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Abstract

Probabilistic logic programs are logic programs in which some of the facts are annotated
with probabilities. This paper investigates how classical inference and learning tasks known
from the graphical model community can be tackled for probabilistic logic programs.
Several such tasks such as computing the marginals given evidence and learning from
(partial) interpretations have not really been addressed for probabilistic logic programs
before.

The first contribution of this paper is a suite of efficient algorithms for various inference
tasks. It is based on a conversion of the program and the queries and evidence to a weighted
Boolean formula. This allows us to reduce the inference tasks to well-studied tasks such
as weighted model counting, which can be solved using state-of-the-art methods known
from the graphical model and knowledge compilation literature. The second contribution
is an algorithm for parameter estimation in the learning from interpretations setting.
The algorithm employs Expectation Maximization, and is built on top of the developed
inference algorithms.

The proposed approach is experimentally evaluated. The results show that the infer-
ence algorithms improve upon the state-of-the-art in probabilistic logic programming and
that it is indeed possible to learn the parameters of a probabilistic logic program from
interpretations.

KEYWORDS: Probabilistic logic programming, Probabilistic inference, Parameter learn-
ing

1 Introduction

There is a lot of interest in combining probability and logic for dealing with complex

relational domains. This interest has resulted in the fields of Probabilistic Logic

Programming (PLP) (De Raedt et al. 2008) and Statistical Relational Learning

(SRL) (Getoor and Taskar 2007). While the two fields essentially study the same

problem, there are differences in emphasis. SRL techniques have focussed on the

extension of probabilistic graphical models like Markov or Bayesian networks with
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logical and relational representations, as in for instance Markov logic (Poon and

Domingos 2006). Conversely, PLP has extended logic programming languages (or

Prolog) with probabilities. This has resulted in differences in representation and

semantics between the two approaches and, more importantly, also in differences in

the inference tasks and learning settings that are supported. In graphical models

and SRL, the most common inference tasks are that of computing the marginal

probability of a set of random variables given some evidence (we call this the MARG

task) and finding the most likely joint state of the random variables given the

evidence (the MPE task). The PLP community has mostly focussed on computing

the success probability of queries without evidence. Furthermore, probabilistic logic

programs are usually learned from entailment (Sato and Kameya 2008; Gutmann

et al. 2008a), while the standard learning setting in graphical models and SRL

corresponds to learning from interpretations. This paper bridges the gap between

the two communities, by adapting the traditional graphical model and SRL settings

towards the PLP perspective. We contribute general MARG and MPE inference

techniques and a learning from interpretations algorithm for PLP. In this paper

we use ProbLog (De Raedt et al. 2007) as the PLP language, but our approach

is relevant to related languages like ICL (Poole 2008), PRISM (Sato and Kameya

2008) and LPAD/CP-logic (Vennekens et al. 2009) as well.

The first key contribution of this paper is a two-step approach for performing

MARG and MPE inference in probabilistic logic programs. In the first step, the

program is converted to an equivalent weighted Boolean (propositional) formula.

This conversion is based on well-known conversions from the knowledge representa-

tion and logic programming literature. The MARG task then reduces to weighted

model counting (WMC) on the resulting weighted formula, and the MPE task to

weighted MAX-SAT. The second step then involves calling a state-of-the-art solver

for WMC or MAX-SAT. In this way, we establish new links between PLP inference

and standard problems such as WMC and MAX-SAT. We also identify a novel

connection between PLP and Markov Logic (Poon and Domingos 2006). From a

probabilistic perspective, our approach is similar to the work of Darwiche (2009)

and others (Sang et al. 2005; Park 2002), who perform Bayesian network inference

by conversion to weighted formulas. We do the same for PLP, a much more expres-

sive representation framework than traditional graphical models. PLP extends a

programming language and allows us to concisely represent large sets of dependen-

cies between random variables. From a logical perspective, our approach is related

to Answer Set Programming (ASP), where models are often computed by trans-

lating the ASP program to a Boolean formula and applying a SAT solver (Lin and

Zhao 2002). Our approach is similar in spirit, but is different in that it employs a

probabilistic context.

The second key contribution of this paper is an algorithm for learning the pa-

rameters of probabilistic logic programs from data. We use the learning from in-

terpretations (LFI) setting, which is the standard setting in graphical models and

SRL (although they use different terminology). This setting has also received a lot

of attention in inductive logic programming (De Raedt 2008), but has not yet been

used for probabilistic logic programs. Our algorithm, called LFI-ProbLog, is based
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on Expectation-Maximization (EM) and is built on top of the inference techniques

presented in this paper.

The present paper is based on and integrates our previous papers (Fierens et al.

2011; Gutmann et al. 2011) in which inference and learning were studied and im-

plemented separately. Historically, the learning from interpretations approach as

detailed by Gutmann et al. (2011) and Gutmann et al. (2010) was developed first

and used BDDs for inference and learning. The use of BDDs for learning in an

EM-style is related to the approach of Ishihata et al. (2008), who developed an EM

algorithm for propositional BDDs and suggested that their approach can be used to

perform learning from entailment for PRISM programs. Fierens et al. (2011) later

showed that an alternative approach to inference - that is more general, efficient

and principled - can be realized using weighted model counting and compilation

to d-DNNFs rather than BDDs as in the initial ProbLog implementation (Kim-

mig et al. 2010). The present paper employs the approach by Fierens et al. also

for learning from interpretations in an EM-style and thus integrates the two ear-

lier approaches. The resulting techniques are integrated in a novel implementation,

called ProbLog2. While the first ProbLog implementation (Kimmig et al. 2010)

was tightly integrated in the YAP Prolog engine and employed BDDs, ProbLog2

is much closer in spirit to some Answer Set Programming systems than to Prolog

and it employs d-DNNFs and weighted model counting.

This paper is organized as follows. We first review the necessary background

(Section 2) and introduce PLP (Section 3). Next we state the inference tasks that

we consider (Section 4). Then we introduce our two-step approach for inference

(Section 5 and 6), and introduce the new learning algorithm (Section 7). Finally

we briefly discuss the implementation of the new system (Section 8) and evaluate

the entire approach by means of experiments on relational data (Section 9).

2 Background

We now review the basics of first-order logic (FOL) and logic programming (LP).

Readers familiar with FOL and LP can safely skip this section.

2.1 First-Order Logic (FOL)

A term is a variable, a constant, or a functor applied to terms. An atom is of the

form p(t1, . . . , tn) where p is a predicate of arity n and the ti are terms. A formula

is built out of atoms using universal and existential quantifiers and the usual logical

connectives ¬, ∨, ∧, → and ↔. A FOL theory is a set of formulas that implicitly

form a conjunction. An expression is called ground if it does not contain variables.

A ground (or propositional) theory is said to be in conjunctive normal form (CNF)

if it is a conjunction of disjunctions of literals. A literal is an atom or its negation.

Each disjunction of literals is called a clause. A disjunction consisting of a single

literal is called a unit clause. Each ground theory can be written in CNF form.

The Herbrand base of a FOL theory is the set of all ground atoms constructed

using the predicates, functors and constants in the theory. A Herbrand interpreta-
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tion, also called a (possible) world, is an assignment of a truth value to all atoms

in the Herbrand base. A world or interpretation is called a model of the theory if it

satisfies all formulas in the theory (in other words, if all formulas evaluate to true

in that world).

2.2 Logic Programming (LP)

Syntactically, a normal logic program, or briefly logic program (LP) is a set of

rules. A rule (also called a normal clause) is a universally quantified expression of

the form h :- b1, ... , bn, where h is an atom and b1, . . . , bn are literals. The

atom h is called the head of the rule and b1, . . . , bn the body, representing the

conjunction b1 ∧ . . . ∧ bn . A fact is a rule that has true as its body and is written

more compactly as h.

We use the well-founded semantics for LPs (Van Gelder et al. 1991). In the case

of a negation-free LP (or definite program), the well-founded model is identical to

the well-known Least Herbrand Model (LHM). The LHM is equal to the least of all

models obtained when interpreting the LP as a FOL theory of implications. The

least model is the model that is a subset of all other models (in the sense that it

makes the fewest atoms true). Intuitively, the LHM is the set of all ground atoms

that are entailed by the LP. For negation-free LPs, the LHM is guaranteed to exist

and be unique. For LPs with negation, we use the well-founded model. We refer

to Van Gelder et al. (1991) for details. The ProbLog semantics requires all consid-

ered logic programs to have a two-valued well-founded model (see Section 3.2). For

such programs, the well-founded model is identical to the stable model (Van Gelder

et al. 1991).

Intuitively, the reason why one considers only the least model of an LP is that LP

semantics makes the closed world assumption (CWA). Under the CWA, everything

that is not implied to be true is assumed to be false. This has implications on how

to interpret rules. Given a ground LP and an atom a, the set of all rules with a

in the head should be read as the definition of a: the atom a is defined to be true

if and only if at least one of the rule bodies is true (the ‘only if’ is due to the

CWA). This means that there is a crucial difference in semantics between LP and

FOL since FOL does not make the CWA. For example, the FOL theory {a ← b}
has 3 models {¬a,¬b}, {a,¬b} and {a, b}. The LP {a :- b} has only one model,

namely the least Herbrand model {¬a,¬b} (intuitively, a and b are false because

there is no rule that makes b true, and hence there is no applicable rule that makes

a true either).

Because of the syntactic restrictions of LP, it is tempting to believe that FOL

is more ‘expressive’ than LP. This is wrong because of the difference in semantics:

certain concepts that can be expressed in LP cannot be expressed in FOL (see

Section 3.3 for details). This motivates our interest in LP and PLP.
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3 Probabilistic Logic Programming and ProbLog

Most probabilistic logic programming languages, including PRISM (Sato and Kameya

2008), ICL (Poole 2008), ProbLog (De Raedt et al. 2007) and LPAD (Vennekens

et al. 2009), are based on Sato’s distribution semantics (Sato 1995). In this paper

we use ProbLog, but our approach can be used for the other languages as well.

3.1 Syntax of ProbLog

A ProbLog program consists of two parts: a set of ground probabilistic facts, and

a logic program, i.e. a set of rules and (‘non-probabilistic’) facts. A ground prob-

abilistic fact, written p::f, is a ground fact f annotated with a probability p. We

allow syntactic sugar for compactly specifying an entire set of probabilistic facts

with a single statement. Concretely, we allow what we call intensional probabilistic

facts, which are statements of the form p::f(X1,X2,...,Xn) :- body, with body

a conjunction of calls to non-probabilistic facts.1 The idea is that such a statement

defines the domains of the variables X1, X2, ... and Xn. When defining the

semantics, as well as when performing inference or learning, an intensional prob-

abilistic fact should be replaced by its corresponding set of ground probabilistic

facts, as illustrated below. An atom that unifies with a ground probabilistic fact is

called a probabilistic atom, while an atom that unifies with the head of some rule

in the logic program is called a derived atom. The set of probabilistic atoms must

be disjoint from the set of derived atoms. Also, the rules in the program should be

range-restricted: all variables in the head of a rule should also appear in a positive

literal in the body of the rule.

Our running example is the program that models the well-known ‘Alarm’ Bayesian

network.

Example 1 (Running Example)

0.1::burglary. person(mary).

0.2::earthquake. person(john).

0.7::hears_alarm(X) :- person(X).

alarm :- burglary.

alarm :- earthquake.

calls(X) :- alarm, hears_alarm(X).

This Problog program consists of probabilistic facts and a logic program. Pred-

icates of probabilistic atoms are burglary/0, earthquake/0 and hears_alarm/1,

predicates of derived atoms are person/1, alarm/0 and calls/1. Intuitively, the

probabilistic facts 0.1::burglary and 0.2::earthquake state that there is a bur-

glary with probability 0.1 and an earthquake with probability 0.2. The statement

0.7::hears_alarm(X) :- person(X) is an intensional probabilistic fact and is

syntactic sugar for the following set of ground probabilistic facts.

1 The notion of intensional probabilistic facts does not appear in earlier ProbLog papers but is
often useful in practice.
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0.7::hears_alarm(mary).

0.7::hears_alarm(john).

The rules in the program define when the alarm goes off and when a person calls,

as a function of the probabilistic facts.

3.2 Semantics of ProbLog

A ProbLog program specifies a probability distribution over possible worlds. To

define this distribution, it is easiest to consider the grounding of the program with

respect to the Herbrand base.2 In this paper, we assume that the resulting Herbrand

base is finite. For the distribution semantics in the infinite case, see Sato (1995).

Each ground probabilistic fact p::f gives an atomic choice, i.e. we can choose

to include f as a fact (with probability p) or discard it (with probability 1− p). A

total choice is obtained by making an atomic choice for each ground probabilistic

fact. Formally, a total choice is any subset of the set of all ground probabilistic

atoms. Hence, if there are n ground probabilistic atoms then there are 2n total

choices. Moreover, we have a probability distribution over these total choices: the

probability of a total choice is defined to be the product of the probabilities of the

atomic choices that it is composed of (we can take the product since atomic choices

are seen as independent events).

Example 2 (Total Choices of the Alarm Example)

Consider the Alarm program of Example 1. The 24 = 16 total choices corresponding

to the 4 ground probabilistic atoms are given in Table 1. The first row corresponds

to the total choice in which all the probabilistic atoms are true. The probability of

this total choice is 0.1 × 0.2 × 0.7 × 0.7 = 0.0098. The second row corresponds to

the same total choice except that hears alarm(mary) is now false. The probability

is 0.1 × 0.2 × 0.7 × (1-0.7) = 0.0042. The sum of probabilities of all 16 total choices

is equal to one.

Given a particular total choice C , we obtain a logic program C ∪ R, where R

denotes the rules in the ProbLog program. We denote the well-founded model of this

logic program as WFM (C ∪R).3 We call a given world ω a model of the ProbLog

program if there indeed exists a total choice C such that WFM (C ∪ R) = ω. We

use MOD(L) to denote the set of all models of a ProbLog program L. The ProbLog

semantics is only well-defined for programs that are sound (Riguzzi and Swift 2013),

i.e., programs for which each possible total choice C leads to a well-founded model

that is two-valued or ‘total’ (Riguzzi and Swift 2013; Van Gelder et al. 1991).4

Programs for which this is not the case are not considered valid ProbLog programs.

