Software Deployment Process at NERSC LBNL-2001458

Software Deployment Process at NERSC:

Deploying the Extreme-scale Scientific Software Stack
(E4S) Using Spack at the National Energy Research
Scientific Computing Center (NERSC)

Shahzeb Siddiqui (shahzebsiddiqui@lbl.gov), Sameer Shende (sameer@cs.uoregon.edu)

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Report No. LBNL-2001458

Office of Advanced Scientific Computing Research
Office of Science
US Department of Energy

March 2022

Software Deployment Process at NERSC LBNL-2001458

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor the Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the University of California.

Software Deployment Process at NERSC

Table of Contents

Motivation
Background

The Journey of Deploying Software
Step 0 - Determine which system to deploy your software
Step 1 - Acquire Spack Configuration
Step 2 - Preparing Spack Configuration
Step 3 - Module Generation
Step 4 - Deployment Script
Step 5 - User Documentation
Step 6- Give back to the community

Recent Developments
Building E4S on Perlmutter
Automation
MPI Support
Container-based deployment of E4S
Testing E4S Post Deployment

Conclusion
How to Get Involved

Acknowledgement

Bio

LBNL-2001458

O 0 0 &

14
16
17
18

20
20
22
25
26
28

32
33

34
35

Software Deployment Process at NERSC LBNL-2001458

Motivation

One of the many benefits of using a high-performance computing (HPC) system at a Department of
Energy (DOE) Office of Science (SC) HPC facility is the large number of software products, built and
optimized for the system. The HPC center staff and HPC vendors provide optimized software such as
libraries and even full scientific applications, ready to be used by users as building blocks to accelerate
scientific discovery. Behind each provided packaged software module are a large number of decisions -
which compiler, optimizations, variants/options - to build the software on the target system. And, even
before the software gets deployed, the software must be developed, tested, and maintained, including
deprecating old versions and ensuring compatibility across versions. The software lifecycle is complex
and is further convoluted by a web of interdependencies on other software.

In an HPC environment, the software lifecycle is even more complicated and requires a community to
address the many challenges. The Extreme-Scale Scientific Software Stack (E4S) is a community effort
supported by the Exascale Computing Project (ECP) to provide an ecosystem of open source software
packages for developing, deploying and running scientific applications on HPC platforms. E4S provides
unified and consistent deployment through a collection of Spack packages which can be used by users, a
development team, or site administrators at an HPC facility. E4S is a flexible software stack for HPC
systems that enables an end-user to install a subset of E4S packages for their development purpose, a
software development team to install their software product and integrate E4S spack builds into their
CI/CD process, or a site-administrator to install E4S on bare-metal or container system-wide for all users.

The utility of E4S extends beyond providing ready-made recipes for building some or all of E4S on a
particular machine. E4S releases can be used to identify reasonable default versions of software packages
that are known to be interoperable. Recipes for building on a system can be leveraged as a starting point
for similar or next-generation systems. For existing supported systems, E4S can be used to quickly learn
how to add a new package to a deployment not previously supported on the system. Much of the value of
E4S is not in specific recipes for specific systems, but rather in the general improvement of
interoperability of packages that comprise the software ecosystem, or documenting where versions of
packages are known not to be interoperable, as well as in documenting when certain packages are not yet
ported to a platform.

In 2021, National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley
National Laboratory released its first deployment of E4S/20.10 on the Cori supercomputer using the spack
package manager. NERSC wants to leverage E4S to provide an advanced, performant, stable and
supported HPC environment to its users. By being at the forefront of E4S deployment and testing,
NERSC is able to provide feedback to ECP Software Technology teams with build failures during
deployment so they can be fixed in future versions.

NERSC has since also deployed E4S on its newest supercomputer, Perlmutter, a Cray Shasta
supercomputer composed of 1,536 GPU-accelerated nodes with of AMD EPYC 7713 (Milan) CPUs and
NVIDIA A100 GPUs, a 35 PB all-flash Lustre scratch file system and the HPE Cray Slingshot 10 high
speed interconnect. Perlmutter is currently (2022) being augmented with 3,072 dual-socket CPU only
nodes updated to the Slingshot 11 network.

https://www.energy.gov/science/office-science
https://e4s.readthedocs.io/en/latest/introduction.html
http://exascaleproject.org
https://spack.io/
https://nersc.gov/
https://www.exascaleproject.org/research/#software
https://docs.nersc.gov/systems/perlmutter/system_details/
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.nvidia.com/en-us/data-center/a100/

Software Deployment Process at NERSC LBNL-2001458

Even with software seemingly packaged and delivered with a bow like E4S, an actual system-wide
deployment is complicated and requires many decisions to make for site-specific customizations, e.g.
each system supports multiple compilers, compiler versions and MPI providers that impact how software
is deployed. Here, we describe the steps and lessons learned to deploy the E4S software stack at NERSC
to help users navigate their E4S deployment. The lessons learned can also guide future developers of
packaged community software on development-to-deployment requirements.

SINCE THE INITIAL E4S DEPLOYMENT, NERSC CONTINUES TO DEPLOY NEW VERSIONS OF
E4S ON CORI AND PERLMUTTER AND PROVIDES THE LATEST INFORMATION ON THE E4S -
NERSC DOCUMENTATION PAGES.

Background

E4S is a collection of 100+ top-level scientific software packages needed for scientific computing in
high-performance computing (HPC) environments. E4S member packages must demonstrate
compatibility with the E4S community policies, including a production quality spack-based build and
installation procedure. The Department of Energy Office of Science (DOE SC) ASCR Facilities (NERSC,
OLCF and ALCF) are expected to build and deploy E4S on the pre-exascale systems, which helps to
ensure a consistent programming environment for users across facilities.

The HPC centers interested in deploying E4S on their facility system(s) should consider how it aligns
with their overall software update strategy, which takes into consideration planned system-wide upgrades
that may require a rebuild of the full software stack. Leveraging planned disruptive events can minimize
the overall system downtime for users. Deploying the entire E4S stack requires installing 500+ software
packages, including software dependencies, using a single compiler. Installation scales linearly as one
introduces additional compilers to build E4S. However, not all packages need to be installed and HPC
centers should take the time to determine which packages are beneficial to their user community. At
NERSC, we install a subset of the total E4S software stack system-wide, and of course users can install
and configure individual E4S software packages on their own.

In close collaboration with the ASCR facilities, the E4S team created a well-defined release strategy that
specifies a spack commit or branch along with a list of packages as part of the E4S release. The E4S team
is committed to quarterly releases with new versions of each package. A release will contain spack
configuration (spack.yaml) and reference commit, branch or tag of spack project to build E4S that will be
available on GitHub at https://github.com/E4S-Project/e4s. E4S adopted the Calendar Versioning scheme
(e.g. 22.02), with YY.MM format to indicate the year and month for E4S release. For more details on this
discussion, please see https://github.com/E4S-Project/e4s/issues/2.

E4S also provides architecture-specific container releases and GPU-based images in Docker and
Singularity image format. The E4S Download page describes how individual users may also download
and install E4S without any system-level privileges. These deployment options provide flexibility to
maximize user productivity. In general, users should consider the performance and portability trade-offs
between using containers or building E4S with Spack, targeting the specific architecture.

https://docs.nersc.gov/applications/e4s/
https://docs.nersc.gov/applications/e4s/
https://e4s-project.github.io/policies.html
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://github.com/E4S-Project/e4s
https://calver.org/
https://github.com/E4S-Project/e4s/issues/2
https://e4s-project.github.io/download.html

Software Deployment Process at NERSC LBNL-2001458

The Journey of Deploying Software

E4S is released quarterly, however facilities may choose to install it bi-annually or annually. Although
E4S is intended to be easily deployed on systems, in practice, deploying E4S system-wide can be
complicated, at least initially, involving a trial-and-error process of determining which components work
on the target system. Each successive deployment can leverage the previous recipes and should shorten
the time to deployment.

E4S spack.yaml

@—“*21 02 @S v21.02

m %gﬁfﬁ]%{glﬁik A rgnonglﬂaaome

— - v

r
' _'_I |
| !
¥ +
Generate Build Genera te Build Generate Build
nerat fs) " o ?) triggar- - .
© penenespoe. B (©) vigger-spack @ gensrato-spac. () (@) vioger-spack © oonersterspac. G © wigger-spack-.

FIGURE 1. E4S software deployment process for the Office of Science HPC facilities (NERSC, OLCF, ALCF)

Software Deployment Process at NERSC LBNL-2001458

In Figure 1, we outline the E4S software deployment process at the ASCR facilities. The release begins
with E4S providing a reference spack commit/branch along a reference spack.yaml that ASCR facilities
will acquire when building E4S on their system. The reference spack.yaml was built on the University of
Oregon HPC system and it’s worth noting that simple copy/paste won’t work, since site-specific
customizations are needed to take into account differences in system architecture, available compilers,
and operating system. Each facility will typically need to port the spack configuration for their system.

During the porting process, the facility will determine which packages to install, select their preferred
compilers and specify package preference to optimize for their system. In an ideal world, with no build
errors, building the E4S stack via spack install, which will build all packages from source, requires a few
hours of build time depending on the size of the chosen packages. In practice, the build time can take
substantially longer to address/debug any software build failures. We leverage Gitlab to automate the
entire software deployment process which allows us to analyze pipeline logs once the stack is built and
focus on any build failures. Without automation, one would have to run these steps manually on a
terminal.

Lesson Learned: Planning ahead based on site-specific resources and your community needs

Deploying a software stack as large as E4S customized for a site can typically take up to 6-8 weeks from
inception depending on the facility deployment process. At NERSC, the process is complete once
software is deployed as modules supplemented with user documentation. A significant portion of the
software deployment process is troubleshooting build errors that may arise from using different compilers
and MPI implementations, and working towards a full stack build with no errors. To build the entire E4S
stack, the number of software packages can be up to 500 including third party dependencies. At NERSC,
we are working on cutting down this deployment process to 2-3 weeks by automating the deployment
process and reducing the size of the E4S software stack we provide to end-users. With each version, we
expect to leverage existing software patches to reduce the total time.

Step 0 - Determine which system to deploy your software

The deployment process begins by determining which system(s) to install E4S and understanding the
architecture of the systems. At NERSC, we have two production systems, Cori and Perlmutter that are our
target systems for deploying E4S. For the first half of 2021, our focus was deploying E4S on Cori while
Perlmutter was getting ready for initial acceptance.

Cori has two primary system partitions, Intel Haswell and KNL, along with Haswell login nodes.
Currently, we build E4S on a Login node that is tuned to target the Haswell architecture which is
compatible with the KNL nodes, although it is not optimized for the architecture. Given the significant
time to build E4S for each node architecture, we decided to deploy E4S such that it will provide the
greatest impact to our users and help us understand the deployment process for building E4S in
preparation for Perlmutter.

https://github.com/E4S-Project/e4s/blob/master/environments/21.02/spack.yaml

Software Deployment Process at NERSC LBNL-2001458

Cori does not have any GPUs, therefore we were able to skip any E4S packages that require GPUs which
typically require CUDA as a software dependency. Shown below is an overview of the Cori system
architecture which can be found at https://docs.nersc.gov/systems/cori/.

System Specification

System Processor Clock Rate Physical Threads/Core Sockets Memory
Partition Cores Per Per Node Per Node
Node
Login Intel Xeon 2.3 GHz 32 2 2 515GB
Processor
E5-2698 v3
Haswell Intel Xeon 2.3GHz 32 2 2 128 GB
Processor
E5-2698 v3
KNL Intel Xeon 1.4 GHz 68 4 1 96 GB
Phi (DDR4), 16
Processor GB
7250 (MCDRAM)
Large AMD EPYC 3.0 GHz 32 2 2 27TB
Memory 7302

FIGURE 2. NERSC Cori system partitions

Step 1 - Acquire Spack Configuration

We acquire the spack configuration from E4S, such as the e4s/21.02 spack configuration which was
released in Feb 2021. This usually means copying the content of spack.yaml and storing this in a git
repository in NERSC gitlab server https://software.nersc.gov. The E4S team recommends using a
per-release tagged (e.g., e4s-22.02) branch of Spack that has been validated with the E4S Spack
configuration, and one that maintains release-specific patches as bugs are reported and fixed.

Some HPC facilities may choose to have a fork of spack in order to build E4S, which allows them to
update the spack source code to apply their preferred changes without relying on the upstream branch. If
one wants to maintain a fork, then one needs to have a deep understanding of the spack source code, or
use a tagged branch, when troubleshooting builds. We don't maintain a fork of spack because this further
complicates the deployment process to keep the fork in sync with upstream.

Lesson Learned: You cant win them all - not all packages we planned to install are actually installed
each release.

