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OPERATOR IDEALS IN TATE OBJECTS

O. BRAUNLING, M. GROECHENIG, J. WOLFSON

Abstract. Tate’s central extension originates from 1968 and has since found
many applications to curves. In the 80s Beilinson found an n-dimensional gener-
alization: cubically decomposed algebras, based on ideals of bounded and discrete

operators in ind-pro limits of vector spaces. Kato and Beilinson independently
defined ‘(n-)Tate categories’ whose objects are formal iterated ind-pro limits in
general exact categories. We show that the endomorphism algebras of such ob-
jects often carry a cubically decomposed structure, and thus a (higher) Tate
central extension. Even better, under very strong assumptions on the base cat-
egory, the n-Tate category turns out to be just a category of projective modules
over this type of algebra.

In his 1980 paper “Residues and adèles” [Bĕı80] A. A. Beilinson introduced the
following algebraic structure, without giving it a name:

Definition 1. A Beilinson n-fold cubical algebra is

• an associative k-algebra A;
• two-sided ideals I+i , I

−
i such that I+i + I−i = A for i = 1, . . . , n;

• call Itr :=
⋂
i=1,...,n I

+
i ∩ I

−
i the trace-class operators of A.

In his 1987 paper “How to glue perverse sheaves” [Bĕı87] he introduced the exact

category 1-Tateelℵ0
C for any given exact category C. It was suggestively denoted by

lim
←→
C in loc. cit. We shall recall its definition in §1.

Although these two papers do not cite each other, some ideas in them can be
viewed as two sides of the same coin. In the present paper we establish a rigorous
connection between them. In fact, the main idea is that the latter category − under
a number of assumptions − are just the projective modules over the former type of
algebras. But this really requires some assumptions − in general it is quite far from
the truth.

Define n-Tateelℵ0
(C) := Tate

el
ℵ0
( (n− 1)-Tateℵ0

(C) ) and n-Tateℵ0
(C) as the idempo-

tent completion of n-Tateelℵ0
(C). We write Pf (R) for the category of finitely generated

projective right R-modules.

Theorem 1. Let C be an idempotent complete split exact category.

(1) For every object X ∈ n-Tateelℵ0
(C) its endomorphism algebra canonically car-

ries the structure of a Beilinson n-fold cubical algebra.
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(2) If there is a countable family of objects {Si} in C such that every object in C
is a direct summand of some countable direct sum of objects from {Si}, then

there exists (non-canonically) an object X ∈ n-Tateelℵ0
(C) such that

n-Tateℵ0
(C)

∼
−→ Pf (R) with R := End(X).

(3) Under this equivalence, the ideals I±i correspond to certain categorical ideals,
which can be defined even if C is not split exact.

See Theorem 15 and Theorem 17 in the paper for details. In other words: In
some sense the approaches of the 1980 paper and the 1987 paper are essentially
equivalent. If C is not split exact, the ideals I+i , I

−
i still exist, see Theorem 13 in the

text. However, the property I+i + I−i = A can fail to hold; Example 7 will give a
counter-example.

V. G. Drinfeld has also introduced a category fitting into the same context, his
notion of “Tate R-modules” for a given ring R [Dri06]. We call it TateDr(R) and give
the definition later. In loc. cit. these appear without a restriction on the cardinality.
However, if we restrict to countable cardinality, then Theorem 1 also implies:

Theorem 2. Let R be a commutative ring. Then there is an exact equivalence of
categories

Tate
Dr
ℵ0

(R)
∼
−→ Pf (E),

where E is the Beilinson 1-fold cubical algebra

E := EndTateDr
ℵ0

(R) (R((t)) ) ,

where “R((t))” is understood to be the ‘Tate R-module à la Drinfeld’ denoted by R((t))
in Drinfeld’s paper [Dri06].

See Theorem 18 in the paper. This also reveals a certain additional structure
on endomorphisms of Drinfeld’s Tate R-modules, which appears not to have been
studied so far at all.

Beilinson has originally considered the category 1-Tateelℵ0
C, i.e. without idempotent

completion. Our previous paper [BGW14a, §3.2.7] shows:

Theorem 3. The category 1-Tateelℵ0
(C) can fail to be idempotent complete. In par-

ticular, one cannot improve Theorem 1 to

n-Tateelℵ0
(C)

∼
−→ Pf (R),

i.e. without the idempotent completion, regardless which ring R is taken.

This follows simply since Pf (−) is always an idempotent complete category. For
some constructions the categories n-Tateℵ0

(C) are too small since the admissible Ind-
and Pro-limits are only allowed to be taken over countable diagrams. This happens
for example when writing down the adèles of a curve over an uncountable base field
as a 1-Tate object. In our previous paper [BGW14a] we have therefore constructed
categories n-Tateκ(C), constraining the size of limits by a general infinite cardinal κ.
Examples due to J. Šťov́ıček and J. Trlifaj [BGW14a, Appendix B] demonstrate the
following
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Theorem 4. Even if C is split exact and idempotent complete, the category 1-
Tateκ(C) for κ > ℵ0 can fail to be split exact. In particular, one cannot improve
Theorem 1 to general cardinalities κ.

A key application of our results are to adèles of schemes, as introduced by A. N.
Parshin and Beilinson [Par76], [Bĕı80]. A detailed account was given by A. Huber
[Hub91]. We state the next result in the language of these papers, but the reader will
also find the necessary notation and background explained in the main body of the
present text:

Theorem 5. Let k be a field and X/k a finite type scheme of pure dimension n. Let
F be any quasi-coherent sheaf and △ ⊆ S (X)n a subset.

(1) Then the Beilinson-Parshin adèles A(△,F) can be viewed as an elementary
n-Tate object in finite-dimensional k-vector spaces, i.e. so that

A(△,F) ∈ n-Tateel (Vectf ) .

(2) The ring End (A(△,OX)) carries the structure of an n-fold cubical Beilinson
algebra as in Definition 1.

(3) If △ = {(η0 > · · · > ηn)} is a singleton and codimX {ηi} = i, there is a
canonical isomorphism Endn-Tateel (A(△,OX)) ∼= EBeil

△ , where EBeil
△ denotes

Beilinson’s original cubical algebra from [Bĕı80, §3, “E∆”] (defined without
Tate categories).

See Theorem 22 in the paper − in a way this result is the counterpart of a recent
result of Yekutieli [Yek15, Theorem 0.4], who uses topologies instead of Tate objects
however. Theorem 5 does not follow from Theorem 1 since adèles with very few
exceptions hinge on forming uncountably infinite limits. Trying to generalize (1), one
may also view the adèles as n-Tate objects over other categories, e.g. finite abelian
groups if k gets replaced by the integers Z, or coherent sheaves with zero-dimensional
support. However, for these variations parts (2) and (3) of the theorem would be
false. We refer the reader to §10 for counter-examples

Historically, J. Tate’s paper [Tat68] introduced the first example of a Beilinson n-
fold cubical algebra, but only for the case n = 1. He developed a formalism of traces
for his trace-class operators, lifting the trace of finite-dimensional vector spaces. We
can generalize this to exact categories:

An exact trace is a natural notion of a formalism of traces for a general exact
category, see §8 for details.

Theorem 6. Suppose C is an idempotent complete exact category and tr(−) an exact
trace on C with values in an abelian group Q. Then for every object X ∈ n-Tate(C)
and Itr := Itr(End(X)) its trace-class operators, there is a canonically defined trace

τX : Itr/[Itr, Itr]→ Q,

such that for a short exact sequence A →֒ B ։ A/B and f ∈ Itr(B) so that f |A
factors over A, we have

τB(f) = τA(f |A) + τA/B(f).

If X ∈ C, this trace agrees with the given trace, τX = trX .
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See Prop. 19 for the full statement, which is more detailed and gives a unique
characterization of τ in terms of the input trace. We also get:

Theorem 7. Let C be an idempotent complete exact category. Then for every trace-
class morphism ϕ ∈ Itr(X,X) some sufficiently high power ϕ◦r (or a sufficiently long
word made from several such morphisms) will factor through an object in C.

This generalizes a property which Tate had baptized ‘finite-potent’ and which plays
a key role in his construction of the trace.

Tate and Beilinson used the n-fold cubical algebras to produce (higher) central
extensions. The classical example is Tate’s central extension, which encodes the
residue of a rational 1-form. Ultimately, these constructions can be translated into
Lie (and Hochschild) homology classes. Under mild assumptions, we can construct
these classes also for the endomorphism algebras of n-Tate objects.

Theorem 8. Let C be a k-linear abelian category with a k-valued exact trace. For
every n-sliced object1 X ∈ n-Tate(C) the endomorphism algebra E := End(X) is a
Beilinson n-fold cubical algebra and

(1) its Lie algebra gX := ELie carries a canonical Beilinson-Tate Lie cohomology
class,

φBeil ∈ H
n+1
Lie (gX , k);

(2) as well as canonical Hochschild and cyclic homology functionals

φHH : HHn(E)→ k resp. φHC : HCn(E)→ k.

See Theorem 21 for details. For n = 1 the class φBeil just happens to define a
central extension as a Lie algebra. Of course, the classical examples are all special
cases of this construction. We provide some examples in §9.