Everything is now in place to define the distribution over possible worlds: the

2 Beforehand, a preprocessing step already replaced the intensional probabilistic facts with their
corresponding ground set, as illustrated before.

3 Recall from Section 2.2 that for negation-free programs, the WFM is the least Herbrand model.
4 A sufficient condition for this is that the rules in the ProbLog program are locally stratified

(Van Gelder et al. 1991). In particular, this trivially holds for all negation-free programs.
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Table 1. Total choices and their probabilities
Total choice C P(C)

1 { burglary, earthquake, hears alarm(john), hears alarm(mary) } 0.0098
2 { burglary, earthquake, hears alarm(john) } 0.0042
3 { burglary, earthquake, hears alarm(mary) } 0.0042
4 { burglary, earthquake } 0.0018
5 { burglary, hears alarm(john), hears alarm(mary) } 0.0392
6 { burglary, hears alarm(john) } 0.0168
7 { burglary, hears alarm(mary) } 0.0168
8 { burglary } 0.0072
9 { earthquake, hears alarm(john), hears alarm(mary) } 0.0882

10 { earthquake, hears alarm(john) } 0.0378
11 { earthquake, hears alarm(mary) } 0.0378
12 { earthquake } 0.0162
13 { hears alarm(john), hears alarm(mary) } 0.3528
14 { hears alarm(john) } 0.1512
15 { hears alarm(mary) } 0.1512
16 { } 0.0648

probability of a world that is a model of the ProbLog program is equal to the

probability of its total choice; the probability of a world that is not a model is 0.

Example 3 (Models and their probabilities)

(Continuing Example 2) The total choice {burglary, earthquake, hears alarm(john)},
which has probability 0.1 × 0.2 × 0.7 × (1-0.7) = 0.0042, yields the following logic

program.

burglary. person(mary).

earthquake. person(john).

hears_alarm(john).

alarm :- earthquake.

alarm :- burglary.

calls(X) :- alarm, hears_alarm(X).

The WFM of this program is the world {person(mary), person(john), burglary,

earthquake, hears alarm(john),¬hears alarm(mary), alarm, calls(john),¬calls(mary)}.
Hence this world is a model and its probability is 0.0042. In total there are 16 mod-

els, corresponding to each of the 16 total choices shown in Table 1. Note that, out of

all possible interpretations of the vocabulary, there are many that are not models of

the ProbLog program. An example is any world of the form {burglary,¬alarm, . . .}:
it is impossible that alarm is false while burglary is true. The probability of such

worlds is zero.

3.3 Related Languages

ProbLog is strongly related to several other languages, in particular to Probabilistic

Logic Programming (PLP) languages like PRISM (Sato and Kameya 2008), ICL
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(Poole 2008) and LPAD (Vennekens et al. 2009), and other languages like Markov

Logic (Poon and Domingos 2006). Table 2 shows the main features of each language

and the major corresponding system.

Table 2. Overview of features of several probabilistic logical languages and the cor-

responding systems (implementations). The first three features are properties of the

language, the last two are properties of the system. We refer to the first ProbLog

system as ProbLog1 and to the system described here as ProbLog2.

Language ProbLog ProbLog PRISM ICL LPAD MLN
System ProbLog1 ProbLog2 PRISM AILog2 PITA Alchemy

Cyclic rules X X − − X X

Overlapping
rule bodies

X X − X X n/a

Inductive
definitions

X X X X X −

Evidence on
arbitrary atoms − X − X − X

Multiple queries − X − − − X

Compared to most other PLP languages, ProbLog is more expressive with respect

to the rules that are allowed in a program. This holds in particular for PRISM

and ICL. Both PRISM and ICL require the rules to be acyclic (or contingently

acyclic) (Sato and Kameya 2008; Poole 2008). In ProbLog we can have cyclic pro-

grams with rules such as smokes(X) :- smokes(Y), influences(Y,X). This type

of cyclic rules are often needed for tasks such as collective classification or social

network analysis (see Section 9). In addition to acyclicity, PRISM also requires

rules with unifiable heads to have mutually exclusive bodies (such that at most

one of these bodies can be true simultaneously; this is the mutual exclusiveness

assumption). ProbLog does not have this restriction, so rules with unifiable heads

can have ‘overlapping’ bodies. For instance, the bodies of the two alarm rules in

our running example are overlapping: either burglary or earthquake is sufficient for

making the alarm go off, but both can also happen at the same time.

LPADs, as used in the PITA system (Riguzzi and Swift 2013), do not have

these syntactic restrictions, and are hence on par with ProbLog in this respect.

However, the PITA system does not support the same tasks as the new ProbLog2

system does. For instance, when computing marginal probabilities, ProbLog2 can

deal with multiple queries simultaneously and can incorporate evidence, while PITA

uses the more traditional PLP setting which considers one query at a time, without

evidence (the succes probability setting, see Section 4). The same also holds for the

first ProbLog system (Kimmig et al. 2010). Note that while evidence can in some
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special cases be incorporated through modelling,5 we here focus on the general case,

i.e., the ability of the system to handle evidence on any arbitrary subset of all atoms

in the Herbrand base.

ProbLog2 is the first PLP system that posesses all the features considered in

Table 2, i.e., that supports multiple queries and evidence while having none of the

language restrictions. The experiments in this paper (Section 9) require all these

features and can hence only be carried out in ProbLog2, but not in the other PLP

systems.

Markov Logic (Poon and Domingos 2006) is strictly speaking not a PLP language

as it is based on First-Order Logic instead of Logic Programming. Nevertheless,

Markov Logic of course serves the same purpose as the above PLP languages. In

terms of expressivity, Markov Logic has the drawback that it cannot express (non-

ground) inductive definitions. An example of an inductive definition is the definition

of the notion of a path in a graph in terms of the edges. This can be written in

plain Prolog and hence also in ProbLog.

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

In the knowledge representation community, it is well-known that inductive defini-

tions can naturally be represented in Logic Programming (LP), due to LP’s least

or well-founded model semantics (Denecker et al. 2001). In contrast, in First-Order

Logic (FOL) one cannot express non-ground inductive definitions, such as the path

definition above (Grädel 1992). The reason is, roughly speaking, that path is the

transitive closure of edge, and FOL can express that a given relation is transitive,

but cannot in general specify this closure. This result carries over to the probabilis-

tic case: we can express inductive definitions in PLP languages like ProbLog but

not in FOL-based languages like Markov Logic.6 While the non-probabilistic case

has been well-studied in the knowledge representation literature (Denecker et al.

2001; Grädel 1992), the probabilistic case has only very recently received attention

(Fierens et al. 2012).

4 Inference Tasks

In the literature on probabilistic graphical models and statistical relational learn-

ing, the two most common inference tasks are computing the marginal probability

of a set of random variables given some observations or evidence (we call this the

MARG task), and finding the most likely joint state of the random variables given

the evidence (known as the MPE task, for Most Probable Explanation). In PLP, the

5 For instance, when encoding a Bayesian network in PLP, evidence on nodes at the top of the
network (nodes without parents) can be incorporated by including deterministic facts in the
program.

6 This discussion applies to non-ground ProbLog programs and Markov Logic Networks (MLNs).
In Section 5.3 we show that every ground ProbLog program can be converted to an equivalent
ground MLN. The above implies that no such conversion exists on the non-ground (first-order)
level.
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focus has been on the special case of MARG where there is only a single query atom

Q and no evidence. This task is often called computing the success probability of Q

(De Raedt et al. 2007). The only works related to the general MARG or MPE task

in the PLP literature make a number of restrictive assumptions about the given

program such as acyclicity (Gutmann et al. 2011) and the mutual exclusiveness

assumption of PRISM (Sato and Kameya 2008). There also exist approaches that

transform ground probabilistic programs to Bayesian networks and then use stan-

dard Bayesian network inference procedures (Meert et al. 2009). However, these are

also restricted to acyclic and already grounded programs.

Our approach for the MARG and MPE inference tasks does not suffer from such

restrictions and is applicable to all ProbLog programs. We now formally define these

tasks, in addition to a third, strongly related task. Let At be the Herbrand base, i.e,

the set of all ground (probabilistic and derived) atoms in a given ProbLog program.

We assume that we are given a set E ⊂ At of observed atoms and a vector e with

their observed truth values. We refer to this as the evidence and write E = e. Note

that the evidence is essentially a partial interpretation of the atoms in the ProbLog

program.

• In the MARG task, we are given a set Q ⊂ At of atoms of interest, called

query atoms. The task is to compute the marginal probability distribution

of every such atom given the evidence, i.e. compute P(Q | E = e) for each

Q ∈ Q.7

• The EVID or ‘probability of evidence’ task is to compute P(E = e). It

corresponds to the likelihood of data in a learning setting and can be used as

a building block for solving the MARG task (see Section 6.2).

• The MPE task is to find the most likely interpretation (joint state) of all non-

evidence atoms given the evidence, i.e. finding argmaxuP(U = u | E = e),

with U being the unobserved atoms, i.e., U = At \E.

As the following example illustrates, the different tasks are strongly related.

Example 4 (Inference tasks)

Consider the ProbLog program of Example 1 and assume that we know that John

calls, so E = {calls(john)} and e = {true}. It can be verified that calls(john)

is true in 6 of the 16 models of the program, namely the models of total choices

1, 2, 5, 6, 9 and 10 of Table 1. The sum of their probabilities is 0.196, so this is

the probability of evidence (EVID). The MPE task boils down to finding the world

with the highest probability out of the 6 worlds that have calls(john) = true. It

can be verified that this is the world corresponding to total choice 9, i.e., the choice

{earthquake, hears alarm(john), hears alarm(mary)}. An example of the MARG

task is to compute the probability that there is a burglary, i.e., P(burglary = true |
calls(john) = true) = P(burglary=true∧calls(john)=true)

P(calls(john)=true) . There are 4 models in which

both calls(john) and burglary are true (models 1, 2, 5 and 6), and their sum of

7 The common PLP task of computing the success probability of an atom Q is a special case of
MARG with Q being the singleton {Q} and E = ∅.
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probabilities is 0.07. Hence, P(burglary = true | calls(john) = true)= 0.07/ 0.196

= 0.357.

Our approach to inference consists of two steps: 1) convert the program to a

weighted Boolean formula and 2) perform inference on the resulting weighted for-

mula. We discuss these two steps in the next sections.

5 Conversion to a Weighted Formula

Our conversion takes as input a ProbLog program L, evidence E = e and a set

of query atoms Q, and returns a weighted Boolean (propositional) formula that

contains all necessary information. The conversion is similar for each of the consid-

ered tasks (MARG, MPE or EVID). The only difference is the choice of the query

set Q. For MARG, Q is the set of atoms for which we want to compute marginal

probabilities. For EVID and MPE, we can take Q = ∅ (see Section 6.1.1).

The outline of the conversion algorithm is as follows.

1. Ground L yielding a program Lg while taking into account Q and E = e (cf.

Theorem 1, Section 5.1).

It is unnecessary to consider the full grounding of the program, we only need

the part that is relevant to the query given the evidence, that is, the part that

captures the distribution P(Q | E = e). We refer to the resulting program Lg

as the relevant ground program with respect to Q and E = e.

2. Convert the ground rules in Lg to an equivalent Boolean formula ϕr (cf.

Lemma 1, Section 5.2).

This step converts the logic programming rules to an equivalent formula.

3. Assert the evidence and define a weight function (cf. Theorem 2, Section 5.3).

To obtain the weighted formula, we first assert the evidence by defining the

formula ϕ as the conjunction of the formula ϕr for the rules (step2) and for

the evidence ϕe . Then we define a weight function for all atoms in ϕ.

The correctness of the algorithm is shown below; this relies on the indicated theo-

rems and lemma’s. Before describing the algorithm in detail, we illustrate it on our

Alarm example.

Example 5 (The three steps in the conversion)

As in Example 4, we take calls(john) = true as evidence. Suppose that we want

to compute the marginal probability of burglary, so the query set Q is {burglary}.
The relevant ground program is as follows.

% ground probabilistic facts

0.1::burglary. 0.2::earthquake. 0.7::hears_alarm(john).

% ground rules

alarm :- burglary.

alarm :- earthquake.

calls(john) :- alarm, hears_alarm(john).
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Note that mary does not appear in the grounding because, if we have no evi-

dence about her hearing the alarm or calling, she does not affect the probability

P(burglary | calls(john) = true).

Step 2 converts the three ground rules of the relevant ground program to an equiv-

alent propositional formula ϕr (see Section 5.2). This formula is the conjunction of

alarm↔ burglary ∨ earthquake and calls(john)↔ alarm∧ hears alarm(john).8

Step 3 adds the evidence. Since we have only one evidence atom in our example

(namely, calls(john) is true), all we need to do is to add the positive unit clause

calls(john) to the formula ϕr . The resulting formula ϕ is ϕr ∧ calls(john). Step

3 also defines the weight function, which assigns a weight to each literal in ϕ, see

Section 5.3. This results in the weighted formula, that is, the combination of the

weight function and the Boolean formula ϕ.

We now explain the three steps of the conversion in detail.

5.1 The Relevant Ground Program

In order to convert the ProbLog program to a Boolean formula we first ground it.

We try to find the part of the grounding that is relevant to the queries Q and the

evidence E = e. In SRL, this is also called knowledge-based model construction

(Kersting and De Raedt 2001). To do this, we make use of the concept of a depen-

dency set with respect to a ProbLog program. We first explain our algorithm and

then show its correctness.

The dependency set of a ground atom a is the set of all ground atoms that

occur in some proof of a. The dependency set of multiple atoms is the union of

their dependency sets. We call a ground atom relevant with respect to Q and E

if it occurs in the dependency set of Q ∪ E. We call a ground rule relevant if it

contains only relevant atoms. It is safe to restrict the grounding to the relevant

rules only. To find the relevant atoms and rules, we apply SLD resolution to prove

all atoms in Q ∪ E (this can be seen as backchaining over the rules starting from

Q ∪ E). We employ tabling to avoid proving the same atom twice (and to avoid

going into an infinite loop if the rules are cyclic). The relevant rules are all ground

rules encountered during the resolution process. As our ProbLog programs are

range-restricted, all the variables in the rules used during the SLD resolution will

eventually become ground, and hence also the rules themselves.

The above grounding algorithm is not optimal as it does not make use of all

available information. For instance, it does not make use of exactly what the evi-

dence is (the values e), but only of which atoms are in the evidence (the set E).