During the spack builds, we discover build errors for certain software packages that did not support our
preferred compilers and runtime libraries on the target platform. First we try to troubleshoot the build
error by analyzing the build log to resolve the issue and if we require further assistance we contact the
spack community via slack or directly reach out to the package maintainer. If we need more visibility into
the issue we would report this to the spack issue tracker: https:/github.com/spack/spack/issues. In the

future, we intend to report E4S build issues at the E4S issue tracking system at

https://docs.nersc.gov/systems/cori/
https://github.com/E4S-Project/e4s/blob/master/environments/21.02/spack.yaml
https://software.nersc.gov
https://github.com/spack/spack/issues

Software Deployment Process at NERSC LBNL-2001458

https://github.com/E4S-Project/e4s/issues, a one-stop site that will curate all E4S issues and coordinate

with individual package maintainers.

Someone from the spack community will apply a fix for our issue as a pull request to the spack develop
branch. However, we don’t change our version of spack provided by E4S to satisfy build errors, instead
we will defer these build errors in the next version of E4S. In the event of build failures, we try our best
by experimenting with different build options to address build error, if all else fails we skip the build and
document the issue. This process can be improved in the future as well.

Step 2 - Preparing Spack Configuration

Compiler Definition

The Cori system supports a wide range of compilers and versions, but for a large software stack
deployment, we need to be more selective and determine the compilers we want to use for building E4S.
On Cori, we select Intel and GCC as our preferred compilers. We have several versions of Intel and GCC
compilers installed that are accessible via modules. We select one version of the compilers (a stable and
widely used version) and define a compiler stanza in the spack configuration relevant for our system.

Shown below is our compiler stanza for the e4s/21.02 deployment. The compiler specs intel@19.1.2.254
and gec@10.1.0 are the compilers used to build E4S. We use Cray compiler wrappers ce¢, CC, ftn for C,
C++ and Fortran wrappers, respectively. The modules section informs what modules should be loaded
when using the chosen compiler. On Cori we have PrgEnv-intel and PrgEnv-gnu modules which are
Cray provided modules in order to use Intel and GCC compilers that use Cray PE wrappers.

compilers:

We plan to stick to one compiler version for gecc and intel

- CTE:”EEI@N.LZ_ZM compiler when building the E4S stack on Cori even though we
paths: may have several compilers installed on the system. In future

cer e deployments, we will incorporate Cray compilers (PrgEnv-cray)

cxx: CC
£77: ftn into the compiler suite when building E4S to broaden our
fc: ftn f h h 1

flags:) software support across the three compilers.

operating_system: cnl?
target: any

modules: Lessons Learned: The compiler selection will impact which
— PrgEnv-intel

— intel/19.1.2.254

packages can be built.

environment: {unset: [1}
extra_rpaths: [] ' . . . P
~ compiter: It's generally a good idea to use the gcc compiler since it is
spec: gec@le.1.0 widely supported by the open-source community and most
paths: . . .
e ec packages will be built successfully. You should target multiple
exx: CC compilers and versions when building a software stack, for
f77: ftn
fer ftn instance we noticed that a few packages fail to build with

operating_system: c¢cnl7
modules:

— PrgEnv-gnu

- gcc/18.1.0

FIGURE 3. Spack Compiler
Definition for E4S/21.02

gcc/10.1.0 but when we try a different gcc version they were
built successfully.

If your HPC system is running the Cray Programming
Environment, it is a good ideato use the Cray provided

https://github.com/E4S-Project/e4s/issues
https://github.com/spack/spack/tree/develop

Software Deployment Process at NERSC LBNL-2001458

compilers which are accessible via modules PrgEnv-gnu, PrgEnv-intel, PrgEnv-cray, and
PrgEnv-nvidia. If your system supports NVIDIA GPUs, then it would make sense to use the NVIDIA
HPC SDK (nvhpc) compiler.

Package Selection

Although E4S has 100+ top-level software packages, not all are used by the NERSC user community. To
avoid software bloat and reduce the amount of work in deployment, we need to determine which packages
get installed along with the preferred compiler. In addition, each software package has a set of build
options called variants that can be configured in the spack configuration (spack.yaml). The package
versions that are provided by E4S typically are the latest versions of the software for the given spack
release and we copy these versions provided in E4S release.

The variants are selected by inspecting each package via spack info to see applicable build options
suitable for our system which requires insight into the specific system software stack. On Cori, generally
we enable support for openmp and mpi when applicable. In some cases we take variants provided by E4S
and copy them in our spack configuration. For example, when installing tasmanian we build the package
as follows: tasmanian@7.3 +blas +fortran +mpi +python +xsdkflags. Each spack package comes with
several variants along with default values for each variant. Shown below are the available variants for the

tasmanian package.
Variants:

Name [Default] When Allowed values Description

amdgpu_target [none] - none, gfx9@8, AMD GPU architecture

gfx801, gfx1011,
gfx802, gfx90e,
gfx1e1e, gfx7e1,
gfx1012, gfx906,

gfx803
blas [off] - on, off add BLAS support to Tasmanian
build_type [Releasel] [, 1 Debug, Release CMake build type
cuda [off] [, 1 on, off add CUDA support to Tasmanian
cuda_arch [nonel - none, 13, 61, 37, CUDA architecture

32, 8@, 86, 75, 21,
12, 72, 1@, 79, 39,
11, 6@, 50, 52, 53,

35, 20, 62
fortran [off] - on, off add Fortran 90/95 interface to Tasmanian
ipo [off] o on, off CMake interprocedural optimization
magma [off] - on, off add UTK MAGMA support to Tasmanian
mpi [off] - on, off add MPI support to Tasmanian
openmp [on] S on, off add OpenMP support to Tasmanian
python [off] - on, off add Python binding for Tasmanian
rocm [off] [, 1 on, off add ROCm support to Tasmanian
xsdkflags [off] - on, off enable XSDK defaults for Tasmanian

FIGURE 4. List of variants for Tasmanian spack package

We define a definition name e4s_intel and e4s_gce to map spack packages that will be installed with gcc
and intel compiler. We skip some packages for various reasons, for instance we don’t want openmpi
installed in the E4S stack. Packages like parallel-netcdf and python extensions that start with py-* are
generally skipped. Some packages were skipped due to build failures.

10

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://spack.readthedocs.io/en/latest/basic_usage.html?#variants

Software Deployment Process at NERSC

definitions:
- intel_compiler: ['%intel@19.1.2.254']
- gcc_compiler: ['%gcc@le.1.0']
- eds_intel:
— adios2@2.7.1 +hdf5
- aml@o.1.0
— arborx@@.9-beta +openmp
- bolt@2.@
caliper@2.5.0 +fortran
faodel@l.1906.1
— flecsi@l.4 +cinch +caliper +graphviz +tutorial
flit@2.1.0
gasnet@2020.3.0 +udp
- ginkgo@1.3.0
— gotcha@l.0.3 +test
- hdf5@1.10.7
— hypre@2.20.0 +mixedint +superlu-dist +openmp
— libnrm@@.1.0
— libquo@l.3.1
— mercury@2.8.0 +udreg
- mfem@4.2.0 +examples +gnutls +gslib +lapack +libunwind +openmp +threadsafe +pumi +umpire
- ninja@l.10.2
- omega-h@9.32.5 ~trilinos
— openpmd-api@@.13.2
papi@6.0.0.1 +example +static_tools +powercap +infiniband
papyrus@l.o.1
- pdt@3.25.1 +pic
precice@2.2.@ +python
pumi@2.2.5 +fortran
- gqthreads@l.16 ~hwloc
- raja@®.13.@ +tests
- slepc@3.14.2
— strumpack@5.1.1 +shared

— sundials@5.7.0 +examples-cxx +hypre +klu +lapack
— superlu@5.2.1

— superlu-dist@6.4.0 +openmp

- swig@4.0.2-fortran

- tasmanian@7.3 +blas +fortran +mpi +python +xsdkflags
- tau@z.30.1 +mpi ~pdt

— turbine@l.2.3 +hdf5 +python

umap@2.1.0 +tests

umpire@4.1.2 +fortran +numa +openmp

— UpPCEXX@2020.10.0

zfp@@.5.5 +aligned +c +fortran +openmp +profile

LBNL-2001458

EE T T T T T T A A Y

- eds_gcc:

darshan-runtime@3.2.1 +slurm
darshan-util@3.2.1 +bzip2
dyninst@1e.2.1
legion@20.03.0
plasma@20.9.20
slate@2020.10.00 ~cuda

skipping package
— adios@1.13.1 +bzip2 +fortran +hdf5 +netcdf
— kokkos-kernels@3.2.0@ +mkl +openmp
kokkos@3.2.00 +compiler_warnings +deprecated_code +examples +hwloc +memkind +numactl +openmp +pic +tests
openmpi@4.0.5 +cxx +thread_multiple schedulers=slurm
parallel-netcdf@l.12.1 +burstbuffer
petsc@3.14.4 +X +fftw +jpeg +libpng +libyaml +memkind
py-jupyterhub@l.o.o

py-libensemble@®.7.1 +mpi +nlopt +petscdpy +scipy
py-petscdpy@3.14.1
trilinos@l3.0.1

FIGURE 5. List of spec definitions to specify which spack packages to install

11

Software Deployment Process at NERSC

LBNL-2001458

Lesson Learned: Building software is an art, and beauty is in the eye of the installer

It’s worth noting that variant selection is an art which sometimes comes down to the installers preference
and our selection may not be consistent with the developers or users preference. There is no universal
selection for each package because this selection process depends on the system architecture, the
compiler, and system software stack. The variant selection is an important aspect when building packages

as it impacts how a package gets installed and our selection may not be optimal for all user needs. In
certain situations, we reach out to developers for recommendations on the package variants. There are
situations where certain variants are mutually exclusive, for instance some package X that can either

support openmp or pthreads so doing package X +openmp +pthreads is not allowed.

Package Preference

Most scientific software requires MPI, BLAS, and ScaLAPACK as
common dependencies when installing software, but on Cori we
choose not to build these from source since they are not optimized for
the system and are generally provided as vendor software (cray-libsci,
intel-mkl, cray-mpich). This typically requires one to specify
preferences to ensure spack doesn’t use the default preference to build
In our spack

from source, and instead uses an alternative.
configuration, we leverage cray-libsci, intel-mkl and mpich as
preferences for mkl, mpi, blas and scalapack.

specs:
- matrix:

- [$eds_intel]

- [$intel_compiler]
- matrix:

- [$eds_gccl

- [$gcc_compiler]

FIGURE 6. Install specs based
on definition list

The spack documentation has a detailed summary on build customization which can be found at

https://spack.readthedocs.io/en/latest/build_settings.html

packages:
all:

compiler: [intel@19.1.2.254, gcc@l0.1.0]

target: [haswell]

providers:
mpi: [mpichl]
mkl: [cray-libsci, intel-mkl]
blas: [cray-libsci, intel-mkl]
scalapack: [cray-libsci, intel-mkl]
pkgconfig: [pkg-configl

FIGURE 7. Package Preference for
compiler and spack providers

cray-libsci:
buildable: false
externals:
- spec: cray-1libsci@19.06.1%intel
modules:
- cray-libsci/19.06.1

FIGURE 8. Spack external definition
for cray-libsci

Certain packages like cray-libsci, intel-mkl, mpich are
provided on our system which typically requires
setting a spack external to ensure spack will leverage
our preferred libraries provided by Cray. In the
example below we define cray-libsci as an external
module which maps to modulefile cray-libsci/19.06.1
which is available on Cori.

Lessons Learned: Grab a cup of coffee and take time
to read the dependency tree

During the package preference determination, we
analyze output of spack concretize or run spack spec
to see the dependency tree to determine if output seems
reasonable. In this process, we analyze each package
variant, the dependency tree such as what MPI
wrapper, blas provider is used. This process is time
consuming especially when one is trying to analyze
output of the entire software stack, which can be
hundreds of packages.

12

http://www.netlib.org/blas/
http://www.netlib.org/scalapack/
https://spack.readthedocs.io/en/latest/build_settings.html
https://spack.readthedocs.io/en/latest/build_settings.html#external-packages

Software Deployment Process at NERSC LBNL-2001458

Figure 9 shows a concretized spec of hdf5, and its dependencies, we can see hdf5 +mpi is set in the
concretized output which means build HDFS with MPI support and this leads to the cray-mpich
dependency which is an external package.

