose that release of auto-inhibition 

is mediated by tyrosine phosphorylation of a peptide linker of WWP1, WWP2, NEDD4–1, 

and ITCH (Chen et al., 2017). In addition, the ITCH WW domain and following linker 

region allosterically locks the E3 ligase in an inactive state that can be relieved by binding of 

Ndfip1 or JNK1 phosphorylation (Zhu et al., 2017). However, the mechanisms and pathways 

that promote NEDD4–2 activation were not identified in either study. Here, we report that 

GPCRs stimulate NEDD4–2 ubiquitin ligase activity through c-Src-dependent tyrosine 

phosphorylation of the 2,3-linker peptide to promote p38 inflammatory signaling. These 

studies reveal an unexpected role for c-Src as a key regulator of NEDD4–2 activity, which is 

critical for driving ubiquitin-mediated inflammatory p38 signaling induced by the GPCRs, 

protease-activated receptor-1 (PAR1), and the purinergic P2Y1 receptor, in endothelial cells.

RESULTS

Activated PAR1 Co-associates with and Activates NEDD4–2

We have shown that the GPCRs, PAR1, and P2Y1 are ubiquitinated by the E3 ligase 

NEDD4–2 following agonist stimulation in endothelial cells (Grimsey et al., 2015). 

However, it is not known how GPCRs control NEDD4–2 activity. To determine whether 

NEDD4–2 is recruited to GPCRs, human endothelial cells were stimulated with thrombin 

and endogenous PAR1 immunoprecipitated (IP’ed). Thrombin-induced a rapid ~2-fold 
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increase in endogenous NEDD4–2 co-association with activated PAR1 (Figure 1A, lanes 2–

4). Immunofluorescence confocal microscopy was then used to examine the subcellular 

localization of endogenous PAR1 and NEDD4–2. In control cells, PAR1 localized mainly to 

the cell surface displaying minimal ~15% colocalization with endogenous NEDD4–2 

(Figures 1B and 1C). However, after thrombin stimulation, PAR1 internalized to endocytic 

vesicles and showed a significant ~30% co-localization with endogenous NEDD4–2 

(Figures 1B and 1C). To verify colocalization of endogenous PAR1 and NEDD4–2, 

Pearson’s correlation coefficients were calculated for control (r = 0.025 ± SD) and thrombin-

treated conditions (r = 0.165 ± SD) (Figure 1D). These findings are consistent with rapid 

agonist-induced PAR1 internalization to early endocytic vesicles (Grimsey et al., 2015) and 

co-localization with NEDD4–2.

Thrombin Induces NEDD4–2 Activity Independent of Ca2+ Mobilization

Next, we examined whether thrombin activation of PAR1 regulates NEDD4–2 ubiquitin 

ligase activity. Thrombin-induced a significant 2.5-fold increase in NEDD4–2 auto-

ubiquitination (Figure 1E, lanes 2 and 3). Thus, activated PAR1 recruitment of NEDD4–2 

coincides with increased NEDD4–2 ubiquitination, an indication that the catalytic activity of 

NEDD4–2 is increased.

Previous reports showed that auto-inhibition of NEDD4–2 is mediated by the N-terminal C2 

domain interaction with the HECT catalytic domain (Bruce et al., 2008), which can be 

released by intracellular Ca2+ to enhance NEDD4–2 activity (Wang et al., 2010). Despite 

thrombin’s capacity to induce rapid mobilization of intracellular Ca2+ (Figure S1A), 

chelation of intracellular Ca2+ with BAPTA-AM failed to block thrombin-stimulated 

NEDD4–2 ubiquitination (Figure S1B). These findings indicate that thrombin-induced 

increase in NEDD4–2 ligase activity is Ca2+ independent, raising the intriguing idea that 

NEDD4–2 activity may be regulated by GPCRs through a different mechanism.

GPCR-Stimulated NEDD4–2 Activity and Ubiquitin-Mediated Signaling Is Initiated at the 
Plasma Membrane

To determine whether PAR1 internalization is required for NEDD4–2 activation and 

ubiquitin-mediated p38 signaling, we used a dynamin inhibitor Dyngo 4a (McCluskey et al., 

2013). Thrombin-induced PAR1 internalization was blocked in Dyngo4a-pretreated cells 

(Figures 1F, S2A, and 1H). Dyngo 4a also caused a significant increase in NEDD4–2 co-

localization with activated PAR1 at the plasma membrane (Figure 1F), confirmed by 

Pearson’s correlation coefficients (r = 0.328 ± SD) compared to control cells (r = 0.177 ± 

SD) (Figure 1G). Agonist-induced PAR1 ubiquitination was also significantly enhanced in 

Dyngo4a-treated cells (Figure 1I), consistent with retention of the active PAR1-NEDD4–2 

complex at the plasma membrane. We next assessed whether Dyngo 4a effected agonist-

induced p38 activation. Thrombin increased p38 phosphorylation that peaked at 5 min and 

then decreased at 7.5 min in control cells (Figure 1J, lanes 1–5). In contrast, thrombin 

activation of p38 signaling was sustained up to 10 min in Dyngo-4a-treated cells (Figure 1J, 

lanes 6–10). A sustained increase in thrombin-induced p38 activation was also observed in 

cells in which PAR1 internalization was blocked by small interfering RNA (siRNA)-

mediated depletion of AP-2 and epsin-1, clathrin adaptors required for activated PAR1 

Grimsey et al. Page 4

Cell Rep. Author manuscript; available in PMC 2018 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



internalization (Chen et al., 2011) (Figures S2B–S2D). Thus, thrombin initiates recruitment 

of NEDD4–2 to PAR1 at the plasma membrane, and PAR1 internalization is not obligatory 

for NEDD4–2 ubiquitin-driven p38 signaling.

Thrombin-Induced Rapid c-Src Activation via Gq and G12/13 Proteins

A recent study showed that growth-factor-dependent activation of c-Src increases ubiquitin 

ligase activity of NEDD4–1, a closely related homolog of NEDD4–2 (Persaud et al., 2014). 

While GPCRs are known to signal through c-Src, it is not known whether thrombin-

activated PAR1 stimulates c-Src activity to promote NEDD4–2 activation and was examined 

by assessing c-Src tyrosine (Y)-419 auto-phosphorylation (Smart et al., 1981). Thrombin 

significantly increased c-Src Y-419 phosphorylation (Figure 2A, lanes 1–4), which was 

virtually abolished in cells pretreated with PP2, a Src family kinase inhibitor (Figure 

2A,lanes 5–8). To examine the spatial and temporal changes in c-Src activity following 

thrombin stimulation, plasma-membraneassociated Kras-Src (pm-Kras-Src) or cytosolic-Src 

(cyto-Src) fluorescence resonance energy transfer (FRET) biosensors (Lu et al., 2008) were 

expressed in endothelial cells. Thrombin caused rapid c-Src activation resulting in changes 

in FRET ratios for both pm-Kras-Src and cyto-Src biosensors in multiple cells (Figures 2B 

and 2C). In all cases, thrombin-induced changes in FRET ratios were blocked after addition 

of PP2 (Figures 2B and 2C), indicating that the change in FRET requires c-Src activity. 