One simple, yet sometimes very effective, optimization is to prune inactive rules.

We call a ground rule inactive if the body of the rule contains a literal l that is

false in the evidence (l can be an atom that is false in e, or the negation of an atom

that is true in e). Inactive rules do not contribute to the semantics of a program.

8 For subsequent steps, it is often convenient to write this formula in conjunctive normal form
(CNF). For example, some knowledge compilation systems require CNF input.
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Hence they can be omitted. In practice, we do this simultaneously with the above

process: we omit inactive rules encountered during the SLD resolution.9

The result of this grounding algorithm is what we call the relevant ground pro-

gram Lg for L with respect to Q and E = e. It contains all the information necessary

for solving the corresponding EVID, MARG or MPE task. The advantage of this

‘focussed’ approach (i.e., taking into account Q and E = e during grounding) is

that the program and hence the weighted formula becomes more compact, which

makes subsequent inference more efficient. The disadvantage is that we need to redo

the conversion to a weighted formula when the evidence and queries change. This

is no problem since the conversion is fast compared to the actual inference (see

Section 9).

The following theorem shows the correctness of our approach.

Theorem 1

Let L be a ProbLog program and let Lg be the relevant ground program for L with

respect to Q and E = e. L and Lg specify the same distribution P(Q | E = e).

The proofs of all theorems in this paper are given in the appendix.

We already showed the relevant ground program for the Alarm example in Ex-

ample 5 (in that case, there were irrelevant rules about mary, but no inactive

rules because there was no negative evidence). To illustrate our approach for cyclic

programs, we use the well-known Smokers example (Domingos et al. 2008).

Example 6 (ProbLog program for Smokers)

The ProbLog program for the Smokers example models two causes for people to

smoke: either they spontaneously start because of stress or they are influenced by

one of their friends.

0.2::stress(P) :- person(P).

0.3::influences(P1,P2) :- friend(P1,P2).

person(p1). person(p2). person(p3).

friend(p1,p2). friend(p1,p3)

friend(p2,p1). friend(p3,p1).

smokes(X) :- stress(X).

smokes(X) :- smokes(Y), influences(Y,X).

With the evidence {smokes(p) = true, smokes(p) = false} and the query set

{smokes(p)}, we obtain the following ground program:

0.2::stress(p1). 0.2::stress(p2). 0.2::stress(p3).

0.3::influences(p2,p1). 0.3::influences(p1,p2). 0.3::influences(p1,p3).

% irrelevant probabilistic fact !! 0.3::influences(p3,p1).

9 This deals with literals that are false in the evidence. Conversely, when a body of a ground
rule contains a literal that is true in the evidence, it has to be kept and the rule cannot be
simplified. The reason is that the atom’s presence might give rise to a positive loop, which has
to be detected during the conversion of the ground program to a Boolean formula in the next
step.
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smokes(p1) :- stress(p1).

smokes(p1) :- smokes(p2), influences(p2,p1).

% inactive rule !! smokes(p1) :- smokes(p3), influences(p3,p1).

smokes(p2) :- stress(p2).

smokes(p2) :- smokes(p1), influences(p1,p2).

smokes(p3) :- stress(p3).

smokes(p3) :- smokes(p1), influences(p1,p3).

The evidence smokes(p) = false makes the third rule for smokes(p1) inactive.

This in turn makes the probabilistic fact for influences(p3,p1) irrelevant. Nev-

ertheless, the rules for smokes(p3) have to be in the grounding, as the truth value

of the head of a rule constrains the truth values of the bodies.

5.2 The Boolean Formula for the Ground Program

We now discuss how to convert the rules in the relevant ground program Lg to an

equivalent Boolean formula ϕr . Converting a set of logic programming (LP) rules

to an equivalent Boolean formula is a purely logical (non-probabilistic) problem.

This has been well studied in the LP literature, where several conversions have been

proposed, e.g. Janhunen (2004). Note that the conversion is not merely a syntactical

rewriting issue; the point is that the rules and the formula are to be interpreted

according to a different semantics. Hence the conversion should compensate for this:

the rules under LP semantics (with Closed World Assumption) should be equivalent

to the formula under FOL semantics (without CWA).

For acyclic rules, the conversion is straightforward, we can simply take Clark’s

completion of the rules (Lloyd 1987; Janhunen 2004). We illustrate this on the

Alarm example, which is indeed acyclic.

Example 7 (Formula for the alarm rules)

As shown in Example 5, the grounding of the Alarm example contains two rules for

alarm, namely alarm :- burglary and alarm :- earthquake. Clark’s comple-

tion of these rules is the propositional formula alarm ↔ burglary∨earthquake, i.e.,

the alarm goes off if and only if there is burglary or earthquake. Once we have the

formula, we often need to rewrite it in CNF form, which is straightforward for a com-

pletion formula. For the completion of alarm, the resulting CNF has three clauses:

alarm ∨ ¬burglary, alarm ∨ ¬earthquake, and ¬alarm ∨ burglary ∨ earthquake.
The last clause reflects the CWA.10

For cyclic rules, the conversion is more complicated. This holds in particular

for rules with positive loops, i.e., loops with atoms that depend positively on each

other, as in the recursive rule for smokes/1. It is well-known that in the presence

10 The Alarm example models a Bayesian network for the MARG task. For Bayesian networks,
the problem of conversion to a weighted CNF formula has been considered before, and several
encodings exist (Darwiche 2009; Sang et al. 2005). For ProbLog programs modelling Boolean
Bayesian networks, like Alarm, our CNF encoding coincides with that of Sang et al. (2005).
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of positive loops, Clark’s completion is not correct, i.e. the resulting formula is not

equivalent to the rules (Janhunen 2004).

Example 8 (Simplified Smokers example)

Let us focus on the Smokers program of Example 6, but restricted to person p1

and p2.

0.2::stress(p1). 0.3::influences(p2,p1).

0.2::stress(p2). 0.3::influences(p1,p2).

smokes(p1) :- stress(p1).

smokes(p1) :- smokes(p2), influences(p2,p1).

smokes(p2) :- stress(p2).

smokes(p2) :- smokes(p1), influences(p1,p2).

Clark’s completion of the rules for smokes(p1) and smokes(p2) would result in a

formula which has as a model {smokes(p), smokes(p),¬stress(p),¬stress(p),

influences(p, p), influences(p, p), . . .}, but this is not a model of the ground

ProbLog program: the only model resulting from the total choice {¬stress(p),

¬stress(p), influences(p, p), influences(p, p), . . .}, is the model in which smokes(p)

and smokes(p) are both false.

Since Clark’s completion is inapplicable with positive loops, a range of more

sophisticated conversion algorithms have been developed in the LP literature. Since

the problem is of a highly technical nature, we are unable to repeat the full details

in this paper. Instead, we briefly discuss the two conversion methods that we use

in our work and refer to the corresponding literature for more details.

Both conversion algorithms take a set of rules and construct an equivalent for-

mula. The formulas generated by the two algorithms are typically syntactically

different because the algorithms introduce a set of auxiliary atoms in the formula

and these sets might differ. For both algorithms, the size of the formula typically

increases with the number of positive loops in the rules. The two algorithms are

the following.

• The first algorithm is from the Answer Set Programming literature (Jan-

hunen 2004). It first rewrites the given rules into an equivalent set of rules

without positive loops (all resulting loops involve negation). This requires the

introduction of auxiliary atoms and rules. Since the resulting rules are free of

positive loops, they can be converted by taking Clark’s completion. The result

can then be written as a CNF. This algorithm is rule based, as opposed to

the next algorithm.

• The second algorithm was introduced in the LP literature (Mantadelis and

Janssens 2010) and is proof-based. It first constructs all proofs of all atoms

of interest, in our case all atoms in Q ∪ E, using tabled SLD resolution.

The proofs are collected in a recursive structure, namely a set of nested tries

(Mantadelis and Janssens 2010), which will have loops if the given rules had

loops. The algorithm then operates on this structure in order to ‘break’ the

loops and obtain an equivalent Boolean formula. This formula can then be

written as a CNF.
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Both the rule-based and the proof-based conversion algorithm return a formula

that is ‘equivalent’ to the rules in Lg , in the sense of the following lemma.

Lemma 1

Let Lg be a ground ProbLog program. Let ϕr denote the formula derived from the

rules in Lg . Then SAT (ϕr ) = MOD(Lg).

Recall that MOD(Lg) denotes the set of models of a ProbLog program Lg , as

defined in Section 3.2. On the formula side, we use SAT (ϕr ) to denote the set of

models of a formula ϕr .11

Example 9 (Boolean formula for the simplified Smokers example)

Consider the ground program for the simplified Smokers example, given in Ex-

ample 8. The proof-based conversion algorithm converts the ground rules in this

program to an equivalent formula (in the sense of Lemma 1) consisting of the con-

junction of the following four subformulas.

smokes(p) ↔ aux ∨ stress(p)

smokes(p) ↔ aux ∨ stress(p)

aux ↔ smokes(p) ∧ influences(p, p)
aux ↔ stress(p) ∧ influences(p, p)

Here aux and aux are auxiliary atoms that are introduced by the conversion

(though they could be avoided in this case). Intuitively, aux says that person p1

started smoking because he is influenced by person p2, who smokes himself. Note

that while the ground program (in Example 8) is cyclic, the loop has been broken

by the conversion process; this surfaces in the fact that the last subformula uses

stress(p) instead of smokes(p).

5.3 The Weighted Boolean formula

The final step of the conversion constructs the weighted Boolean formula starting

from the Boolean formula for the rules ϕr . First, the formula ϕ is defined as the

conjunction of ϕr and a formula ϕe capturing the evidence E = e. Here ϕe is a

conjunction of unit clauses: there is a unit clause a for each true atom and a clause

¬a for each false atom in the evidence. Second, we define the weight function for all

literals in the resulting formula. The weight of a probabilistic literal is derived from

the probabilistic facts in the program: if the relevant ground program contains a

probabilistic fact p::f, then we assign weight p to f and weight 1− p to ¬f . The

weight of a derived literal (a literal not occuring in a probabilistic fact) is always 1.

The weight of a world ω, denoted w(ω), is defined to be the product of the weight

of all literals in ω.

11 Both conversions for cyclic rules introduce additional or ‘auxiliary’ atoms into ϕr . We can safely
omit these atoms from the models in SAT (ϕr ) because both conversions are ‘faithful’, so the
truth value of auxiliary atoms is uniquely defined by the truth value of the original atoms. This
means that the introduction of the auxiliary atoms does not create extra models. Hence, w.r.t.
the original atoms we have the stated equivalence: SAT (ϕr ) = MOD(Lg ). W.r.t. all atoms, ϕr

and Lg are equisatisfiable.
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Example 10 (Weighted formula for Alarm)

We have seen the formula for the Alarm program in Example 7. If we have evidence

that calls(john) is true, we add a positive unit clause calls(john) to this formula

(after doing this, we can potentially apply unit propagation to simplify the formula).

Then we define the weight function. The formula contains three probabilistic atoms

burglary, earthquake and hears_alarm(john). The other atoms in the formula,

alarm and calls(john), are derived atoms. Hence the weight function is as follows.
burglary 7→ 0.1 ¬burglary 7→ 0.9

earthquake 7→ 0.2 ¬earthquake 7→ 0.8

hears alarm(john) 7→ 0.7 ¬hears alarm(john) 7→ 0.3

alarm 7→ 1 ¬alarm 7→ 1

calls(john) 7→ 1 ¬calls(john) 7→ 1

We have now seen how to construct the entire weighted formula from the rele-

vant ground program. The following theorem states that this weighted formula is

equivalent - in a particular sense - to the relevant ground program. We will make

use of this result when performing inference on the weighted formula.

Theorem 2

Let Lg be the relevant ground program for some ProbLog program with respect to

Q and E = e. Let MODE=e(Lg) be those models in MOD(Lg) that are consistent

with the evidence E = e. Let ϕ denote the formula and w(·) the weight function of

the weighted formula derived from Lg . Then:

- (model equivalence) SAT (ϕ) = MODE=e(Lg),

- (weight equivalence) ∀ω ∈ SAT (ϕ): w(ω) = PLg (ω), i.e., the weight of ω

according to w(·) is equal to the probability of ω according to Lg .

Note the relationship with Lemma 1 (p. 16): Lemma 1 applies to the formula ϕr

prior to asserting the evidence, whereas Theorem 2 applies to the formula ϕ after

asserting evidence.

Example 11 (Equivalence of weighted formula and ground program)

The ground Alarm program of Example 5 has three probabilistic facts and hence

23 = 8 total choices and corresponding possible worlds. Three of these possible

worlds are consistent with the evidence calls(john) = true, namely the worlds

resulting from choices in which hears alarm(john) is always true and at least one

of {burglary, earthquake} is true. The reader can verify that the Boolean formula

constructed in Example 10 has exactly the same three models, and that weight

equivalence holds for each of these models.

There is also a link between the weighted formula and Markov Logic Networks

(MLNs). Readers unfamiliar with MLNs can consult Appendix B. The weighted

formula that we construct can be regarded as a ground MLN. The MLN contains

the Boolean formula as a ‘hard’ formula (with infinite weight). The MLN also has

two weighted unit clauses per probabilistic atom: for a probabilistic atom a and
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weight function {a 7→ p,¬a 7→ 1 − p}, the MLN contains a unit clause a with

weight ln(p) and a unit clause ¬a with weight ln(1− p).12

Example 12 (MLN for the Alarm example)

The Boolean formula ϕ for our ‘Alarm’ running example was shown in Example 5.

The corresponding MLN contains this formula as a hard formula. The MLN also

contains the following six weighted unit clauses.
ln(0.1) burglary ln(0.9) ¬burglary
ln(0.2) earthquake ln(0.8) ¬earthquake
ln(0.7) hears alarm(john) ln(0.3) ¬hears alarm(john)

We have the following equivalence result.

Theorem 3

Let Lg be the relevant ground program for some ProbLog program with respect to

Q and E = e. Let M be the corresponding ground MLN. The distribution P(Q)

according to M is the same as the distribution P(Q | E = e) according to Lg .

Note that for the MLN we consider the distribution P(Q) (not conditioned on the

evidence). This is because the evidence is already hard-coded in the MLN.

6 Inference on the Weighted Formula

To solve the given inference task for the probabilistic logic program L, the query Q

and evidence E = e, we have converted the program to a weighted Boolean formula.