==> Concretized hdf5%gcc€9.3.0
- wsfw2r3 hdf5€1.12.13gcc@9.3.0-cxx+fortran+hl-ipo-java+mpi+shared-szip-threadsafe+tools api=v18 build_type=RelWithDebInfo arch=cray-slesl5-zen2

- ttysnbt “cmake®3.22.24gcce9.3.0-doc+ncurses ~openssl+ownlibs-qt build type-Release arch=cray-sleslS-zen2
- yylissy “ncurses€6.13gcce9. 3. 0-symlinks+termlib abi=none arch=cray-sleslS-zen2
- mvyqe7a “cray-mpich@8.1.128gcc€9.3.0 arch=cray-slesls-zen2
- nacidse “nunact142.0. 1d1gects. 3.0
3eaafab92a66d££d383addTe00ca94, 626c8a8bE 166526008£4c93ebbd53564Tceb 14198 L ££376 740518591 ecBdaaf18e8¢ 364de1£6b2296 y-sles15-zen2
- iy3b “au oconuz 69%gcce9. 3.0
patcneu-ascuazslslsusa19766tszdastculcasoasaoasonfcfcsbezat:zssoazez 7793209533013dc0£8120871 1cébsd3 79 71dbd2£4£8d7€2a02321926346161bt3ee arch=cray-slesl5-zen2
- v2iyepw n4€1.4.18%gcc@9. 3. 0+sigsegy patches=3877ab548£88597ab2327a2230ee048d2d07acel 062e£e8] £c92e9 1b7£392d00, (:Qbél65Iaanlaﬁdscd’rﬂcccB7c7c96366|:290bc8d2c1§9‘09828d193h85]ca arch=cray-sleslS-zen2
- syyh3ef “per1€5.34.0%gcces. 3. y-sles15-zen2
- cypjesr “berkeley-dbg18.1.408gccl9.3. 1 31 1 1 1des22 les15-zen2
- anngéuj “bzip2€1.0.6%gcchy. 3. 0-debug-pic+shared arch=cray-slesls-zen2
- vizizig “gdbme1.19%gccd9.3.0 arch=cray-slesls-zen2
- wogdob2 “readlineé?.0%gccl9.3.0 arch=cray-slesl5-zen2
- fugwibu 21ibe1.2.11%gcck9. 3. O+optimize+pictshared arch=cray-slesiS-zen2
- gj22dsa “autonaked1.16.5%gcc@9.3.0 arch=cray-slesl5-zen2
- ydsma7v “1ibtool@2.4.6%gcce9.3.0 archecray-slesl5-zen2
- cmiswrf “pkgcon£@l.8.089ccE9.3.0 arch=cray-slesis-zen2

FIGURE 9. Concretized output of hdfS

Spack External Recommendation

Spack provides ability to reuse software pre-installed on system via spack externals to avoid reinstalling software that will never be used. You should consult output of spack
concretize —f if you are in a spack environment or spack spec <specs for one of packages to see list of dependencies. We have compiled a list of spack packages that should be
external when building spack stacks on NERSC systems. You may run spack external find <spec> to update your spack.yaml however we recommend you always confirm your
spack configuration with whats provided by system.

Spack _—
Packaga Description
bash This is GNU Bourne Again Shell known as bash shell which is typically found in meost linux systems. You can check supported shells by cat fetc/shells , you
as|
can check version of bash by running fusr/bin/bash ——versioen . This package should not be installed as spack package
bzin2 fusr/bin/bzip2 should be available on system. You can run bzip2 —version to check version. You can check if rpm is available by running rpm -g ——
zp whatprovides ${which bzip2)
cpio The GNU cpic is program to manage archives of files, this program is available at fusr/bin/cpio . This package should not be installed via spack
cray-libsci is provided by Cray Programming Environment. You should should see available module by running medule avail cray-libsci . The cray-libsci
r:y__ package is typically installed in Jopt/cray/pe/libsci/ . For instance a modulefile cray-1ibsei/21.88.1.2 should be external for package cray-
ibsci
libsci@21.88.1.2.
cray- cray-mpich is MP| wrapper based on mpich provided by Cray. You can find cray-mpich modulefile, this is typically installed at fept/cray/pe/mpich/ on cray
mpich machines. You should set this as external for packages that depend on MPIL.

cuda is typically provided on NERSC but not as a system library (fusr/bin/nvee) but usually through modules. You can find this typically in modules such as
module av cuda nvhcp nvidia cudatoolkit CUDA. You should run nvee —-version to check version. The nvhpc compiler provides typically providers three
versions of cuda for instance cuda packages by nvhpc@21.9 are located fopt/nvidia/hpc_sdk/Linux_xB6_64/21.9/cuda on Perlmutter. If you want to seta

cuda cuda@ld.2 external then the path would be Jfopt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/18.2/ . Sometimes you may not want cuda as external especially
when one needs to install from source or you have incompatible between compiler and cuda version. For reference please see nvhpc release notes. There is a
more detailed breakdown of cuda compatibility requirement found at https:/gist.github.com/ax31/2489132. Please check the cuda driver via nvidia-smi for
driver compatiblity.

This package is install on Linux OS which provides common utilities like cat, 1s, echo and many other utilities. You can check if coreutils is installed and its

coreutils
version by running rpm -qi coreutils
diffutil This is the GNU diffutils package which providers fusr/bin/diff . This package should be external and will most likely get picked up when building a large
s software stack
findutils The findutils package providers find and xargs command which is provided by 05. This is typically located in fusr/bin/find and fusr/bin/xargs . Please
check the version of the utility or check the rpm version by running rpm -gi findutils .
t git is typically provided on NERSC systems that can be found at /usr/bin/git . This should be an external, we don't need spack to install multiple versions of git
9 that user will never need.
libfabric The libfabric package is provided by Cray which can be searched by running module av libfabric . This is typically installed at fopt/ecray/libfabric/ .

FIGURE 10. Spack External Documentation with breakdown by spack package and description

In this process, we learned spack tries to do some interesting things like installing openssh, openssl, basic
linux utilities or even a scheduler like Slurm based on concretization preferences, which are redundant or

13

Software Deployment Process at NERSC LBNL-2001458

unoptimized for Cori. These types of selections need intimate knowledge of the system stack along with
analyzing output of spack concretize to see what gets installed. After several E4S software stack builds,
we documented a list of externals shown in Figure 10 that should be set which is applicable for a NERSC
system. Some of these externals may be applicable for your system.

Step 3 - Module Generation

Most HPC systems nowadays leverage modules to allow the user to easily interface with the software
stack and provide a consistent programming environment. A modulefile is a file that configures a
software package such as PATH and LD LIBRARY_ PATH to configure the user environment in order to
use the software with ease. Currently, there are two module systems in use, Lmod and
environment-modules which provide a module implementation that is widely used in the HPC

community. In environment-modules modulefiles are written Tool Command Language (TCL), while
Lmod supports both TCL and Lua modules with preference for Lua modules.

Spack provides a mechanism to generate modules in TCL and Lua format based on the module system.
On Cori we use environment-modules which support TCL based modules. During the module generation
process, we inform spack on the format of the modulefile. We avoid hash in modules and prefer having
modules in the format {name}/{version}-{compiler.name}-{compiler.version} which avoids module
conflicts when a package like hdf5@]1.10.7 is installed with both compilers. Shown below is the spack
configuration for modules along with output of the spack generated modules. It’s worth noting we limit

modules: our module generation to
enable: .
. root specs and avoid
cl
tels generating modules for

blacklist_implicits: true

hash_length: @
naming_scheme: '{name}/{version}-{compiler.name}-{compiler.version}'
all:

conflict:

- "{name}"

environment:

set:
‘{name}_ROOT': '{prefix}'

darshan-runtime:

conflict:

- 'darshan’
darshan-util:

conflict:

- 'darshan’
projections:

all: '{name}/{version}-{compiler.name}-{compiler.version}"'

/global/common/software/spackecp/e4s-21.02/modules/cray-cnl7-haswell/

dependencies by setting
blacklist_implicits: true
which avoids explosion
of modules and higher
likelihood of module
conflicts. The
hash_length configures
the number of hash
characters to append to
each modulefile. For
every modulefile we set

adios2/2.7.1-intel-19.1.2.254 legion/20.03.0-gcc-10.1.0 raja/e.13.0-intel-19.1.2.254

a conflict on the same

am1/.1.0-intel-19.1.2.254 1ibnrm/@.1.6-intel-19.1.2.254 s1ate/2020.10.00-gcc-10.1.0
| arborx/@.9-beta-intel-19.1.2.264 1libquo/1.3.1-intel-19.1.2.254 slepc/3.14.2-intel-19.1.2.254

bolt/2.0-intel-19.1.2.254 mercury/2.0.0-intel-19.1.2.254 strumpack/5.1.1-intel-19.1.2.254 1 dd
caliper/2.5.0-intel-19.1.2.254 mfem/4.2.0-intel-19.1.2.254 sundials/5.7.0-intel-19.1.2.254 name which adds a
darshan-runtime/3.2.1-gcc-10.1.8 ninja/1.10.2-intel-19.1.2.254 superlu/s.2.1-intel-19.1.2.254

darshan-util/3.2.1-gcc-16.1.0 omega-h/9.32.5-intel1-19.1.2.254 superlu-dist/6.4.6-intel-19.1.2.254 .
dyminat/16.21-goo-30.1.0 openpmapa/b.13 2ointeloi9.a.7.256 Wio/b.0 -2 fortran-intel 19.1.2.254 keyword conflict to each
faodel/1.1906.1-intel-19.1.2.254 papi/6.0.0.1-intel-19.1.2.254 tasmanian/7.3-inte1-19.1.2.254

flecsi/1.4-intel-19.1.2.254 papyrus/1.0.1-intel-19.1.2.254 tau/2.30.1-intel-19.1.2.254 d

{£1it/2.1.0-intel-19.1.2.254 pdt/3.25.1-intel-19.1.2.254 turbine/1.2.3-intel-19.1.2.254 mo uleﬁle SuCh that one
gasnet/2020.3.0-intel-19.1.2.254 plasma/20.9.20-gcc-10.1.0 umap/2.1.0-intel-19.1.2.254

ginkgo/1.3.6-intel-19.1.2.254 precice/2.2.0-intel-19.1.2.254 umpire/4.1.2-intel-19.1.2.254) :
gotcha/1.0.3-intel-19.1.2.254 pumi/2.2.5-intel-19.1.2.254 Upcxx/2020.10.0-intel-19.1.2.254 can't load two 1nstances
hypre/2.20.0-intel-19.1.2.254 qthreads/1.16-intel-19.1.2.254 2£p/0.5.5-intel-19.1.2.254

at same time.
FIGURE 11. Spack configuration for module generation and

output of generated modules

14

https://software.nersc.gov/NERSC/spack-infrastructure/-/blob/main/spack-externals.md
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/
https://www.tcl.tk/
https://www.lua.org/

Software Deployment Process at NERSC LBNL-2001458

We provide an overarching modulefile to load the specific e4s stack version that corresponds to each
release of E4S. For instance on Cori we have three versions of e4s as shown below. The modulefile will
set up a spack instance used for deployment and update MODULEPATH with spack generated modules.

s1ddig90@coril2> module av e4s

/global/common/software/nersc/cle7/extra_modulefiles -
€4s/20.10 e4s/21.02 e4s/21.05

FIGURE 12. E4S modulefile used for accessing E4S stack

config: During production deployment we select the
install_tree: . eqq o
root: /global/common/software/spackecp/e4s-21.02/software 10C3t10n Where SpaCk Wlll IHStaH the SOftware and
module_roots: modules which are defined using install_tree and

tcl: /global/common/software/spackecp/e4s-21.02/modules/ A
module_root. We install software on a shared file

FIGURE 13. Spack configuration for install root system that is accessible on both login and

and module root C .
compute nodes, in this case the root directory

/global/common/software/spackecp is available for us to perform E4S deployment. We organize each
eds deployments by version to support multiple releases.

Lessons Learned: What's in a name? Just keep it short and sweet.

We like to keep module names as short as possible, this means we don’t include hash names during
module generation which is the default behavior when spack generates modules. In our first deployment
of E4S, we included hash names as shown below. This can be inconvenient for users as they have a very
long modulename that they need to load such as module load adios2/2.6.0-intel-19.1.2.254-n4dtk4qs
to load the adios2 package.

/global/common/software/spackecp/e4s—-20.10/modules/cray-cnl7-haswell/

adiak/0.1.1-intel-19.1.2.254-mthjgtd2 kvtree/1.0.2-intel-19.1.2.254-0b5jw5ci pumi/2.2.2-intel-19.1.2.254~-u7ra5bw2
adios2/2.6.0-intel-19.1.2.254-n4dtké4gs 1ibbsd/0.10.0-intel-19.1.2.254-whtvpvc2 py-cython/0.29.21-intel-19.1.2.254-yjdamuq?
adlbx/0.9.2-intel-19.1.2.254—x1bmanu5 libfabric/1.11.0-intel-19.1.2.254-rilhzysw py-libensemble/@.7.0-intel-19.1.2.254-bnébbrft

Since the e4s/21.02 deployment and all future releases we don’t have any hash in modulefile naming.
In the module generation step, we run spack module tcl refresh to build the TCL modules. During
this process we can run into module conflicts which require unique module names. For example,
warpx/21.05 package has three modulefiles for the same version which require unique module
names.

siddig90@cori@7> module av warpx

/global/common/software/spackecp/e4s-21.05/modules/cray-cnl7-haswell/
warpx/21.05-dims2 warpx/21.05-dims3 warpx/21.05-dimsRZ

This is because we have three instances of the warpx package that was installed with variants
dims=2, dims=3 and dims=rz so we have three unique module names to support all of the instances.
Shown below are the warpx packages installed from our e4s/21.05 deployment.

