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Abstract 

 

Combined hyperlipidemia (CHL) is a common disorder of lipid metabolism that leads to an 

increased risk of cardiovascular disease.  The lipid profile of CHL is characterised by high 

levels of atherogenic lipoproteins and low levels of high-density-lipoprotein-cholesterol.  

Apolipoprotein (APO) A5 is a newly discovered gene involved in lipid metabolism located 

within 30kbp of the APOA1/C3/A4 gene cluster.  Previous studies have indicated that 

sequence variants in this cluster are associated with increased plasma lipid levels.  To 

establish whether variation at the APOA5 gene contributes to the transmission of CHL, we 

performed linkage and linkage disequilibrium (LD) tests on a large cohort of families (n=128) 

with familial CHL (FCHL).  The linkage data produced evidence for linkage of the 

APOA1/C3/A4/A5 genomic interval to FCHL (NPL = 1.7, P = 0.042).  The LD studies 

substantiated these data.  Two independent rare alleles, APOA5c.56G and APOC3c.386G of this 

gene cluster were over-transmitted in FCHL (P = 0.004 and 0.007, respectively), and this was 

associated with a reduced transmission of the most common APOA1/C3/A4/A5 haplotype 

(frequency 0.4425) to affected subjects (P = 0.013).  The APOA5c.56G allele was associated 

with increased plasma triglyceride levels in FCHL probands, whereas the second, and 

independent, APOC3c.386G allele was associated with increased plasma triglyceride levels in 

FCHL pedigree founders.  Thus, this allele (or an allele in LD) may mark a quantitative trait 

associated with FCHL, as well as representing a disease susceptibility locus for the condition.  

This study establishes that sequence variation in the APOA1/C3/A4/A5 gene cluster 

contributes to the transmission of FCHL in a substantial proportion of affected families, and 

that these sequence variants may also contribute to the lipid abnormalities of the metabolic 

syndrome, which is present in up to 40% of persons with cardiovascular disease.  
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Introduction 

 

Combined hyperlipidemia (CHL) affects 1-2% of individuals in Western society, and is 

present in up to 20% of patients with premature coronary heart disease (1-4).  The term familial 

CHL (FCHL) was coined by (1) to describe a pattern of lipid abnormalities in 47 Seattle 

pedigrees, which was simultaneously observed in two other datasets (2,5).  FCHL was 

originally described as a dominant disorder with incomplete penetrance until the third decade, 

and to primarily affect blood triglyceride levels, and secondarily cholesterol levels (1).  This 

was proposed because plasma triglyceride levels were bimodally distributed in the first-degree 

relatives of affected probands that were above the age of 20 years, and less than one half of 

the offspring of affected family members were hyperlipidemic (1).  However, more recent 

segregation analyses (6-11) and genome-wide linkage studies (12,13); Naoumova et al. 

submitted) have suggested a more complex inheritance pattern involving contributions from 

major genes and the environment. 

 The lipid profile in FCHL is characterised by increased plasma triglyceride and/or 

cholesterol levels, decreased HDL-cholesterol levels, and the presence of small-dense-low-

density lipoprotein particles (3,7,14).  Importantly, the lipid abnormalities of FCHL may also be 

present in persons with the metabolic syndrome (World Health Organisation Expert 

Committee 1985), which is a major cause of morbidity and mortality worldwide, and present 

in up to 40% of patients with premature coronary heart disease (15).   

 Apolipoprotein 5 (APOA5) is a newly identified gene involved in lipid metabolism (16), 

and represents a candidate for conferring susceptibility to FCHL.  APOA5 was discovered by 

a comparative sequence analysis of human and mouse genomic DNA sequences spanning the 
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APOA1/C3/A4 gene cluster (16), and subjected to functional analyses.  In mice, disruption of 

the gene in “knock out” animals resulted in a four-fold increase in plasma triglyceride levels.  