Tate categories and Beilinson cubical algebras have already found quite diverse ap-
plications. Ranging from residue symbols in [Tat68], [Bĕı80], glueing sheaves [Bĕı87],
over models for infinite-dimensional vector bundles [Dri06]2, to higher local compact-
ness and Fourier theory [Kat00], [OP08], [OP11], e.g. for the representation theory
of algebraic groups over higher local fields [Kap01], [GK04], [GK05], [GK06], [BK06],
[Lee10].

Quite recently, B. Hennion has introduced Tate categories for stable ∞-categories
[Hen15b], [Hen15a]. It would be interesting to study the counterparts of our results
in this context. Higher local fields can be regarded as n-Tate objects and in [Osi07]
D. V. Osipov has already related adèles to categories similar to n-Tate categories
and studied endomorphism rings in this context. In a quite different direction, A.
Yekutieli [Yek92], [Yek15] develops the use of semi-topological algebraic structures to
describe adèles. These also give rise to an n-fold cubical algebra, but in a different
way based on picking coefficient fields for the individual layers of the involved higher
local fields. The relation to his approach is explained in [BGW15a].

1See the main body of the text for definitions.
2Drinfeld’s paper proposes several notions, one of them being Tate R-modules, which are closest

to the subject of this paper. The other are flat Mittag-Leffler bundles, which are however also related
via admissible Ind-objects of projectives. See [EGAT14], [BGW14a, Appendix].
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1. Tate categories

For every exact category C one can form the corresponding categories of admissible
Ind-objects Ind

aC or admissible Pro-objects Pro
aC, perhaps with some conditions

on the allowed cardinality of diagrams, denoted by a subscript as in Ind
a
ℵ0

or more
generally Ind

a
κ for κ an infinite cardinal. See [Pre11b], [BGW14a] for definitions and

basic properties. Enlarging C in both of these ways, we arrive at the commutative
square of inclusion functors

Pro
aC Ind

a
Pro

aC.//

C

Pro
aC
��

C Ind
aC// Ind
aC

Ind
a
Pro

aC.
��

Definition 2. Let C be an exact category.

(1) The category TateelC is the smallest extension-closed full sub-category of IndaProaC
which contains both Ind

aC and Pro
aC.

(2) Tate(C) denotes the idempotent completion of TateelC.

(3) Define n-Tateel(C) := Tate
el ( (n− 1)-Tate(C) ) and n-Tate(C) := n-Tateel(C)ic

as its idempotent completion.

All of these categories come with a natural exact category structure so that all
basic tools of homological algebra are available, they have derived categories, K-
theory, etc. . . Versions of the Tate category were first introduced by K. Kato in 1980
in an IHES preprint, published only much later [Kat00], and independently by A.
Beilinson under the suggestive name lim

←→
C [Bĕı87]. The equivalence of these two

approaches was established by L. Previdi. There is also a slightly different variant
due to V. Drinfeld [Dri06]. We refer the reader to [Pre11b], [BGW14a] for extensive
discussions of these categories and comparison results. The ‘Cn categories’ of D. V.
Osipov [Osi07] a based on similar ideas. The definition of Tate categories which we
give here is due to [BGW14a].

Example 1 (Kapranov). If C is the abelian category of finite-dimensional k-vector

spaces, TateelC is equivalent to the exact category of locally linearly compact topo-
logical k-vector spaces.

Example 2. If R is a commutative ring and Pf (R) the exact category of finitely gen-
erated projective R-modules, Tateℵ0

Pf (R) is equivalent to the category of countably
generated “Tate R-modules” in the sense of Drinfeld [Dri06]. Without the restriction
on countable generation, the latter is in general only a full sub-category of the former.
Both are proven in [BGW14a, Thm. 5.30].

Example 3. We refer the reader to the works of Kato [Kat00], Kapranov [Kap01,
Appendix] and Previdi [Pre11b] for a discussion of Tate categories for non-additive
categories. These will not appear in the present paper.
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Every object in the category Tate
elC comes with a notion of ‘lattices’.

Definition 3. Let X ∈ Tate
elC be an object. We call a sub-object3 L →֒ X a lattice

(or Tate lattice if we wish to contrast the notion to other concepts of lattices) if
L ∈ Pro

aC and X/L ∈ Ind
aC. The set of all lattices in X is the Sato Grassmannian

Gr(X).

There are two basic properties which control most of the behaviour of this concept
of lattices: If L′ →֒ L →֒ X are two lattices in X , then L/L′ lies in the category
C [BGW14a, Proposition 6.6] . Furthermore, if C is idempotent complete, any two
lattices have a common sub-lattice and a common over-lattice [BGW14a, Theorem
6.7].

2. The motivating classical example

The following algebraic structure was introduced by Beilinson [Bĕı80] for the pur-
pose of generalizing Tate’s 1968 construction of the one-dimensional residue symbol
[Tat68] to higher dimensions. The constructions in loc. cit. produce a kind of gen-
eralized residue symbol for any such algebraic structure. The importance of this
structure extends far beyond just the residue symbol. In a way, it axiomatizes essen-
tial algebraic features of the endomorphism algebra of a well-behaved n-Tate object.
Before addressing this, let us recall the definition:

Definition 4. [Bĕı80, §1] Let k be a field. An (n-fold) cubically decomposed algebra
over k is the datum (A, (I±i ), τ):

• an associative k-algebra A;
• two-sided ideals I+i , I

−
i such that I+i + I−i = A for i = 1, . . . , n;

• writing I0i := I+i ∩ I
−
i and Itr := I01 ∩ · · · ∩ I

0
n, a k-linear map (called trace)

τ : Itr/[Itr, A]→ k.

We next recall the original key example for this structure, coming straight from
geometry. Suppose X/k is a reduced scheme of finite type and pure dimension n. We
shall use the same notation as in [Bĕı80]. Notably, S (X)• denotes the simplicial set
of flags of points (i.e. S (X)n = {(η0 > · · · > ηn)} with ηi ∈ X and x > y means that

{x} ∋ y). Further, given △ ⊆ S (X)n we write η0△ := {(η1 > · · · > ηn) | (η0 > · · · >
ηn) ∈ △}. Finally, A(△,M) denotes the Beilinson-Parshin adèles for △ ⊆ S (X)n.
This means that for any coherent sheafM we define

A(△,M) :=
∏
η∈△lim←−

i

M ⊗
OX

OX,η/m
i
η (in the case n = 0)

A(△,M) :=
∏
η∈X lim←−

i

A(η△ ,M ⊗
OX

OX,η/m
i
η) (in the case n ≥ 1)

and for a quasi-coherent sheafM we define A(△,M) := colim
−−−→M′A(△,M′) and the

colimit is taken over the category of coherent sub-sheaves of M with inclusions as
morphisms. These colimits and limits are usually taken in the bi-complete category of

3In this paper, the symbols →֒ and ։ denote admissible monics and epics with respect to the
exact structure of a category. Moreover, a sub-object always refers to an admissible sub-object in
the sense that the inclusion is an admissible monic.
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OX -module sheaves. We follow this viewpoint here as well, at least for the moment.
Later, in §10 we shall address a novel perspective using Tate categories instead.

Definition 5 (Beilinson [Bĕı80]). Let △ = {(η0 > · · · > ηi)} ∈ S (X)i be given
and M a finitely generated Oη0-module. Then a (Beilinson) lattice in M is a finitely
generated Oη1-module L ⊆M such that Oη0 ·L =M . Now and later on, we shall use
the abbreviation

M△ := A(△,M)

for M a quasi-coherent sheaf on X.

Whenever we are given a △ as above, define △′ := {(η1 > · · · > ηn)}, removing
the initial entry.

Definition 6 (Beilinson [Bĕı80]). Let M1 and M2 be finitely generated Oη0-modules.

(1) Let Hom∅(M1,M2) := Homk(M1,M2) be the set of all k-linear maps. Then
we define

Hom△(M1,M2) ⊆ Homk(M1△,M2△)

to be the sub-k-module of all f ∈ Homk(M1△,M2△) such that for all (Beilin-
son) lattices L1 →֒ M1, L2 →֒ M2 there exist (Beilinson) lattices L′

1 →֒
M1, L

′
2 →֒M2 with

L′
1 →֒ L1, L2 →֒ L′

2, f(L′
1△′) →֒ L2△′ , f(L1△′) →֒ L′

2△′

and for all such L1, L
′
1, L2, L

′
2 the induced k-linear map

f : (L1/L
′
1)△′ → (L′

2/L2)△′

lies in Hom△′(L1/L
′
1, L

′
2/L2).

(2) Let I+1△(M1,M2) be those morphisms f ∈ Hom△(M1,M2) such that there

exists a lattice L →֒M2 with f(M1△) →֒ L△′ .

(3) Dually, I−1△(M1,M2) is formed of those such that there exists a lattice L →֒

M1 with f(L△′) = 0.
(4) For i ≥ 2 we let I+i△(M1,M2) be those f ∈ Hom△(M1,M2) such that for all

lattices L1, L
′
1, L2, L

′
2 as in part (3) the condition

f ∈ I+(i−1)△′(L1/L
′
1, L

′
2/L2)

holds. Analogously, define I−i△(M1,M2) to be those with f ∈ I−(i−1)△′ (L1/L
′
1, L

′
2/L2).