15

Software Deployment Process at NERSC LBNL-2001458

siddiq9e@cori@7> spack find —-format "{name}@{version} %{compiler.name}@{compiler.version}: {variants}" warpx

warpx@21.05 %intel@19.1.3.304: +app~ascent~eb~ipo+lib+mpi+mpithreadmultiple+openpmd+psatd+qed~gedtablegen+shared+tprof build_type=RelWithDebInfo compute=omp dims=2 precision=double
warpx@: 5 %intel@19.1.3.304: +app~ascent~eb~ipo+lib+mpi+mpithreadmultiple+openpmd+psatd+qed~gedtablegen+shared+tprof build_type=RelWithDebInfo compute=omp dims=3 precision=double
warpx@21.05 %intel@19.1.3.304: +app~ascent~eb~ipo+lib+mpi+mpithreadmultiple+openpmd+psatd+qed~qedtablegen+shared+tprof build_type=RelWithDebInfo compute=omp dims=rz precision=double

If you are deploying multiple software stacks like E4S, it’s a good idea to keep your software stack
behind a meta-module like e4s/21.02 as we did for our E4S deployment. With this approach, we are
able to support multiple E4S deployments at same time which has the following benefits

Minimize output of module avail at startup modules, one has to load the e4s module
Site administrators can easily deprecate stack by removing modulefile and also adding notice
in modulefile

e Avoid Name/Version conflicts in modulefile across different directories in MODULEPATH
(i.e two modulefiles called gee/9.3.0)

e Users will be forced to run module load e4s/<version> to access stack followed by loading
some package (i.c module load petsc) compared to just module load petsc can cause scripts
to break if site-administrators update the version or remove modulefile.

Step 4 - Deployment Script

The deployment process for e4s/21.02 was initiated through GitLab CI by defining a gitlab job in
«gitlab-ci.vml. Shown in Figure 14 is the deploy job which does the production deployment. This process
will clone spack into the production path and install specs from buildcache which we did in advance and
generate the modulefiles. The deploy job is initiated once the entire stack can be rebuilt from source and
pushed to buildcache. The gitlab configuration for e4s/21.02 can be found at

https://github.com/spack/spack-configs/blob/main/NERSC/cori/e4s-21.02/.gitlab-ci.yml

deploy:
stage: deploy
tags: [cori]
only:
variables:
~ $DEPLOY_E4S == "True"
script:
- mkdir -p /global/common/software/spackecp/ed4s-21.02
- cd /global/common/software/spackecp/ed4s-21.02
- rm -rf spack
- git clone $SPACK_REPOSITORY -b eds-21.02
- cd spack
Need this PR: https://github.com/spack/spack/pull/22508
- git cherry-pick f67d477
- source share/spack/setup-env.sh
copy all site configuration for spack instance
- cp $CI_PROJECT_DIR/site_config/* $SPACK_ROOT/etc/spack
the other permission is set to @ before copying. Adding 4 will ensure user can read the file
- chmod 664 $SPACK_ROOT/etc/spack/#.yaml
export SPACK_GNUPGHOME=$HOME/.gnupg
spack buildcache update-index -d /global/common/software/spackecp/mirrors/cori-eds=21.082
find /global/common/software/spackecp/mirrors/cori-ed4s-21.082 -name *.spack -exec chmod o+r {} \;
chmed o+r /global/common/software/spackecp/mirrors/cori-eds-21.02/build_cache/index.json
spack buildcache 1list -L
spack env create eds $CI_PROJECT_DIR/prod/spack.yaml
spack env activate eds
spack install --cache-only
spack module tcl refresh —-delete-tree -y
spack find

L3

3

#*

FIGURE 14. Gitlab Deployment Job for e4s/21.02

16

https://docs.gitlab.com/ee/ci/yaml/
https://github.com/spack/spack-configs/blob/main/NERSC/cori/e4s-21.02/.gitlab-ci.yml

Software Deployment Process at NERSC LBNL-2001458

Step 5 - User Documentation

The last step for deployment is writing user documentation for our E4S stack on NERSC systems. Our
home page for E4S is https://docs.nersc.gov/applications/e4s/ where we have a separate documentation
page per E4S release. The user documentation goes through peer review and further testing to ensure
documentation is accurate. Shown below is a preview of our E4S documentation at NERSC, we have a
subpage with documentation for each E4S stack.

NeRsc NERSC Documentation

NERSC Documentation
Home
Getting Started
Tutorials
Accounts
Iris
Systems
Storage Systems
Connecting
Environment
Policies
Development
Developer Toals
Running Jobs
Applications
AMBER
Ahbinit
BerkeleyGW
CPZK
CPMD
E4S
22.02
2.1
21.05
E45 Spack Develop
Spack-Gitlab-Pipeline
GAMESS
Gromacs
LAMMPS
Mathematica
MATLAB
MOLPRO
NAMD
MNCAR Graphics
NWChem
SIESTA

ParaView

Extreme-scale Scientific Software Stack (E4S) 7

The Extreme-scale Scientific Software Stack (E4S) is a curated software stack from the Spack
ecosystem that is continuously built and tested on several pre-exascale systems. E4S is

composed of many open-source projects, including xSDK, dev-tools, math-libraries, compilers,
and more. For a complete product list see E4AS Product Dictionary.

E4Sis shipped as a container (Docker, Singularity, Shifter, CharlieCloud), a buildcache, or a Spack
manifest (spack .yaml). Currently, we focus on building E4S from source using a spack.yaml
file provided by the E4S team from https:/github.com/E4S-Project/eds.

Note

We install as many packages from E45 provided in spack.yaml as possible. Some packages were intentionally
skipped such as specs tied to develop branches or packages built for GPUs. Some additional packages couldn't be
installed or had concretization issues with our base compiler.

E4S Support Timeline

This table outlines the support lifetime for each E4S version. The Release Date is marked on the
day of E4S release when user documentation was live. Once E4S version has reached end of
support we will remove E4S and corresponding modulefiles and user documentation. As we
approach the End of Support for a particular release, we will communicate via email and
modulefile will include a banner when loading the module.

We recommend users to port their application and any scripts to the newer release.

System Version Release Date End of Support

Cori 20.10 Jan 151 2021 Mar 160 2022

Cori 21.02 Jun 111 2021 Mar 16'" 2022

Cori 21.05 Aug 23th 2021 Oct 31t 2022
Perlmutter 211 Jan 22™ 2022 Mar 31" 2023

Cori 22.02 Mar 16t 2022 End of Life Cori (2023)

FIGURE 15. NERSC E4S Documentation

Table of contents
E4S Support Timeline
Point of Contact
References

Past Events

Recently, we outlined a support timeline for each E4S stack in order to deprecate older stacks in
preference of newer versions. This process will entail removal of modulefile, user documentation
and uninstall the software stack from the filesystem. Shown below is a preview of our E4S

Support Timeline.

17

https://docs.nersc.gov/applications/e4s/
https://docs.nersc.gov/applications/e4s/#e4s-support-timeline
https://docs.nersc.gov/applications/e4s/#e4s-support-timeline

Software Deployment Process at NERSC

E4S Support Timeline

LBNL-2001458

This table outlines the support lifetime for each E45S version. The Release Date is marked on the

day of E45 release when user documentation was live. Once E4S version has reached end of

support we will remove E4S and corresponding modulefiles and user documentation. As we

approach the End of Support for a particular release, we will communicate via email and

modulefile will include a banner when loading the module.

We recommend users to port their application and any scripts to the newer release.

System Version
Cari 20.10
Cori 21.02
Cori 21.05
Perlmutter 211
Cori 22.02

Release Date

Jan 15t 2021

Jun 111 2021

Aug 23th 2021

Jan 22™ 2022

Mar 16t 2022

End of Support

Mar 16t 2022

Mar 16t 2022

Oct 315t 2022

Mar 315 2023

End of Life Cori (2023)

FIGURE 16. E4S support timeline for each release on NERSC systems

Step 6- Give back to the community

We contribute back our spack configuration to https://github.com/spack/spack-configs in addition we
update the E4S Facility Dashboard as shown below. We want other HPC centers to contribute to this page

(https://e4s.readthedocs.io/en/latest/facility_e4s.html) as they deploy E4S on their system so we can see
where E4S has been deployed. The HPC community can benefit by seeing how other centers have

deployed E4S by sharing their spack configuration.

18

https://github.com/spack/spack-configs
https://e4s.readthedocs.io/en/latest/facility_e4s.html
https://e4s.readthedocs.io/en/latest/facility_e4s.html

Software Deployment Process at NERSC LBNL-2001458

E4S Facility Dashboard

Systemn Institution E4S Version Total Installed Specs Compiler

Perimutter NERSC 21.11 94 gcc@d.3.8 , nvhpc@2l.9

Cori NERSC 20.10 135 intel@19.1.2.254

Cori NERSC 21.02 149 intel@19.1.2.254 , gcc@le.l.@

Cori NERSC 21.05 157 intelg19.1.3.3084

Cori NERSC 2202 385 gco@ll.?.® |, intel@ld.1.2.254

Spock ORNL 21.05 200 gco@El®.2.0 , goo@le.3.8 , cce@l

Spock ORNL 21.08 1083 gcc@ld.2.8 , goo@ld.3.0 , cce@l

Summit ORNL 21.05 632 A

Summit ORNL 21.08 2025 ;f‘fi;{:};l’z 9520, -0 » | 9cc. 2

Crusher ORNL 21.08 1426 pecar. 5.9 | 9cces. 3.0 b| 9ccais..
rocmd. 5.0

Arcticus ANL 21.05 334 groEd. 3.8

Arcticus ANL 21.08 392 gccEd.3.8 , oneapi@ze?l.4.@

Arcticus ANL 21.11 426 gco@d.3.8 , oneapi@2821.4.0@

FIGURE 17. Summary of E4S deployments at DOE facilities available in E4S Documentation

We will communicate our E4S deployment release with our NERSC and ECP user-base through NERSC
weekly emails and slack channel. This way we can coordinate efforts across the various ASCR facilities
and share best practices.

19

Software Deployment Process at NERSC LBNL-2001458

Recent Developments

E4S development and deployment at the ASCR facilities moves quickly. Here are details on some of the
latest developments.

Building E4S on Perlmutter

We will discuss some of our experiences building E4S on Perlmutter. In Oct 2021 we started the process
of building the most recent version of e4s at that time. We picked e4s/21.11 as the preferred version which
was released in Nov 2021. During this period we encountered several changes to the Cray Programming
Environment (CPE) over the span of 3 months with CPE 21.08, 21.10, 21.11 and 21.12. These changes
impact our compiler and package preference in our spack configuration. We went through 3 rebuilds of
Perlmutter E4S/21.11 over the span of three months with one rebuild being performed in April 2022.

Our compiler choice for Perlmutter is gcc and nvhpc compiler and cray-mpich as our preferred MPI
provider. One of the pain points was having to update the package external for cray packages such as
cray-mpich. For instance, we noticed that CPE 21.10 had cray-mpich version 8.1.10 but CPE 21.12
provided version 8.1.12. Furthermore, we also had cuda modules which were changed to cudatoolkit
which were provided by NERSC staff since we didn’t have a standalone cuda module.

cray-mpich: cray-mpich:

buildable: false buildable: false

externals: externals:

- spec: cray-mpich@8.1.1@ %nvhpc@2l.7 - spec: cray-mpich@8.1.12 %gcc@d.3.0
prefix: /opt/cray/pe/mpich/8.1.10/0fi/gnu/9.1 prefix: /opt/cray/pe/mpich/8.1.12/0fi/gnu/9.1
modules: modules:
- cray-mpich/8.1.1@ - cray-mpich/8.1.12
- cuda/11.3.@ - cudatoolkit/21.9_11.4

- spec: cray-mpich@8.1.18 %gcc@d.3.0 - spec: cray-mpich@8.1.12 %nvhpc@21.9
prefix: fopt/cray/pe/mpich/8.1.10/0fi/gnu/9.1 prefix: /opt/cray/pe/mpich/8.1.12/0fi/nvidia/20.7
modules: modules:
- cray-mpich/8.1.180 - cray-mpich/8.1.12
- cuda/11.3.@ - cudatoolkit/21.9 11.4

cuda: ! cuda: B

buildable: false] buildable: false

version: [11.3.0]) version: [11.4.0]

externals: | externals:

- spec: cuda@ll.3.0 . - spec: cuda@ll.4.0
prefix: /global/common/software/nersc/cosl.3/cuda/11.3.0 prefix: /opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4
modules: modules:
- cuda/11.3.0 - cudatoolkit/21.9_11.4

FIGURE 18. Package preference for cray-mpich and cuda on Perlmutter for CPE 21.10 and 21.12
Cray provides an NVHPC compiler provided by NVIDIA which typically comes with 3 versions of cuda

in the same distribution. We ended up writing modulefiles for each cuda version mapping to the NVHPC
compiler. For instance cudatoolkit/21.3_10.2 refers to cuda version 10.2 from the NVHPC 21.3 compiler.