However, the rate of thrombin-induced activation of the cyto-Src biosensor was significantly 

delayed compared to the pm-Kras-Src biosensor (Figure 2D). Collectively, these data 

suggest that thrombin induces rapid c-Src activity at the plasma membrane that persists in 

the cytosol.

The mechanisms by which GPCRs activate c-Src are diverse and include direct binding to 

the receptor, Gα and βγ subunits, and β-arrestins (Luttrell and Luttrell, 2004). Given the 

rapid kinetics of c-Src activation induced by thrombin and the coupling of PAR1 to multiple 

heterotrimeric G protein subtypes, we examined the function of Gαq and Gα12/13 subunits 

using siRNAs (Soto et al., 2015). Thrombin significantly increased c-Src phosphorylation at 

2.5 min in non-specific siRN-transfected cells (Figure 2E, lanes 1 and 5) that was markedly 

reduced in Gαq and Gα12/13-depleted cells (Figure 2E, lanes 5–8), suggesting a function of 

G proteins in thrombin-activated PAR1-stimulated c-Src activity. Moreover, chelation of 

intracellular Ca2+ failed to effect thrombin-induced c-Src phosphorylation, indicating that 

Ca2+ is unlikely to mediate c-Src activation or NEDD4–2 activity (Figures S1C and S1B).

Thrombin Stimulates c-Src-NEDD4–2 Association and c-Src-Dependent NEDD4–2 Activity

To determine c-Src function in thrombin-stimulated NEDD4–2 ligase activity, NEDD4–2-c-

Src association and c-Src regulation of NEDD4–2 activity was examined. Thrombin induced 

a 3-fold increase in endogenous c-Src association with NEDD4–2 that peaked as early as 1 

min and remained associated at 5 min (Figure 3A, lanes 2–4). To assess the role of c-Src in 

thrombininduced NEDD4–2 ligase activity, cells were treated with or without the PP2 

inhibitor. In control cells, thrombin caused a marked ~2-fold increase in NEDD4–2 

ubiquitination (Figure 3B, lanes 1 and 2), which was virtually abolished in cells incubated 

with PP2 (Figure 3B, lanes 3 and 4). These results suggest that thrombin promotes c-Src-

NEDD4–2 co-association and requires c-Src function for stimulation of NEDD4–2 activity.
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To further explore how c-Src regulates NEDD4–2 function, we examined NEDD4–2-PAR1 

co-association and ubiquitination of PAR1 (Grimsey et al., 2015). Thrombin promoted 

PAR1-NEDD4–2 co-association (Figure 3C, lanes 1 and 2), whichwas effectively blocked in 

PP2-treated cells (Figure 3C, lanes 3 and 4). Thus, c-Src regulates NEDD4–2 activity and 

association with PAR1 following thrombin stimulation. Since NEDD4–2 is the key mediator 

of PAR1 ubiquitination, we examined whether ubiquitination of PAR1 is also regulated by c-

Src. Thrombin induced a marked ~2.5-fold increase in PAR1 ubiquitination (Figures 3D and 

3E, lanes 1 and 2), which was significantly reduced in PP2-treated cells and c-Src-depleted 

cells (Figures 3D and 3E, lanes 3 and 4). Depletion of c-Src by siRNA did not affect PAR1 

expression (Figures 3E and S3A). These findings indicate that c-Src is a key regulator of 

thrombin-induced NEDD4–2 activity.

c-Src Is Required for PAR1-Stimulated p38 Signaling and TAB1 Stabilization

Ubiquitination of PAR1 drives non-canonical TAB1-mediated p38 activation in endothelial 

cells (Grimsey et al., 2015). Since our results indicate that c-Src regulates NEDD4–2 activity 

and mediates PAR1 ubiquitination, we examined whether c-Src activity is required for 

thrombin-induced p38 activation. Thrombin caused a marked increase in p38 

phosphorylation in control cells (Figure 4A, lanes 1–4), which was significantly inhibited by 

PP2 (Figure 4A, lanes 5–8) but not by the analog PP3 (Figure 4A, lanes 9–12), a negative 

control for PP2 (Traxler et al., 1997). In contrast to p38, thrombin-induced ERK1/2 

activation (Figure 4A, lanes 1–4) remained intact in PP2 and PP3-treated cells (Figure 4A, 

lanes 5–12), indicating that c-Src specifically regulates thrombin-stimulated p38 activation. 

Similar results were observed in thrombin-stimulated cells depleted of c-Src using siRNAs 

(Figure 4B). Moreover, induction of p38 phosphorylation by the cytokine tumor necrosis 

factor-α (TNF-α) was not affected by PP2 treatment (Figure S3B) nor by siRNA-mediated 

depletion of c-Src (Figure S3C). These findings indicate that c-Src specifically regulates 

GPCR-induced p38 activation and not ERK1/2 signaling nor TNF-α-induced p38 activation.

To determine whether the c-Src-NEDD4–2-p38 inflammatory signaling pathway is relevant 

to other GPCRs, we examined whether c-Src is required for ADP-induced p38 activation in 

endothelial cells. We previously showed that ADP activation of the GPCR P2Y1 also 

promotes NEDD4–2- and ubiquitin-mediated p38 activation (Grimsey et al., 2015). 

Pretreatment of endothelial cells with PP2 or depletion of c-Src by siRNA blocked ADP-

induced p38 activation (Figures S4A and S4B). In addition, c-Src activation induced by 

ADP is critically dependent on Gαq signaling (Figure S4C). These data indicate that c-Src is 

also a critical mediator of ADP-stimulated ubiquitin-mediated p38 activation in endothelial 

cells.

TAB1 expression is dynamically regulated by p38 signaling following thrombin activation of 

PAR1 in endothelial cells (Grimsey et al., 2015). However, it is not known whether c-Src 

also functions in the p38 pathway to regulate TAB1 expression. Thrombin caused a rapid 

and significant 2-fold increase in TAB1 expression within 2.5 min (Figure 4C, lanes 1–4), 

which was significantly inhibited by PP2 (Figure 4C, lanes 5–8). Depletion of c-Src by 

siRNA also blocked thrombin-induced increase in TAB1 expression (Figure 4D, lanes 5–8), 

compared to non-specific transfected cells (Figure 4D, lanes 1–4). Together, these results 

Grimsey et al. Page 6

Cell Rep. Author manuscript; available in PMC 2018 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicate that c-Src function is pivotal for regulating NEDD4–2 ligase activity, ubiquitination 

of PAR1, and induction of non-canonical TAB1-mediated p38 activation.