Conversely, transgenic mice that independently over-expressed the human APOA5 gene had a 

66% reduction in plasma triglyceride levels.  Furthermore, in humans single nucleotide 

polymorphisms (SNPs) across the APOA5 locus were associated with increased plasma 

triglyceride levels in two independent datasets (16).  For example in one dataset, healthy 

individuals with the minor allele at three neighbouring loci (APOA5-1,131T>C, 

APOA5IVS3+476G>T, APOA5c.1,259T>C) had on average 20-30% higher plasma triglyceride levels 

than individuals homozygous for the major allele at these loci.   

 APOA5 resides ~30kbp downstream of the APOA1/C3/A4/A5 cluster on chromosome 

11q23, which has been extensively studied in mice (17-21) and humans (22-26).  The APOA1 

gene contains a rare allele at the APOA1-3,031C>T locus, and this has been associated with 

combined hyperlipidemia (CHL) and/or FCHL in some studies (27-34).  Likewise, a series of 

associations between rare alleles of the APOC3 gene (e.g. the rare allele at the APOC3c.386C>G 

locus (35) and hypertriglyceridemia have been reported (36-48).  However, several investigators 

have failed to detect linkage of the APOA1/C3/A4 locus to any form of hyperlipidemia (31,49-

51), which may reflect population specific differences in LD between markers and causal 

variants.   

 In the present study, we show that there is extensive LD between alleles of the 

APOA1/C3/A4/A5 gene cluster in white British FCHL probands and pedigree founders.  

Furthermore, we establish that two distinct sequence variants (or alleles in LD) within this 

genomic interval contribute to the transmission of FCHL in a substantial proportion of 

affected white British families.  These findings suggest that combinational therapies that 

specifically target the APOA1/C3/A4/A5 gene cluster may provide a clinically significant 
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strategy for the treatment of the lipid abnormalities of FCHL, and the associated metabolic 

syndrome.  

 

Materials and Methods 

 

Ascertainment of Datasets 

A description of the families used in this study, and phenotype cutoff values have been 

deposited at http://www.csc.mrc.ac.uk.  In brief, white British probands were recruited 

through London-based tertiary referral specialised lipid clinics at Northwick Park Hospital, 

Hammersmith Hospital, Charing Cross Hospital, University College London Hospital and St 

Bartholomew’s.  FCHL probands were required to have cholesterol and triglyceride levels > 

age-sex-specific 95th and 90th percentiles, respectively, and a blood relative with either raised 

plasma cholesterol, triglyceride or both > age-sex-specific 90th percentile.  In the absence of 

published British age and sex related percentile data for total cholesterol and triglyceride 

levels, the "first visit" percentile points of the Lipid Research Clinics (52) were used.  

Exclusion criteria for probands and family members were: < 16 years of age, other forms of 

genetic hyperlipidaemia (e.g. familial hypercholesterolemia), secondary hyperlipidaemia 

caused by either obesity (BMI > 30 kg/m2), diabetes mellitus, untreated hypothyroidism, liver 

and kidney disease, alcohol intake > 21units/week, or drugs known to interfere with lipid 

metabolism.  The Ethical Committees of the participating centres approved the study design.  

All participants gave written informed consent.  Fasting levels of total cholesterol, triglyceride 

and HDL-cholesterol were determined by standard automated methods (Beckman 

Instruments, Inc, Galway, Ireland) using commercial kits, and interassay controls.   
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Genotyping 

The forward and reverse oligonucleotide primers for PCR amplification of microsatellite 

marker D11S1998 and D11SAPOC3 were 5’AGCCATCAACTAGCTTTCCCT3’ and 

5’GAGGCACCAACAGATGGATG3’, and 5’GAGTTGAGACTGCATTCCTCC3’ and 

5’GATGGCACCACTGCACTCCA3’, respectively.  PCR-products were pooled for analysis 

on an Applied Biosystems 3700 DNA sequencer, and sized with Genescan and Genotyper, 

version 2.0 software (ABI).  SNP genotyping was performed with the PCR Invader assay 

(Third Wave Technologies, Madison, WI) as described previously (16);Olivier et al. submitted 

for publication.  Accession numbers for entries in the SNPdb are: APOA558,892C>T, ss4472666; 

APOA5c.56C>G, ss4383597; APOA5c.-3A>G, ss4383596; APOA5-1,131T>C, ss3199915 and APOA5-

12,238T>C, ss319916.  Accession numbers for APOA1-3,031C>T and APOC3c.386C>G sequences are 

X67732 and NM_000040, respectively. 