20

Software Deployment Process at NERSC LBNL-2001458

siddig9@@login31> ml -t av cudatoolkit
/opt/cray/pe/lmod/modulefiles/core:
cudatoolkit/21.3_18.2
cudatoolkit/21.3_11.0
cudatoolkit/21.3_11.
cudatoolkit/21.9_16.
cudatoolkit/21.9_11.
cudatoolkit/21.9_11.
/opt/modulefiles:
cudatoolkit/21.3_18.
cudatoolkit/21.3_11.
cudatoolkit/21.3_11.
cudatoolkit/21.9_18.
cudatoolkit/21.9_11.
cudatoolkit/21.9_11.

E o~ L

F®NNOSN

Most recently, we removed older versions of cudatoolkit modulefile and changed the modulefile name
format to exclude nvhpc version. These changes impacted our spack build and any system changes like
changes to modulefile need to be synced with our spack configuration. In addition we recently added
NVHPC 21.11 with intent of removing 21.9 in near future, so we are now planning to rebuild with the
latest compiler. Our initial deployment used gcc@9.3.0 compiler and nvhpc@21.9 however, gec/9.3.0
modulefile was also removed, so now we are planning to use gcc/11.2.0. Shown below is our compiler
definition on Perlmutter, with the left image showing our first iteration and image on right showing our
updated compilers which we plan to use for our upcoming redeployment.

- compiler: — compiler:
spec: gcc@d.3.o spec: nvhpc@21l.11
paths:

paths:
cc: Jopt/cray/pe/craype/default/bin/cc
cxx: /opt/cray/pe/craype/default/bin/CC
f77: /opt/cray/pe/craype/default/bin/ftn

cc: /opt/cray/pe/craype/default/bin/cc
cxx: /opt/cray/pe/craype/default/bin/CC
£77: /opt/cray/pe/craype/default/bin/ftn
fc: /Jopt/cray/pe/craype/default/bin/ftn

flags: {} fc: /opt/cray/pe/craype/default/bin/ftn
operating_system: slesi15 flags: {}

target: any operating_system: sles15

modules: target: any

- PrgEnv-gnu modules:

- gcc/9.3.0

— PrgEnv-nvidia

T pypedemmitan - nvidia/21.11
#environment: - craype-x86-milan
append_path: — libfabric
LIBRARY_PATH: /opt/nvidia/hpc_sdk/Linux_x86_64/21.9/math_libs/1ib64 — compiler:
LD_LIBRARY_PATH: /opt/nvidia/hpc_sdk/Linux_x86_64/21.9/math_libs/1ib64 spec: gcc@ll.2.@
CPATH: fopt/nvidia/hpc_sdk/Linux_x86_64/21.9/math_libs/include paths:
- compiler: cc: cc

SD:E: nvhpc@21.9 oxx: CC
paths:

cc: fopt/cray/pe/craype/default/bin/cc f77: ftn

cxx: /opt/cray/pe/craype/default/bin/CC fer ftn

f77: /opt/cray/pe/craype/default/bin/ftn flags: {}

fc: /opt/cray/pe/craype/default/bin/ftn operating_system: sles15
flags: {} target: any
operating_system: slesl5 modules:
target: any —~ PrgEnv-gnu
modules: L - gce/11.2.0
— PrgEnv-nvidia .
~ nvidia/21.9 - craype-x86-milan
- craype-x86-milan - libfabric
_ libfabric extra_rpaths: []

FIGURE 19. Compiler definition of gcc and nvhpc compiler on Perlmutter
On Jan 22, 2022 we released E4S/21.11 on Perlmutter which was our first deployment of E4S that was

based on CPE 21.12. The initial release consisted of 94 packages, we provided TCL and Lua based
modules generated by spack. We created a user-facing modulefile e4s/21.11-tcl and e4s/21.11-lmod that

21

Software Deployment Process at NERSC LBNL-2001458

can be used to access the same software stack but the main difference being the way modulefiles were
presented. For more details on this stack see https://docs.nersc.gov/applications/e4s/perlmutter/21.11/.

In parallel to our standard deployment, we provide a containerized deployment of E4S/21.11 on
Perlmutter which is a container image provided by the E4S team as part of their release process. The base
image is an Ubuntu container using gcc@9.3.0 compiler, we provide this as an alternative to our software
stack.

Lessons Learned: The first time on any system can be challenging - have patience

Perlmutter has gone through several changes in the past several months including upgrades to new CPE,
we anticipate a few rebuilds will be required until Perlmutter is stable which is expected when bringing a
new system into production.

The E4S/21.11 is based on spack version 0.17 which had some significant changes including the clingo
concretizer being the default going forward. This affected spack since it now required additional
dependency to be installed during the bootstrapping process. We first encountered that spack was unable
to bootstrap clingo on Perlmutter so we reported the issue https://github.com/spack/spack/issues/28315 to
spack project to get this resolved. Our current workaround was to install clingo via pip in order to satisfy
the dependency.

There was a bug in spack in how system detection worked https://github.com/spack/spack/issues/25914

which impacted how we do builds, we were unable to use spack command on Perlmutter which was a
serious issue and this issue was addressed promptly by spack team.

Automation

Recently we started a project to centralize our spack configuration and automate our spack deployments.
We leverage Gitlab to automate our deployments using scheduled pipelines to perform full source builds
of all of our spack stacks. This project is called spack-infrastructure and located at

https://software.nersc.gov/NERSC/spack-infrastructure.

We have set up a public facing repo on Github at https://github.com/NERSC/spack-infrastructure which is
a mirror of the original repo. In addition, we have user documentation available at

https://nersc-spack-infrastructure.readthedocs.io/en/latest/

22

https://docs.nersc.gov/applications/e4s/perlmutter/21.11/
https://github.com/spack/spack/issues/28315
https://github.com/spack/spack/issues/25914
https://software.nersc.gov/NERSC/spack-infrastructure
https://github.com/NERSC/spack-infrastructure
https://nersc-spack-infrastructure.readthedocs.io/en/latest/

Software Deployment Process at NERSC LBNL-2001458

@ NERSC > spack-infrastructure

S spack-infrastructure © A~ % unstar| 3| ¥ Fork |1
Project ID: 212

-0-151 Commits V 2 Branches ¢’ 0 Tags [) 625KBFiles B 45.5 MB Storage

Spack infrastructure at NERSC including spack recipes for E4S deployment

main spack-infrastructure /| | + v History Find file Web IDE & v
g remove perimutter system layer pipeline @ 197fd442 | [y
Shahzeb Siddiqui authored 5 hours ago

B README | [CONTRIBUTING R CI/CD configuration | B Add LICENSE | | @ Add CHANGELOG | | B Add Kubernetes cluster |

Name Last commit Last update
& spack-configs remove perimutter system layer pipeline 5 hours ago
< .gitignore update README and add CONTRIBUTING ... 2 weeks ago
& gitlab-ciyml remove perimutter system layer pipeline 5 hours ago
++ CONTRIBUTING.md update README and add CONTRIBUTING ... 2 weeks ago
++ MAINTAINERS.md Add more maintainers 6 days ago
++ README.md remove perlmutter system layer pipeline 5 hours ago
[setup-env.sh adding muller Cl job for e4s/21.11 with a sp... 4 weeks ago
~+ spack-externals.md Update spack-externals.md 1 month ago

FIGURE 20. NERSC Spack Infrastructure Project
We have configured a few scheduled pipelines that perform full source builds of our E4S for various

systems, these scheduled pipelines will mimic our production deployment but run in a unique directory
per CI job.

All 6 Active 5 Inactive 1 New schedule

Description Target Last Pipeline Next Run Owner

cori-spack-develop ¥ main () #49133 in 2 days #® Shahzeb Siddiqui > 27 B
perlmutter-spack-ci-develop ¥ main (© #47160 Inactive #® Shahzeb Siddiqui > 7 n
gerty-e4s-21.11 ¥ main @ #49482 in 5 days Q Shahzeb Siddiqui > 27 B
muller-e4s-21.11 ¥ main () #49614 in 6 days Q Shahzeb Siddiqui | 4 E
perlmutter-e4s-21.11 ¥ main (2) #48875 in 21 hours #® Shahzeb Siddiqui > 7 B
perlmutter-spack-develop ¥ main (©) #49253 in 3 days Q Shahzeb Siddiqui | 4 B

FIGURE 21. An Overview of Scheduled Pipelines for each spack stack
We have configured gitlab runners to run CI jobs on Cori, Perlmutter and our test systems so we can
perform builds on all of our systems where E4S will be deployed. Our spack builds are performed using a
single user account which avoids issues with differences between user environments.
Recently, we started building E4S using the spack develop branch which contains the bleeding edge of the

spack codebase where incoming PRs get merged. We build this stack on a weekly basis which will build

23

https://github.com/spack/spack/tree/develop

Software Deployment Process at NERSC LBNL-2001458

the latest for each software product as new versions are added in spack codebase. These stacks are
accessible via modules named e4s/spack-develop where we expose users with a spack instance.

This stack is rebuilt regularly with tip of spack 'develop' branch which means packages will change over
time. You can access the log files via $SPACK_INSTALL_LOG, $SPACK_CONCRETIZE_LOG, $SPACK_GITLAB_LOG. You can

view the spack configuration (spack.yaml, spack.lock) via environment $SPACK_YAML and $SPACK_LOCK.
For more information regarding this stack see https://software.nersc.gov/NERSC/spack-infrastructure.

e4s:1login28> which spack
/global/cfs/cdirs/m3503/spackstacks/perlmutter/spack-develop/spack/bin/spack

We plan to leverage this stack as feedback into our E4S deployments and gain insight into what packages
can build successfully in future deployments. Take for instance our spack develop stack for Perlmutter has
deployed most recent versions of kokkos@3.5.00 whereas our most recent deployment (e4s/21.11)
contains kokkos@3.4.01. We have a high degree of confidence that packages installed via spack develop
pipeline will most likely build in our future E4S deployments and this will ease our deployment process
since this work is done in advance.

eds:1login28> spack flnd ——format "{name}@{version} %{compiler. name}@{compller versmn}" kokkos
kokkos@ cce@ls) kokkos@ jcc@9.3.0 kokkos@ %nvhpc@z

kokkos@ cc@9. 3, 4 kokkos@ 7cc@9.3.0

e4s:1login28> ml e4s/21.11-tcl

The following have been reloaded with a version change:
1) eds/spack-develop => eds/21.11-tcl

eds:login28> spack find ——format "{name}@{version} %{compiler.name}@{compiler.version}" kokkos
kokkos@ %gcc@9.3.0 kokkos@ %0 CCc@9.)

We recently deployed e4s/22.02 on Cori which followed a major system OS upgrade. The E4S
deployment contained 385 installed specs, the most we have built so far, and the entire deployment was
complete within 2 weeks. This stack was built with gcc@11.2.0 and intel@19.1.2.254, shown below is a
breakdown of specs by each compiler.