NEDD4–2 Tyrosine-485 Phosphorylation Is Induced by Thrombin

To determine the mechanism by which c-Src regulates NEDD4–2 ligase activity, we 

examined whether thrombin induced NEDD4–2 tyrosine phosphorylation through a c-Src-

dependent mechanism. Tyrosine phosphorylated proteins were IP’ed from thrombin-

stimulated endothelial cells, and the presence of endogenous NEDD4–2 was detected by 

immunoblotting. Thrombin caused a rapid 2.5-fold increase in NEDD4–2 tyrosine 

phosphorylation (Figure 5A, lanes 1–3), which was blocked by PP2 (Figure 5A, lanes 4–6), 

suggesting that c-Src mediates NEDD4–2 tyrosine phosphorylation following thrombin 

stimulation. To identify the specific tyrosine phosphorylated sites induced by thrombin, we 

used global phospho-proteomics-based mass spectrometry. Endothelial cells treated with 

thrombin were lysed, processed, and enriched for phospho-peptides followed by labeling 

with tandem mass tag reagents, pooled, and subjected to mass spectrometry. A total of 

>24,000 non-redundant phospho-peptides were identified and quantified, including two 

NEDD4–2 peptides containing phosphorylated tyrosine-485 (Y485) residue (Table S1, 

MassIVE: MSV000081998, ProteomeX Change: PXD008810). Importantly, a significant 

~2-fold increase in NEDD4–2 Y485 phosphorylation was detected in both phospho-peptides 

after thrombin treatment (Figure 5B). Intriguingly, Y485 resides within the linker peptide 

between WW domains 2 and 3 of NEDD4–2 (Figure 5B), raising the possibility that GPCR-

mediated NEDD4–2 ligase activity is regulated by tyrosine phosphorylation of the 2,3-linker 

peptide.

Next, we determined whether phosphorylation of Y485 regulates NEDD4–2 ligase activity, 

using endothelial cells stably transduced with doxycycline inducible pSLIK lentiviral 

constructs encoding siRNA-resistant FLAG-tagged NEDD4–2 wildtype (WT) or Y485 to 

phenylalanine (F) mutant. A pSLIK construct encoding GFP was used as a control. Cells 

were depleted of endogenous NEDD4–2 by siRNA followed by doxycycline induction of 

siRNA resistance NEDD4–2 wild-type and Y485F mutant (Figure 5C, lanes 3–6) or GFP 

control (Figure 5C, lanes 1 and 2). Thrombin caused a significant increase in NEDD4–2 

wild-type ubiquitination (Figure 5C, lanes 3 and 4), whereas no change in NEDD4–2 Y485F 

mutant ubiquitination was detected over control (Figure 5C, lanes 5 and 6). Neither 

NEDD4–2 nor changes in ubiquitination were detected in cells transduced with GFP (Figure 

5C, lanes 1 and 2). These data suggest that activated GPCRs stimulate c-Src-mediated 

NEDD4–2 activity via tyrosine-485 phosphorylation.

NEDD4–2 Y485 Phosphorylation Is Required for Thrombin-Induced p38 Activation and 
Inflammatory Responses

To assess the function of NEDD4–2 Y485 phosphorylation in thrombin-induced 

inflammatory responses, we performed siRNA knockdown rescue experiments using 

NEDD4–2 wildtype and Y485F mutant. In cells transfected with non-specific siRNA-

expressing GFP control, thrombin induced a robust increase in p38 phosphorylation (Figure 

6A, lanes 1 and 2), which was markedly reduced in NEDD4–2 siRNA-transfected cells 

(Figure 6A, lanes 3 and 4). Expression of siRNA-resistant NEDD4–2 wild-type restored 
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thrombin-induced p38 phosphorylation to levels comparable to that observed in GFP 

controls cells (Figure 6A, lanes 5 and 6 versus 1 and 2). In contrast to NEDD4–2 wild-type, 

expression of the NEDD4–2 Y485F mutant failed to rescue thrombin-stimulated p38 

phosphorylation (Figure 6A, lanes 5 and 6 versus 7 and 8), suggesting that tyrosine 

phosphorylation of the 2,3-linker peptide region of NEDD4–2 at Y485 is necessary for 

thrombin-stimulated p38 activation. We next assessed whether NEDD4–2 Y485 

phosphorylation is necessary for ADP-induced p38 activation using a similar approach. In 

cells expressing NEDD4–2 wild-type, ADP-induced a significant increase in p38 

phosphorylation (Figure S5, lanes 1 and 2), whereas in cells expressing the NEDD4–2 

Y485F mutant ADP failed to induce p38 phosphorylation (Figure S5, lanes 3 and 4).

To assess the function of NEDD4–2 Y485 phosphorylation in GPCR-stimulated p38-

mediated inflammatory responses, we examined thrombin-stimulated endothelial barrier 

permeability. Endothelial cells transfected with non-specific siRNA and expressing GFP, 

NEDD4–2 wild-type, or Y485F mutant exhibited a progressive increase in endothelial 

barrier permeability over control at various times following thrombin stimulation (Figure 

6B). In cells depleted of NEDD4–2 by siRNA and expressing GFP, the capacity of thrombin 

to induce permeability was significantly reduced (Figures 6C and 6D). However, expression 

of wild-type NEDD4–2 restored thrombin-induced endothelial barrier permeability to a level 

comparable to that observed in nonspecific siRNA-transfected cells (Figures 6C and 6D). In 

contrast, expression of NEDD4–2 Y485F mutant failed to rescue thrombin-stimulated 

barrier permeability in cells deficient in endogenous NEDD4–2 (Figures 6C and 6D). 

Collectively, these data indicate that NEDD4–2 Y485 phosphorylation is necessary for 

thrombinand ADP-induced p38 activation and thrombin-mediated endothelial barrier 

disruption, revealing a critical role for tyrosine phosphorylation of NEDD4–2 in the 

regulation of GPCR-mediated endothelial inflammatory responses.

Model of NEDD4–2 Activation Induced by Tyrosine Phosphorylation of 2,3-Linker Peptide 
Stimulated by GPCRs

E3 ligase HECT domains comprise a large N-lobe that interacts with the E2 enzyme, a hinge 

region and C-lobe that mediates ubiquitin (Ub) transfer (Buetow and Huang, 2016) and 

exists either in a “closed” auto-inhibited or an “open” catalytically active state (Figure 7A). 

In recent studies, crystal structures of several HECT domains were solved to define the 

molecular basis of NEDD4 auto-inhibition. The structure of ITCH without the C2 domain 

revealed that the WW2 and 2, 3-linker is packed against the C-lobe of the HECT domain, 

locking ITCH into a closed autoinhibited confirmation (PDB 5×mc) (Zhu et al., 2017). Chen 

et al. showed a similar conformation for WWP2, where the WW2 and 2,3 linker peptide is 

fused directly to the HECT domain (PDB 5tj7 and 5tj8) (Chen et al., 2017). In WWP2 and 

ITCH, the C-terminal region of the 2,3-linker peptide, 15–20 residues preceding the WW3 

domain, adopts an extended conformation that is packed against the C-lobe. A conserved 

tyrosine residue, Y392 in WWP2 and Y420 in ITCH, forms favorable hydrogen-bonding 

with a conserved acidic triad, D787, N788, and E789 in WWP2 and D820, N821, and E822 

in ITCH (Chen et al., 2017; Zhu et al., 2017). While this is a relatively weak interaction, it 

forms a steric lock restricting the rotational shift of the C-lobe that is required for the 

“open,” Ub-, and E2-bound conformation (PDB 3jvz of the HECT domain of NEDD4–2, 
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PDB 3TUG for the HECT domain of ITCH) (Kamadurai et al., 2009; Zhu et al., 2017). 