 

Statistical Analysis  

Linkage analysis was performed on 86 FCHL families that contained an affected relative pair 

for two correlated, standard diagnostic criteria: 1) CHL phenotype, defined as cholesterol and 

triglyceride levels >90th age-sex-specific values; and 2) triglyceride trait, triglyceride >90th 

percentile age-sex-specific values.  Data were analysed with GENEHUNTER-PLUS (53,54).  

This calculates a non parametric linkage score (NPL+) to correct for the conservativeness of 

datasets which contain incomplete information on descent.  Estimates of allele sharing were 

based on marker allele frequencies of pedigree founders (i.e. the “married-ins”), and equal 

weights assigned to each family.  Nominal P-values were derived from the Gaussian 

distribution approximating the NPL distribution.  We assessed the evidence for linkage and 

LD of individual SNPs and of haplotypes to FCHL with the pedigree disequilibrium test 
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(PDT), version 3.11, a transmission disequilibrium test for general pedigrees that tests for 

both linkage and LD (55).  The sumPDT statistic gives more weight to larger families within 

the dataset, while the avePDT gives equal weight to all families (56).  Haplotypes within 

families were reconstructed with Merlin, under the assumption of the most likely pattern of 

gene flow(57).  Families (n=4) that produced more than one haplotype solution were excluded 

from the PDT.  Reconstructed parental haplotypes were only used in the PDT if complete (i.e. 

both haplotypes could be reconstructed).  Founder haplotype frequencies were determined 

with the associated Fugue software (58), and used to compute the normalised disequilibrium 

statistic (D’) values between two diallelic loci (59).  D’ was chosen as a measure of LD 

because it is relatively insensitive to allele frequencies (60).  Values of D’ are negative if the 

rare allele at one locus is associated with the common allele at the second, and positive when 

the rare allele at each locus are associated.  Associations between individual SNP loci and 

triglyceride levels were performed on log-transformed values, adjusted for the effect of body 

mass index, age and sex.  The Student’s t-test was used to test the significance of differences 

between genotypes.   

 

Haplotype Notation  

Seven-locus haplotypes were constructed.  Allele ‘1’ refers to the common allele in the 

sequence (APOA558,892C>T, APOA5c.56C>G, APOA5c.-3A>G, APOA5-1,131T>C, APOA5-12,238T>C, 

APOC3c.386C>G, APOA1-3,031C>T), and ‘2’ corresponds to the rare allele.  The rare alleles at the 

APOA5-1,131T>C and APOA5-12,238T>C loci have previously been referred to as SNP 3 and 4, 

respectively (16).  Alternative nomenclature for the APOC3c.386G and APOA1-3,031T alleles 

include the S2 allele of APOC3 (40) and the X2 allele of APOA1 (27), respectively.   
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Electronic Databases 

 

Merlin: www.sph.umich.edu/csg/abecasis 

http://www.ncbi.nlm.nih.gov/SNP/ 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 

 

 

Results 

 

Increased Transmission of Rare Alleles at the APOA1/C3/A4/A5 Genomic Interval in FCHL 

To establish the contribution of sequence variation at the APOA1/C3/A4/A5 genomic interval 

to FCHL susceptibility, we performed linkage and LD tests on a cohort of white British 

families (Table 1).  For the linkage test, 86 extended families were genotyped with two 

markers: D11SAPOC3 which resides within the third intron of APOC3, and D11S1998, which 

is located approximately 1.7 Mbp downstream of APOA5 (Figure 1).  The families contained 

177 and 270 affected relative pairs for the CHL phenotype and the triglyceride trait of FCHL, 

respectively (Table 1).  The linkage analysis produced a NPL+ value of 1.72 (P = 0.042) at the 

D11SAPOC3 genetic marker for the triglyceride trait of FCHL, and this was attributable to a 

positive NPL value in a subset (n=36) of the 86 families.   