Compiler Root Specs Implicit Specs Total Specs We plan on Supporting this
release till the end of Cori

gecel1.2.6 70 166 236 lifetime (2023) and be our last
deployment of E4S on Cori.

intel@19.1.2.254 57 92 149

Total 127 258 385

FIGURE 22. Breakdown of installed specs by compilers for e4s/22.02

24

Software Deployment Process at NERSC LBNL-2001458

MPI Support

We are working with the MVAPICH?2 team from Ohio State University to experiment with mvapich2 as
an MPI provider for building the E4S stack on Perlmutter. The mvapich2-gdr is an optimized version of
mvapich that takes advantage of GPU Direct RDMA technology to improve inter-node data movement on
NVIDIA GPUs which is relevant for Perlmutter since we support NVIDIA A100 GPUs. Currently, we
are using cray-mpich as our MPI provider which is available on our system but we have run into build
errors with certain packages which expect mpi wrapper mpicc instead of cc. We plan on using cray-mpich
as the MPI provider for building the stack and introduce mvapich2 for building a subset of packages for
future e4s release. The collaboration between the E4S and the NERSC teams has helped install
MVAPICH2 and 87 packages with 575 total installed specs from E4S 22.02 as shown in the figures
below. These packages use mvapich2-gdr configured with SLURM and CUDA 11.5 on Perlmutter. The
total time for installation of these packages was less than one day! The E4S packages may be accessed
using the module or spack commands as shown below.

sameer@perlmutter:login21:~> module use /global/common/software/spackecp/perlmutter/mvapich2/modulefiles
sameer@perlmutter:login21l:~> module avail e4s/22.02

/9lobal/common/software/spackecp/perlmutter/mvapich2/modulefiles
e4s/22.02 (D)

Where:
D: Default Module

Use "module spider" to find all possible modules and extensions.
Use "module keyword keyl key2 ..." to search for all possible modules matching any of the "keys".
sameer@perlmutter:login21:~> module load e4ds
Lmod is automatically replacing "nvidia/21.11" with "gcc/10.3.0".
Due to MODULEPATH changes, the following have been reloaded:
1) cray-mpich/8.1.13
sameer@perlmutter:login2l:~> spack find

==> 575 installed packages
—— cray—-sles15-x86_64 / gcc@10.3.0

adiak heffte: nlohmann-json py-jupyter-client py-setuptools—scm
adios heffte: nrm py-jupyter-client py-setuptools-scm-git-archive
adios2: hpctoolkit numactl py-jupyter-core py-six

ad lbx hpctoolkit nvhpc py-jupyter-packaging1l py-sniffio
alquimia hpctoolkit omega-h py—-jupyter-packaging7 py-sqlalchemy

aml hpcviewer oniguruma py-jupyter-server py-statsmodels:
amrex(hpx openblas py-jupyter-telemetry: py-tables

ant hpx openjdk py-jupyterhub py-tblib

antlr hwloc openmpil py—-jupyterlab py-terminado
arborx hwloc openmpil py-jupyterlab-server py-threadpoolctl
archer hwloc openmpil py-jupyterlab-widgets py-toml

argobots hypre openpmd—-api py-kiwisolver py—tomlil

arpack-ng hypre openssh py-lazy—object—proxy: py-tomlkit

asio hypre openssl py-lhsmdu py-tornado:
autoconf inputproto openturns py-libensemble py-tornado:
autoconf-archive intel-tbb: otf2 py-mako py-traitlets
automake intel-xed pagmo2: py-markupsafe py—-typeguard

axl jansson papil py-matplotlib py-typing-extensions
axl jq papil py-matplotlib py-urllib3

axom json-c: papil py-matplotlib-inline py-vcversioner
berkeley-db: jsoncpp papyrus py-mccabe: py-warlock

binutils kbproto parallel-netcdf py-mistune: py-warpx

binutils kim-api paraview py-mock py-warpx

bison kokkos parmetis py-mpidpy py-warpx

blaspp: kokkos parsec: py-mpidpy py-wewidth

blaspp: kokkos pcre py-msgpack py-websocket-client
blaspp: kokkos pcre2 py-natsort py-wheel

FIGURE 23. How to access e4s/22.02 stack built with mvapich2-gdr

25

https://mvapich.cse.ohio-state.edu/

Software Deployment Process at NERSC LBNL-2001458

1: adios2 /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/adios2-2.7.1-e32a7r2jmoxi2icshmdf55nrlygzeklc

2: alquimia /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/alquimia-1.0.9-ivqo5yiv4326xhnz6ex2j5ez3wqeyiy6

3: aml /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/aml-0.1.0-mg2j3dfp3rjwxgzvqaoffzeqvqzqéxeb

4: amrex /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/amrex-22.02-776ehps272n5bpaqv2top6651371104c

5: arborx /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/arborx-1.1-2rjaszm7sigy7up2k6bb3vtvcvndyjgs

6: archer /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/archer-2.0.0-wn53g2vy4zvoufotipmg4ijpe26h7qp7

7: argobots /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/argobots-1.1-rj454usbjos3jécdpzobpvbav7acz5sm

8: axom /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/axom-0.6.1-bwa7576p72efsvutokxaosfrag76b5vf

9: bolt /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/bolt-2.0-pkmj3wj2gae32cvflatbnh27awbleqrd

10: butterflypack /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/butterflypack-2.1.0-rbffykvydkagjqdecncq6luoubbzséte
11: cabana /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/cabana-0.4.0-w7jc5nvcyh5bgpi6ickeksvwxofizp2l

12: caliper /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/caliper-2.7.0-d25aip5efger6jymypygpn7bmnemekbh

13: chai /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-11.2.0/chai-2.4.0-63jmijay7uvmcmjpsibgv7u5zsic6365

14: charliecloud /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/charliecloud-0.26-a41h3k5t5qotz4hyn2713vtfveigshpx
15: conduit /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/conduit-0.8.2-nyuhi2g2z3613vq36r3nmwykyzvx2m7i

16: darshan-runtime /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/darshan-runtime-3.3.1-ksd2zlesmejidfgk4jnomgntofxyurev
17: datatransferkit /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/datatransferkit-3.1-rc3-dfybbbprkaluwt6okokpibgl5pnz50bx
18: dyninst /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/dyninst-12.0.1-imstpakdccya24roge6v4ynhi335td3e

19: faodel /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/faodel-1.2108.1-aqgnopukpzewjx4jhjau2ttlkahqma7b
20: flecsi /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/flecsi-2.1.0-ch370lem56ber7bsrg7hr5bkkz2otmf2

21: flit /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/flit-2.1.0-xop3044wrdwr5aq2opss4akn5pkd4ncc

22: flux-core /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/flux-core-0.35.0-qcikqtwmef4nttim4h4h4p34torbecgxm
23: fortrilinos /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/fortrilinos-2.0.0-yvowkhy4vk67kxea7igxfexjagix4xhl
24: gasnet /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/gasnet-2021.9.0-zod23ywaicpyhqguénrgihub3n3d4izd

25: ginkgo /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/ginkgo-1.4.0-1zzxbftoktmja2pcntpjunbta7frnloé

26: globalarrays /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/globalarrays-5.8 2x7f1ladvjnlémdph5udhzqrvyp
27: gotcha /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/gotcha-1.0.3-zs5wpiumnjkmds2c3z52vyolahdkfy3q

28: gptune /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/gptune-2.1.0-70zauwvfwm3ia5b5ijcacwrhélkz2ase

29: hpctoolkit /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/hpctoolkit-2022.01.15-3m5eefi7rigno45fii2o6vjgriooghme
30: hpx /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/hpx-1.7.1-57fy2mtzdpwwokzndmshvh2wjpelxlhr

31: hypre /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/hypre-2.24.0-y5xybvjul7euzg5ay5lodmbamrck4rl2

32: kokkos /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/kokkos-3.5.00-ptvon6irdnldmxsvsritajwcgnzoysad

33: kokkos-kernels /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/kokkos-kernels-3.5.00-3xsi3gyxvuaqnkidwsi2efo5lbgerhvr
34: lammps /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/1lammps-20220107-bphrép6cwofqlwzeakztbauluhsqfebw
35: legion /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/1legion-21.03.0-yohu6664oblic34mjrp452htwozeatqx

36: libnrm /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/1libnrm-0.1.0-sngmq3sbtaw3pyp6sqygodijm6736ypf

37: libquo /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/1ibquo-1.3.1-6zvtgoidxtxrh5ovccfqqteju3dphpsig

38: loki /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/1oki-0.1.7-4ibyadco32bylyr3ep2s4tmbanj3j3tz

39: magma /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/magma-2.6.1-4wn5tjz6btytrdh6mwjp545uws lo4g2g

40: mercury /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/mercury-2.1.0-6wkylg4vqgss2vuclbs3vhfg3x3cwmuh

41: metall /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/metall-0.17-wuz4aafadr7frrvgomaeuyggbv5odbnj

42: mfem /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/mfem-4.3.0-vvgipx4cydbauy5cmz3zcstnvdkive7b

43: mpark-variant /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/mpark-variant-1.4.0-3maqrsxd6cavxonumin4nboeusafd3ae
44: mpifileutils /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/mpifileutils-0.11.1-pdpdzmxxofs6ti5j3dr2réajy5lhgayc
45: netlib-scalapack /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/netlib-scalapack-2.1.0-iicvtbaqtydsqy34rytndf37dqghmgwy
46: nccmp /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/nccmp-1.9.0.1-zb725hcfbznyhalttu5quxgvkrkgk505

47: nco /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/nco-5.0.1-ky3fpd77etbccpxw3vagkzt5mo7gsp2k

48: ninja /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/ninja-1.10.2-nk5xh3rhqvgu3j7owggnyh2wdjstnzkm

49: nrm /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/nrm-0.1.0-vxyx4eswgwrd5tbnyv4gw5jfr6g27roq

50: omega-h /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/omega-h-9.34.1-4gwbhro4fewnhubutcuqf236jhjpfb7h

51: openpmd-api /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/openpmd-api-0.14.4-uwrsxmuiwyzmkxzxsjlldmugiybenmmd
52: openmpi /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/openmpi-4.1.2-fkgs4yr63vngququlz7czbmpoh5rékfw

53: papi /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/papi-6.0.0.1-quimnd22mbmkmffdvcgxsg3hjcrsajwg

54: papyrus /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/papyrus-1.0.1-253qwo4smdgdm37x5ewxeznybcy5bzqf

55: parallel-netcdf /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/parallel-netcdf-1.12.2-2ab4mouhza2mgu2ufxkrce4tm5lagbln
56: paraview /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/paraview-5.10.0-15uh7nvm702hpfosh4wv241lw3vued6qw
57: parsec /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/parsec-3.0.2012-x5zi41bop6gf7n7iacayi6eulamfoqsw
58: pdt /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/pdt-3.25.1-fnsympjsas72tp7uk7akcbhnt2c413r2

59: petsc /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/petsc-3.16.4-mzy13xprthttj5xfq7a7hqjs21lnSentg

60: phist /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/phist-1.9.5-42beev70qdsjs5pxjlbnjcvxjyxmbb2s

61: plasma /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/plasma-21.8.29-4er4dv3xvwrtaxz32bcoqedblrgcygao

62: plumed /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/plumed-2.6.3-v2j11t3jossdqjagkjpslbv3sdylvfpp

63: precice /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/precice-2.3.0-gy3ivcvnpec7 jotdm6ojbyj73kkrk636

64: pumi /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/pumi-2.2.6-xiwnnimumyaym2idoy7zm2z6e7nyd731

65: py-cinemasci /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray—-sles15-x86_64/gcc-10.3.0/py-cinemasci-1.3-5jcjgd2wh54znlawvgh62iz4hygoj1kf
66: py-jupyterhub /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/py-jupyterhub-1.4.1-ipiuxdruxi4qeyfp54xzd2hjqvhytryz
67: py-libensemble /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/py-libensemble-0.8.0-42fsuegkbu47d7elrm126g737gmzuwo7
68: qthreads /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/qthreads—-1.16-xxkkyqupéntsdllcrsc4kokbccaugqy3

69: raja /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/raja-0.14.0-mzunvvtnmkxsn7jfhxjg7uwedn7htjub

70: scr /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/scr-3.0rc2-tysst4dswitpdiozk6isabhtpmovfilp

71: slate /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/slate-2021.05.02-tfgv5cha3qzpb6xhb3xhmoaz2vehy2ioz
72: slepc /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/slepc-3.16.2-esjwua3vmo2rkaiivkki5aéw5goooyqc

73: strumpack /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/strumpack-6.3.0-h5hfw6pgpkird7xh7tmytfq6fukjznsz

74: sundials /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/sundials—6.1.1-dhhzyydlxoyméwibhuueqbwée5ehui7f

75: superlu-dist /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/superlu-dist-7.2.0-ffjwbkjonxnd34mj5gx7tu6xd554dvkg
76: swig /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/swig-4.0.2-fortran-c3fme63qrkuwwegj7sxutz53a46dyhgi
77: sz /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/5z-2.1.12-240shtncaz22e4obqj5kngmn2ffnznun

78: tasmanian /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/tasmanian-7.7-kfngpp5kehiz5dseq7wezteit32ffje3

79: tau /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/tau-2.31.1b2-4rf2q3kvjiu5gv4nnmfcmdcbca4o6h2a

80: trilinos /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/trilinos-13.0.1-uoqbgyzzj2thnjhc5uylc3aiq5f5pe3j

81: umap /g9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/umap-2.1.0-h2sfggmkdb5kkeh240xg7rqtfygd535c

82: umpire /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-11.2.0/umpire-6.0.0-q3en73h243gdiwl4743t24ovvdpesqdp

83: upcxx /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/upcxx-2021.9.0-3xkqa54momzbkuabbbqlinf42mbnqo44

84: veloc /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/veloc-1.5-ykmhlyiuewnpnnwgmrerzlp7bmewdevc

85: vtk-m /global/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/vtk-m-1.7.1-htwmgyvz2vzhzb6b7rk7daipxaq5cgfv

86: wannier90 /9lobal/cfs/cdirs/m3896/sameer/E45/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/wannier90-3.1.0-tz4gyoufpféaiimkccb3gvk2xkqrouwy

87: zfp /9lobal/cfs/cdirs/m3896/sameer/E4S/22.02/spack/opt/spack/cray-sles15-x86_64/gcc-10.3.0/zfp-08.5.5-we5yhdzxukvney73oy6q5arhne35j4q7