Thus, it is conceivable that phosphorylation of the conserved tyrosine unlocks the C-lobe 

enabling its rotation to the “open” active conformation. While the 2,3-linker peptide region 

of NEDD4–2 bears low homology to the 2,3-linker peptides of WWP2 and ITCH, the 

critical Y485 in NEDD4–2 is located 14 residues preceding the WW3 domain, and thus 

Y485 in NEDD4–2 is positioned to assume structural and functional similarities to Y392 in 

WWP2 (Chen et al., 2017) and Y420 in ITCH (Yang et al., 2006; Zhu et al., 2017). To 

illustrate this hypothesis, we modeled the C-terminal region of the 2,3-linker of the WW 

domain 3 and 4 and the HECT domain of NEDD4–2 in both the “closed” and “open” 

conformations (Chen et al., 2017; Kamadurai et al., 2009; Zhu et al., 2017). The model 

suggests that Y485 in NEDD4–2 has access to a homologous acidic triad D891, A892, and 

E893 in the C-lobe of the HECT domain in the closed conformation (Figures 7A and 7B). 

Phosphorylation of Y485 in NEDD4–2 may disrupt the interaction with the acidic triad 

D891, A892, and E893 while simultaneously introducing electrostatic repulsion, and motion 

of the C-lobe (Figures 7B, 7C, and S6). Such structural changes of NEDD4–2 would result 

in an “open” active conformation observed crystallographically when NEDD4–2 is bound to 

ubiquitin and the E2 ligase UbcH5B (Kamadurai et al., 2009). These findings together with 

our biochemical and cellular studies strongly suggest that tyrosine phosphorylation of the 

2,3-linker peptide of NEDD4–2 serves as a key regulatory element for GPCR stimulation of 

E3 ligase activity.

DISCUSSION

We previously showed that the HECT domain containing E3 ligase NEDD4–2 mediates 

GPCR ubiquitination to control receptor signaling rather than lysosomal degradation. 

Ubiquitination of PAR1 or the P2Y1 purinergic receptor was shown to initiate recruitment of 

a signaling complex comprised of TAB2, TAB1, and p38, which induces p38 auto-

phosphorylation and activation (Grimsey et al., 2015). However, it is not known how 

NEDD4–2 is activated in response to GPCR stimulation. We now report that endothelial 

GPCRs initiate ubiquitin-driven p38 signaling through c-Src-mediated NEDD4–2 tyrosine 

phosphorylation and activation at the plasma membrane. Demonstrating that GPCRs 

functionally activate NEDD4–2 E3 ligase through a tyrosine phosphorylation switch that 

releases autoinhibition.

Over forty mammalian GPCRs have been reported to be ubiquitinated largely by the 

NEDD4 family E3 ligases (JeanCharles et al., 2016). However, the mechanism by which 

GPCRs induce activation of NEDD4 E3 ubiquitin ligases has not been established. Here, we 

demonstrate that PAR1 couples to Gαq or Gα12/13 to induce rapid c-Src activation, 

switching on NEDD4–2 E3 ligase activity at the plasma membrane independent of Ca2+ 

mobilization. Activated P2Y1 receptor also couples to Gαq to induce NEDD4–2 activity 

through a similar mechanism. Interestingly, PAR1-stimulated ubiquitin-driven p38 signaling 

peaks when both PAR1 and TAB2 are present on early endocytic vesicles (Grimsey et al., 

2015) suggesting that GPCR-TAB-p38 signaling complex assembles on endosomes. 

However, we found that PAR1 internalization is not required for NEDD4–2-dependent 

ubiquitin-mediated p38 signaling, indicating that activation of this pathway is likely initiated 

from the plasma membrane. Nonetheless, these data do not preclude the possibility that the 
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GPCR-TAB-p38 signaling complex remain associated after internalization and is competent 

to signal from endosomes

The transition from the inactive “closed” state to an “open” catalytically active state of 

HECT E3 ligase can be regulated by allosteric interactions with the C2 and WW domains 

and phosphorylation-dependent activation, although the mechanisms are not fully defined 

(Bruce et al., 2008; Escobedo et al., 2014; Gallagher et al., 2006; Persaud et al., 2014; Riling 

et al., 2015; Wiesner et al., 2007; Zhu et al., 2017). Additionally, the 2,3-linker of HECT 

family E3 ligases WWP2 and ITCH but not NEDD4–2 has been previously shown to 

regulate ligase activity through auto-inhibition (Chen et al., 2017). A distinct but 

conceptually related structural mechanism of HECT domain regulation occurs in HUWE1 

E3 ligase auto-inhibitory dimers, at the dimer interface the pointer domain mimics the 2,3-

linker domain of WWP2 and ITCH, locking the HECT domain into a closed conformation 

(Sander et al., 2017). These studies demonstrate that diverse mechanisms regulate E3 ligase 

activity including auto-inhibition by the 2,3-linker peptide.

Our studies suggest that NEDD4–2 Y485 enables the 2,3-linker to restrict the movement of 

the HECT domain C-lobe through interactions with the acidic triad (Figure 7). Interestingly, 

the 2,3-linker peptide of NEDD4–2 lacks structural conservation with the 2,3-linker peptide 

of WWP2 and is not predicted to assume an α-helical conformation. This would allow the 

2,3-linker peptide of NEDD4–2 to serve as a better substrate for tyrosine phosphorylation 

since tyrosine kinases preferentially bind to extended conformations (Bose et al., 2006). 

While Chen et al. clearly show that tyrosine phosphorylation of the 2,3-linker domain is 

required for WWP2 activation, the kinases responsible for phosphorylation under 

physiological conditions were not identified (Chen et al., 2017). Our findings suggest that c-

Src-dependent phosphorylation of the 2,3-linker peptide of NEDD4–2 disrupts the 

interaction with the acidic triad and enables movement of the C-lobe, facilitating a transition 

to the “open” active conformation (Figures 7B and S6). However, further biochemical and 

structural studies are needed to confirm the precise details by which the 2,3-linker peptide 

regulates activation of NEDD4–2 E3 ligase activity in response to GPCR stimulation.

Our studies highlight an important physiological function for the tyrosine switch in 

NEDD4–2 activation and GPCR-induced inflammatory signaling in endothelial cells. We 

demonstrate that PAR1 coupling to Gαq and Gα12/13 stimulates c-Src-mediated NEDD4–2 

activation and ubiquitin-driven p38 activation that promotes endothelial barrier disruption. 

We also found that this pathway is conserved for other GPCRs, specifically endothelial 

P2Y1. While c-Src inhibitors have been shown to block GPCR-induced blood-brain barrier 

breakdown in vivo, the underlying mechanisms are not known (Liu et al., 2010). In fact, c-

Src is known to directly regulate the endothelial barrier through modulation of the actin 

cytoskeleton and adherens junction components, including p120 and vascular endothelial 

(VE)-cadherin (Adam, 2015) and now NEDD4–2 activation. Thus, additional studies will be 

required to define the specific role of c-Src-mediated NEDD4–2 activation in GPCR-

induced disruption of endothelial barrier in vivo.