To substantiate the evidence for linkage of the APOA1/C3/A4/A5 genomic interval to 

FCHL, we performed a PDT on 115 white British families (Table 1) using seven SNPs that 

span an interval of 108kbp (Figure 1).  The analysis used information from nuclear families 

comprising an affected offspring and two parents, one of whom had to be heterozygous for the 

marker under investigation, and discordant sibpairs who had different marker genotypes.   
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The PDT produced evidence for increased transmission of the rare alleles at the 

APOA5c.56C>G and APOC3c.386C>G loci to affected subjects (Table 2).  Thus, the APOA5c.56G 

and APOC3c.386G alleles were respectively transmitted 1.95- and 1.45-fold more frequently to 

affected family members with the triglyceride trait of FCHL than to unaffected family 

members.  The corresponding values for the CHL trait were 1.95 and 1.33, respectively.  The 

rare alleles at the APOA5c.-3A>G and APOA5-1,131T>C loci were also transmitted 1.28 and 1.40 

fold-more frequently to affected individuals with the CHL phenotypes of FCHL than to 

unaffected individuals (P = 0.039 and 0.033) (Table 2).   

 The rare alleles at the APOA5c.56C>G, APOC3c.386C>G, APOA5-1,131T>C and APOA5c.-3A>G 

loci were also present at increased frequencies in FCHL probands versus pedigree founders 

(i.e. “married ins”) (Table 3).  For example, the rare allele at the APOA5c.56C>G locus was 

present in 21% of the probands compared to 13% of the normolipidemic pedigree founders, 

whereas the rare allele at the APOC3c.386C>G locus was present in 29% of the probands and 

15% of the normolipidemic pedigree founders.  Importantly, the results from this case-control 

study and the PDT complemented each other.  For the example, the frequencies of the rare 

alleles at the APOA5c.56C>G, APOA5c.-3A>G , APOA5-1,131T>C and APOC3c.386C>G loci in FCHL 

probands and affected FCHL sibs were remarkably similar (i.e. 0.1200, 0.1144, 0.1111 and 

0.1486, respectively versus 0.1114, 0.1156, 0.1296 and 0.1566) (Table 2).  Likewise, the 

frequencies of the rare alleles at the APOA5c.56C>G and APOC3c.386C>G loci were similar in the 

pedigree founders and unaffected sibs (0.0694 and 0.1024, respectively versus 0.0511 and 

0.1048) (Table 2).  Thus, the case-control data support the evidence that the APOA5c.56G and 

APOC3c.386G alleles (or alleles in LD) are preferentially transmitted in FCHL.   

 Probands with the rare allele APOA5c.56G had higher mean triglyceride levels than 

probands homozygous for the major allele at this locus (Table 3), and this was particularly 
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evident in those individuals that were homozygous for this rare allele (n=5).  Thus, mean 

plasma triglyceride levels in probands with the APOA5c.56G allele were on average 2.2 fold 

higher than in probands homozygous for the APOA5c.56C allele, and ~1.8 fold higher relative 

to the heterozygote probands.  By contrast, the APOA5c.56G allele had no major impact on 

triglyceride levels in heterozygote pedigree founders (Table 3), and this was also the case 

when all individuals with the rare allele at the APOC3c.386C>G locus were excluded from the 

analyses (data not shown).  Only one pedigree founder was homozygous for the APOA5c.56G 

allele, precluding an assessment of the impact of the homozygous state of this allele (or an 

allele in LD) on plasma triglyceride in the pedigree founders of white British families with 

FCHL.   