FIGURE 24. Listing of E4S 22.02 packages built using MVAPICH2-GDR on Perlmutter

Container-based deployment of E4S

Besides bare-metal installation of E4S, NERSC also supports Shifter, a mature HPC container runtime
and both base and full-featured E4S images are installed on Perlmutter. These images contain 100+ HPC
and AI/ML packages (such as TensorFlow/PyTorch) with total 621 specs and support the A100 GPUs.
Shifter provides a viable deployment option for E4S where only one image needs to be downloaded and is
immediately available to all the users. They may continue to use module or spack commands to access the

26

https://github.com/NERSC/shifter

Software Deployment Process at NERSC LBNL-2001458

packages, as shown in the figure below. Using E4S base or full-featured containers, users may build their
own compact, custom configured containers to deploy on any HPC system.

sameer@perlmutter:login37:~> shifterimg images | grep e4s | grep 22.02
perlmutter docker READY ebac4cad2l 2022-01-28T12:04:27 ecpeds/eds—-base-cuda:22.02

perlmutter docker READY abe82b4a2e 2022-03-04T16:16:38 ecpeds/ubuntu20.04-gpu—x86_64:22.02
sameer@perlmutter:login37:~> shifter —-E —-image=ecpe4s/ubuntu20.04-gpu-x86_64:22.02 /bin/bash —-rcfile /etc/bashrc
(base) sameer@login37:/global/ul/s/sameer$ nvidia-smi
Tue Mar 29 12:41:11 2022

| NVIDIA-SMI 450.162 Driver Version: 450.162 CUDA Version: 11.5

| + + +
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap]	Memory-Usage	GPU-Util Compute M.
		MIG M.
l / /		
@ Al00-PCIE-40GB 0ff	00000000:C3:00.0 Off	0
NJA - 39C Po 39W / 250w	OMiB / 40537MiB	0% Default
		Disabled
Processes:		

| GPU GI CI PID Type Process name GPU Memory

| ID 1ID Usage

|

No running processes found

(base) sameer@login37:/global/ul/s/sameer$ which spack

/spack/bin/spack
(base) sameer@login37:/global/ul/s/sameer$ module avail
Rebuilding cache, please wait ... (written to file) done.

/extra-modules

julia/1.7.2 visit/3.2.2

————————————— /spack/share/spack/modules/linux-ubuntu20.04-x86_64 —-————————————

adios/1.13.1-sch mpich/3.4.2-b2h

adios2/2.7.1-vrq mpich/3.4.2-rwz (D)
alquimia/1.0.9-5px mpifileutils/@.11.1-x6m
aml/0.1.0-52b nccmp/1.9.0.1-2hk
amrex/22.02-cuda70-5pl nco/5.0.1-nzq
amrex/22.02-cuda80-xjb netlib-scalapack/2.1.0-mjx
amrex/22.02-14b ninja/1.10.2-2gp
amrex/22.02-rocm90a-d1z nrm/0.1.0-omw
amrex/22.02-rocm908-wne (D) nvhpc/22.1-367

arborx/1.1-x54 omega-h/9.34.1-syd

arborx/1.1-5ta openjdk/11.0.12_7-pnc
arborx/1.1-666 (D) openmpi/4.1.2-5yq
archer/2.0.0-wkd openmpi/4.1.2-zz1 (D)
argobots/1.1-6vb openpmd—-api/0.14.4-kéw
ascent/0.7.1-y60 papi/6.0.0.1-bri

axom/0.6.1-vbd papi/6.0.0.1-mjw (D)
bolt/2.0-fh7 papyrus/1.0.1-oaw
butterflypack/2.1.0-vwr parallel-netcdf/1.12.2-0jo
cabana/0.4.0-uba paraview/5.10.0-ai6
caliper/2.7.0-cuda70-74r parsec/3.0.2012-cuda70-jhe
caliper/2.7.0-cuda80-xvp parsec/3.0.2012-cuda8@-mmu
caliper/2.7.0-nml (D) parsec/3.0.2012-etb (D)
catalyst/5.6.0-5a0 pdt/3.25.1-c57
chai/2.4.0-cuda70-2jg petsc/3.16.4-cuda70-kqu
chai/2.4.0-cuda80-nkj petsc/3.16.4-cuda80-zde
chai/2.4.0-fgi petsc/3.16.4-cvs

FIGURE 25. Using E4S 22.02 container with Shifter on Perlmutter

The use of conda and the cuda environment in Shifter to use TensorFlow and PyTorch packages with
support for A100 GPU on Perlmutter is shown in the figure below.

27

Software Deployment Process at NERSC LBNL-2001458

(base) sameer@login37:/global/ul/s/sameer$ conda activate cuda

(cuda) sameer@login37:/global/ul/s/sameer$ python

Python 3.9.7 (default, Sep 16 2021, 13:09:58)

[GCC 7.5.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import tensorflow

>>> import torch

>>> import cv2

>>> import numpy

>>> tensorflow.__version__

'2.8.0'

>>> torch.__version__

'1.10.2+cull3"’

>>> tensorflow.test.is_gpu_available()

WARNING: tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be re
moved in a future version.

Instructions for updating:

Use “tf.config.list_physical_devices('GPU')" instead.

2022-03-29 12:49:15.351054: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with one
API Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

2022-03-29 12:49:32.537543: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /device:GPU:@ with 38421
MB memory: -—> device: @, name: A100-PCIE-40GB, pci bus id: 0000:c3:00.0, compute capability: 8.0

True

>>>

(cuda) sameer@login37:/global/ul/s/sameer$ spack find

==> 621 installed packages

—— linux-ubuntu20.04-x86_64 / dpcpp@2022.0.0
kokkos@develop

—— linux-ubuntu20.04-x86_64 / gcc@9.3.0

adiak@?.2.1 kbproto@l.0.7 protobuf@3.18.0 py-ruamel-yaml@0.17.16
adios@l.13.1 kim-api@2.2.1 pugixml@l.11.4 py-ruamel-yaml-clib@?.2.0
adios2@2.7.1 kokkos@3.5.00 pumi@2.2.6 py-scikit-learn@l.0.2
adlbx@1.0.0 kokkos@3.5.00 py-alembic@l.5.5 py-scikit-optimize@master
alquimia@l.0.9 kokkos@3.5.00 py-anyio@3.3.4 py-scipy@l.8.0
alsa-lib@l.2.3.2 kokkos@3.5.00 py—apache-libcloud@l.2.1 py-scipy@l.8.0

aml@?.1.0 kokkos@3.5.00 py-argon2-cffi@21.1.0 py-semantic-version@2.8.2
amrex@22.02 kokkos@3.5.00 py-astroid@2.8.3 py-send2trash@l.s8.0

kokkos—-kernels@3.5.00
kokkos—-kernels@3.5.00
kokkos—kernels@3.5.00
kokkos—nvcc-wrapper@3.2.00
kokkos—nvcc-wrapper@3.2.00
kvtreecl.2.0
lammps@20220107

amrex@22.02
amrex@22.02
amrex@22.02
amrex@22.02
antlr@2.7.7
arborx@l.l

arborx@l.l

py-async-generator@l.10
py-attrs@21.2.0
py-babel@2.9.1
py-backcalleo.2.0
py-bcrypt@3.2.0
py-beniget@n.4.1
py-blinker@l.4

py-serpent@l.40
py-setproctitle@l.1.10
py-setuptools@s9.4.0
py-setuptools—rust@?.12.1
py-six@1.16.0
py-sniffio@l.2.0
py-sqlalchemy@l.4.20

arborx@l.l
archer@2.0.0
argobots@l.l
arpack-ng@s3.8.0
ascent@?.7.1
asio@l.21.0
axl@e.3.0
ax1@2.5.0
axom@o.6.1
berkeley-db@l8.1.40
binutils@2.33.1
binutils@2.36.1
blaspp@2021.04.01
blaspp@2021.04.01

Testing E4S Post Deployment

lapackpp@2021.04.00
lapackpp@2021.04.00
lapackpp@2021.04.00
lapackpp@2021.04.00
legion@21.03.0
libarchive@3.5.2
libbsd@0n.11.3
libcap@2.25
libcircle@n.3.0
libdwarf@20180129
libedit@3.1-20210216
libevent@2.1.12
libfabric@l.14.0
libffiE3.3

py-bottleneck@l.3.2
py-bottleneck@l.3.2
py-certifi@2021.10.8
py-certipy@?.1.3
py-cffi@l.15.0

py-charset-normalizer@2.0.7

py-cinemasci@l.3
py-cloudpickle@l.6.0
py-colorama@d.4.4
py-configspace@d.4.20
py-cryptography@3.4.8

py-cryptography@35.0.0

py-cycler@d.11.0
py-cython@?.29.24

py-statsmodels@?.12.2
py-tables@3.6.1
py-tblib@l.6.0
py-terminado@?.12.1
py-threadpoolct1@3.0.0
py-toml@0.10.2
py-tornado@5.1.1
py-tornado@6. 1
py-traitlets@s.1.1
py-typeguard@2.12.1
py-typing-extensions@3.10.0.2
py-urllib3@l.26.6
py-warlock@l.3.3
py-warpx@22.02

FIGURE 26. Running TensorFlow from Shifter container

We test our E4S stack post deployment, we utilize buildtest a testing framework to build and run tests on
HPC systems. We utilize gitlab to run a subset of E4S tests on Cori and Perlmutter for each of our E4S
stacks along with the shifter based container. Our test can be found on our NERSC gitlab server at
https://software.nersc.gov/NERSC/buildtest-nersc. Shown below is a listing of scheduled pipelines that

will run a subset of tests at different schedules. Since we have over 200+ tests we can’t run all of them at
once, but instead we run at different intervals.

28

https://buildtest.readthedocs.io/en/devel/
https://software.nersc.gov/NERSC/buildtest-nersc

Software Deployment Process at NERSC LBNL-2001458

Q) NERSC : buildtest-nersc > Schedules

Scheduling Pipelines

The pipelines schedule runs pipelines in the future, repeatedly, for specific branches or

*
tags. Those scheduled pipelines will inherit limited project access based on their
associated user.

Learn more in the pipeline schedules documentation.

All 6 Active 6 Inactive 0 New schedule

Description Target Last Pipeline Mext Run Owner

Perimutter Check ¥ devel (%) #54736 in1day # Shahzeb Siddiqui > P E
Perimutter E4S Tests Y devel (v) #54591 in 7 hours £ Shahzeb Siddiqui | E
Cori Benchmark Y devel (3) #55201 in 6 days e Shahzeb Siddiqui [E
Cori Application Test Y devel (.:') #56001 in 4 days e Shahzeb Siddiqui P E
Cori E4S Test Y devel @j #55223 in 6 days e Shahzeb Siddiqui > | F E
Cori Daily Check Y devel @ #55062 in 5 days e Shahzeb Siddiqui > | F E

FIGURE 27. Scheduled pipeline for testing E4S stack

buildtest will publish results to CDASH upon completion of all tests, shown below is an output from the
gitlab job that runs E4S tests on the Perlmutter system. Buildtest will show a link to CDASH report file
which can be viewed in your browser.

Reading report file: /global/cfs/cdirs/m35@3/ci-builds/perimutter/yUW7FC66/@/NERSC/buildtest-nersc/buildtest/var/report.json
build name: eds

site: perlmutter

stamp: 28228322-2103-Experimental

MD5SUM: 3bb737d4a3e3ad4fd44f24aclleaecadd3c

PUT STATUS: 208

You can view the results at: https://my.cdash.org/viewTest.php?buildid=2144892

The CDASH report will contain metadata for each test such as name of test, test description, hostname,
start and endtime, test duration. CDASH will report the test failures in RED.

29

Software Deployment Process at NERSC LBNL-2001458

©® 0 ® @ coasn:buidestnersc x +
& 3 @ & my.cdash.org/viewTest.php?buildid=2144892 a6 & O @ (Update
Totaltmesn 17m 355 790ms Show Fiters

5 passed, 7 failed, 0 not run, 0 missing.

B e —

SingleVortex 2022/03/22 2022/03/22

18 amvex singl_vortex Buidana 212040 '9™® roass 0

Testsuite for 2022/03/22 2022/03/22
‘o4 testsuite_for_e4s 2111 24m 165 210ms et L

axpby 2022/03/22 2022/03/22

CUDA 21:04:05 loginte. el

18 kokkos_CUDA axpoy oy

eds2111 20220322 2022108122
spack_test_hypre o4s 2111 1m 75 300ms - e lognie orom e ods

2022/03/22 2022/03/22
edsr21.11 login6 51 e %

‘spack_test kokkos. e4s. 21.11 210429

2022/03722 2022103722
b eds

‘spack_test superlu_eds 21.11 25 500ms AR v L

o4sP1YT 2022/03/22 20220022

spack_test_uporx_s4s.21.11 sackon 210843 '9™® 210386

axpby 2022/03722 200200022

o918 210356

Kokkos_OpenMP_ax; Passed &m 108 610ms ods Stable stable
s_OpentP_axpby OpenMP 21:12:06

e4s/21.11 2022/08722 2002/08/22
ack test_gasnet ods 21.11 Passed 415.300ms ods Stable. Stable. loginte. ods
et gemeram 2 stackon 210437 P 21:0856

FIGURE 28. CDASH output for E4S runs on Perlmutter
Shown below is an output from one of our test which will validate trilinos package by testing Zoltan from

our shifter container on Perlmutter using two nodes. This test will calculate Preconditioned Conjugate
Gradient for problem Epetra::VbrMatrix which will run for 20 iterations.