In summary, these studies advance our understanding of how GPCRs stimulate E3 ligase 

activity by unlocking the auto-inhibited state in an important physiological context. These 
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findings further reveal a key role for c-Src in initiating GPCR-stimulated NEDD4–2 activity 

and ubiquitin-driven p38 signaling expanding the function of c-Src in inflammatory 

signaling.

STAR⋆METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse IgG Rockland Immunochemicals Cat# 010–001-298; RRID:AB_832813

Mouse P4D1 (anti-ubiquitin) Santa Cruz Biotechnology Cat# sc-8017; RRID:AB_628423

Rabbit Gαq/11 (clone C12) Santa Cruz Biotechnology Cat# sc-46972; RRID:AB_2279038

Rabbit Gα12 (clone S20) Santa Cruz Biotechnology Cat# sc-409; RRID:AB_2263416

Rabbit Gα13 (clone A20) Santa Cruz Biotechnology Cat# sc-410; RRID:AB_2279044

Mouse anti-GFP Covance Cat# MMS-118R-200; RRID:
AB_10064222

Mouse anti-Thrombin receptor Beckman Coulter Cat# IM2085; RRID:AB_131681

Mouse M2 anti-Flag Sigma-Aldrich Cat# P2983; RRID:AB_439685

Mouse anti-beta actin Sigma-Aldrich Cat# A1978; RRID:AB_476692

Rabbit anti-NEDD4L Cell signaling Technology Cat# 4013S; RRID:AB_1904063

Rabbit anti-TAB1 Cell signaling Technology Cat# 3226S; RRID:AB_2140247

Rabbit Anti-p38 MAPK, phospho 
(Thr180 / Tyr182) Monoclonal
Antibody, Unconjugated, Clone 
D3F9

Cell signaling Technology Cat# 4511L; RRID:AB_2139679

Rabbit monoclonal anti-p38 MAPK 
phospho -(Thr180/Tyr182)
(D3F9)XP

Cell signaling Technology Cat# 4511P; RRID:AB_2139685

Rabbit anti-p42/p44 MAPK Cell signaling Technology Cat# 9102; RRID:AB_330744

Mouse anti-phospho-p42/p44 MAPK Cell signaling Technology Cat# 9106; RRID:AB_331768

Rabbit anti-c-Src Cell signaling Technology Cat# 8077S; RRID:AB_10860048

Rabbit anti-phospho-c-Src (Y416) Cell signaling Technology Cat# 2101; RRID:AB_331697

Mouse anti-GAPDH Genetex Cat# GTX627408; RRID:AB_11174761

Mouse 4G10® platinum anti-
phospho-tyrosine

Millipore Cat# 05–1050X; RRID:AB_916370

HRP-conjugated goat-anti-rabbit Bio-Rad Laboratories Cat# 170–6515; RRID:AB_11125142

HRP-conjugated goat-anti-mouse Bio-Rad Laboratories Cat# 170–6516; RRID:AB_11125547

Alexa fluor 488 anti-mouse Life Technologies Cat# A-11029; RRID:AB_2534088

Alexa fluor 594 anti-rabbit Life Technologies Cat# A-11037; RRID:AB_2534095

Chemicals, Peptides, and Recombinant Proteins

Human α-Thrombin (Factor IIa) Enzyme Research Laboratories Cat# HT 1002a; CAS: N/A

Adenosine Diphosphate Acros Organics Cat#AC164670010; CAS: 16178–48-6

TNF-α EMD Millipore Cat# 635343; CAS N/A

SB-203580 Sigma Aldrich Cat# S8307; CAS:152121–47-6
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REAGENT or RESOURCE SOURCE IDENTIFIER

PP2 Sigma Aldrich Cat#529573; CAS: 172889–27-9

PP3 Sigma Aldrich Cat# 529574; CAS: 5334–30-5

BAPTA-AM Sigma Aldrich Cat# A1076; CAS:126150–97-8

MG-132 Sigma Aldrich Cat# 474790; CAS: 133407–82-6

PR-619 Tocris Cat# 4482; CAS: 2645–32-1

Dyngo 4a Abcam Cat# ab120689; CAS: 1256493–34-1

Deposited Data

Dataset and corresponding annotated 
spectra deposited in 
proteomeXchange using MassIVE

http://www.proteomexchange.org/ MassIVE: MSV000081998

Dataset and corresponding annotated 
spectra

http://www.proteomexchange.org/ ProteomeXChange: PXD008810

Experimental Models: Cell Lines

EA.hy 926 endothelial cells ATCC Cat# CRL-2922, RRID: CVCL_3901

Primary Human Umbilical Vein 
Endothelial Cells (HUVECs), pooled 
donor in EGM™

Lonza Cat# CC-2519

Oligonucleotides

siRNA targeting sequence: Allstars 
negative control

QIAGEN Cat # 1027281

c-Src specific siRNA oligonucleotide 
#7 5’-GCUUGUGGGU 
GAUGUUUGATT-3’

QIAGEN Cat # SI02223928

siRNA targeting sequence: NEDD4–
2 siRNA oligonucleotide
#7 5’-
GAAUAUCGCUGGAGACUCU-3’

QIAGEN Custom siRNA, Grimsey et al., 2015

siRNA targeting sequence: Adaptor 
protein subunit μ2:
5’-GTGGATGCCTTTCGGGTCA-3’

QIAGEN Custom siRNA, Chen et al., 2011

siRNA targeting sequence: EPSN1: 
5’-GGAAGACGCCG 
GAGTCATT-3’

QIAGEN Custom siRNA, Chen et al., 2011

siRNA targeting sequence: Gαq/11: 
5’-GAUGUU-CGUGG 
ACCUGAAC-3’

QIAGEN Custom siRNA, Soto et al., 2015

siRNA targeting sequence: Gα12: 50-
GGAUCGGCCAGC 
UGAAUUATT-3’

QIAGEN Custom siRNA, Soto et al., 2015

siRNA targeting sequence: Gα13: 5’-
CGACUGCUUACC 
AAAUUAATT-3’

QIAGEN Custom siRNA, Soto et al., 2015

Recombinant DNA

pEN_TmiRc3 Addgene https://www.addgene.org/25748/

pSLIK-hygro Addgene https://www.addgene.org/25737/

pMDLg/pRRE Addgene https://www.addgene.org/12251/

pRSV-Rev Addgene https://www.addgene.org/12253/

pMD2.G/pVSV-G Addgene https://www.addgene.org/12259/

pSLIK-hygro-GFP This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

pSLIK-hygro-FLAG-NEDD4–2 
wild-type siRNA #7 resistant

This paper N/A

pSLIK-hygro-FLAG-NEDD4–2 
Y485 siRNA #7 resistant

This paper N/A

Software and Algorithms

Metamorph Molecular Devices N/A

ImageJ NIH https://imagej.nih.gov/ij/

ProteomeDiscoverer 2.1.0.81 
software package

https://software.broadinstitute.org/GENE-E/index.html

Metafluor 7.7 Molecular Devices https://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metamorph-microscopy

Prism 7.0, Statistical analysis 
software

Graphpad https://www.graphpad.com/scientificsoftware/prism/

Uniprot database of Human entries https://www.uniprot.org/downloads

ICM-Pro, version 3.8–6 Molsoft LLC http://www.molsoft.com

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, JoAnn Trejo (joanntrejo@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—Primary human umbilical vein endothelial cells (HUVECs, pooled vein donor 

samples) cultured in endothelial growth media plus (Lonza Ltd.) at 37°C at 5% C02. 