With these definitions in place we are ready to formulate the principal source of
algebras as in Definition 1:

Theorem 9 (Beilinson, [Bĕı80, §3]). Suppose X/k is a reduced finite type scheme of

pure dimension n. Let η0 > · · · > ηn ∈ S (X)n be a flag with codimX {ηi} = i. Then

EBeil
△ := Hom△(Oη0 ,Oη0) ⊆ Endk(OX△,OX△)

is an associative sub-algebra. Define I±i△ ⊆ EBeil
△ by I±i△(Oη0 ,Oη0) for 1 ≤ i ≤ n.

Then (EBeil
△ , (I±i△), tr) is an n-fold cubically decomposed algebra. Here “tr” refers to

Tate’s trace for finite-potent morphisms, see [Tat68] for the definition. In particular,
EBeil

△ is an example of the algebras in Definition 1.
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There are a number of other examples leading to cubically decomposed algebras:

Example 4 (Yekutieli). Every topological higher local field (TLF) [Yek92], [Yek95]
carries Yekutieli’s canonical cubically decomposed algebra structure [Yek15, Thm.
0.4]. If the base field k is perfect, one can show that the adèles decompose as a kind
of restricted product of TLFs. Yekutieli’s cubically decomposed algebra then turns
out to be isomorphic to Beilinson’s. See [BGW15a] for details.

Example 5. Higher infinite matrix algebras also carry a cubically decomposed struc-
ture. This is probably the simplest non-trivial example [Bra14a].

So how can we connect Beilinson’s Theorem with the category Tate
elC?

3. Operator ideals in Tate categories

First of all, we will show that the condition of Definition 6, part (1), naturally
comes up in the context of lattices of Tate objects. This requires some preparation.
We need to establish some features which would be entirely obvious if we dealt with
k-vector spaces and the notion of lattices from Definition 5.

It was shown in [BGW14a] that Pro-objects are left filtering in Tate
el(C) and Ind-

objects right filtering. The following result strengthens these two facts:

Proposition 10. Let C be an exact category.

(1) Every morphism Y
a
−→ X in Tate

el(C) with Y ∈ Pro
a(C) can be factored as

Y
ã
→ L →֒ X with L a lattice in X.

(2) Every morphism X
a
−→ Y in Tate

el(C) with Y ∈ Ind
a(C) can be factored as

X ։ X/L
ã
→ Y with L a lattice in X.

Proof. A complete proof is given in [BGW15b, Proposition 2.7]. �

Lemma 1. Suppose C is an exact category. LetX,X ′ ∈ Tate
elC and ϕ ∈ Hom(X,X ′).

(1) For every lattice L →֒ X there exists a lattice L′ →֒ X ′ admitting a factor-
ization as depicted below on the left.

(2) For every lattice L′ →֒ X ′ there exists a lattice L →֒ X admitting a factor-
ization as depicted on the right.

L′ X ′� � //

L

L′

ϕ′

��

L X� � // X

X ′

ϕ

��

L′ X ′� � //

L

L′

ϕ′

��

L X� � // X

X ′

ϕ

��

Proof. This immediately follows from Prop. 10. (1) Here L → X ′ is a morphism
from a Pro-object, so it factors through a lattice L′ of X ′. (2) Here X → X ′/L′ is a
morphism to an Ind-object, so it factors X ։ X/L→ X ′/L′ for some lattice L. �

Lemma 2 (Cartesian sandwich). Suppose C is idempotent complete. Let X1, X2 ∈

Tate
el(C) and L →֒ X1⊕X2 a lattice. Then there exist lattices L′

i ⊆ Li of Xi so that

L′
1 ⊕ L

′
2 ⊆ L ⊆ L1 ⊕ L2.
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Proof. Consider the composed morphism L →֒ X1 ⊕ X2 ։ Xi. By Prop. 10 this
factors through a lattice of Xi, say Li →֒ Xi. Now we already have

L1 ⊕ L2 X1 ⊕X2
� � //

L

L1 ⊕ L2

��

L

X1 ⊕X2

� o

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄

By [BGW14a, Lemma 6.9] the downward arrow is an admissible monic (this crucially
makes use of the assumption that C is idempotent complete). Dually, consider the
composition Xi →֒ X1 ⊕ X2 ։ (X1 ⊕X2) /L. Since Ind-objects are right filtering
[BGW14a, Prop. 5.10 (2)], there must be a lattice L′

i so that the map factors asXi ։

Xi/L
′
i → (X1 ⊕X2) /L. Thus, the composition L′

1⊕L
′
2 →֒ X1⊕X2 ։ (X1 ⊕X2) /L

is zero and by the universal property of kernels we get a canonical morphism L′
1 ⊕

L′
2 → L. Again by [BGW14a, Lemma 6.9] the corresponding morphism of the lattice

quotients must be an admissible epic, so that this is an admissible monic. �

Definition 7. Let C be an exact category. For objects X,X ′ ∈ Tate
elC call a mor-

phism ϕ : X → X ′

(1) bounded if there exists a lattice L′ ⊆ X ′ so that ϕ factors as X → L′ →֒ X ′;

(2) discrete if there exists a lattice L ⊆ X so that L →֒ X
ϕ
→ X ′ is the zero

morphism;
(3) finite if it is both bounded and discrete.

Denote by I+ (X,X ′), I− (X,X ′), I0 (X,X ′) the subsets of Hom(X,X ′) of bounded,
discrete and finite morphisms respectively.

Lemma 3. Suppose C is idempotent complete and s ∈ {+,−, 0}. Then for arbitrary
objects X,X ′, X ′′ the following are true:

(1) Is (X,X ′) is a subgroup with respect to addition.
(2) Is (X,X ′) is a categorical ideal, i.e. the composition of any morphism with a

morphism in Is lies in Is. Thus, the composition of morphisms factors as

Is (X ′, X ′′)⊗Hom(X,X ′) −→ Is (X,X ′′)

Hom (X ′, X ′′)⊗ Is (X,X ′) −→ Is (X,X ′′) .

(3) In the ring End(X) the subgroup Is (X,X) is a two-sided ideal.
(4) Every morphism in I0 (X,X ′) factors through a morphism from an Ind- to a

Pro-object. Every product of at least two morphisms in I0 factors through an
object in C.

Example 6. Let C := Vectf be the category of finite-dimensional k-vector spaces.
Define X := k[t]⊕ k[[t]] and an endomorphism

ϕ : k[t]⊕ k[[t]] −→ k[t]⊕ k[[t]], (a, b) 7−→ (0, a).

It is easy to see that ϕ ∈ I0(X,X), but ϕ does not factor through an object in C. This
shows that Lemma 3 (4) cannot be strengthened in this alluring fashion. Note that
this phenomenon is already present in Tate’s original work [Tat68]. It is the reason
why he has to work with ‘finite-potent’ morphisms rather than finite rank ones.
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Proof. (1) Suppose ϕ1, ϕ2 ∈ I
+ (X,X ′) are given and they factor as

ϕ1 : X → L′
1 →֒ X ′ and ϕ2 : X → L′

2 →֒ X ′.

Then by the directedness of the Sato Grassmannian [BGW14a, Thm. 6.7] there exists
a lattice L′

3 so that L′
i ⊆ L′

3 for i = 1, 2 and thus without loss of generality we may
assume L′

i = L′
3 in the above factorizations, so the claim is clear. The same works for

I−(X,X ′) by taking a common sub-lattice. By I0 (X,X ′) = I+ (X,X ′)∩ I− (X,X ′)
it also works for I0. (2) For ϕ ∈ I+ and ψ arbitrary it is trivial that ϕ ◦ ψ factors
through a lattice, namely the same as ϕ does. In the reverse direction ψ ◦ ϕ we have
a factorization as depicted on the left in

X X ′
ϕ

//

L′

X

??

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧
L′

X ′

� _

��

X ′ X ′′

ψ
//X ′ X ′′

X X ′
ϕ

//

L′

X

??

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧
L′

X ′

� _

��

X ′ X ′′

ψ
//

L′

X ′

L′ L′′
ψ|L′

// L′′

X ′′

� _

��

since ϕ ∈ I+. Then by Lemma 1 (1) there exists a lattice L′′ in X ′′ so that we get
a further factorization as depicted above on the right. Thus, we have a factorization
X → L′′ →֒ X ′′ with L′′ a lattice, so ψ ◦ ϕ is also bounded. For ϕ ∈ I− and ψ
arbitrary, the proof is analogous. This time ψ ◦ ϕ trivially sends a lattice to zero,
namely the same one as ϕ and the reverse direction ϕ ◦ψ requires an argument, very
analogous to the above one for I+: Let L′ be a lattice which is sent to zero by ϕ as
shown left in

X X ′

ψ
//X X ′X ′ X ′′

ϕ
//

L′

X ′

� _

��

L′

X ′′

0

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄

X X ′

ψ
//

L

X

� _

��

L L′
ψ|L

// L′

X ′X ′ X ′′
ϕ

//

L′

X ′

� _

��

L′

X ′′

0

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄

According to Lemma 1 (2) there exists a lattice L in X so that we can complete the
diagram as depicted on the right. Hence ϕ◦ψ sends a lattice to zero. (3) is immediate

from (2). For (4) let X
ϕ
−→ X ′ be a morphism in I0 (X,X ′). By boundedness we

find a factorization through a lattice L′ so that we get the diagram on the left

X X ′
ϕ

//X

L′L′

X ′

� _

��

X

L′
??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

X X ′
ϕ

//

L

X

� _

��

L L′// L′

X ′

� _

��

X

L′
??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

and by discreteness a lattice L so that L→ X → X ′ is zero, as depicted on the right.
Since L′ →֒ X ′ is a monomorphism, the induced upper horizontal arrow must be the
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zero map itself. By the universal property of kernels this yields a factorization

X L′ϕ //X

X/L

����

L

X

� _

��

L

L′

0

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄

L′

X/L

??