30

Software Deployment Process at NERSC LBNL-2001458

= Ul Lniiian 3TLUp - W.wilLIuL 13y
- for hierarchy setup = 0.503612 (s)
- for smoothers setup = 0.000122315 (s)
- for coarse setup = 0.0087QBET3 (s)
- for final setup = 3.6179e-85 (s)
Total for this setup = 8.519751 (s)

Ak Aok 2
##k¥+ Problem: Epetra::VbrMatrix

sxkx Preconditioned CG (with condnum} solution

stk ML (L=4, Cheby_pre#/Cheby_post®, ~/Amesos_KLU_3)
k% No scaling

Aok A o

iter: @ residual = 1.000080e+08
iter: 1 residual = 1.883147e-81
iter: z residual = 5.699885e-82
iter: 3 residual = 1.241147e-82
iter: 4 residual = 3.584143e-83
iter: 7 residual = 8.412063e-04
iter: & residual = 2.174022e-84
iter: T residual = 5.355959e-85
iter: & residual = 1.314152e-85
iter: 9 residual = 3.285323e-06
iter: i@ residual = 7.857157e-87
iter: 11 residual = 2.823098e-87
iter: 1z residual = 4.753736e-08
iter: 13 residual = 1.286472e-08
iter: 14 residual = 2.891014e-89
iter: 15 residual = 7.298381e-18
iter: 16 residual = 1.776775e-18
iter: 17 residual = 4.391331e-11
iter: 18 residual = 1.117884e-11
iter: 19 residual = 2.712616e-12
iter: 28 residual = 6.942872e-13
Analysis of the Lanczos matrix of

the preconditioned system:

smallest eigenvalue = 3.696458e-01
largest eigenvalue = 9,988483e-01

estimated condition number = 2.782183e+08

Solution time: B.635757 (sec.)
total iterations: 2@
| |b-Ax||_2 = 2.05413e-10

ML time information (seconds) total avg

8.584594 8.584594
8.521902

9.0306913 0.0386913
8.491211 8.823391

1- Construction =

2— Preconditioner apply =
a- first application(s) enly =
b- remaining applications =

3- Total time required by ML so far is 1.8265 seconds
{constr + all applications)

TEST PASSED

FIGURE 29. Output for Trilinos Zoltan test in Shifter container

Shown below is the generated build script and test script by buildtest. The test will utilize image
ecpeds/ubuntu20.04-gpu-x86_64:21.11 which is E4S 21.11 stack built with GPU support. The Zoltan
test is available in E4S Testsuite (https://github.com/E4S-Project/testsuite), test will allocate 2 nodes with
4 GPUs and run the test from shifter container via srun. In order to run the Zoltan trilinos test, we need
to load trilinos via spack load trilinos.

31

https://github.com/E4S-Project/testsuite

Software Deployment Process at NERSC LBNL-2001458

Build Script Content

#1/bin/bash

export BUILDTEST_TEST_NAME=trilinos_zoltan_cuda

export BUILDTEST_TEST_ROOT=/global/cfs/cdirs/m3563/buildtest/runs/perlnutter_eds/2022-03-22/perlmutter.slurm. regular/zoltan/trilinos_zoltan_cuda/ad5fedlc
export BUILDTEST_BUILDSPEC_DIR=/global/cfs/cdirs/m3503/ci-builds/perlnutter/yUN7FC66/@/NERSC/buildtest-nersc/buildspecs/apps/trilinos

export BUILDTEST_STAGE_DIR=/global/cfs/cdirs/m3563/buildtest/runs/perlnutter_eds/2022-03-22/perlmutter.slurm. regular/zoltan/trilinos_zoltan_cuda/ad5fedlc/stage
source executor startup script

source /global/cfs/cdirs/m3503/ci-builds/perimutter/yUW7FC66/0/NERSC/buildtest-nersc/buildtest/var/executor/perlnutter.slurn, regular/before_script.sh

Run generated script

sbatch —-parsable —q regular —account=n3503_g /global/cfs/cdirs/m3503/buildtest/runs/perlnutter_eds/2022-03-22/perlmutter.slurm. regular/zoltan/trilinos_zoltan_cuda/a05fedlc/stage/trilinos_zoltan_cuda.sh
Get return code

returncode=$?

Exit with return code

exit $returncode

Test Content

#!/bin/bash

#SBATCH —N 2

#SBATCH ~t 5

#SBATCH G 4

#SBATCH ~C gpu

#SBATCH -A 13503_g

#SBATCH —image=ecpeds/ubuntu20.04-gpu-x86_64:21,11

#SBATCH ——j ob-name=trilinos_zoltan_cuda

#SBATCH —output=trilinos_zoltan_cuda.out

#SBATCH —error=trilinos_zoltan_cuda.err

Content of run section

git clone https://github.con/E4S-Project/testsuite

cd testsuite/validation_tests/trilinos—cuda

shifter —image=ecpeds/ubuntu20.04-gpu-x86_64:21.11 -E — . /compile.sh
srun -n 2 shifter - /bin/bash -c 'unset CRAYPE_VERSION; unset MODULEPATH ; . /spack/share/spack/setup-env.sh; spack load trilinos+cuda cuda_arch=80 ; spack unload mpich; export LD_LIBRARY_PATH=/opt/udiInage/modules/mpich/dep/: $LD_LIBRARY_PATH ; ./build/Zoltan

FIGURE 30. Build Script and Generated Test for Trilinos Zoltan

Conclusion

Managing an HPC software environment can be a challenging and time-consuming process for any HPC
center. Deploying a software stack requires intimate knowledge of the HPC system with in-depth
knowledge of the software packages to ensure each package is built optimally for the system. E4S
accelerates the development, deployment and use of HPC software, lowering the barriers for HPC users.
The E4S software stack community effort creates policies and necessary infrastructure to more easily and
quickly deploy software at extreme-scale.

The sheer size of the E4S deployment and the constant upgrades in cutting-edge HPC system technology
requires tight integration with HPC facility staff and across the community. The continued success and
development of E4S and similar efforts will need to additionally emphasize building the community of
support to maintain longevity and impact of the software. In particular, workforce development and
community building:

Workforce Development: The software deployment team is an integral part of HPC centers, and more
focused efforts are needed towards training our existing staff and/or increasing the workforce to support
initiatives like E4S at the facilities. An HPC center may have multiple HPC systems and if one wants to
deploy EA4S for every system we should work towards a sustainable solution where we can deploy E4S
relatively quickly while having additional resources so work can be done in parallel. Across the three
DOE labs (NERSC, OLCF, ALCF) we noticed that the software deployment group is led by 1-2
individuals who are responsible for building the entire software stack for multiple HPC systems. Since
E4S leverages spack as the driver for building E4S stack, this means staff also need spack expertise and a
strong sense of how to design software stacks and interface through modules.

Community Building: HPC centers can benefit from each other by sharing best practices in the software
deployment process, especially for centers that don’t have a well-established process or are trying to
deploy an E4S stack for the first time. This report is an effort to share more detailed deployment process
information with the community - a behind the scenes look. We encourage others to do similarly.

32

Software Deployment Process at NERSC LBNL-2001458

How to Get Involved

There are several ways to get involved to better support E4S at the facilities.

Are you an application developer for an E4S product that we install? We need your assistance in
troubleshooting the build errors. Each facility wants to accelerate the software deployment process and
provide as many software products as possible to satisfy the user's needs. However we need your help to
debug build failures during our deployment. You will need access to NERSC resources along with our
gitlab project https://software.ner ER ack-infrastructure/ which contains our spack
configuration along with build logs and current issues that need to be addressed. We will try to post these
issues in spack issue tracker to get more visibility. We can get you set up!

Are you an application developer or user of an E4S software package? We seek guidance on
package variants when building a package. Take for instance, trilinos which comes with several dozen
variants

trilinos +amesos +amesos2 +anasazi +aztec +belos +boost +epetra +epetraext +ifpack
+ifpack?2 +intrepid +intrepid2 +isorropia +kokkos +ml +minitensor +muelu +nox
+piro +phalanx +rol +rythmos +sacado +stk +shards +shylu +stokhos +stratimikos
+teko +tempus +tpetra +trilinoscouplings +zoltan +zoltan2 +superlu-dist gotype=Ilong long

We are unsure if all of these variants are appropriate for our system. Some of these selections were
provided by E4S which we incorporated in our spack configuration. We leverage multiple compilers for
building E4S stack including gcc, cce, nvhpe, and intel and we would suggest application teams to
provide feedback into our decision process since we may choose incompatible compilers or compiler
versions.

Are you an application developer for an E4S software package that we install? We seek your
guidance in testing the software on our system. We are trying to increase test coverage for our e4s
deployment by having at least 1-2 sanity tests that can test the software product to increase confidence.
You will need access to NERSC resources and our gitlab server
https://software.nersc.gov/NERSC/buildtest-nersc with all of our E4S tests. We encourage user
contribution to help sustain this effort. Our focus is to test the software provided by E4S stack which will
be accessible via module load e4s. Currently we are trying to add tests for the latest E4S release with an
emphasis on developing tests for Perlmutter.

33

https://software.nersc.gov/NERSC/spack-infrastructure/
https://github.com/spack/spack/issues
https://software.nersc.gov/NERSC/buildtest-nersc

Software Deployment Process at NERSC LBNL-2001458

Acknowledgement

This work was supported by the Office of Science, Office of Advanced Scientific Computing Research of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was supported
by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Administration.

We gratefully acknowledge Hai Ah Nam (LBNL, IDEAS-ECP Better Scientific Software Fellowship

Coordinator) for her many edits and guidance on this report and the feedback from the ECP EA4S
collaboration and NERSC staff.

34

Software Deployment Process at NERSC LBNL-2001458

Bio

Shahzeb Siddiqui

Shahzeb Siddiqui is a HPC Consultant/Software Integration Specialist at Lawrence Berkeley National
Laboratory at NERSC. He is part of the User Engagement Team that is responsible for engaging with NERSC
user community through user support tickets, user outreach, training, documentation. Shahzeb is part of the
Exascale Computing Project (ECP) in Software Deployment (SD) group where he is responsible for building
Spack Extreme-Scale Scientific Software Stack (E4S) at the DOE facilities. He is the creator of few open
source projects including buildtest, Imodule and jobstats. Shahzeb has experience installing and managing
large software stack, managing HPC clusters including cluster managers (Bright Cluster Manager, Cobbler)
and configuration management tools such as Ansible.

Shahzeb Siddiqui started out his career in High Performance Computing (HPC) in 2012 at King Abdullah
University of Science and Technology (KAUST) while pursuing his Masters. His focus in HPC includes
Parallel Programming, Performance Tuning, Containers (Singularity, Docker), Linux system administration,
Scientific Software Installation and testing, Scheduler Optimization, and Job Metrics. Shahzeb has held
multiple roles in his HPC career in the following companies: Dassault-Systemes, Pfizer, Penn State, and IBM.
Prior to 2012, he was a software engineer holding multiple roles at Global Science & Technology, Northrop
Grumman, and Penn State.

Sameer Shende

Dr. Sameer Shende has helped develop the TAU Performance System, the Program Database Toolkit (PDT),
the Extreme-scale Scientific Software Stack (E4S) and the HPCLinux distro. His research interests include
tools and techniques for performance instrumentation, measurement, analysis, runtime systems, HPC container
runtimes, and compiler optimizations. He serves as a Research Associate Professor and the Director of the
Performance Research Laboratory at the University of Oregon, and as the President and Director of ParaTools,

Inc., ParaTools, SAS, and ParaTools, Ltd. He leads the SDK project for the Exascale Computing Project
(ECP), in the Programming Models and Runtime (PMR). He received his B.Tech. in Electrical Engineering
from IIT Bombay, and his M.S. and Ph.D. in Computer and Information Science from the University of
Oregon.

35

https://www.lbl.gov/
https://www.lbl.gov/
http://nersc.gov/
https://www.nersc.gov/about/nersc-staff/user-engagement/
https://www.exascaleproject.org/
https://www.exascaleproject.org/research-group/software-deployment-at-the-facilities/
https://e4s-project.github.io/
https://github.com/buildtesters/buildtest
https://github.com/buildtesters/lmodule
https://github.com/shahzebsiddiqui/jobstats
https://www.kaust.edu.sa/en
https://www.kaust.edu.sa/en
http://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/pdt/home.php
https://e4s.io
https://nic.uoregon.edu/prl/home.php
https://www.uoregon.edu/
https://www.paratools.com/