 The APOC3c.386G allele (or an allele in LD) had a modest impact on triglyceride levels 

in probands and pedigree founders (Table 3).  On average pedigree founders with the 

APOC3c.386G allele had plasma triglyceride levels that were 31% higher than pedigree 

founders without this allele (P = 0.001), and this increased to a value of 38% (P = 0.001) 

when we considered only those individuals with the common allele at the APOA5c.56C>G locus 

(data not shown).  Similar increases in plasma triglyceride levels were also observed in 

pedigree founders with the rare alleles at the APOA5-1,131T>C and APOA5c.-3A>G loci (data not 

shown).  In a complementary analysis, increased frequencies of these rare alleles were 

observed in pedigree founders that had plasma cholesterol and triglyceride levels >75th 

percentile age-sex-specific values relative to the rest (Table 3).  This trend was not observed 

for the rare allele at the APOA5c.56C>G locus, indicating that this allele resides on a different 

APOA1/C3/A4/A5 haplotype than the rare alleles at the APOC3c.386C>G and APOA5-1,131T>C and 

APOA5c.-3A>G loci.  
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The Rare Alleles at the APOA5c.56C>G and APOC3c.386C>G Loci Define Different Haplotypes 

To examine the extent of LD between alleles in the APOA5 and APOA1/C3/A4 genomic 

interval, seven-locus haplotypes were constructed in the pedigree founders.  Alleles at all loci 

were in LD (Table 4), and 67% of the chromosomes in the dataset were accounted for by two 

major haplotypes (Table 5, Figure 2).  The most common haplotype, designated 

APOA1/C3/A4/A5*1 (111111), was estimated to be present at a frequency of 0.4425 in the 

pedigree founders, while the second most common, designated APOA1/C3/A4/A5*2 

(1111211), was present at a frequency of 0.2246.  Pertinent to this study, the rare allele at the 

APOA5c.56C>G locus was rarely observed on the same haplotype that contained the rare alleles 

at the APOC3c.386C>G, APOA5-1,131T>C and APOA5c.-3A>G loci, while the rare alleles at the 

APOA5-1,131T>C and APOA5c.-3A>G loci were essentially restricted to three haplotypes that 

contained the rare allele at the APOC3c.386C>G locus (Table 5, Figure 2).  Thus, these data 

indicate that the APOA5c.56G and APOC3c.386G alleles define independent haplotypes (Figure 

2).  Furthermore, that the APOC3c.386G, APOA5-1,131C and APOA5c.-3G alleles are in strong LD 

in the white British population.   

 

Distorted Transmission of Haplotypes at the APOA1/C3/A4/A5 Genomic Interval in FCHL 

To further test/delineate/examine the for preferential transmission of the APOA5c.56G and 

APOC3c.386G alleles in FCHL (Table 2), we repeated the PDT in our families with haplotype 

data for the APOA1/C3/A4/A5 genomic interval.  The transmission of haplotypes to affected 

members was distorted at a global level (P = 0.013), and this was largely attributable to the 

reduced transmission of the common APOA1/C3/A4/A5*1 (1111111) haplotype to affected 

FCHL subjects, and increased transmission of two distinct haplotypes, namely 

APOA1/C3/A4/A5*4 (1211111) and APOA1/C3/A4/A5*7 (2122121) (Table 5).  Haplotype 
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APOA1/C3/A4/A5*4 (1211111) contains the rare allele at the APOA5c.56C>G locus, and was 

transmitted 2.6 more frequently to an affected sib than to a non-affected sib, while 

APOA1/C3/A4/A5*7 (12122121), which contains the rare alleles at the APOC3c.386C>G, 

APOA5-1,131T>C and APOA5c.-3A>G loci, was transmitted 1.3 fold more frequently to affected 

sibs (Table 5).   

 The finding that haplotypes that contained the rare alleles at the APOA5c.56C>G, 

APOC3c.386C>G, APOA5-1,131T>C and APOA5c.-3A>G loci were over-transmitted in families with 

FCHL raised the issue ofwhether they might represent causal sequence variants.  To address 

this issue, we examined the additional haplotypes that contained the minor allele for either 

APOA5c.56C>G or  APOC3c.386C>G to determine if they were also over-transmitted in FCHL.  