A key advantage is that the inference task (be it MARG, MPE or EVID) can now

be reformulated in terms of well-known tasks such as weighted model counting or

weighted MAX-SAT on the weighted formula. This implies that we can use any of

the existing state-of-the-art algorithms for solving these tasks. In other words, by

the conversion of ProbLog to weighted formula, we get the inference algorithms for

free.

6.1 Task 1: Computing the probability of evidence (EVID)

Computing the probability of evidence reduces to weighted model counting (WMC),

a well-studied task in the SAT community. Model counting for a propositional

formula is the task of computing the number of models of the formula. WMC is

the generalization where every model has a weight and the task is to compute the

sum of weights of all models. The fact that computing the probability of evidence

P(E = e) reduces to WMC on our weighted formula can be seen as follows.

P(E = e) =
∑

ω∈MODE=e(L)

PL(ω) =
∑

ω∈SAT(ϕ)

w(ω)

12 The values of the logarithms (and hence the weights) are negative, but any MLN with negative
weights can be rewritten into an equivalent MLN with only positive weights (Domingos et al.
2008).
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The first equality holds because P(E = e) by definition equals the total proba-

bility of all worlds consistent with the evidence. The second equality follows from

Theorem 2: model equivalence implies that the sets over which the sums range

are equal, weight equivalence implies that the summed terms are equal. Comput-

ing
∑
ω∈SAT(ϕ) w(ω) is exactly what WMC on the weighted formula ϕ does. It is

well-known that inference with Bayesian networks can be solved using WMC (Sang

et al. 2005). In (Fierens et al. 2011) we were the first to point out that this also

holds for inference with probabilistic logic programs. As we will see in the experi-

ments, this approach improves upon state-of-the-art methods in probabilistic logic

programming.

The above leaves open how we solve the WMC problem. There exist many ap-

proaches to WMC, both exact (Darwiche 2004) and approximate (Gomes et al.

2007). An approach that is particularly useful in our context is that of knowledge

compilation, ‘compiling’ the weighted formula into a more ‘efficient’ form. While

knowledge compilation has been studied for many different tasks (Darwiche and

Marquis 2002), we need a form that allows for efficient WMC. Concretely, we com-

pile the weighted formula into a so-called arithmetic circuit (Darwiche 2009), which

is closely linked to the concept of deterministic, decomposable negation normal form

(d-DNNF) (Darwiche 2004).

6.1.1 Compilation to an Arithmetic Circuit via d-DNNF

We now introduce the necessary background on knowledge compilation and illus-

trate the approach with an example.

Knowledge compilation is concerned with compiling a logical formula, for which a

certain family of inference tasks is hard to compute, into a representation where the

same tasks are tractable (so the complexity of the problem is shifted to the compila-

tion phase). In this case, the hard task is to compute weighted model counts (which

is #P-complete in general). After compiling a logical formula into a deterministic,

decomposable negation normal form circuit (d-DNNF) representation (Darwiche

2004) and converting the d-DNNF into an arithmetic circuit, the weighted model

count of the formula can efficiently be computed, conditioned on any set of evidence.

This allows us to compile a single d-DNNF circuit and evaluate all marginals effi-

ciently using this circuit.

A negation normal form formula (NNF) is a rooted directed acyclic graph in

which each leaf node is labeled with a literal and each internal node is labeled

with a conjunction or disjunction. A decomposable negation normal form (DNNF)

is a NNF satisfying decomposability : for every conjunction node, it should hold

that no two children of the node share any atom with each other. A deterministic

DNNF (d-DNNF) is a DNNF satisfying determinism: for every disjunction node, all

children should represent formulas that are logically inconsistent with each other.

For WMC, we need a d-DNNF that also satisfies smoothness: for every disjunction

node, all children should use exactly the same set of atoms. Compiling a Boolean

formula to a (smooth) d-DNNF is a well-studied problem, and several compilers are

available (Darwiche 2004; Muise et al. 2012). These circuits are the most compact
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circuit language we know of today that supports tractable WMC (Darwiche and

Marquis 2002).

A d-DNNF is a purely logical construct. It is constructed by compiling the for-

mula, irrespective of the associated weighting function. Hence a d-DNNF allows for

model counting, but not for WMC. In order to do WMC, we need to convert the

d-DNNF into an arithmetic circuit, by taking into account the weighting function

of our weighted formula. This conversion is done in two steps (Darwiche 2009):

1) replace all conjunctions in the internal nodes by multiplications, and all disjunc-

tions by summations, 2) replace every leaf node involving a literal l by a subtree

consisting of a multiplication node having two children, namely a leaf node with

an indicator variable for the literal l and a leaf node with the weight of l according

the weighted formula. We now illustrate this for the Alarm example.

Example 13 (d-DNNF and Arithmetic Circuit for the Alarm example)

We continue the Alarm example (Example 10). The formula for this example, under

the evidence calls(john) = true, is the conjunction of the following three subfor-

mulas.

alarm ↔ burglary ∨ earthquake
calls(john)↔ alarm, hears alarm(john)

calls(john)

A corresponding d-DNNF is shown in Figure 1a. Note that the AND-nodes in the

d-DNNF (like the root note) indeed satisfy the property of decomposability; while

the OR-nodes satisfy determinism. The function of the OR-node on the lower-right

is to make the d-DNNF smooth.

The arithmetic circuit corresponding to this d-DNNF is shown in Figure 1b. The

values in brackets in the interal nodes will be used later and can be ignored for

now. The λ-variables in the leaves are the indicator variables for the literals. The

indicator variable for a literal l is multiplied with a number, which is the weight of

l according to our weighting function.

Now that we have an arithmetic circuit for our weighted formula, we are ready to

perform WMC and compute the weighted model count
∑
ω∈SAT(ϕ) w(ω). This count

is found by simply evaluating the arithmetic circuit: we instantiate all indicator

variables to the value 1 and then bottom-up evaluate all nodes, until we arrive at

the root node. The value found at the root is the desired weighted model count and

also equals the probability of the evidence P(E = e).

Example 14 (Evaluating the arithmetic circuit for the Alarm example)

We use the arithmetic circuit for the Alarm program given in Example 13. Re-

call that this program and circuit were obtained using calls(john) = true as

the evidence, so we can use this circuit to calculate the probability of evidence

P(calls(john) = true). This is done by instantiating all indicator variables λ to

1, and then evaluting the circuit. Figure 1b illustrates this: the obtained values in

each node are given between brackets. The value for the root is 0.196. This is the

probability of evidence.
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AND

calls(john) hears_alarm(john) OR alarm

AND AND

-burglary

earthquake

burglary OR

-earthquake

(a) d-DNNF

* (0.196)

* (1.0) * (0.7) + (0.28) * (1.0)

λ[calls(john)] 1.0 λ[hears_alarm(john)] 0.7 * (0.18) * (0.1) λ[alarm] 1.0

* (0.9)

* (0.2)

* (0.1)+ (1.0)

λ[-burglary] 0.9

λ[earthquake] 0.2

λ[burglary] 0.1* (0.8)

λ[-earthquake] 0.8

(b) arithmetic circuit

Fig. 1. The d-DNNF for the Alarm example and the corresponding arithmetic circuit.

The above does not explain why we really need the indicator variables. The

indicator variables allow us to add further evidence, on top of E = e, which is

useful for MARG inference as we will see later. For instance, we can compute

P(E = e ∧ X = true), for some additional atom X in the arithmetic circuit,

by setting the indicator variable λ[X ] to 1 and λ[−X ] to 0 when evaluating the

circuit.13

Example 15 (Evaluating the arithmetic circuit in case of additional evidence)

13 In a purely logical context, setting indicator variables to 0 corresponds to conditioning the
d-DNNF circuit.
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Assume we want to compute P(calls(john) = true∧earthquake = true), using the

same arithmetic circuit seen before, namely the circuit for calls(john) = true. Since

we additionally have earthquake = true, we set λ[earthquake] to 1, λ[−earthquake]
to 0, and all other indicator variables to 1 as before. The evaluation is illustrated

in Figure 2, yielding the result 0.14. Hence P(calls(john) = true ∧ earthquake =

true) = 0.14.

In the same way, the probability of any set of evidence can be computed, provided

that this set extends the initial set E = e (and that the additional atoms also appear

in the compiled circuit). This also means that Step 3 of our conversion algorithm

(Section 5.3), where we add the evidence ϕe to the weighted Boolean formula, is

not strictly needed: we can achieve the same result by using only the formula ϕr

(capturing the rules of the program) and setting the indicator variables in the circuit

according to the evidence E = e. However, asserting the evidence ϕe early makes

the compilation phase more efficient (it allows for more unit propagation, etc).

* (0.14)

* (1.0) * (0.7) + (0.2) * (1.0)

λ[calls(john)] = 1 1.0 λ[hears_alarm(john)] = 1 0.7 * (0.18) * (0.02) λ[alarm] = 1 1.0

* (0.9)

* (0.2)

* (0.1)+ (0.2)

λ[-burglary] = 1 0.9

λ[earthquake] = 1 0.2

λ[burglary] = 1 0.1* (0.0)

λ[-earthquake] = 0 0.8

Fig. 2. Evaluating an arithmetic circuit with additional evidence (the nodes which get a
different value than in Figure 1(b) are highlighted in boldface).

In SRL, the work of Chavira et al. (2006) is closest to the approach in this section.

They perform inference in relational Bayesian networks by encoding them into a

weighted Boolean formula and compiling this formula into an arithmetic circuit.

The main difference is that relational Bayesian networks are not a programming

language and assume acyclicity. That assumption greatly simplifies the step of con-

verting to a weighted Boolean formula (cf. Section 5).

In summary, to compute the probability of evidence we 1) compile the formula

to a d-DNNF, 2) convert the d-DNNF into an arithmetic circuit, 3) evaluate the

arithmetic circuit.



Inference and Learning in PLP using Weighted Formulas 23

6.1.2 Compilation to an Arithmetic Circuit via BDD

In the probabilistic logic programming (PLP) community, the state-of-the-art (De Raedt

et al. 2007) is to compile the program into another form, namely a reduced ordered

Binary Decision Diagram (BDD) (Bryant 1986). This approach is a special case

of our above WMC approach (although it is usually not formulated like that; in

fact, in Fierens et al. (2011) we were the first to point out the connection of the

PLP-BDD approach to WMC).

A BDD is a special kind of d-DNNF, namely one that satisfies the additional

properties of ordering and decision, see Darwiche (2004). In our approach, we can

alternatively replace the d-DNNF compiler by a BDD compiler. Computing the

probability of evidence can then be done by either operating directly on the BDD,

or by converting the BDD to an arithmetic circuit and evaluating the circuit (the

first approach is merely a reformulation of the second). So while both compilation

to BDD and d-DNNF are possible, there is theoretical and empirical evidence in

the model counting literature that d-DNNFs outperform BDDs (Darwiche 2004).

Our experimental results confirm the superiority of d-DNNFs (Section 9).

We have now seen two ways of computing the probability of evidence: via d-

DNNFs or BDDs. We will now see how this approach for computing the probability

of evidence can be used as a building block for the MARG inference task (as is

standard in the probabilistic literature).

6.2 Task 2: Computing marginal probabilities (MARG)

In MARG, we are given a set of query atoms Q and for each Q ∈ Q we need to

compute P(Q | E = e). By definition P(Q | E = e) = P(Q∧E=e)
P(E=e) . Hence, if we have

N atoms in the query set Q, solving MARG reduces to computing the probability

of the evidence, and computing N probabilities of the form P(Q ∧E = e), i.e., the

probability of the conjunction of the evidence with a single atom. In the previous

section, we have already seen how we can compute such probabilities from the

compiled arithmetic circuit, by appropriately instantiating the indicator variables

λ and evaluating the circuit. The simplest approach is to apply this once for each

query atom Q ∈ Q separately. However, we can solve this even more efficiently.

Concretely, all required probabilities can be found in parallel. To be precise, all

probabilities of the form P(X ∧ E = e), with X being any atom in the circuit,

can be computed simultaneously by traversing the circuit twice (bottom-up and

top-down). The required traversal algorithm can be found in the literature, see

Algorithm 34 (simple version) and 35 (optimized version) in Darwiche (2009). From

this, we obtain all probabilities of the form P(X ∧E = e). We then retain those that

involve an atom from the query set (X ∈ Q) and compute the required conditional

probabilities P(Q | E = e) as P(Q∧E=e)
P(E=e) . As in the previous section, this entire

approach can be performed using an arithmetic circuit derived from a compiled

d-DNNF or from a BDD.

The knowledge compilation approach is typically used for exact inference. When

dealing with large domains, we often need to resort to computing approximate
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marginals. Approximate inference is often achieved by means of sampling tech-

niques, such as Markov Chain Monte Carlo (MCMC). Standard MCMC approaches

like Gibbs sampling cannot deal with weighted formulas because the formula itself

is deterministic. Instead, we use the MC-SAT algorithm that was developed specif-

ically to deal with determinism (Poon and Domingos 2006). MC-SAT is an MCMC

algorithm that in every step of the Markov chain calls a SAT solver to construct a

new sample. MC-SAT takes an MLN as input. Theorem 3 ensures that if we apply

MC-SAT on the appropriate MLN, we indeed obtain samples from the distribution

P(Q | E = e).

To summarize, we currently have three methods for the MARG task: exact infer-

ence by compilation to 1) d-DNNFs or 2) BDDs, or 3) approximate inference with

MC-SAT.

6.3 Task 3: Finding the most likely explanation (MPE)

MPE is the task of finding the most likely interpretation (joint state) of all un-

observed atoms given the evidence, i.e. finding argmaxuP(U = u | E = e), with

U all unobserved atoms (i.e, all atoms in the ground program that are not in E).

MPE inference on weighted formulas has been studied before. We consider two

approaches.

The first approach is to perform MPE by means of knowledge compilation. The

compilation step (to compile an arithmetic circuit via a d-DNNF or BDD) is the

same as before, only the traversal step differs.14 Again, the traversal algorithm can

be found in the literature, see Algorithm 36 in Darwiche (2009). This yields the

exact MPE solution.15

The second approach is to perform MPE using techniques from the SAT solving

community. Concretely, it is known that MPE reduces to partially weighted MAX-

SAT (Park 2002). A popular approximate approach for solving this task is stochastic

local search (Park 2002). An example algorithm is MaxWalkSAT, which is also the

standard MPE algorithm for MLNs (Domingos et al. 2008).