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

Thus, we have obtained a factorization X ։ X/L → L′ →֒ X ′ as desired. If we
compose any two morphisms, we may equivalently look at the composition of these
factorizations,

X ։ X/L→ L′ →֒ X ′
։ X ′/L′′ → L′′ →֒ X ′′′,

then L′ → X ′/L′′ is a morphism from a Pro-object to an Ind-object. Since Pro-

objects are left filtering in Tate
elC, this factors through a Pro-sub-object of X ′/L′′,

which is therefore also an Ind-object. However, by [BGW14a, Prop. 5.9] an object
can only be simultaneously an Ind- and Pro-object if it actually lies in C. �

Definition 8. Let X be an elementary Tate object. If there exists a lattice i : L →֒ X
which admits a splitting s : X → L so that si = idL, we call X a sliced Tate object.

The following result is the categorical analogue of the decomposition used by J.
Tate in his original article [Tat68, Prop. 1].

Proposition 11. Let C be an exact category.

(1) If X is a sliced elementary Tate object, End (X) = I+ (X,X) + I− (X,X).
More generally, there is a short exact sequence of abelian groups

0 −→ I0(X,X) −→ I+(X,X)⊕ I−(X,X) −→ End(X) −→ 0,

functorial in morphisms between sliced elementary Tate objects.
(2) If C is split exact and idempotent complete, every elementary Tate object in

Tate
el
ℵ0
C is sliced. In particular, each End(X) is a unital one-fold cubical

algebra in the sense of Definition 1.

Proof. (1) Define P+ := is : X → L →֒ X . This is clearly a bounded morphism.
Define P− := idX −P

+. We find that after precomposing by L →֒ X the two mor-

phisms X
id
→ X , X

P+

→ X agree, thus P− |L= 0, i.e. P− is a discrete morphism.
Finally, idX = P+ + P− by construction. Thus, any morphism ϕ ∈ End (X) can be
written as ϕ = P+ϕ+ P−ϕ and since bounded and discrete morphisms form ideals,
by Lemma 3, P+ϕ is bounded and P−ϕ discrete. (2) By [BGW14a, Prop. 5.23] the

split exactness of C implies that Tateelℵ0
C is also split exact. Hence, we can pick any

lattice (always exists), obtain L →֒ X , and the split exactness enforces the existence
of a splitting. �
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Example 7. Let p be a prime number and C the abelian category of finite abelian
p-groups. We shall show that Tate

elC contains both sliced and non-sliced objects.
Specifically, both

“Fp((t))” = colim−−−→
i

lim←−
j

t−iFp[t]/t
j and “Qp” = colim−−−→

i

lim←−
j

p−iZ/pj

are elementary Tate objects.

(1) The former is sliced via Fp((t)) ≃ Fp[[t]]⊕ t
−1Fp[t

−1] while the latter is not.
To see this, note that IndaC is equivalent to the category of p-primary torsion
abelian groups. Hence, if there exists a splitting Qp ≃ I ⊕P with I ∈ Ind

aC,
we must have I = 0 since Qp has no non-trivial torsion elements at all. Thus,
Qp ∈ Pro

aC, forcing that Qp/Zp ∈ C, but this is clearly absurd.
(2) Proposition 11 fails for Qp. Suppose not. Then there exist p ∈ I+(Qp,Qp)

and q ∈ I−(Qp,Qp) so that id = p+q. Then pq and qp lie in I0(Qp,Qp), so by
Lemma 3 they both factor through a morphism from an Ind- to a Pro-object.
So they factor through torsion elements. Thus, pq = qp = 0. As a result,
p = p(p+q) = p2 and analogously for q. So these must be idempotents. Thus,
in the idempotent completion we get a direct sum splitting Qp ≃ im p⊕ im q.

Since q kills a lattice, say L, the map Qp

q
։ im q descends to Qp/L ։ im q,

forcing im q to be an Ind-object and therefore zero. Again, we obtain Qp ∈
Pro

aC, which is absurd.

We recall that in an additive category a morphism p is an epic if for any composition

X
p
−→ Y

f
−→ Z

which is zero, f must already have been zero. Now suppose we want to find a definition
for ‘locally epic’. Then lattices take over the rôle of a basis of open neighbourhoods
of the neutral element. Hence, it makes sense to use the definition of epic morphisms,
but restrict both the assumption as well as the conclusion to lattices. This leads to
the following concept.

Definition 9. Let p : X → Y be a morphism of elementary Tate objects.

(1) We call p submersive if for any morphism f and lattice L →֒ X so that the
diagonal arrow in

L X� � // X

Y

p

OOY Z
f

//

L

Z

0

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥

L′ Y� � //

is zero, there exists a lattice L′ →֒ Y (drawn with a dotted arrow) so that
L′ →֒ Y → Z is zero.

(Slogan: “vanishing on a lattice can be pushed forward”)
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(2) Symmetrically, call p immersive if for any morphism f and lattice L →֒ X so
that the diagonal arrow in

XX/L oooo

Y

X

p

��

ZY
f

oo Z

X/L

0

uu❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥YY/L′ oooo

is zero, there exists a lattice L′ →֒ Y (whose quotient is drawn with a dotted
arrow) so that Z → Y ։ Y/L′ is zero.

(Slogan: “vanishing modulo a lattice can be pulled back”)

These two definitions are almost dual. One transforms one into the other by going
to the opposite category and interchanging Ind- and Pro-objects.

Lemma 4. Let C be an idempotent complete exact category.

(1) Every admissible monic p : Y →֒ X is immersive.
(2) Every admissible epic p : X ։ Y is submersive.

For example for an arbitrary lattice in an elementary Tate object, the inclusion is
immersive and the respective quotient morphism submersive:

L X� � immersive // X X/L
submersive// //

We shall show in Example 9 that the lemma can fail if we remove the word ‘admis-
sible’.

For a morphism f : X → Y in Tate
el(C), and L →֒ X a lattice, the notation

f(L) = 0 is shorthand for the statement that the diagram

L //

��

X

��

0 // Y

commutes. As a first step towards the proof of the lemma, say for p : X ։ Y epic,
we observe that for Y ∈ Ind

a(C) the statement is automatically true, since then we
have that 0 →֒ Y is a lattice, and we certainly have g(0) = 0.

The general case relies on the following lemma.

Lemma 5. Let C be an idempotent complete exact category. Let g : M → N be a
morphism of admissible Pro-objects M , N ∈ Pro

a(C), which is sent to the zero mor-
phism by the exact functor Pro

a(C) → Pro
a(C)/C. Then there exists a commutative

triangle

U

  ❅
❅❅

❅❅
❅❅

❅

M //

g
>> >>⑦⑦⑦⑦⑦⑦⑦⑦

N,

where U ∈ C, and g is an admissible epic in Pro
a(C).
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Proof. We use that C ⊂ Pro
a(C) is right s-filtering [BGW14a, Prop. 4.2. (2)]. By an

observation of Bühler this implies that the class Σm of admissible monomorphisms
in Pro

a(C) with cokernel in C satisfies a calculus of right fractions, see [BGW14a,
Prop. 2.19] for the broader context. Moreover, we also know from Bühler that
Pro

a(C)[Σ−1
m ] ∼= Pro

a(C)/C, [BGW14a, Prop. 2.19]. Since g :M → N and 0 : M → N
induce the same map in Pro

a(C)/C, we see that there exists a commutative diagram

M

}}④④
④④
④④
④④ g

!!❇
❇❇

❇❇
❇❇

❇

M M ′oo

h

OO

//

��

N

M,

aa❇❇❇❇❇❇❇❇ 0

>>⑥⑥⑥⑥⑥⑥⑥⑥

where h : M ′ →֒M is an admissible monic with cokernel Q ∈ C. The commutativity
of the diagram implies that the horizontal arrow M ′ → N is zero. Therefore, we
obtain by the universal property of cokernels a factorization

Q

��
❅❅

❅❅
❅❅

❅

M
g

//

>> >>⑦⑦⑦⑦⑦⑦⑦

N

as required to conclude the proof of the assertion. �

We are now ready to prove that admissible epimorphisms are submersive.