HUVEC–derived EA.hy926 cells were cultured using 10% FBS and Dulbecco’s Modified 

Eagles Media at 37°C at 5% C02.

CDNA—Pm-Src-KRas and the cyto-Src biosensors were from the Dr. Peter Yingxiao Wang 

(UC San Diego). The pCI-FLAG-NEDD4–2 was from Dr. Wesley Sundquist (The 

University of Utah). The siRNA resistant NEDD4–2 was generated by QuikChange site-

directed mutagenesis (Agilent Technologies) mutating nucleotides c846t, t849a, a852t, t856a 

and t858a, confirmed by dideoxy sequencing. Tyrosine Y-485 (Y485F) was mutated to 

phenylalanine (F) by site-directed mutagenesis. NEDD4–2 siRNA resistant wild-type and 

Y485F were cloned into a pSLIK lentiviral vector and EA.hy926 stable lines generated as 

described (Chen et al., 2014).

Cell transfections—EA.hy926 cells were seeded at 1.4 × 105 of 24-well plates and grown 

overnight. HUVECs were seeded at 1.2 × 105 per well of a 24-well plate coated with 

10μg/cm2 rat tail collagen type I. Cells were transfected with siRNA using Oligofectamine 

(Life Technologies), for EA.hy926 and TransIT-X2 (Mirus) for HUVECs, per the 

manufacturer’s instructions (see Key Resources Table for specific siRNA sequences). FRET 

biosensor expression plasmids were transfected into cells seeded on Matek imaging plates, 

using X-tremeGENE HP (Roche) per manufacturer’s instructions.
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METHOD DETAILS

Cell surface ELISA—The expression of endogenous PAR1 was measured by ELISA as 

previously described (Grimsey et al., 2015; Soto and Trejo, 2010). Cells were fixed with 4% 

paraformaldehyde, washed and incubated with anti-PAR1 antibody and followed by 

incubation with antimouse IgG conjugated to HRP. Surface PAR1 detected using HRP 

substrate one-step 2,2’-azinobis-3-ethylbenzthiazoline-6-sulfonic acid (ThermoFisher 

Scientific) 20 min at RT. Absorbance at 405 nm was measured using a Molecular Devices 

SpectraMax Plus microplate reader. Each experimental condition was in triplicate and 

averages were taken from three independent repeats.

Immunofluorescence confocal microscopy—Cells grown on coverslips and 

processed for immunofluorescence microscopy as described (Grimsey et al., 2015). Serum 

starved cells were pretreated (as indicated) with 15 μM Dyngo 4a for 30 min prior to 10 nM 

α-Th. Percent overlap and Pearson’s correlation coefficients (r) were calculated using 

MetaMorph 7.7 software (Molecular Devices). Images were collected blind > 3 images per 

condition, data collected from three independent repeats.

FRET Live-cell imaging—Cells were transfected with cytosolic or KRas-targeted (Lu et 

al., 2008) Src biosensors. After 24 h, cells were incubated in Hank’s Balanced Salt Solution 

(HBSS) with 20 mM HEPES pH7.4, 5 mM D-glucose and 0.23 mM sodium pyruvate for 1 h 

before addition of 10 μM α-Th and 10 mM PP2. Image acquisition and FRET measurements 

were as described (Mehta and Zhang, 2014). Cells were analyzed using MetaFluor 7.7 by 

defining a region of interest (ROI) that encompassed each complete endothelial cell. The 

cyan fluorescent protein (CFP)/ yellow fluorescent protein (YFP) emission ratios were 

normalized to the value immediately before thrombin addition and used to calculate the 

FRET signals. Greater than 3 images were collected blind per condition, presented data 

collected from the average of three independent repeats.

Immunoblotting—Cells were transfected and grown as described above and pretreated (as 

indicated) with 5 mM PP2, 5 μM PP3 or 15 μM Dyngo 4a for 30 min prior to stimulation 

with 10 nM α-Th or 10 μM ADP. Cells were lysed in 1X Laemmli sample buffer with 100 

mM DTT, sonicated and resolved by SDS-PAGE. Immunoblots were quantified by 

densitometry using ImageJ software.

Immunoprecipitations—Cells were stimulated with agonists and processed as described 

(Grimsey et al., 2016) except with Triton lysis buffer containing 20 μM PR619. EA.hy926 

cells were grown in 6 cm dishes, serum starved overnight and lysed in Triton lysis buffer 

containing 50 mM Tris-HCl pH 7.4, 100 mM NaCl, 1% Triton X-100, 10 mM NaF, 10 mM 

β-glycerophosphate, 10 mM NaPP, 2mM NaVO4, 10 μg/ml leupeptin, aprotinin, trypsin 

protease inhibitor, pepstatin, 100 μg/ml benzamide, 20 mM N-ethylmaleimide and 20 μM 

PR619. Cell lysates were homogenized, cleared by centrifugation and protein concentrations 

determined by bicinchoninic acid assay (BCA). Equivalent amounts of lysates were used for 

immunoprecipitations using the anti-phospho-tyrosine antibody (4G10 Platinum, Millipore) 

samples were eluted with 2X Laemmli sample buffer containing 200 mM dithiothreitol, 

resolved by SDS-PAGE and developed by chemiluminescence. Aliquots of cell lysates were 
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also immunoblotted with specific antibodies as indicated. Co-IP of endogenous PAR1 and 

NEDD4–2 were performed as above except 1% Triton X-100 was replaced with 1% n-

dodecyl-β-D-maltoside (DDM) lysis buffer. PAR1 ubiquitination assays were performed as 

previously described(Grimsey et al., 2015). Cell were serum starved overnight and lysed in 

RIPA buffer containing 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 

0.5% sodium deoxycholate, 0.1% SDS, 10 mM NaF, 10 mM β-glycerophosphate, 10 mM 

NaPP, 2 mM NaVO4, 10 mg/ml leupeptin, aprotinin, trypsin protease inhibitor, pepstatin, 

100 μg/ml benzamide, 20 mM N-ethylmaleimide and 20 μM PR619.

Calcium Assays—Cells were grown in 96-well black clear bottom plates (Becton 

Dickinson Labware), washed with PBS and loaded with Fluo-4NW (Life Sciences) and 

probenecid (2.5 mM) in HBSS followed by the addition of DMSO or BAPTA-AM (10 μM). 

Cells challenged with 10 nM α-Th at 37°C, fluorescence intensity (excitation 485 nm, 

emission 525 nm) monitored every 2 s immediately using a FLIPR plate reader (Molecular 

Devices). Ca2+ is presented as the ratio of sample fluorescence at any given time point (F) 

divided by background fluorescence (F0). For each independent repeat, all experimental 

conditions were in triplicate and assayed simultaneously on the same plate.