Since our current ProbLog implementation focusses on MARG inference rather

than MPE, we do not discuss these approaches in detail and will not consider them

further in this paper.

14 For the MPE task, it is sufficient to compile into a DNNF circuit, which is not necessarily deter-
ministic. DNNF circuits are potentially more succinct than d-DNNF circuits, but unfortunately
there exist no compilers specifically for DNNF.

15 This approach yields the truth value of all ground atoms that occur in the relevant ground
program (RGP) for the given evidence. All probabilistic atoms that do not occur in the RGP are
irrelevant w.r.t. the evidence (i.e., they are probabilistically independent of the evidence). Hence,
for each of these atoms, we can simply independently chose the truth value with maximum
probability according to the associated probabilistic fact. The truth value of all derived atoms
that do not occur in the RGP is then found by computing the well-founded model of the MPE
total choice.
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7 Learning Probabilistic Logic Programs from Partial Interpretations

We now present an algorithm for learning the parameters (the probabilities of the

probabilistic facts) of a ProbLog program from data. We use the learning from

interpretations (LFI) setting.

7.1 The Learning Setting

Learning from (possibly partial) interpretations is a common setting in statistical

relational learning, which has so far not yet been studied in its full generality for

probabilistic programming languages (but see also Gutmann et al. (2011)).

In the terminology used for inference in Section 4, partial interpretations corre-

spond to evidence, and hence, in this section we shall often use the term evidence

instead of partial interpretation. Let At be the Herbrand base, i.e., the set of all

ground (probabilistic and derived) atoms in a given ProbLog program. In the fully

observable case, we learn from a set of complete interpretations, that is, the observed

truth-values e of all the atoms in the Herbrand base At are given and the evidence

variables E coincide with At. On the other hand, in the partially observable case,

we learn from a set of partial interpretations, that is, we only observe the truth-

values e of a set E ⊂ At of observed atoms. We now develop an algorithm, called

LFI-ProbLog, that learns from (possibly partial) interpretations of a ProbLog pro-

gram. In a generative setting, one is typically interested in the maximum likelihood

parameters given the training data. This can be formalized as follows.

Given:

• a ProbLog program Tp containing a set of rules R and a set of probabilistic

facts F = {pi :: fi} with unknown parameters p = 〈p1, . . . , pN 〉
• a set of (possibly partial) interpretations D = {E1 = e1, . . . ,EM = eM}

(the training examples)

Find: the maximum likelihood probabilities p̂ = 〈p̂1, . . . , p̂N 〉, that is,

p̂ = arg max
p

PTp(D) = arg max
p

M∏
m=1

PTp(Em = em)

where PTp(Em = em) is the probability of evidence Em = em in the ProbLog

program Tp with parameters p.

Example 16 illustrates the LFI setting using the Alarm program from Example 1.

Example 16 (Learning From Interpretations)
P1::burglary. person(mary). alarm:- burglary.

P2::earthquake. person(john). alarm:- earthquake.

P3::hears_alarm(X):- person(X). calls(X) :- alarm, hears_alarm(X).

A ProbLog program is given in which the probabilities P1, P2 and P3 are un-

known and should be learned from partial interpretations, which contain the truth

value for some of the atoms: {alarm = true}, {earthquake = true, calls(mary) =

true}, {calls(john) = true}. The goal is to find the probabilities P1, P2 and P3 such

that the combined probability of the partial interpretations is maximal.
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One has to consider two cases when computing the maximum likelihood param-

eters p̂. In the fully observable case where the truth values for each of the atoms in

the Herbrand base is known, one can obtain p̂ by counting. In the more complex

case of partial interpretations, one has to use an approach such as Expectation

Maximization to deal with the partial observability.

7.2 Full Observability

In the fully-observable case, the maximum likelihood estimate p̂n for a probabilistic

fact pn :: fn can be calculated directly from the interpretations. When pn :: fn
is intensional, it represents multiple ground instances, that is, probabilistic facts:

pn :: fn,1, . . . , pn :: fn,Km
n

where Km
n is the number of ground instances represented

by the fact pn :: fn in interpretation Em = em. When pn :: fn is ground and

extensional, Km
n is equal to 1 and the fact represents itself only. The maximal

likelihood estimates can be calculated using the following formula.

p̂n =
1

Zn

M∑
m=1

Km
n∑

k=1

δmn,k where δmn,k =

{
1 if fn,k = true ∈ Em = em
0 if fn,k = false ∈ Em = em

(1)

The sum is normalized by Zn =
∑M

m=1 Km
n , the total number of probabilistic

facts represented by fn in all training examples. When Zn is 0 in the data, p̂n is

not calculated (there is no data to estimate it from).

7.3 Partial Observability

In many applications the training examples are only partially observed. In the

alarm example, we may receive a phone call but we may not know whether an

earthquake has occurred. In the partially-observable case – similar to Bayesian

networks – it is impossible to compute the maximum likelihood estimates in closed-

form. Instead, we use the Expectation Maximization (EM), see Algorithm 1. In this

algorithm, the parameters p0
n are initialized randomly. During each iteration i , the

ProbLog program Tpi with parameters pi is used to estimate the probability of

the unobserved atoms being true in each interpretation, PTpi (fn,k |Em = em) (the

expectation step). These expectations are then used as to update the parameters

of the program using the following equation (the maximization step).

pi+1
n =

1

Zn

M∑
m=1

Km
n∑

k=1

PTpi (fn,k |Em = em) (2)

Algorithm 1 uses the inference mechanism described in Section 6.2 for computing

the marginals in the expectation step. We can make two optimizations. Firstly, for

the facts fn,k that are not contained in the dependency set of a partial interpretation

Em = em, the probability PTpi (fn,k |Em = em) is equal to pi
n . These facts slow

down the updating process and should therefore not be included in the sum. This

can be realized by compiling the d-DNNF for the query PTpi (Em = em) and to use
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the resulting d-DNNFs to compute the marginal probabilities PTpi (fn,k |Em = em)

only for those facts fn,k included in the d-DNNF. For example, when we compile the

d-DNNF for the third partial interpretation of Example 16, we obtain the ground

program from Example 5 and the d-DNNF from Figure 1a. This d-DNNF does not

contain calls(mary) so this atom will not be used to update the probabilities for

the third partial interpretation. When no groundings for a learnable fact are present

in any of the d-DNNFs, a zero probability is learned as no information is given.

Secondly, one can observe that changing the parameters of a ProbLog program

does not change the structure of the compiled d-DNNFs. This means that the d-

DNNFs that have been compiled in the first iteration can be reused in all further

iterations. The algorithm keeps on updating the parameters until the log likelihood

of the interpretations is maximal. Each iteration of the algorithm is guaranteed to

improve the likelihood of the data.

Algorithm 1 The main loop of LFI-ProbLog. The ProbLog program is compiled

into a d-DNNF for each partial interpretation Em = em. After the compilation

step, the algorithm follows an EM update scheme, first using the current model to

complete the data and then estimating the new model parameters from the resulting

counts until convergence.

1: function LFI-ProbLog(T = {p1 :: f1, . . . , pN :: fN } ∪ R,D = {E1 =

e1, . . . ,EM = eM})
2: for 1 ≤ n ≤ N do

3: p0
n ← rand(0, 1) . The fact probabilities are initialized with a random

probability

4: for 1 ≤ m ≤ M do . Loop over training examples

5: d-DNNFm ← compile(PT0
(Em = em))

6: i ← 0

7: while not converged do . EM algorithm

8: i ← i + 1

9: for 1 ≤ m ≤ M do

10: for 1 ≤ n ≤ N do

11: for 1 ≤ k ≤ Km
n do

12: compute PTi−1
(fn,k |Em) using d-DNNFm . E Step

13: for 1 ≤ n ≤ N do . Loop over probabilistic facts

14: pi
n ← 1

Zn

∑M
m=1

∑Km
n

k=1 PTi−1
(fn,k |Em) . M Step (cf. Eq. 2)

15: return {pi
n :: fn | fn ∈ F} ∪ R

The learning algorithm uses a black box for the MARG inference task (line 12). In

principle, any inference algorithm will work, including approximate ones. However,

by choosing knowledge compilation for inference, we need to compile a circuit only

once for each training example. This is the hard task. Once we have a circuit,

computing expectations becomes easy, and we can reuse the circuit many times,

for all i , k and n in lines 6, 10 and 11 of Algorithm 1. Furthermore, all marginal
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probabilities PTp(fn,k |Em) for the same evidence set Em and parameterization p

can be computed at once, in only two passes over the d-DNNF circuit.

7.4 Discussion

The above learning algorithm is based on the LFI algorithm that we developed

in earlier work (Gutmann et al. 2011), see the discussion in Section 1. Our new

algorithm has some advantages over the earlier version. First, the new algorithm

can deal with cyclic programs (the old algorithm uses Clark’s completion, which

applies only to acyclic programs, cf. Section 5.2). Second, the new algorithm scales

better as it employs a more efficient approach for inference in the expectation

step, namely compilation to d-DNNFs instead of to BDDs (see the experiments

in Section 9.3.3). Furthermore, the new description of the algorithm more clearly

separates the learning from the inference steps.

The complexity of parameter learning (and of MARG and MPE inference) is

worst-case exponential in the treewidth (Robertson and Seymour 1986) of the

weighted Boolean formula when using knowledge compilation to d-DNNF (Dar-

wiche 2001). This theoretical complexity bound is in line with the complexity of

classical algorithms for inference and learning in probabilistic graphical models. For

example, hidden Markov models have a constant treewidth in terms of the number

of time steps considered. Learning the parameters of these models is linear in the

number of time steps, both when using LFI-ProbLog with d-DNNF compilation

and, for example, expectation maximization with the classical junction tree algo-

rithm. These bounds assume that both algorithms succeed at finding the optimal

tree decomposition of the model, which itself is a hard task in theory. In practice,

however, there exist heuristics that can find good tree decompositions of many

different kinds of models.

8 Implementation of the System ProbLog2

The first ProbLog system (Kimmig et al. 2010) focused on the inference task of

computing the success probability of a single atom (Section 4) and on learning from

entailment (Gutmann et al. 2008b). ProbLog2, the new ProbLog system described

in this paper, focusses on different tasks, namely computing marginal probabilities

and the probability of evidence, as well as learning from interpretations. This new

setting is closer in spirit to the work on graphical models and Statistical Relational

Learning (like Markov Logic). As a consequence of this new emphasis, the design

of ProbLog2 is quite different from that of the first ProbLog. The implementation

of the first ProbLog was tightly integrated in YAP Prolog (Kimmig et al. 2010). In

contrast, ProbLog2 consists of a number of relatively loosely-coupled components,

and involves almost no Prolog code. This new design is closer in spirit to that of

some Answer Set Programming systems than to Prolog.

We now briefly discuss the different components of the implementation. Most of

these components are existing state-of-the-art programs, rather than being tailor-

made for ProbLog.
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• The grounding component computes the relevant ground program from the

given ProbLog program (and query and evidence). This is the only compo-

nent that is written in (YAP) Prolog. It is essentially a meta-interpreter that

collects proofs to construct the dependency set (Section 5.1).

• The conversion component converts the rules in the relevant ground program

to a Boolean (CNF) formula. The user can choose between the proof-based

and the rule-based conversion (Section 5.2). For the proof-based conversion

(Mantadelis and Janssens 2010), we use our own implementation. For the

rule-based conversion, we use the code of Janhunen (2004), as used in the

Answer Set Programming community.

• The exact inference component is based on knowledge compilation and con-

sists of two parts: a compiler and an evaluation algorithm. For compilation to

d-DNNF, the user can choose between the ‘c2d’ compiler by Darwiche (2004)

or the more recent ‘DSHARP’ compiler (Muise et al. 2012).16 For compilation

to a BDD, we use CUDD (see http://vlsi.colorado.edu/∼fabio/CUDD/).

For constructing and evaluating the corresponding arithmetic circuit we use

our own code.

• The approximate inference component converts the weighted formula to a

Markov Logic Network and then uses the MC-SAT (Poon and Domingos

2006) code from the Alchemy package to perform the sampling.

• The learning component, LFI-ProbLog, builds heavily on the inference com-

ponent, as explained before (Section 7). It is essentially an Expectation Max-

imization loop around the inference component.

As mentioned, the above components are relatively loosely-coupled. They are bun-

dled into a pipeline by means of Python code. A major advantage of our design is

that it allows to build an entire ProbLog system by (mostly) using existing state-

of-the-art programs for the different components, such as Janhunen’s conversion

program and the various d-DNNF and BDD compilers. Moreover, research on con-

version of logic programs, knowledge compilation, weighted model counting, etc,

continues, with new tools being released. Whenever a new tool becomes available

for a particular component, we can benefit from this, and integrate it into our sys-

tem. Such a design of course also has drawbacks. The two main drawbacks are that

there is a certain latency between the components because of I/O issues, and that

the system is complex to install and configure because of the different components

written in different programming languages.

ProbLog2 is available on http://dtai.cs.kuleuven.be/problog/.17

16 All experiments in this paper use c2d.
17 In addition to the MARG, MPE and learning tasks, the ProbLog2 system supports MAP and

decision-theoretic inference (Van den Broeck et al. 2010), which are not discussed here.
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9 Experiments

The goal of our experiments is to establish the feasibility of our approach, and to

analyze the influence of the different parameters. We focus on MARG inference and

learning. Concretely, we aim to answer six questions.

Q1 Is working with the relevant rather than the complete ground program more

efficient?

Q2 Which of the two considered algorithms for converting the ground program

to a Boolean formula (rule-based or proof-based conversion) performs best?

Q3 Which of the two considered approaches for knowledge compilation (using

d-DNNFs or BDDs) performs best?

Q4 When computing success probabilities (the ‘classical’ ProbLog setting), does

ProbLog2 outperform the previous ProbLog implementation?

Q5 When learning from data generated from a known ProbLog program, can we

recover the parameters of the original program given a reasonable amount of

data?

Q6 When learning from real-world data, can we obtain results comparable to the

ones obtained with a state-of-the-art system (namely Alchemy)?

Note that in Q6 we compare our system to Alchemy, which is the standard system

for Markov Logic (see http://alchemy.cs.washington.edu/).