Proof of Lemma 4. We shall only treat the case of an admissible epic, and leave the
necessary modifications for the monic case to the reader. By Lemma 1 we have a
commutative diagram

L //

��

X

f

��

M //

��

Y

g

��

N // Z

where the horizontal arrows are inclusions of lattices. We also know that the inclusion
Ind

a(C) →֒ Tate
el(C) is right s-filtering [BGW15c, Cor. 2.3], and the quotient category

is equivalent to Pro
a(C)/C [BGW14a, Prop. 5.34]. Inclusions of lattices are sent to

isomorphisms in Tate
el(C)/Inda(C). Hence, we obtain that the composition f ◦ p is

sent to 0 in Tate
el(C)/Inda(C). However, exact functors send admissible epimorphisms

to admissible epimorphisms; and every admissible epimorphism is an epimorphism in
the categorical sense. The relation f ◦ p = 0 ◦ p in Tate

el(C)/Inda(C) implies now that

f = 0 in Tate
el(C)/Inda(C).

We have shown above that the morphism M → N in Pro
a(C) is sent to 0 in

Pro
a(C)/C. By Lemma 5, this yields a factorization M ։ Q → N with Q ∈ C. Let
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L′ be the kernel of the admissible epimorphism M ։ Q. By construction L′ ⊂ Y is
a lattice, and f(L′) = 0. This concludes the proof. �

Example 8. A submersive morphism does not need to be an epimorphism. For

example, for C := Vectf the zero morphism k[[t]]
0
→ k[t] is a submersion. This makes

sense topologically since we would think of k[t] as having zero-dimensional tangent
spaces. It is however also a finite immersion, which appears rather strange from the
point of view of topological intuition.

Example 9. Let us construct a (non-admissible!) monomorphism which is not im-
mersive. Let C := Vectf be the category of finite-dimensional k-vector spaces. We
have a morphism

ϕ : k[t] −→ k((t)),

the obvious inclusion. This morphism is monic, but it is not an admissible monic
since otherwise a Pro-object would have an Ind-object as a sub-object. We claim
that this morphism is not immersive. Suppose it is. Take Z → Y to be the identity
idk[t] and L := k[[t]], which is clearly a lattice in k((t)). The immersion property now
implies that k[t] must be a lattice in itself. In particular, it must be a Pro-object,
which is absurd.

Lemma 6. Submersive morphisms have the following properties:

(1) Isomorphisms are submersive.
(2) The composition of submersive morphisms is submersive.

Proof. (1) is trivial, just transport the lattice along the isomorphism. (2) Let p, q be
composable submersive morphisms. Let f be an arbitrary morphism and L a lattice
that gets sent to zero by (f ◦ q) ◦ p, i.e. the lower diagonal arrow in

L X� � // X

Y

p

OOY

Z

q

OOZ W
f

//

L

W

0

::✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

L′

W

0

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥
L′ Y� � //

L′′ Z
� � //

The submersiveness of p (for the morphism f ◦ q) guarantees the existence of a lattice
L′ so that f ◦ q sends it to zero. Now the submersiveness of q yields the existence of
a lattice L′′ which is being sent to zero by f . But this is all we had to show. �

Lemma 7. Immersive morphisms have the following properties:

(1) Isomorphisms are immersive.
(2) The composition of immersive morphisms is immersive.

Proof. The proof is essentially dual to the proof of Lemma 6, just reverse the direction
of all arrows. �
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Lemma 8 ([BGW14a, Prop. 5.23]). If C is idempotent complete and split exact,

Tate
el
ℵ0
C is split exact.

Lemma 9. Suppose we are given one of the squares

Y1 Y2
f

//

X1

Y1

submersive

��

X1 X2
discrete // X2

Y2

OO

� ?

resp.

Y1 Y2g
//

X1

Y1

����

X1 X2
bounded // X2

Y2

OO

immersive

Then f is discrete (resp. g bounded).

For this statement to be true the monic (resp. epic) would need not be admissible.

Proof. If X1 → X2 is discrete, there is a lattice L so that the upper row in

L X1
� � //

Y1 Y2g
//

X1

Y1

submersive

��

X1 X2
discrete // X2

Y2

OO

� ?

is the zero morphism. Since the right-hand side upward arrow is a monomorphism,
it follows that L →֒ X1 → Y1 → Y2 must already be zero. Now being submersive

implies that there is a lattice L′ in Y1 so that L′ →֒ Y1
g
→ Y2 is zero. Hence, g is

discrete. The argument for the other square is dual. �

We collect a few more useful properties.

Lemma 10. Suppose C is idempotent complete.

(1) If p : X → Y is submersive, either no lattice L →֒ X is sent to zero, or Y is
an Ind-object.

(2) Submersive discrete morphisms are precisely the morphisms X → Y with Y
an Ind-object.

(3) If p : X → Y is immersive, either it does not factor through any lattice in Y ,
or X is a Pro-object.

(4) Immersive bounded morphisms are precisely the morphisms X → Y with X
a Pro-object.

Proof. (1) If a lattice L exists that p sends to zero, being submersive gives a lattice
L′ in

L X� � // X

Y

p

OOY Y
1 //

L

Y

0

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥

L′ Y� � //
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so that L′ →֒ Y is the zero map. So the zero object is a lattice, which forces Y to
be an Ind-object. (2) if p : X → Y is discrete, a lattice is sent to zero, so just use
(1). Conversely, if Y is an Ind-object, by Prop. 10 the morphism p factors through
a lattice quotient p : X ։ X/L → Y . In particular p sends L to zero and so p is
discrete. As Y is an Ind-object, the zero object is a lattice, so p is clearly submersive.
(3) and (4) are dual. �

Finally, we can show that the boundedness of a morphism is preserved under
passing to sub-objects or quotients, and analogously for discreteness and finiteness.

Proposition 12. Suppose C is idempotent complete. Let ϕ : X → X be a bounded
(resp. discrete, finite) morphism and Y →֒ X an admissible monic such that ϕ |Y
factors over Y , i.e.

(3.1)

Y

X

� _

��

X X
ϕ

//

Y

X

� _

��

Y Y
ϕ

//

Then

(1) the restriction ϕ |Y : Y → Y is also bounded (resp. discrete, finite), and
(2) the quotient map ϕ : X/Y → X/Y is also bounded (resp. discrete, finite).

If ϕ is discrete and L′ →֒ L →֒ X are lattices so that ϕ factors as

ϕ : L/L′ −→ L/L′,

then there exist lattices L′
1 →֒ L1 →֒ Y and L′

2 →֒ L2 →֒ X/Y so that ϕ |Y and ϕ
factor as

ϕ |Y : L1/L
′
1 −→ L1/L

′
1

ϕ : L2/L
′
2 −→ L2/L

′
2

and
L1/L

′
1 →֒ L/L′

։ L2/L
′
2

is short exact.

Proof. (1, Bounded) As ϕ : X → X is bounded, it factors over a lattice, say L. Thus,

Y →֒ X
ϕ
→ X factors over L in the target, but by the commutativity of Diagram 3.1

this means that Y
ϕ
→ Y →֒ X factors over L in the target. Hence, we get the diagram

XX/L oooo

Y

X

� _

p

��

YY
ϕ

oo Y

X/L

0

uu❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥YY/L′ oooo

By Lemma 4 the admissible monic p is immersive. Thus, a lattice L′ as in the above
diagram exists, showing that ϕ |L is bounded.
(1, Discrete) This is simpler. As ϕ : X → X is discrete, there exists a lattice L →֒ X
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so that L →֒ X
ϕ
→ X is zero. By Lemma 1 there exists a lattice L′ →֒ Y such that

under Y →֒ X it maps to L →֒ X , and then the composition

L′ → L→ X → X

is zero. Thus, by commutativity L′ →֒ Y → Y →֒ X is zero, and by the defining
property of monics, the composition L′ →֒ Y → Y must already be zero. Since L′ is
a lattice, it follows that ϕ |L is discrete.
(1, Finite) Just combine both statements.
(2, Bounded) Consider the commutative diagram

X

X/Y
����

X/Y X/Y.
ϕ

//

X

X/Y.
����

X X
ϕ

//

As ϕ is bounded, there exists a lattice L →֒ X so that ϕ : X → L →֒ X . By
Lemma 1 there exists a lattice L′ →֒ X/Y so that X ։ X/Y restricted to L factors

over L′ →֒ X/Y . In other words, X
ϕ
→ X ։ X/Y ։ (X/Y )/L′ is zero. By the

commutativity of the diagram,

X ։ X/Y
ϕ
→ X/Y ։ (X/Y )/L′

must be zero as well. Since the first morphism is an epic, we deduce that X/Y
ϕ
→

X/Y ։ (X/Y )/L′ is already the zero map. By the universal property of cokernels,
this means that there is a factorization ϕ : X/Y → L′ →֒ X/Y , i.e. ϕ is bounded.

(2, Discrete) As ϕ is discrete, there exists a lattice L →֒ X such that L →֒ X
ϕ
→ X

is zero. Thus, we obtain that the diagonal morphism in

L X� � // X

X/Y

p

OOOO
X/Y X/Y

ϕ
//

L

X/Y

0

55❥❥❥❥❥❥❥❥❥❥❥❥❥

L′ X/Y� � //

is zero. Following Lemma 4 the admissible epic p is submersive, i.e. there exists a

lattice L′ →֒ X/Y such that L′ →֒ X/Y
ϕ
→ X/Y is zero. But this just means that ϕ

is discrete, too.
(2, Finite) Just combine the last two statements.
(Lattices) Finally, combine the above constructions for a discrete morphism and lat-
tices L′ →֒ L →֒ X such that ϕ factors as

ϕ : L/L′ −→ L/L′.