The most common haplotypes containing the APOA5c.56G allele, namely APOA1/C3/A4/A5*3 

(1211112), and APOA1/C3/A4/A5*5 (1211121) [we need to mention that these are the most 

common c.56G haplotypes when we exclude hap*4. The sentence above may make what we 

are trying to say clearer.  also should we remove the following two snps from the first 

sentence of the paragraph , APOA5-1,131T>C and APOA5c.-3A>G  since we don't address if they 

are causative?  It seems we are only testing two of the snps, one for av and one for c3] (Figure 

2) were transmitted to affected subjects at increased frequencies (Table 5), but these increases 

did not reach statistical significance (P = 0.540 and 0.086).  These data may indicate that there 

was insufficient power in our dataset to obtain a significant result or alternatively that the 

APOA5c.56G allele is not a causal sequence variant for FCHL.  Simulation studies based on 

5,000 datasets, each comprising 250 families, have shown that the power of the PDT is poor 

for alleles/haplotypes, such as the APOA1/C3/A4/A5*3 and APOA1/C3/A4/A5*5 haplotypes, 

with frequencies below 0.15 (Martin et al. 2000).   
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Finally, the PDT produced no evidence for increased transmission of the second most 

common APOC3c.386G haplotype, designated APOA1/C3/A4/A5*8 (1111121) (Figure 2) in 

FCHL (Table 5).  A defining difference between this haplotype and the more common 

APOA1/C3/A4/A5*7 haplotype relates to the alleles at the APOA5c.-3A>G and APOA5-1,131T>C 

loci (Figure 2).  Haplotype APOA1/C3/A4/A5*7 contains the rare alleles at the APOA5c.-3A>G 

and APOA5-1,131T>C loci, and was over-transmitted in our FCHL families as described above.  

In contrast, APOA1/C3/A4/A5*8 contains the common alleles at these APOA5 loci, and was 

not over-transmitted in FCHL, suggesting that the APOC3c.386G allele itself may not represent 

a causal sequence variant for this condition.  Alternatively, the APOC3c.386G allele may only 

confer susceptibility to FCHL in the context of an APOA1/C3/A4/A5 haplotype that contains 

the rare alleles at the APOA5c.-3A>G and APOA5-1,131T>C loci.  

 

Discussion 

In the present study we have performed genetic analyses in a substantial cohort of white 

British families with FCHL to derive information on the contribution of sequence variation at 

APOA5 in the transmission of this condition, and to examine these data in the context of 

variation at the linked APOA1/C3/A4 gene complex.  The results establish that there is 

extensive allelic association in the APOA1/C3/A4/A5 cluster, and that two independent rare 

alleles (i.e. APOA5c.56G and APOC3c.386G) contained within this genomic interval are linked to 

an increased genetic risk (should we say this explicitly?  or rather say that they are simply 

over-transmitted in FCHL.  The data support/suggest they are risk factors but we haven't 

provded it) of FCHL.  Specifically, the APOA5c.56G marks a disease susceptibility locus for 

FCHL, while the second independent allele (APOC3c.386G) marks a locus that influences a 
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quantitative trait associated with the disorder.[again you might consider using milder words 

than marks.  supports/suggests/ provides evidence ect.] 

 The evidence that allelic variation at the APOA1/C3/A4/A5 genomic interval 

contributes to the genetic risk of FCHL derives from the results of a traditional-linkage based 

analysis that tests for excess allele sharing in affected relative pairs, and the PDT, that tests 

for both linkage and association in general pedigrees.  The PDT was performed on 115 

families with seven individual SNPs and seven-locus haplotypes, and produced comparable 

results.  The SNP data set comprised genetic information from 88 trios and 307 discordant 

sibpairs, and produced evidence that the APOA5c.56G (P = 0.004) and APOC3c.386G (P = 0.007) 

alleles were over-transmitted in FCHL {yes, i like this tone}.  The haplotype analysis 

extracted genotype data from 153 trios and 280 discordant sibpairs, and included only those 

individual where the phase between markers could be reliably assigned.  Thus, a proportion of 

families used in the first PDT produced no data for the second PDT, and visa versa.  This 

observation adds credence for the evidence of increased transmission in FCHL of haplotype 

APOA1/C3/A4/A5*4, which contains the APOA5c.56G allele and of haplotype 

APOA1/C3/A4/A5*7 that bears the APOC3c.386G allele, and of reduced transmission of the 

most common APOA1/C3/A4/A5*1 haplotype, in this condition.[this sentence is a bit clunky. 