9.1 Programs and Datasets

We perform experiments on three types of applications.

Social networks. We use the standard Smokers application (Domingos et al. 2008).

The ProbLog program contains the following intensional probabilistic facts and

rules.

0.2::stress(P) :- person(P).

0.3::influences(P1,P2) :- friend(P1,P2).

0.1::cancer_spont(P) :- person(P).

0.3::cancer_smoke(P) :- person(P).

smokes(X) :- stress(X).

smokes(X) :- smokes(Y), influences(Y,X).

cancer(P) :- cancer_spont(P).

cancer(P) :- smokes(P), cancer_smoke(P).

In addition, the program contains ground (non-probabilistic) facts for the predicates

person/1 and friend/2. The number of such facts is varied; see the next section.

Collective classification. We use the relational WebKB dataset.18 In WebKB, uni-

versity web pages need to be tagged with classes (like course page, student page,

18 See http://www.cs.cmu.edu/∼webkb/.
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etc). This is modeled with a predicate has class(Page, Class). The rules in the

ProbLog program are the following; they specify how the class C of a page P de-

pends on the textual content of P (the words W on the page), and on the classes

of pages that link to P .

has_class(P,C) :- word_class(P,W,C).

has_class(P,C) :- has_class(P2,C2), link_class(P,P2,C,C2).

For the predicate word class/3, there is a different intensional probabilistic fact

for every (word,class)-pair in the dataset. Each such intensional probabilistic fact

looks as follows.

prob::word_class(P,word1,class1) :- has_word(P,word1).

The reason why we need a different intensional probabilistic fact for each (word,class)-

pair is that for every such pair the involved probability (prob) can be different.

Similarly, for the predicate link class/4, there is one intensional probabilistic fact

for every pair of classes in the dataset.

prob::link_class(P,P2,class1,class2) :- links_to(P,P2).

The predicates that occur in the ‘bodies’ of these intensional probabilistic facts

(has word/2 and links to/2) are defined in the dataset. The probabilities of the

probabilistic facts were learned from data using LFI-ProbLog.

Probabilistic grids. For comparing ProbLog2 to the previous ProbLog implemen-

tation, we use the classical ProbLog application of probabilistic graphs (De Raedt

et al. 2007). The program represents a graph in which edges are labelled with a

probability. Here we use a 16×16 grid as the graph. This consists of nodes nx ,y , with

x , y ∈ {1, . . . , 16}, lined out on a square grid with horizontal, vertical and diagonal

directed edges between adjacent nodes. Concretely, the edges are the following.

nx ,y → nx+1,y ∀x ∈ {1, . . . , 15}, y ∈ {1, . . . , 16} (horizontal)

nx ,y → nx ,y+1 ∀x ∈ {1, . . . , 16}, y ∈ {1, . . . , 15} (vertical)

nx ,y → nx+1,y+1 ∀x ∈ {1, . . . , 15}, y ∈ {1, . . . , 15} (diagonal)

Every edge has probability 0.5. Such a probabilistic graph is modelled in ProbLog

by a set of probabilistic edge/ facts. For instance, the horizontal edge from n1,1

to n2,1 is represented as the probabilistic fact 0.5::edge(n_1_1,n_2_1). The goal

is to find the probability of there being a path between certain nodes in the graph,

where path is defined in the usual Prolog way.

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

9.2 Experimental Setup

We now describe how we use these three programs (Smokers, WebKB and grids) in

our experimental setup.
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9.2.1 Inference Setup

MARG inference. We test MARG influence on Smokers and WebKB. The main

parameter influencing the complexity of our inference experiments is the ‘domain

size’, i.e., the number of constants considered. For Smokers, the domain size is the

number of people; for WebKB, it is the number of webpages (we take subsets of all

pages that occur in the dataset). In our experiments, we vary the domain size and

see how different measures, such as runtime, evolve. For each considered domain

size we generate multiple different instances of the MARG task (10 for Smokers,

8 for WebKB), as described below. We report median results over these different

instances (we use median because it is more stable than arithmetic average).

Given a particular domain size, one instance of the MARG task is generated as

follows. (1) For both Smokers and WebKB, the program involves ground (non-

probabilistic) facts for certain ‘background’ predicates. We first generate interpre-

tations for these predicates. For Smokers, the background predicate is friend/2,

which determines the actual social network. We use a generator of synthetic power

law random graphs (since such graphs are known to resemble real social networks)

and convert the obtained graph to friend/2 facts. For WebKB, the background

predicates are has word/2 and links to/2, for which interpretations can be found

in the dataset. (2) Given the domains and background facts, we select the set of

query and evidence atoms, Q and E. For Smokers, we use 50% of all smokes/1

and cancer/1 atoms as evidence and the other smokes/1 and cancer/1 atoms as

queries. All atoms for the other predicates are neither query nor evidence. For We-

bKB, we have a similar setup: we use 50% of all has class/2 atoms as evidence

and the other has class/2 atoms as query. (3) The previous step generates the sets

Q and E, but not yet the values for the evidence atoms, i.e. the vector of truth

values e. To do so, we generate a ‘sample’ of the ProbLog program. This is done

by independently sampling each ground probabilistic fact, and then computing the

well-founded model of the resulting logic program (as dictated by the ProbLog se-

mantics). The result is a complete interpretation of all predicates in the program.

From this interpretation, we extract the truth values of all atoms in the evidence

set E, and we use these truth values to construct the vector e. (We similarly store

the values of all atoms in the query set Q because we need them later as ‘query

ground truth’; see Section 9.3.2).

Special case: success probability. The above is for MARG inference in the presence

of multiple queries and evidence. In addition we also perform an experiment in the

classical success probability setting, where the goal is to compute the probability

of a single query, without evidence (Kimmig et al. 2010). For this experiment, we

use the probabilistic grid program. Per experiment, we ask a single query of the

form path(n_i_i,n_16_16) where i is being varied from 1 to 15. In other words:

we are asking for the probabibity of there being a path from a node ni,i on the

diagonal of the grid to n16,16, the lower right corner of the grid. The smaller the

value of i , the longer these paths become (and the more possible paths there are),

and hence the harder the computation. We measure the effect of the value of i



Inference and Learning in PLP using Weighted Formulas 33

on the runtime of the query in both ProbLog2 and the first ProbLog implemen-

tation (http://dtai.cs.kuleuven.be/problog/). For each value of i , we repeat

the experiment 10 times and average the measured runtimes.

9.2.2 Learning Setup

In the learning experiments, we estimate the probabilities of all probabilistic facts

from data.

For Smokers, we again vary the domain size. For each size we generate 170 ex-

periments. We sample 40, 50, . . . , 200 interpretations from which we retain 10,

40, 70 and 100 percent of the atoms together with their truth value in the partial

interpretations. From these interpretations we learn the probabilities for all in-

tensional probabilistic facts in the program (predicates stress/1, influences/2,

cancer_spont/1 and cancer_smoke/1).

For WebKB, the dataset consists of four disjoint sets of webpages, one per uni-

versity. Per university, we use only the 20 words that contain the most information

(as measured by information gain with respect to the class labels). We perform

four-fold cross validation using both the Alchemy system (with a standard MLN

for this application) and LFI-ProbLog.

The ProbLog program that we use for learning is slightly different from the one

we use for inference. In addition to the rules given earlier (Section 9.1), we include

in the program two more causes for a page to have a certain class.

has_class(P,C) :- fixed_prior(P,C).

has_class(P,C) :- learnable_prior(P,C).

The predicate learnable prior/2 accounts for the pages that are tagged with a class

that can not be explained through words and links. There is one such probabilistic

fact for each class.

prob::learnable_prior(P,class1) :- page(P).

The predicate fixed prior/2 makes sure that every page can be tagged with every

class.

0.001::fixed_prior(P,C) :- page(P), class(C).

Finally, for computational reasons, we modify the rule that spreads influence across

links (link class/4) such that pages can only influence their direct neighbors.

We learn all prob-parameters in the program (not the probability of fixed prior/2).

The learned program is too big to perform exact inference. Hence, when evaluating

the learned program (which requires running inference), we use an approximation,

namely we remove all probabilistic facts with a learned probability below 0.05.

9.3 Experimental Results

We now discuss our results in terms of the six questions raised earlier.
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Fig. 3. Results for Smokers as a function of domain size. (When the curve for an algorithm
ends at a particular domain size, this means that the algorithm is intractable beyond that
size.)
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9.3.1 Q1 - Influence of the Grounding Algorithm

Question Q1 is: is working with the relevant rather than the complete ground

program more efficient? To answer this question, we measured the time needed for

grounding, the size of the resulting ground program, and the size of the Boolean

formula derived from this program.

The grounding step. The idea behind the relevant ground program (RGP) is to

reduce the grounding by pruning clauses that are irrelevant or inactive w.r.t. the

queries and evidence. Our setup is such that all clauses are relevant. Hence, the only

reduction comes from pruning inactive clauses (that have a false evidence literal in

the body). The effect of this pruning is small: on average the size of the ground

program is reduced by 17% (results not shown).

Implications on the conversion to a Boolean formula. The proof-based conversion

becomes intractable (i.e., takes prohibitively long) for large domain sizes, but the

size where this happens is significantly larger when working on the RGP instead of

on the complete grounding (see Fig. 3a/4a). Also the size of the Boolean formula is

reduced significantly by using the RGP (up to a 90% reduction in number of clauses

in the CNF, Fig. 3b/4b). The reason why a 17% reduction of the program can yield

a 90% reduction of the corresponding formula is that loops in the program cause

a ‘blow-up’ of the formula. Removing only a few rules in the ground program can

already break loops and make the formula significantly smaller. Note that the proof-

based conversion suffers from this blow-up more than the rule-based conversion

does.

Computing the grounding is always very fast, both for the RGP and the complete

grounding (milliseconds on Smokers; around 1s for WebKB). Hence, as an answer

to question Q1, we conclude that using the RGP instead of the complete grounding

is beneficial and comes at almost no computational cost. Hence, from now on we

always use the RGP.

9.3.2 Q2 - Influence of the Conversion Algorithm

Question Q2 is: which of the two considered algorithms for converting the ground

program to a Boolean formula performs best? Recall that we have seen a rule-based

and a proof-based conversion (Section 5.2). To answer this question, we measure the

time of the conversion process, the size of the resulting formula, and how efficient

this formula is for inference.

The conversion step. The proof-based algorithm, by its nature, does more effort to

convert the program into a compact formula. This has implication on the scalability

of the algorithm: on small domains the algorithm is fast, but on larger domains it

becomes intractable (Fig. 3a/4a). In contrast, the rule-based algorithm is able to

deal with all considered domain sizes and is always fast (runtime at most 0.5s).

A similar trend holds in terms of the size of the formula. For small domains, the

proof-based algorithm generates smaller formulas than the rule-based algorithm,

but for larger domains the opposite holds (Fig. 3b/4b).

Implications on inference. The ultimate question is how efficient the formulas
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of the different conversions are for subsequent inference. We discuss this for exact

inference in the next section; here we focus on approximate inference. We use the

MC-SAT inference algorithm (Section 6.2) as a tool to evaluate how efficient the

different formulas are for inference by running MC-SAT on the two types of formulas

and measuring the quality of the estimated marginals. Evaluating the quality of

approximate marginals is non-trivial when computing true marginals is intractable.

We use the same solution as the original MC-SAT paper: we let MC-SAT run for a

fixed time (10 minutes) and measure the quality of the estimated marginals as the

likelihood of the ‘query ground truth’ according to these estimates; see Poon and

Domingos (2006).

On domain sizes where the proof-based algorithm is still tractable, inference

results are better with the proof-based formula than with the rule-based formula

(see Fig. 3d, and to a smaller extent Fig. 4d). This is because the proof-based

formulas are more compact and hence more samples can be drawn in the given

time (Fig. 3e/4e).

As an answer to question Q2, we conclude that for smaller domains the proof-

based algorithm is preferable because of the smaller formulas. On larger domains,

the rule-based algorithm should be used.

9.3.3 Q3 - Influence of the Inference Algorithm

For exact inference, our approach consists of knowledge compilation, with either

d-DNNFs or BDDs. Question Q3 is: which of the two considered approaches, d-

DNNFs or BDDs, performs best? To answer this question, we increase the domain

size up to the point where inference (doing the compilation to d-DNNF or BDD)

becomes intractable. It is useful to distinguish between compilation of rule-based

and proof-based formulas.19

Proof-based formulas. On the Smokers domain, BDDs perform relatively well, but

they are nevertheless clearly outperformed by the d-DNNFs (Fig. 3c). On WebKB,

the difference is even larger: BDDs are only tractable on domains of size 3 or 4,

while d-DNNFs reach up to size 18 (Fig. 4c). When BDDs become intractable, this

is mostly due to memory problems.20

Rule-based formulas. As seen before, these formulas are less compact than the

proof-based formulas (at least for those domain sizes where exact inference is fea-

sible). The results clearly show that the d-DNNFs are much better at dealing with

these non-compact formulas than the BDDs are. Concretely, the d-DNNFs are still

19 In the PLP literature, BDDs have almost exclusively been used for proof-based formulas
(De Raedt et al. 2007; Gutmann et al. 2011). Compiling our proof-based formulas to BDDs
yields exactly the same BDDs as used by Gutmann et al. (2011). In the special case of a single
query and no evidence, this also equals the BDDs used De Raedt et al. (2007).

20 It might be surprising that BDDs, which are the state-of-the-art in PLP, do not perform better.
However, one should keep in mind that we are using BDDs for exact inference here. BDDs are
also used for approximate inference, one simply compiles an approximate formula into a BDD
(De Raedt et al. 2007). The same can be done with d-DNNFs, and we again expect improvement
over BDDs.
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tractable up to reasonable sizes. In contrast, using BDDs on these rule-based formu-

las is nearly impossible: on Smokers the BDDs only solve size 3 and 4, on WebKB

they even do not solve any of the inference tasks on rule-based formulas.

As an answer to question Q3, we conclude that the use of d-DNNFs pushes the

limit of exact MARG inference significantly further as compared to BDDs, which

were the standard in PLP.

9.3.4 Q4 - Computing Success Probabilities with ProbLog2

Question Q4 is: when using the ‘classical’ ProbLog setting of computing suc-

cess probabilities, does ProbLog2 (our new ProbLog implementation) outperform

ProbLog1 (the previous ProbLog implementation)?