We see that they construct lattices L′
1, L1 →֒ Y so that L1 →֒ L and L′

1 →֒ L′ under
Y →֒ X ; without loss of generality use the (co-)directedness of the Sato Grassmannian
[BGW14a, Thm. 6.7] to achieve that L′

1 →֒ L1 holds, by replacing L1 by a common
over-lattice of the two constructed lattices if necessary. Proceed similarly for the
quotient X/Y . �
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4. General Tate objects

In this section we extend (in a trivial way) the previous definitions to non-elementary
Tate objects.

Let C be an exact category. We recall that its idempotent completion Cic is the
category whose objects are pairs (X, p) with X ∈ C and p : X → X with p2 = p an
idempotent. Its morphisms are

HomCic((X, p), (Y, q)) = {f ∈ HomC(X,Y ) | qfp = f}(4.1)

= {f | ∃g ∈ HomC(X,Y ) so that f = qgp} .

We refer to [Büh10, §6] or [Pre11a, Ch. II] for a detailed construction and basic prop-

erties of the idempotent completion. Recall that Tate(C) := (TateelC)ic. We will now
define all basic types of morphisms between general Tate objects by simply requiring
that the morphism of the underlying elementary Tate objects has the relevant prop-
erty. This is, by the way, the same mechanism which is employed to equip Cic with
an exact structure: A kernel-cokernel sequence in Cic is called exact iff it is a direct
summand of an exact sequence in C. See [Büh10, Prop. 6.13] for more on this. In
particular, admissible monics and epics in Cic are represented by admissible monics
and epics in C.

Lemma 11. Let C be a split exact category and Cic its idempotent completion. Then
Cic is also split exact.

Proof. Suppose 0→ A→ B → C → 0 is an exact sequence in Cic. Then by definition
[Büh10, §6, cf. Prop. 6.13] it arises as a direct summand of an exact sequence in C,
viewed as a sequence in Cic. Thus, there is an exact sequence in C so that

0 −→ A⊕A′ i
−→ B ⊕B′ j

−→ C ⊕ C′ −→ 0

is exact in C. Since C is split exact, there exists a left splitting π : B ⊕B′ → A⊕A′

so that πi = 1. It is now easy to check that B → B ⊕ B′ π
→ A ⊕ A′ → A, where

the outer arrows are the inclusion and projection from the direct summands, is a left
splitting of the original exact sequence. �

Definition 10. For objects X,X ′ ∈ Tate(C) we say that ϕ : X → X ′ is

(1) bounded,
(2) discrete,
(3) finite,
(4) immersive,
(5) submersive,

if, when unwinding the definition of idempotent completion, we have X = (Y, p)
and X ′ = (Y ′, q) and ϕ : Y → Y ′ (so that qϕp = ϕ) is a morphism of elementary
Tate objects so that ϕ has the named property.

Lemma 12. Let C be an idempotent complete exact category. In Tate(C)

(1) Lemma 3 remains valid, i.e. bounded, discrete and finite morphisms form
categorical ideals,
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(2) Lemma 4 remains valid, i.e. admissible monics (resp. epics) are immersive
(resp. submersive) as before.

(3) Lemma 6 remains valid, i.e. submersions behave as before.
(4) Lemma 7 remains valid, i.e. immersions behave as before.
(5) Lemma 8 remains valid, i.e. if C is split exact, Tateℵ0

C is split exact.
(6) Lemma 9 remains valid, i.e. given

Y1 Y2
f

//

X1

Y1

submersive

��

X1 X2
discrete // X2

Y2

OO

� ?

resp.

Y1 Y2g
//

X1

Y1

����

X1 X2
bounded // X2

Y2

OO

immersive

f is discrete (resp. g bounded).

Proof. Nothing really happens. We give some details nonetheless: (1) The ideal
property follows from the corresponding property for elementary Tate objects since
HomCic(X,X ′) is a subgroup of HomC(Y, Y

′) for X =: (Y, p) and X ′ =: (Y ′, q),
Equation 4.1. (2), (3), (4) similar. (5) Use Lemma 11 for split exactness. For (6) note
that we have such squares in Tate(C) only if they come from a square of elementary
Tate objects with morphisms with the same properties, so Lemma 9 applies to this
square, implying that f is discrete in Tate

elC and then so is in Tate(C). Analogously
for g. �

Remark 13. Clearly our approach is based on drawing parallels to similar concepts in
functional analysis. For example our notion of bounded morphisms is not too remote
from the concept of a compact operator. The same remark applies to trace-class
operators. The idea to look at higher local fields, i.e. special cases of n-Tate objects
over vector spaces, from a functional analytic perspective has already been pursued
in the work of A. Cámara [Cám13] and [Cám14].

5. Cubical structure

In Beilinson’s definition, that is Definition 6, an interesting continuity condition
appears. One looks at all k-linear maps “such that for all lattices L1 →֒M1, L2 →֒M2

there exist lattices L′
1 →֒M1, L

′
2 →֒M2 such that

L′
1 →֒ L1, L2 →֒ L′

2, f(L′
1△′) →֒ L2△′ , f(L1△′) →֒ L′

2△′

holds.”
In order to relate this to Tate objects, we first need to show that the very definition

of morphisms of Tate objects implies this kind of behaviour automatically. This is
not entirely obvious from the outset due to the rather different style of definition of
lattices:

Lemma 14. Suppose C is an idempotent complete exact category and X1, X2 ∈
Tate

elC. Let f ∈ Hom(X1, X2) be an arbitrary morphism. For all lattices L1 →֒
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X1, L2 →֒ X2 there exist lattices L′
1, L

′
2 and a double lattice factorization

(5.1)

L′
1 L2

∃ //

L1 L′
2

∃ //

X1 X2
f

//

L′
1

L1

?�

OO
L1

X1

?�

OO

L2

L′
2

?�

OO
L′
2

X2

?�

OO

and for all such L1, L
′
1, L2, L

′
2 we get an induced morphism

f : L1/L
′
1 → L′

2/L2 in HomC (L1/L
′
1, L

′
2/L2)

in the category C.

We keep the notation f for later use.

Proof. From the assumptions we just get the diagram depicted on the left in:

X1 X2
f

//

L1

X1

?�

OO

L2

X2

?�

OO

L1 L′
2

∃ //

X1 X2
f

//

L1

X1

?�

OO

L2

L′
2

?�

OO
L′
2

X2

?�

OO

By Lemma 1 (1) the restriction f |L1
factors through some lattice of X2, say L̃2.

By the directedness of the Sato Grassmannian [BGW14a, Thm. 6.7] we can find a

common over-lattice of both L̃2 and L2, call it L
′
2, so that we arrive at the diagram

on the right. By Lemma 1 (2) there exists some lattice L̃1 of X1 so that f |L̃1
factors

through L2. By the codirectedness of the Sato Grassmannian [BGW14a, Thm. 6.7]

we can find a common sub-lattice of both L1 and L̃1, call it L
′
1, so that we arrive at

the Diagram 5.1. Finally, this induces a canonical morphism f : L1/L
′
1 −→ L′

2/L2

and by [BGW14a, Prop. 6.6] quotients of nested lattices lie in the base category, i.e.

both source and target of f lie in the sub-category C. �

Later, we will need to understand how the composition of morphisms leads to the
composition of such induced morphisms f . In order to do this, we need to be able
to find intermediate double lattice factorizations. The best we can hope for in this
direction is the following existence result:

Lemma 15. Suppose C is idempotent complete. Let X1
f
−→ X2

g
−→ X3 be arbitrary

morphisms between elementary Tate objects. Then for every double lattice factoriza-
tion as in Diagram 5.1 for the composite g ◦ f we can find lattices L̃1 in X1, L2, L

′
2
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in X2 and L̃3 in X3 so that

(5.2)

L1/L
′
1 L′

3/L3
g◦f

//

L1/L̃1 L2/L
′
2

f
// L2/L

′
2 L̃3/L3

g
//

L1/L
′
1

L1/L̃1

����

L′
3/L3

L̃3/L3

?�

OO

commutes.

Proof. For the beginning, let f, g be arbitrary morphisms. Suppose we are given a
double lattice factorization for g ◦ f , i.e.

L′
1 L3.//

L1 L′
3

//

X1 X3
g◦f

//

L′
1

L1

?�

OO
L1

X1

?�

OO

L3.