What exactly are we trying to say? I don't think we want to add credence to evidence. Should 

we remove or simplify the sentence?] 

The present study provides compelling evidence that the rare APOA5c.56G allele (or an 

allele in LD) confers susceptibility to FCHL, rather than influencing a quantitative trait 

associated with the disorder.  This result is consistent with the genetic analyses of Goldstein et 

al (1973) and the complex segregation analyses of Cullen et al. (1994), which allowed for a 

major gene(s) and locus heterogeneity to produce the best genetic model for FCHL.  In the 
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present study, we found that the APOA5c.56G allele was present in a subset of FCHL families 

(45 out of 128), and that this allele was transmitted more frequently to affected individuals 

than to unaffected individuals.  The rare APOA5c.56G allele was also associated with markedly 

higher triglyceride levels in FCHL probands, and significantly under-represented in the 

pedigree founders of white British families with FCHL.  This finding may partly explain the 

lack of association of the APOA5c.56G allele with plasma triglyceride levels in FCHL pedigree 

founders, which is at variance with the results found in community-based samples in other 

populations (Pennacchio et al. submitted).  In the current study, FCHL probands homozygous 

for the APOA5c.56G allele had some of the highest plasma triglyceride levels in our dataset.  In 

previous studies (28,29,61), similar results were obtained for the APOA1-3,031T allele, and this we 

suggest may be attributable to the significant LD between this allele and the APOA5c.56Gallele.  

In one study, the APOA1-3,031T allele displayed linkage to FCHL, in a series of families 

ascertained through a proband with this same allele (29).  In another study, FCHL probands 

with the APOA1-3,031T allele had mean plasma cholesterol and triglyceride levels that were 

respectively, two- and eight-fold higher than probands without this allele (32).  In a third study 

involving patients with peripheral vascular disease, all five patients homozygous for the 

APOA1-3,031T allele had CHL (28).   

The proposition that the rare alleles at the APOC3c.386C>G, APOA5c.-3A>G and APOA5-

1,131T>C loci mark an independent locus affecting the triglyceride component of FCHL as a 

quantitative trait is consistent with the results of the present and previous studies 

(22,23,32,42,45,62,63).  The association of the APOC3c.386G allele with hypertriglyceridemia (i.e. 

plasma triglyceride > 220mg/dl, cholesterol < 240mg/dl), CHL and/or severe 

hypertriglyceridemia (i.e. plasma triglyceride > 1000mg/dl) has also been amply demonstrated 

(27,32,36-38,40,41,43,44,48,64,64).  The present study extend these data to provide the first evidence 
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that the APOC3 c.386G allele marks a sequence variant for a quantitative trait associated with 

FCHL in a substantial subset of white British families.  Furthermore, that this sequence 

variant, due to extensive LD across the APOA1/C3/A4/A5 genomic interval, may reside at 

some considerable distance from APOC3, and perturb the expression of either APOA5, 

APOC3, or both.  This would accord with the results of transgenic mice experiments.  

Manipulations that perturb the expression of either these genes influence plasma triglyceride 

levels in a quantitative manner (16,17,21).   

In summary, the current study confirms that FCHL is indeed a heterogeneous disorder 

(8) involving multiple genetic determinants, and that two of these determinants reside within 

the APOA1/C3/A4/A5 genomic interval.  What remains to be established is whether the 

determinants affect lipid levels through their effect on APOA5, APOC3, or both.  Additional 

genetic studies aimed at resolving this issue could provide specific therapeutic targets for 

future combinational drug therapies for the treatment of FCHL, and the associated metabolic 

syndrome. 
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