For ProbLog1 we use the default parameter settings and we table the path/

predicate. For ProbLog2 we use the proof-based conversion and we compile to d-

DNNF. These settings are motivated by our previous conclusions, which show that

the proof-based conversion works well on programs that are small enough to allow

for exact inference (as we do here) and that d-DNNFs are superior to BDDs.

As explained before (Section 9.2.1), we ask the query path(n_i_i,n_16_16),

where we vary i from 15 to 1. The smaller i , the larger the ‘distance’ 16− i between

the start and end node, and hence the harder the problem. Figure 5 shows the

measured runtimes for ProbLog1 and ProbLog2.

The results show that ProbLog2 scales better than ProbLog1. ProbLog1 is tractable

up to distance 6. From distance 7 onwards, it becomes intractable, i.e., it incurs a

time-out. We have put the time limit on 300 seconds and repeated every experi-

ment 10 times. For distance 7, all 10 repetitions timed-out, while for distance 6 the
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average runtime was only 1.2 seconds.21 This shows that the runtime of ProbLog1

explodes beyond distance 6. In contrast, ProbLog2 is tractable up to distance 10.

For distance 10, all 10 repetitions finish in time, taking on average 110 seconds.

For distance 11, only 5 out of 10 repetitions still finish in time. From distance 12

onwards, all 10 repetitions time out.

9.3.5 Q5 - Ability to Learn the Original Probabilities

Question Q5 is: when learning from data generated from a known program, can we

recover the parameters of the original program given a reasonable amount of data?

We answer this question by generating data from the given Smokers program (Sec-

tion 9.1), applying our learning algorithm to this data, and measuring the difference

between the learned probabilities and those in the original program. We measure

this difference in two ways. First, we use the mean absolute error (MAE) between

both sets of probabilities. Second, we use the Kullback-Leibler(K-L)-divergence,

a measure of similarity between a ‘true’ probability distribution (the one of the

original program) and an ‘approximating’ distribution (the one of the learned pro-

gram). ProbLog allows for an efficient calculation of the K-L-divergence because of

the independence of the probabilistic facts; see Appendix D.

Both the MAE (Figure 6) and the K-L-divergence (Figure 7) show that LFI-

ProbLog can learn the original probabilities: both MAE and K-L-divergence ap-

proach zero when more examples are given. The 100% knowledge line shows the

optimal way of calculating the probabilities, given the interpretations. The remain-

ing cases, 10%, 40% and 70% show that the quality of the approximations, as

expected, drops when more atoms become unobserved. However, the approxima-

tions remain of good quality. Hence we can conclude that LFI-ProbLog is capable

of recovering the original probabilities and is robust against missing values. When

we compare the figures for the different domain sizes, we see that the results are

independent of the number of persons in the domain.

9.3.6 Q6 - Learning of real-world data

Question Q6 is: when learning from real-world data, can we obtain results compa-

rable to the ones obtained with a state-of-the-art system? To answer this question,

we compare LFI-ProbLog with the Alchemy system for Markov Logic, running

four-fold cross validation on the WebKB dataset. Table 9.3.6 shows the negative

log-likelihood obtained with LFI-ProbLog and Alchemy on the test-sets of the four

folds. In the case of Alchemy, we report two results: ‘Alchemy’ stands for using the

system with its default parameters, ‘Alchemy*’ stands for Alchemy with a modi-

fied setting that puts a very strong prior on the weights (prior around zero, with

standard deviation 0.1 instead of the default 100).22

21 To verify that the measurement for distance 7 is not a glitch, we also tried distance 8 and
further, but ProbLog1 consistently timed-out for all of these.

22 This modified setting was recommended to us by the Alchemy developers (personal communi-
cation with Daniel Lowd).
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(a) 4 persons

(b) 5 persons

(c) 6 persons

(d) 7 persons

Fig. 6. Mean absolute error (MAE, lower is better) when learning from Smokers data
with 10%, 40%, 70% and 100% knowledge of the possible world.
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(a) 4 persons

(b) 5 persons

(c) 6 persons

(d) 7 persons

Fig. 7. K-L-divergence (lower is better) when learning from Smokers data with 10%,
40%, 70% and 100% knowldege of the possible world.
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Test Set LFI-Problog Alchemy* Alchemy

Cornell 1309.72 613.37 1603.31
Texas 1210.51 640.56 1075.75
Washington 646.39 622.55 1420.87
Wisconsin 1033.90 783.51 3479.04

Table 3. Negative Log-Likelihood (lower is better) on the WebKB learning

experiment.

LFI-ProbLog outperforms Alchemy with its default settings on three of the

four folds. However, Alchemy with the strong prior (Alchemy*) outperforms LFI-

ProbLog on all four folds. We conclude that LFI-ProbLog is competitive with

Alchemy, but parameter tuning can have a large impact. These results illustrate

the importance of setting a suitable prior when learning. This is a topic that we

have not yet explored in detail for LFI-ProbLog but that we plan to study in future

research.

10 Conclusion

The contributions of this paper are threefold.

First, we have introduced a two-step procedure for MPE and MARG inference in

general probabilistic logic programs. In a first step it generates a weighted Boolean

formula that captures all relevant information about a specific query, evidence and

probabilistic logic program. This step relies on well-known conversion techniques

from logic programming. The second step then invokes well-known solvers (for in-

stance for WMC and weighted MAX-SAT) on the generated weighted formula.

The resulting inference procedure is akin to that employed by Darwiche (2009)

and others (Park 2002; Sang et al. 2005) for probabilistic graphical models (where

many inference problems are also cast in terms of weighted Boolean formulas) but

adapted to the much more expressive class of probabilistic logic programs. Our

conversion-based approach is advantageous because it allows us to employ a wide

range of well-known and optimized solvers on the weighted formula, essentially giv-

ing us “inference algorithms for free”. Furthermore, the approach also improves

upon the state-of-the-art in probabilistic logic programming, where one has typi-

cally focussed on inference with a single query atom and no evidence (cf. Section 4),

often by using BDDs. By using d-DNNFs instead of BDDs, we obtained speed-ups

that push the limit of exact MARG inference significantly further.

Second, we have developed an Expectation-Maximization approach to learning

probabilistic logic programs from interpretations. This approach employs our novel

inference procedures in the expectation step. The learning from interpretation set-

ting is akin to that used in the graphical model and Statistical Relational Learning

(SRL) communities.

Third, the two approaches have been incorporated in a novel implementation

of the PLP language ProbLog, which unlike its previous implementation in YAP-
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Prolog (Kimmig et al. 2010), is closer to that of answer set programming systems

than to Prolog systems,

Overall our approach provides new insights into the relationships between PLP,

graphical models and SRL. As one immediate outcome, we pointed out a conversion

of probabilistic logic programs to ground Markov Logic, which allowed us to apply

MC-SAT to PLP inference. This contributes to further bridging the gap between

PLP and the field of SRL.

Appendix A Proofs

In this appendix we give the proofs of Theorem 1 to 3.

Proof of Theorem 1

To prove Theorem 1 we first give necessary some lemma’s. We use pruneInactive(L,

E = e) to denote the result of removing from a ground program L all rules that are

inactive under the evidence E = e.

Lemma 2

Let L be a ground normal logic program and let L′ = pruneInactive(L,E = e). For

each world/interpretation ω that is consistent with the evidence E = e it holds:

a) for each subset A of atoms: A is an unfounded set with respect to ω under

program L if and only if it is so under program L′, and

b) ω is the well-founded model of L if and only if it is the well-founded model of

L′.

Proof:

Part a: We use the notion of unfounded set see Definition 3.1 in Van Gelder et al.

(1991). We prove both directions of the ‘if and only if’.

• If A is an unfounded set with respect to ω under program L, then this also

holds under program L′:

The definition of unfounded set imposes a certain condition on each rule in

the program whose head is in the set A, we refer to this as the unfounded rule

condition. If we know that this condition holds for all such rules in L, then it

also holds for all such rules in L′, because the latter set of rules is a subset of

the former (L′ is the result of removing inactive rules from L).

• If A is an unfounded set with respect to ω under program L′, then this also

holds under program L:

The ‘if’ part of this ‘if-then’ implies that the unfounded rule condition holds

for all rules in L′, so to prove the ‘then’ part we only need to show that the

unfounded rule condition also holds for all rules in L \ L′ (i.e., for all rules

in L that were removed because of being inactive under the evidence). Every

rule r ∈ L\L′ contains at least one atom in its body that is false according to

the evidence (that is what made r inactive). Since this lemma applies only to

worlds ω that are consistent with the evidence, we have for every such world
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ω: every rule r ∈ L \L′ contains in its body at least one atom false in ω. This

is a sufficient condition to make the rule r an unfounded rule, see condition

‘1.’ in Definition 3.1 in Van Gelder et al. (1991).

Part b: We can now use Part a to prove that, for every evidence-consistent world

ω, ω is the well-founded model (WFM) of L if and only if it is the WFM of L′.

The WFM is the fixed point of the WP operator (Van Gelder et al. 1991). For

a program L, this operator is defined as WL(ω) = TL(ω) ∪ ¬UL(ω), see Definition

3.3 in Van Gelder et al. (1991). We prove below that, for every evidence-consistent

world ω: TL(ω) = TL′(ω) and UL(ω) = UL′(ω). Hence, WL(ω) = WL′(ω), hence

their fixed points are identical, hence Part b holds.

• For every evidence-consistent world ω: TL(ω) = TL′(ω)

L consists of all rules in L′ plus some rules that are inactive under the evidence.

For each evidence-consistent ω, the bodies of the inactive rules in L are false

under ω and hence these rules cannot ‘fire’. Hence these rules play no role in

the execution of the TP operator on ω. Hence TL(ω) = TL′(ω).

• For every evidence-consistent world ω: UL(ω) = UL′(ω):

UL(ω) is the greatest unfounded set with respect to (wrt) ω, which is defined

as the union of all unfounded sets wrt ω, see Definition 3.2 in Van Gelder et al.

(1991). Part a says that any subset A of atoms is an unfounded set wrt ω under

program L if and only if it is so under program L′. Hence UL(ω) = UL′(ω).

�

Lemma 3

Let L be a ground ProbLog program and let L′ = pruneInactive(L,E = e). Then

MODE=e(L) = MODE=e(L′).

Proof: MODE=e(L) is defined as the set of all worlds ω that are consistent with the

evidence E = e and are models of the ProbLog program L, i.e., for which there exists

a total choice C and WFM (C ∪R) = ω, with R the rules in L and WFM () the well-

founded model. The previous lemma implies that, for every ω consistent with the

evidence, removing inactive rules from a given logic program does not alter whether

or not ω is the WFM of that program or not. In other words: ω ∈ MODE=e(L) if

and only if ω ∈ MODE=e(L′). Hence MODE=e(L) = MODE=e(L′). �

Lemma 4

Let L be a ground ProbLog program and let L′ = pruneInactive(L,E = e). Then

PL(Q | E = e) = PL′(Q | E = e)

Proof: We prove the stronger condition ∀ω : PL(ω | E = e) = PL′(ω | E = e) The

conditional probability PL(ω | E = e) of an interpretation ω according to program

L is:

• (case1) if ω ∈ MODE=e(L) then

PL(ω | E = e) =
PL(ω,E = e)

PL(E = e)
·



Inference and Learning in PLP using Weighted Formulas 45

Since ω agrees with E = e, we have that the combined assignment ω,E = e

is simply equal to ω. Hence:

PL(ω | E = e) =
PL(ω)

PL(E = e)
=

PL(ω)∑
ω′∈MODE=e(L)

PL(ω′)
· (A1)

• (case2) if ω /∈ MODE=e(L) then PL(ω | E = e) = 0.

We now prove that for every ω, PL(ω | E = e) = PL′(ω | E = e). The proof consists

of two parts.

1. We need to prove that we are in case1 under L if and only if we are in

case1 under L′. In other words: for every ω: ω ∈ MODE=e(L) if and only if

ω ∈ MODE=e(L′). This follows from the previous lemma.
2. We need to prove that if we are in case1 (i.e. if ω ∈ MODE=e(L)), then the

conditional probability given by the fraction in Equation A1 is the same under

L as under L′.

• The numerator is the same under L and L′. This can be seen as follows.

For any ω ∈ MODE=e(L), the probability P(ω) is by definition equal

to the probability of ω’s total choice. The ProbLog programs L and

L′ differ in their rules, but they have exactly the same probabilistic

facts and hence determine the same probability distribution over total

choices. Hence P(ω) is the same under L as under L′.
• The sum in the denominator is also the same under L and L′. This can

be seen as follows. First, the set MODE=e(L) over which the sum ranges

is the same under L as under L′ because of the above lemma. Second,

each term in the sum is the same under L as under L’, i.e. for every

ω ∈ MODE=e(L) the probability P(ω) is the same under L as under L′

(because of the same reasoning as for the numerator).

This concludes the proof. �

Theorem 1
Let L be a ProbLog program and let Lg be the relevant ground program for L with

respect to Q and E = e. Then PL(Q | E = e) = PLg
(Q | E = e).

Proof: It follows from the grounding semantics of ProbLog that replacing the orig-

inal program L by its full grounding (w.r.t. the Herbrand base) Lfull preserves the

distribution, i.e., PL(Q | E = e) = PLfull
(Q | E = e). The relevant ground program

Lg differs from Lfull only in that it does not contain inactive rules (with respect to

E = e) or irrelevant rules (with respect to Q∪E). The lemma above states that re-

moving inactive rules preserves the distribution P(Q | E = e). Removing irrelevant

rules also preserves this distribution; this can be seen as follows. The probability of

an atom being true can be determined from all proofs of the atom and the probabili-

ties of the probabilistic facts appearing in these proofs, see De Raedt et al. (2007). Ir-

relevant rules are - by definition - rules that are not used in any proof of any atom in

Q∪E. Hence omitting such irrelevant rules does not alter the distribution P(Q,E).

Hence, also the distribution P(Q | E = e) is preserved because P(Q | E = e) can

be defined in terms of P(Q,E), i.e., P(Q | E = e) = P(Q,E=e)
P(E=e) = P(Q,E=e)∑

q P(Q=q,E=e) .
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Proof of Theorem 2

Theorem 2

Let Lg be the relevant ground program for some ProbLog program with respect to

Q and E = e. Let MODE=e(Lg) be those models in MOD(Lg) that are consistent

with the evidence E = e. Let ϕ denote the formula and w(·) the weight function of

the weighted formula derived from Lg . Then:

- (model equivalence) SAT (ϕ) = MODE=e(Lg),

- (weight equivalence) ∀ω ∈ SAT (ϕ): w(ω) = PLg
(ω), i.e., the weight of ω

according to w(·) is equal to the probability of ω according to Lg .