L′
3

?�

OO
L′
3

X3

?�

OO

In general there is no reason why it should be possible to factor the two lower hori-
zontal arrows over lattices in X2. Thus, we first need to refine a given factorization.
Using Lemma 1 (1) there exists a lattice L2 in X2, and (using the Lemma again) a

lattice L̃3 so that the diagram depicted below on the left commutes:

L′
1 L3

//

L1 L′
3

//

X1 X2
f

// X2 X3
g

//

L1

L277 L2 L̃3
//L2

X2

?�

OO

L̃3

X3

?�
OO

L′
1

L1

?�

OO
L1

X1

?�

OO

L3

L′
3

?�

OO
L′
3

L̃3

?�

OO

L′
1 L3

//

L1 L′
3

//

X1 X2
f

// X2 X3
g

//

L1

L277♦♦♦♦♦♦♦♦

L2 L̃3
//

L′
2

L377

L̃1 L′
2

//

L2

X2

?�

OO

L̃3

X3

?�
OO

L′
1

L1

?�

OO
L1

X1

?�

OO

L3

L′
3

?�

OO
L′
3

L̃3

?�

OO

L′
2

L2

?�

OO

L̃1

L′
1

?�
OO

Here we may have without loss of generality replaced L̃3 in the diagram by a common
over-lattice of L′

3 and L̃3 so that the diagram still commutes (use directedness of the
Sato Grassmannian). Now consider the bottom horizontal arrow in this diagram.
Analogous to the previous refinement, using Lemma 1 (2) we find a lattice L′

2 in
X2 which (after possibly replacing L′

2 by a common sub-lattice with L2) fits in the

diagram depicted above on the right. Repeating this step again for L̃1 yields the full
diagram on the right. Taking quotients we get Diagram 5.2. �

The following definition is a fairly precise imitation (even regarding the naming of
the variables) of the continuity condition employed by Beilinson in his adèle paper,
compare with Definition 6, or see the original paper [Bĕı80].
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Definition 11. Suppose C is idempotent complete. Let X1, X2 ∈ n-TateelC be ele-
mentary n-Tate objects.

(1) Let Is1 (X1, X2) for s ∈ {+,−, 0} denote the bounded, discrete and finite mor-
phisms in Hom(X1, X2) respectively, exactly as in Definition 7.

(2) For i = 2, . . . , n let Isi (X1, X2) denote the morphisms f ∈ Hom(X1, X2)
such that for all lattices L1, L

′
1, L2, L

′
2 and double lattice factorizations as in

Diagram 5.1 we have

f ∈ Is(i−1)(L1/L
′
1, L

′
2/L2).

(3) We define

Itr (X1, X2) :=
⋂

i=1,...,n

I0i (X1, X2) ,

its elements will be called trace-class morphisms.

As in §4 this immediately implies a reasonable definition for general (non-elementary)
Tate objects:

Definition 12. If (X1, p1) and (X2, p2) are general Tate objects, define I
s
i (X1, X2) to

consist of those morphisms f : (X1, p1)→ (X2, p2) such that the underlying morphism
of elementary Tate objects X1 → X2 lies in Isi (X1, X2) in the above sense.

Theorem 13. Suppose C is idempotent complete and X,X ′, X ′′ ∈ n-TateelC or
n-Tate(C) .

(1) The Isi (−,−) for i = 1, . . . , n are categorical ideals. This means that the
composition of morphisms factors as

Isi (X
′, X ′′)⊗Hom(X,X ′) −→ Isi (X,X

′′)

Hom (X ′, X ′′)⊗ Isi (X,X
′) −→ Isi (X,X

′′) .

(2) In the ring End(X) the Isi (X,X) are two-sided ideals.
(3) Every composition of ≥ 2n morphisms from Itr (−,−) factors through an

object in C. For words in < 2n letters this is in general false.

The following argument is very close in spirit to the handling of lattices by A.
Yekutieli in [Yek15]. However, we encounter a number of additional technical issues
because of the less concrete notion of lattice we work with. There is also a similar
study in the case of vector spaces and n-local fields by D. V. Osipov [Osi07].

Proof. (1) We only show this for elementary Tate objects since the general case follows
directly along the same lines as the proofs in §4. We will reduce this to the case of
a single Tate category, notably Lemma 3. Let f, g be composable morphisms as
depicted in the top row of the diagram below. In order to prove that g ◦ f lies in Isi
(for some s and i), the condition to check reduces to proving a property g ◦ f induced
to a certain iterated subquotient of lattices. The lattice subquotients arise from an
inductive choice. More precisely: Starting with m := 1, consider any double lattice
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factorization of the composition as in diagram

(5.3)

L′
1 L3

//

L1 L′
3

//

X1 X2
f

// X2 X3
g

//

L′
1

L1

?�

OO
L1

X1

?�

OO

L3

L′
3

?�

OO
L′
3

X3

?�

OO

with X1, X2, X3 being elementary (n−m+ 1)-Tate objects. By Lemma 15 we can
construct a commutative diagram

L1/L
′
1 L′

3/L3
g◦f

//

L1/L̃1 L2/L
′
2

f
// L2/L

′
2 L̃3/L3

g
//

L1/L
′
1

L1/L̃1

����

submersive

L′
3/L3

L̃3/L3

?�

immersive

OO

where the left and right outer arrows are an admissible epic (resp. monic) and thus
are submersive (resp. immersive) by Lemma 12. Now continue with a picking another
double lattice factorization as in Equation 5.3, but this time with mnew := mold + 1

and using the top row of the above diagram in place of X1
f
−→ X2

g
−→ X3. Note

that the objects in this new row are quotients of nested lattices, so by [BGW14a,
Prop. 6.6] they are elementary (n−m)-Tate objects. Repeat this until we reach
m = i. For the rest of the proof g ◦ f will refer to the respective morphism coming
from the last step in this inductive procedure, i.e. when m = i. In particular, g ◦ f is
a morphism between (n− i)-Tate objects and from now on the word lattice will only
refer to lattices in such. No more interplay of lattices of varying Tate categories will
be needed, let us also rename the entries of the above diagram into neutral terms

Z1 Z2
g◦f

//

W1 A
f

// A W2
g

//

Z1

W1

����

submersive

Z2

W2

?�

immersive

OO

Now by assumption one of f or g lies in Is, so by Lemma 3 the entire top row lies in
Is. Then by Lemma 9 it follows that the bottom row lies in Is as well. (2) trivially
follows from (1). For (3) first note that it suffices to show this for elementary n-Tate
objects. Now we show the claim by induction on n. For n = 1 Lemma 3 gives the
claim. Hence, assume the case n− 1 has been dealt with and suppose fj ∈ Itr (−,−)
for j = 1, . . . , 2n are given and composable so that f1 ◦ · · · ◦ f2n makes sense. By a
minimal variation of the argument for Lemma 3 there is a factorization of fj ◦ fj+1

as

(5.4) X1 ։ X1/L
fj◦fj+1

−→ L′ →֒ X2,

where L is a lattice in X1 and L′ a lattice in X2. Following the argument of Lemma 3
further, the composition of any two morphisms having a factorization as in Equation
5.4, factors through an object in (n− 1)-Tate(C). Thus, for every second index there
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is a factorization f1f2, f3f4, f5f6, . . . : X∗ → C∗ → X∗ with ‘∗’ replaced by suitable
indices and with Cj ∈ (n− 1)-Tate(C). Now if we compose these 2n/2 = 2n−1

morphisms, by induction it factors over an object in C. To see that one cannot do
with less than 2n morphisms, we ask the reader to adapt Example 6 accordingly. �

Definition 13. Suppose we are given A := End(X) in the situation of Theorem 13.
Pairwise commuting elements P+

i ∈ A (with i = 1, . . . , n) such that the following
conditions are met:

• P+2
i = P+

i .
• P+

i A ⊆ I
+
i .

• P−
i A ⊆ I

−
i (and we define P−

i := 1A − P
+
i )

will be called a system of good idempotents. We shall call an (elementary) n-Tate
object n-sliced if A = End(X) admits a system of good idempotents.

A very explicit example for good idempotents will be given in Example 10.

Proposition 14. For every n-sliced object X ∈ n-Tateel(C) or n-Tate(C) we have

(5.5) I+i (X,X) + I−i (X,X) = End(X)

for all i = 1, . . . , n. Moreover, End(X) is a Beilinson n-fold cubical algebra as in
Definiton 1.

Proof. By Theorem 13 we have the necessary ideals I±i . In order to meet all axioms
of Definiton 1, it suffices to prove Equation 5.5. However, this can be done using the
idempotents, by an immediate generalization of the proof of Prop. 11. �

Lemma 16. If X ∈ C then every endomorphism is trace-class, i.e.

Itr(X) = Endn-Tate(C) (X) = EndC(X).

Proof. The first equality holds since every sub-object of X ∈ C is a lattice with
respect to the top 1-Tate structure, n-Tate(C) = Tate( (n− 1)-Tate(C) ). Then for
all quotients N/N ′ of such lattices N ′ →֒ N →֒ X , we still have N/N ′ ∈ C. Thus,
inductively, every endomorphism is trace-class. Then second equality holds since the
embeddings C →֒ Tate(C) are all fully faithful. �

6. The countable split exact case

With the previous results we have seriously approached arriving at a structure as
in Definition 1. Suppose C is an idempotent complete exact category. Now suppose
X is an elementary n-Tate object. We may present it as

(6.1) X = colim−−−→
L1

lim←−
L′

1

L1

L′
1

,

where L′
1 →֒ L1 →֒ X are a nested pair of lattices. One could also write this as

(6.2) X = colim−−−→
L1∈Gr(X)

lim←−
L′

1
∈Gr(X),L′

1
⊆L1

L1

L′
1

,

where Gr(X) denotes the Sato Grassmannian of all lattices in X .
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Remark 17. Let us look at the situation of a general n-Tate object, without the
cardinality hypothesis. We can always write X as an Ind-diagram (of Pro-objects)
or Pro-diagram (of Ind-objects)

(6.3) X = colim−−−→
L1

L1, X = lim←−
L1

X

L1

where L1 runs over the partially ordered set of lattices in X . The first presentation
follows trivially from [BGW14a] and would work for a general exact category C; for
the second one needs the dual viewpoint developed in [BGW15c, § Duality], requiring
C to be idempotent complete. This asymmetry stems from [BGW14a] defining the
Tate category as a sub-category of IndaProaC so that some ‘preferred viewpoint’ is
built into the theory. Working from the outset with the opposite category would shove
the idempotent completeness assumption to the first presentation and remove it from
the second. The presentation in Equation 6.2 can be obtained by first using the
left-hand side presentation in Equation 6.3, and then employing the right-hand side
presentation for each L1 individually. The co-directedness of the Sato Grassmannian
and [BGW15c, Corollary 2] imply that instead of L1 = lim←−

L′

1

L1

L′

1

with L′
1 running

through lattices of the Pro-object L1, we may alternatively run through the lattices
L′
1 of X which are contained in L1.