Endothelial barrier permeability—Endothelial barrier permeability was quantified by 

measuring the flux of Evans blue-bound BSA as previously described (Grimsey et al., 2015). 

EA.hy926 cells were seeded into 3.0 μM transwell permeability support chambers 

(Corning), and grown for 5 days. The cells were starved overnight and treated as indicated. 

Evans blue conjugated to BSA was added to the upper chamber after 10 min of agonist 

stimulation at 37°C. Samples were removed from the lower chamber at the indicated time 

points and the amount of Evans blue diffusion was quantified by measuring the absorbance 

at 605 nm using a microplate reader (SpectraMax Plus, Molecular Devices).

Mass Spectrometry Based Proteomics—EA.hy926 cells were grown in 150 cm2 

dishes and starved overnight, stimulated with 10 nM α-Th, washed with PBS, lysed in 3% 

SDS, 75 mM NaCl, 1 mM NaF, 1 mM beta-glycerophosphate, 1 mM sodium orthovanadate, 

10 mM sodium pyrophosphate, 1 mM PMSF and 1X Roche Complete mini EDTA free 

protease inhibitors in 50 mM HEPES, pH8.5. Lysates were homogenized, sonicated, 

centrifuged, and the supernatants processed for LCMS2/MS3 analysis, data processing and 

analysis as previously described (Lapek et al., 2017).

Lyophilized peptides were re-suspended and labeled with tandem mass tag (TMT), pooled 

into multiplex experiments, and fractionated by HPLC. Identification and quantification of 

peptides by LC-MS2/MS3. All LC-MS2/MS3 experiments were performed on an Orbitrap 

Fusion mass spectrometer with an in-line Easy-nLC 1000 with chilled autosampler. Data 

processing and analysis was performed using ProteomeDiscoverer 2.1.0.81. SequestHT was 

utilized to assign identities to MS2 spectra searching against the Uniprot database of Human 

entries (downloaded Feb. 27, 2016 with 69,961 total entries). Including a 50 ppm MS1 mass 

tolerance and 0.6 Da fragment ion tolerance. Data were filtered to a peptide and protein false 

discovery rate of less than 1%. TMT reporter ion intensities were extracted from MS3 

spectra for quantitative analysis. Spectra used only if greater than 10 × average signal to 

noise per label and isolation interference of less than 25%. Data were normalized as 
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previously described (Lapek et al., 2017). The dataset and annotated spectra are deposited in 

ProteomeXchange through MassIVE (ProteomeXChange: PXD008810, MassIVE: 

MSV000081998).

Molecular Modeling of NEDD4–2 (aa 480–970)—A continuous fragment of NEDD4–

2 containing a part of the WW2-WW3 linker, WW3 and WW4 domains, and the HECT 

domain was modeled using ICM-Pro software, version 3.8–6 (MolSoft LLC, San Diego, 

CA) (Abagyan and Totrov, 1994). The open conformation of the HECT domain was taken 

from PDB 3jvz (Kamadurai et al., 2009), and the closed conformation modeled by 

homology using the structure of the corresponding domain of WWP2 (PDB 5tj7)(Chen et 

al., 2017). A single polypeptide chain containing the C-terminal part of the WW2-WW3 

linker (residues 480–497), the WW3 domain (residues 498–531), the entire WW3-WW4 

linker (residues 532–546), the WW4 domain (residues 547–587), and the WW4-HECT 

linker (residues 588–600) was built by homology to the WW3 and WW4 domains of ITCH 

(PDB 5cq2)(Liu et al., 2016), with the linkers built ab initio. The backbone atoms of 

residues 480–488 were tethered with harmonic restraints to residues 387–395 of the WWP2 

structure, assuming correspondence of NEDD4–2 Y485 to WWP2 Y392 and, the backbone 

atoms of residues 597–600 were tethered to the corresponding atoms in the NEDD4L HECT 

domain structure (for the open conformation) or model (for the closed conformation). The 

NEDD4–2 HECT domain residues not involved in restraints, as well as the bound Ub and E2 

molecules for the open conformation, were represented as potentials calculated on a 0.5 A˚ 

3D grid and encoding (i) Van der Waals interactions (calculated as Lennard-Jones potential 

with hydrogen, carbon, and large-atom probes) (ii) electrostatic potential, (iii) hydrogen 

bonding potential, and (iv) polar surface energy. The linkers (residues 480–497, 532–546, 

and 588–600) and the side-chains of the WW3 and WW4 domains were then 

conformationally sampled in internal coordinates to optimize the position of these domains 

and linkers in the context of the HECT domain. At least 107 energy optimization steps were 

performed for both models. Finally, top-scoring conformations of the fragment were 

inspected manually, integrated with the HECT domain in a single full-atom polypeptide 

chain, and subjected to a round of unrestrained full-atom side-chain minimization to resolve 

minor steric conflicts resulting from the merge.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experimental data was analyzed using Prism 7.0 statistical software. Details of statistical 

analysis can be found in the figure legends. The exact value of n is given in each figure 

legend, where n = the number of independent repeats unless otherwise stated. All values 

were calculated and presented as the mean ± SD. Statistical tests included Students t tests, 

and one-way and two-way analysis of variance (ANOVA) and are stated when used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• GPCRs stimulate NEDD4–2 activity via rapid activation of c-Src at the 

plasma membrane

• c-Src phosphorylates NEDD4–2 tyrosine-485 within the auto-inhibitory linker 

peptide

• NEDD4–2 Y485 phosphorylation mediates GPCR-induced p38 inflammatory 

signaling
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Figure 1. PAR1 Regulates NEDD4–2 Recruitment and Activation Independent of 
Internalization:
(A) Immunoblot of IP’ed PAR1 and co-associated NEDD4–2 from α-Thrombin (α-Th)-

stimulated EA.hy926 cells. The data (mean ± SD, n = 3) were analyzed by ANOVA (*p < 

0.05).

(B) Immunofluorescence confocal microscopy of PAR1 (green) and NEDD4–2 (red) in 

control (ctrl) or α-Th-stimulated human umbilical vein endothelial cells (HUVECs). PAR1 

and NEDD4–2 colocalization is shown as yellow in the merged image. Insets are 

magnifications of boxed areas. Bars, 10 μm.
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(C) Percentage of overlap of PAR1 (green pixels) and NEDD4–2 (red pixels), in control 

(ctrl) or α-Th-stimulated cells. The data (mean ± SD, n = 9) were analyzed by Student’s t 

test (*p < 0.05).

(D) Pearson’s correlation coefficients (r) calculated for PAR1 and NEDD4–2 colocalization 

in control (ctrl) or α-Th-stimulated cells. The data (mean ± SD, n = 9) were analyzed by 

Student’s t test (*p < 0.05).

(E) Immunoblot of ubiquitinated NEDD4–2 IP’ed from α-Th-stimulated EA.hy926 cells. 

The data (mean ± SD, n = 3) were analyzed by Student’s t test (**p < 0.01).

(F) Immunofluorescence confocal microscopy of PAR1 (green) and NEDD4–2 (red) in 

control (Ctrl) or α-Th-stimulated EA.hy926 cells pretreated with DMSO or Dyngo 4a. 