Proof: The proof consists of two parts.

Model equivalence. Consider Lemma 1 (Section 5.2). The lemma is about the

formula ϕr that captures the rules but not yet the evidence. The lemma states that

SAT (ϕr ) = MOD(Lg). The present theorem is about the formula ϕ = ϕr ∧ ϕe ,

where ϕe captures the evidence. The effect of adding ϕe to the formula is that

all worlds not consistent with the evidence are ruled out. Hence SAT (ϕr ∧ ϕe) =

MODE=e(Lg).

Weight equivalence. Weight equivalence says that the probability of every model

(according to Lg) is equal to the weight of the model (according to our weight

function w(·)). This follows from the way the probability and the weight function

are defined.

• The probability of a model of a ProbLog program, according to the distri-

bution semantics, is the probability of the underlying total choice, which in

turn is defined as the product of probabilities of each of the atomic choices.

Formally, the probability of a model ω is:

P(ω) =
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

p(¬a) =
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

(1− p(a)),

with PA+(ω) (respectively PA−(ω)) being the set of all ground probabilis-

tic atoms that are true (resp. false) in ω and p(·) denoting the probability

distribution specified by the probabilistic facts.

• The weight of a world ω according to our weight function is the product of

the weights of all literals l constituting the world/interpretation ω:

w(ω) =
∏
l∈ω

w(l)·

The literals/atoms in ω fall into four groups: probabilistic atoms that are true

in ω (denoted PA+(ω), non-probabilistic or derived atoms that are true in

ω (denoted DA+(ω)), and similar for the atoms that are false in ω (PA−(ω)

and DA−(ω)). Hence:

w(ω) =
∏
l∈ω

w(l) =
∏

a∈PA+(ω)

w(a)
∏

a∈PA−(ω)

w(¬a)
∏

a∈DA+(ω)

w(a)
∏

a∈DA−(ω)

w(¬a)·

By definition of the weight function, the weight of an atom a ∈ PA+(ω) is
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p(a), the weight of a ∈ PA−(ω) is 1 − p(a), the weight of a ∈ DA+(ω) ∪
DA−(ω) is 1. Hence:

w(ω) =
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

(1− p(a))
∏

a∈DA+(ω)

1
∏

a∈DA−(ω)

1

=
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

(1− p(a)) = P(ω)·

This proves weight equivalence. �

Proof of Theorem 3

Theorem 3

Let Lg be the relevant ground program for some ProbLog program with respect to

Q and E = e. Let M be the corresponding ground MLN. The distribution P(Q)

according to M is the same as the distribution P(Q | E = e) according to Lg .

Proof: We prove that (1) the set of worlds with non-zero probability according to

the MLN is the same as the set of worlds with non-zero probability according to the

ProbLog program and the evidence; (2) for every such world ω, PM(ω) = PL(ω |
E = e)

(Part 1) A world has non-zero probability according to an MLN if it satisfies all

hard clauses in the MLN. The hard clauses in the MLN are the same as the clauses in

the weighted formula ϕ. Hence the set of worlds with non-zero probability according

to the MLN equals SAT (ϕ). Theorem 2 (model equivalence) implies that this set

equals MODE=e(Lg), which is exactly the set of worlds with non-zero probability

according to the ProbLog program and the evidence.

(Part 2) The probability of a world ω ∈ SAT (ϕ) according to an MLN is defined

as PM(Q) = W (ω)/Z , with W (ω) the product of exponentiated weights of the

soft clauses satisfied in ω, and Z the normalization constant. The probability of

ω according to the ProbLog program conditioned on the evidence is PL(ω|E =

e) = PL(ω)/PL(E = e). We now show that both expressions are the same (i.e.

W (ω)/Z = PL(ω)/PL(E = e)).

• The numerators are the same (W (ω) = PL(ω)): The only soft clauses in the

MLN are unit clauses, whose weights are derived from the probabilistic facts.

The unit clauses are such that, for any given world ω, there is one unit clause

per probabilistic atom that is satisfied. W (ω) is the product of the expo-

nentiated weights of all these clauses. It follows from the way these weights

are defined in terms of the weighted formula, and from weight equivalence

between the weighted formula and the ProbLog program (Theorem 2), that

this product is equal to the probability of the total choice of ω according to

the ProbLog program and hence to the numerator PL(ω).

• The denominators are the same (Z = PL(E = e)): The normalization con-

stant Z of the MLN is defined as
∑
ω∈SAT(ϕ) W (ω). The evidence probability

PL(E = e) equals
∑
ω∈MODE=e(L)

P(ω). These sums are equal since (a) the

sets over which they range are equal due to Theorem 2 (model equivalencce),
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AND

calls(john) hears_alarm(john) OR alarm

AND burglary

-burglary earthquake

(a) A non smooth d-DNNF

AND

calls(john) hears_alarm(john) OR alarm

AND AND

-burglary

earthquake

burglary OR

-earthquake

(b) A smooth d-DNNF

Fig. C 1. A d-DNNF and the corresponding smooth d-DNNF for the formula
burglary ∨ earthquake.

(b) the summed terms are equal (because of the same reasoning as for the

numerator).

This concludes the proof. �

Appendix B Markov Logic

We briefly review Markov Logic (Domingos et al. 2008). While Markov Logic gener-

ally works with FOL formulas, we consider only the ground case, as this is sufficient

for our paper.

A Markov Logic Network (MLN) consists of two parts: a set of ‘soft’ formulas fi ,

which each have an associated weight wi ∈ R, and a set of ‘hard’ formulas. An MLN

determines a probability distribution on the set of possible worlds (determined by

the Herbrand base). The probability of a world ω is 0 if it violates some hard

formula and is 1
Z e

∑
i wiδi (ω) otherwise, where the sum is over all soft formulas and

δi(ω) is the indicator function being 1 if the soft formula fi is true in world ω and 0

otherwise. Note that the exponent
∑

i wiδi(ω) is the sum of weights of satisfied soft

formulas in world ω; the higher this sum, the more likely ω is. The name ‘MLN’

comes from the fact that this probability distribution can also be written as the

distribution of a Markov network.

Appendix C The need for smoothing d-DNNFs

The algorithm we use to compute marginal probabilities requires a smooth d-DNNF.

A smooth d-DNNF is a d-DNNF where for every disjunction node all children use

exactly the same set of atoms. That is, if C1 · ·Cn are the children of an OR node

C , then Atoms(Ci) = Atoms(Cj ), for i 6= j , where Atoms(Ci) is the set of atoms

which Ci uses.

Figure C 1a shows a non-smooth d-DNNF, while Figure C 1b shows the corre-

sponding smooth d-DNNF (which we have already shown before in Figure 1a but

we repeat here for convenience). Consider the non-smooth d-DNNF. The OR node
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doesn’t satisfy smoothness, since the sets of atoms of its children differ ({burglary ,

earthquake} and {burglary}; the negation is ignored here). Hence we need to trans-

form this d-DNNF into a smooth d-DNNF, see Figure C 1b. This is done by sub-

stituting the burglary node by an AND node, then adding the burglary node as

a child to the new AND node and creating a new smoothing node for the missing

atom -earthquake. The smoothing node is an OR node which links to earthquake

and -earthqake. It is then linked to the AND node.

Let us illustrate how smoothness affects the computation of probabilities using

our Alarm running example (so not the restricted version of the example considered

above). We have seen the arithmetic circuit (AC) corresponding to the smooth d-

DNNF for this example before, recall Figure 2 on p. 22. This figure also illustrates

how we can compute the probability of the conjunction P(earthquake = true ∧
calls(john) = true). This yields the value 0.14, which is indeed the correct value.

In contrast, Figure C 2 shows the same evaluation process on an AC for the non-

smooth d-DNNF. This results in an incorrect value (0.196). This shows the need

for smoothness of the d-DNNF.

* (0.196)

* (1.0) * (0.7) + (0.28) * (1.0)

λ[calls(john)] = 1 1.0 λ[hears_alarm(john)] = 1 0.7 * (0.18) * (0.1) λ[alarm] = 1 1.0

* (0.9) * (0.2)

λ[-burglary] = 1 0.9 λ[earthquake] = 1 0.2

λ[burglary] = 1 0.1

Fig. C 2. The arithmetic circuit corresponding to the non-smooth d-DNNF for the
Alarm example.

Appendix D Kullback-Leibler Divergence Between ProbLog Programs

The Kullback-Leibler divergence D(P ||Q) is a non-symmetric measure for the dif-

ference of two probability distributions P and Q (cf. Wasserman (2003)). It is used

in probability theory as well as in information theory where it is also known as

information gain. The K-L divergence aggregates the difference of the two distribu-

tions on all elements of the outcome space. It is only defined if the support of Q is

larger than the one of P , that is, for all i where P(i) > 0 also Q(i) > 0.

We use the K-L divergence to evaluate the LFI-ProbLog learning algorithm

(cf. Algorithm 1) and measure how close the learned program T2 is to the ground

truth program T1. We are doing parameter estimation, that is, the structure of the
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program is fixed and only the fact probabilities change. Hence we can restrict the

definition of the K-L divergence to programs that are identical except for the fact

probabilities.

Definition 1 (K-L Divergence)

Let T1 = F1 ∪ R and T2 = F2 ∪ R be ground ProbLog programs such that the

probabilistic facts are identical except for the probabilities, that is, F1 = {pi ::

fi |1 ≤ i ≤ n} and F2 = {qi :: fi |1 ≤ i ≤ n}. Let At denote the Herbrand base of T1

and T2 (note that they have the same Herbrand base). We denote interpretations

as subsets of atoms, i.e., L ⊆ At is the interpretation in which the atoms that are

in L are true and the other atoms are false. Then the K-L Divergence between T1

and T2 is defined as

D(T1||T2) =
∑
L⊆At

PT1(L) log
PT1

(L)

PT2
(L)

(D1)

There are exponentially many interpretations L ⊆ At , which makes evaluating the

K-L divergence as defined above impossible in practice. However, the probabilistic

facts in a ProbLog program are independent, which can be exploited to compute

the K-L divergence in linear time by looping once over F .

Theorem 4

Let T1 = F1 ∪ R and T2 = F2 ∪ R be ground ProbLog programs such that the

probabilistic facts are identical except for the probabilities, that is, F1 = {pi ::

fi |1 ≤ i ≤ n} and F2 = {qi :: fi |1 ≤ i ≤ n}. Then the K-L Divergence between T1

and T2 can be calculated as

D(T1||T2) =

n∑
i=1

(
pi log

pi

qi
+ (1− pi) log

1− pi

1− qi

)
· (D2)

It is possible to extend the K-L divergence and the theorem to non-ground facts.

To do so, one needs to multiply each summand pi log pi

qi
+ (1− pi) log 1−pi

1−qi with the

number of ground instances of the probabilistic fact fi .

Proof

We prove Theorem 4 by induction over the number of probabilistic facts.

Base case n = 1.

D(T1||T2) =
∑
L⊆At

PT1(L) log
PT1

(L)

PT2(L)

= PT1({f1}) log
PT1({f1})
PT2

({f1})

+PT1
(∅) log

PT1
(∅)

PT2
(∅)

= p1 log
p1

q1
+ (1− p1) log

1− p1

1− q1

=

n∑
i=1

(
pi log

pi

qi
+ (1− pi) log

1− pi

1− qi

)
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Inductive case n → n + 1. To simplify the notation, we define Tn+1
1 = T1 ∪

{pn+1 :: fn+1} and Tn+1
2 = T2 ∪ {qn+1 :: fn+1}

D(Tn+1
1 ||Tn+1

2 )

=
∑

L⊆(At∪{fn+1})
PTn+1

1
(L) log

P
T
n+1
1

(L)

P
T
n+1
2

(L)

=

[ ∑
L⊆At

PTn+1
1

(L ∪ {fn+1}) log
P

T
n+1
1

(L∪{fn+1})

P
T
n+1
2

(L∪{fn+1})

]
+[ ∑

L⊆At

PTn+1
1

(L) log
P

T
n+1
1

(L)

P
T
n+1
2

(L)

]
Probabilistic facts are independent and thus we can

factorize the probabilities

=

[ ∑
L⊆At

pn+1 · PT1
(L) log

pn+1·PT1
(L)

qn+1·PT2
(L)

]
+[ ∑

L⊆At

(1− pn+1) · PT1
(L) log

(1−pn+1)·PT1
(L)

(1−qn+1)·PT2 (L)

]
using the rules for log and factoring out the constants

= pn+1

[ ∑
L⊆At

PT1
(L)
(

log pn+1

qn+1
+ log

PT1
(L)

PT2 (L)

)]
+

(1− pn+1)

[ ∑
L⊆At

PT1
(L)
(

log 1−pn+1

1−qn+1
+ log

PT1
(L)

PT2
(L)

)]
expanding the inner sums and factoring out constants

= pn+1

(
log pn+1

qn+1

)[ ∑
L⊆At

PT1
(L)

]
+

pn+1

[ ∑
L⊆At

PT1(L)
(

log
PT1 (L)

PT2
(L)

)]
+

(1− pn+1)
(

log 1−pn+1

1−qn+1

)[ ∑
L⊆At

PT1
(L)

]
+

(1− pn+1)

[ ∑
L⊆At

PT1
(L)
(

log
PT1

(L)

PT2 (L)

)]
since

∑
L⊆At PT1(L) is 1, rearranging yields

= pn+1

(
log pn+1

qn+1

)
+ (1− pn+1)

(
log 1−pn+1

1−qn+1

)
+∑

L⊆At

PT1
(L) log

PT1
(L)

PT2
(L)

using the inductive assumption

= pn+1

(
log pn+1

qn+1

)
+ (1− pn+1)

(
log 1−pn+1

1−qn+1

)
+
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n∑
i=1

(
pi log pi

qi
+ (1− pi) log 1−pi

1−qi

)
rearranging the terms

=
n+1∑
i=1

(
pi log pi

qi
+ (1− pi) log 1−pi

1−qi

)
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