Colocalization of PAR1 and NEDD4–2 is shown as yellow in the merged image; insets are 

magnifications of boxed areas. Bars, 10 μm.

(G) Pearson’s correlation coefficients (r) calculated for PAR1 and NEDD4–2 colocalization 

in α-Th-stimulated cells. The data (mean ± SD, n = 9) were analyzed by Student’s t test 

(***p < 0.001, ****p < 0.0001).

(H) PAR1 surface expression in DMSO (Ctrl) or Dyngo 4a-treated cells. The data (mean ± 

SD n = 3) were analyzed by ANOVA (**p < 0.01)

(I) Immunoblot of ubiquitinated PAR1 IP’ed from DMSO or Dyngo 4a-treated EA.hy926 

cells. The data (mean ± SD, n = 3) were analyzed by Student’s t test (*p < 0.05).

(J) Immunoblots of cell lysates from DMSO (Ctrl) or Dyngo 4a-treated EA.hy926 cells. The 

data (mean ± SD n = 3) were analyzed by ANOVA (*p < 0.05, **p < 0.01).
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Figure 2. Rapid Activation of Plasma-Membrane-Associated c-Src by PAR1:
(A) Immunoblots of cell lysates from EA.hy926 cells in Ctrl or PP2-treated cells. The data 

(mean ± SD, n = 3) were analyzed by ANOVA (*p < 0.05, **p < 0.01).

(B and C) Activation of c-Src using a pm-Kras-Src (B) or cytosolic-Src FRET (C) 

biosensors expressed in EA.hy926 cells incubated with α-Th and PP2. FRET ratios were 

normalized prior to α-Th addition (mean ± SEM, n = >8 cells).

(D) Response kinetics of c-Src FRET biosensors in α-Th-stimulated EA.hy926 cells, time to 

half-max (t1/2, min); the data (mean, ± SEM, n = 54 cells) were analyzed by Student’s t test 

(****p < 0.0001).

(E) Immunoblots of cell lysates from non-specific (ns) Gαq, Gα12, or Gα13 siRNA-

transfected EA.hy926 cells. The data (mean ± SD, n = 3) were analyzed by Student’s t test 

(*p < 0.05, **p < 0.01).
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Figure 3. NEDD4–2 Auto-ubiquitination and PAR1 Ubiquitination Mediated by c-Src:
(A) Immunoblot of NEDD4–2 co-association with c-Src from α-Th-stimulated EA.hy926 

cells. The data (mean ± SD, n = 3) were analyzed by Student’s t test (*p < 0.05).

(B) Immunoblot of ubiquitinated NEDD4–2 from α-Th-stimulated EA.hy926 cells, Ctrl, or 

PP2 treatment. The data (mean ± SD, n = 3) were analyzed by Student’s t test (**p < 0.01).

(C) Immunoblot of NEDD4–2 co-association with PAR1 from α-Th-stimulated EA.hy926 

cells, Ctrl, or PP2 treatment.
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(D) Immunoblot of ubiquitinated PAR1 from α-Th-stimulated EA.hy926 cells, Ctrl, or PP2 

treated. The data (mean ± SD, n = 3) were analyzed by Student’s t test (*p < 0.05).

(E) Immunoblot of ubiquitinated PAR1 from α-Th-stimulated EA.hy926 cells, transfected 

with control, ns-, or c-Src-specific siRNA. The data (mean ± SD, n = 3) were analyzed by 

Student’s t test (***p < 0.001).
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Figure 4. Thrombin Activation of p38 MAPK Requires c-Src:
(A and C) Immunoblot of cell lysates from EA.hy926 cells pretreated with Ctrl, PP2, or PP3 

(A) or Ctrl and PP2 (C), prior to α-Th stimulation. The data (mean ± SD, n = 3) were 

analyzed by ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001).

(B and D) Immunoblots of EA.hy926 cell lysates transfected with ns- or c-Src-specific 

siRNA prior to α-Th stimulation immunoblotted for p38 and ERK1/2 (B) or TAB1 (D). The 

data (mean ± SD, n = 3) were analyzed by ANOVA (*p < 0.05, **p < 0.01).
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Figure 5. NEDD4–2 Tyrosine Phosphorylation Required for Auto-ubiquitination
(A) Immunoblot of tyrosine phosphorylated proteins from Ctrl or PP2-treatedEA.hy926 cells 

stimulated with α-Th. The data (mean ± SD, n = 3) were analyzed by ANOVA (***p < 

0.001).

(B) Schematic representation of the NEDD4–2 domains and the two NEDD4–2 

phosphopeptides identified by mass spectrometry, that showed α-Th-stimulated increase in 

Y485 phosphorylation. The data (mean ± SD, n = 3) were analyzed by Student’s t test (*p < 

0.05).
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(C) Immunoblot of ubiquitinated NEDD4–2 from α-Th-stimulated EA.hy926 cells, stably 

expressing GFP, siRNA-resistant FLAG-NEDD4–2-wild-type (WT), or Y485F mutant. The 

data (mean ± SD, n = 3) were analyzed by Student’s t test (*p < 0.05, **p < 0.01).
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Figure 6. NEDD4–2 Y485 Is Critical for Thrombin-Induced Signaling and Endothelial Barrier 
Permeability
EA.hy926 cells expressing GFP or siRNA-resistant FLAG-NEDD4–2-wild-type or Y485F 

mutant, transfected with ns- or NEDD4–2 siRNA.

(A) Immunoblots of lysates from Ctrl or α-Th stimulated cells. The data (mean ± SD n = 3) 

were analyzed by ANOVA (***p < 0.001, ****p < 0.0001).

(B) Endothelial cell (EC) barrier permeability in ns siRNA-transfected Ctrl or α-Th 

stimulated cells.

(C) EC barrier permeability in NEDD4–2 siRNA-transfected Ctrl or α-Th stimulated cells.
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(D) EC barrier permeability stimulated by α-Th in various cell lines relative to ns siRNA-

transfected GFP cells at 20 min (mean ± SD, n = 3), analyzed by ANOVA (*p < 0.05, **p < 

0.01).
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Figure 7. Structural Model of the 2,3-Linker Peptide NEDD4–2 Interaction with the C-lobe of 
the HECT Domain
(A) Cartoon model showing the functionally validated “closed” auto-inhibited and “open” 

activated conformation of HECT domain containing E3 ubiquitin ligases.

(B) A 3D structural model of the C-terminal region of the 2,3-linker peptide (dark blue) 

showing Y485 access to the acidic triad (D891, A892, E893) in C-lobe of the HECT domain 

(magenta) in the “closed” conformation of NEDD4–2, N-lobe (gray and black). In the active 

“open” conformation of NEDD4–2 C-lobe (green) when bound to ubiquitin (yellow) and the 

E2 ubiquitin ligase UbcH5B (light blue), phosphorylated Y485 is moved away. Surface view 

shows a structural model including the WW3 and WW4 domains in Figure S6.

(C) Predicted structural translation from the “closed”(magenta) to “open” (green) 

conformation of the C-lobe of NEDD4–2 HECT domain.
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