By [BGW14a, Prop. 6.6] any such quotient L1/L
′
1 is an (n− 1)-Tate object. This

observation generalizes to the case where X is a general n-Tate object by refining our
presentation to

X = P colim−−−→
L1

lim←−
L′

1

L1

L′
1

,

where P denotes an idempotent. By induction it follows that

X = P colim−−−→
L1

lim←−
L′

1

PL1,L′

1
colim−−−→
L2

lim←−
L′

2

PL1,L′

1
,L2,L′

2
· · · colim−−−→

Ln

lim←−
L′

n

P(...)
Ln
L′
n

,

where L′
1 →֒ L1 are nested lattices of the elementary n-Tate object underlying

X , L′
2 →֒ L2 are nested lattices of the elementary (n− 1)-Tate object underlying

L1/L
′
1, L

′
3 →֒ L3 are nested lattices of the elementary (n− 2)-Tate object underly-

ing L2/L
′
2,. . . , and finally Ln/L

′
n is an object of C. The letters P, PL1,L′

1
, . . . denote

idempotents cutting out the respective Tate objects.
The results of the last section on double lattice factorizations, notably Lemma 14,

tell us that any morphism
f : X1 −→ X2

of n-Tate objects stems from a system of compatible morphisms Ln/L
′
n → Nn/N

′
n in

the category C so that f is induced from assembling these morphisms into

colim
−−−→
L1

lim
←−
L′

1

· · · colim
−−−→
Ln

lim
←−
L′

n

Ln
L′
n

f
−→ colim
−−−→
N1

lim
←−
N ′

1

· · · colim
−−−→
Nn

lim
←−
N ′

n

Nn
N ′
n

.

If we take over from Lemma 14 the notation that the induced morphism of a double
lattice factorization is f , the morphisms Ln/L

′
n → Nn/N

′
n here are nothing but

“n-fold overline f”.
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Theorem 15. Suppose C is a split and idempotent complete exact category and X ∈
n-Tateelℵ0

(C) or n-Tateℵ0
(C) , i.e. X is a countable n-Tate object. Then X is n-sliced

and End(X) carries the structure of an n-fold cubical Beilinson algebra in the sense
of Definition 1.

Proof. For a 1-Tate object this is literally Prop. 11. In general, by Prop. 14, it
suffices to find a system of good idempotents. Proceed by induction in n. Write an
elementary n-Tate object as

(6.4) X = colim
−−−→
L1

lim
←−
L′

1

L1

L′
1

.

As any quotient L1/L
′
1 is an (n− 1)-Tate object and we assume our claim, i.e. the

existence of a system of good idempotents, for n− 1, the idempotents supply a direct
sum decomposition

L1/L
′
1 =

⊕

s1,...,sn−1∈{±}

P s11 · · ·P
sn−1

n−1 (L1/L
′
1) .

If L1 →֒ L2 is a larger lattice in X and L′
2 →֒ L′

1 a smaller lattice, the split exactness
allows one to find a direct sum decomposition

L2

L′
2

≃
L1

L′
1

⊕ (another (n− 1) -Tate object) .

We can use the same idempotents P±
1 , . . . , P

±
n−1 to decompose the new summand.

As our indexing categories are countable, we can exhaust X in this fashion to get a
choice of n − 1 good idempotents on all of X . Finally, on all of X , we get a further
idempotent P±

n , just by splitting the entire presentation of Equation 6.4 as

0 −→ lim←−
L′

1

L̃

L′
1

−→ colim−−−→
L1

lim←−
L′

1

L1

L′
1

−→ colim−−−→
L1

L1

L̃
−→ 0,

where L̃ is some fixed lattice of X . This gives us a full system of n good idempotents
and thus proves our claim. If X is a general Tate object, (X, p), use the idempotents
pP±

i p of the underlying elementary Tate object X instead. �

Open Problem. What is the correct analogue of this theorem in the context of Hen-
nion’s Tate categories for stable ∞-categories? [Hen15b]

We close this section by presenting an example where it is particularly easy to find
a system of good idempotents.

Example 10. Let R be a ring, possibly non-commutative. Define the ring of formal
Laurent series by R((t)) := R[[t]][t−1]. Then R((t1))((t2)) . . . ((tn)) canonically has a

representative in n-Tateel(ModR) via

X := “R((t1))((t2)) . . . ((tn))”

= colim−−−→
in

lim←−
jn

· · · colim−−−→
i1

lim←−
j1

1

ti11 · · · t
in
n

R[t1, . . . , tn]/(t
j1
1 , . . . , t

jn
n ).
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When evaluating the colimits and limits in ModR, we get the usual R-module

R((t1))((t2)) . . . ((tn))

and with a little more work one obtains the ring structure on it. Since the (co)limits
are taken over projective R-modules so that this object actually could be constructed
on the left in

n-Tateelℵ0
(Pf (R)) −→ n-Tateel(ModR),

we deduce that the implications of Thm. 15 apply to this particular object. For
i = 1, . . . , n define idempotents

P+
i

∑
am1,...,mn

tm1

1 · · · t
mn
n :=

∑
δmi≥0am1,...,mn

tm1

1 · · · t
mn
n

for am1,...,mn
∈ R and P−

i := 1 − P+
i . This is a system of good idempotents for X

in the sense of Definition 13. A description of the ideals I±(−) is easy to give; the

statements would be analogous to those in Lemma 26 in §10.

Remark 18. A different approach has been introduced by A. Yekutieli. He developed
the concept of semi-topological rings in [Yek92], [Yek95]. If one prefers Yekutieli’s
semi-topological theory over n-Tate objects, an analogous construction is possible:
If R is a semi-topological ring, e.g. with the discrete topology, Yekutieli shows that
R((t1))((t2)) . . . ((tn)) also possesses a canonical structure as a semi-topological ring
itself. He has established a result in the style of Theorem 15 in [Yek15]. Whichever
way one proceeds, one needs a replacement for classical topological concepts: For
example, it is known that for n ≥ 2 an n-local field like k((t1)) . . . ((tn)) is not a
topological field. A. N. Parshin and I. B. Fesenko have resolved this issue by using
sequential topologies, cf. [Fes01]. K. Kato’s version of Tate categories was also
introduced to address exactly this issue, we refer to the introduction of [Kat00]. See
[BGW15a] for a comparison of these different viewpoints.

7. Relation to projective modules

For a possibly non-commutative ring R we denote by Pf (R) the category of finitely
generated projective right R-modules. First, let us recall the following:

Theorem 16. ([BGW14a, Thm. 5.30]) Suppose R is a commutative ring.

(1) Then Tate
Dr(R) admits a canonical fully faithful embedding as a sub-category

of Tate(Pf (R)).
(2) When restricting to countable cardinality, this becomes an equivalence,

Tate
Dr
ℵ0

(R)
∼
−→ Tateℵ0

(Pf (R))

We shall also need a result identifying split exact categories and projective module
categories, a type of projective generator argument. It applies to a wide range of
situations, so let us state it in this generality.

Lemma 19. Let C be an idempotent complete, split exact category such that every
object is a direct summand of some fixed object S ∈ C. Then the functor

C −→ Pf (EndC(S))(7.1)

Z 7−→ HomC(S,Z)
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is an exact equivalence of exact categories.

Proof. Firstly, define E := EndC(S) and note that for any Z ∈ C the group HomC(S,Z)
becomes a right E-module by the composition of morphisms, i.e.

HomC(S,Z)×HomC(S, S) −→ HomC(S,Z).

This produces a functor C → Mod(E). Thus, for any objects Z1, Z2 ∈ C we get an
induced map of homomorphism groups

(7.2) HomC(Z1, Z2) −→ HomMod(E)(HomC(S,Z1),HomC(S,Z2)).

For Z1 = Z2 := S it is an isomorphism. It also sends idempotents to idempotents, so
the object S and all its direct summands are sent to E and direct summands of it.
However, by assumption any object of C is of this shape, so this gives an alternative
description of the same functor, and therefore implies that the map in Equation 7.2
is an isomorphism for arbitrary Z1, Z2. So the functor is fully faithful. Moreover,
we see that every object is sent to a direct summand of the free E-module E, so
the image of the functor consists of finitely generated projective E-modules, which
shows that the functor is well-defined. Conversely, every finitely generated projective
E-module M is a direct summand of E⊕n for some n. Since Equation 7.2 is also an
isomorphism for S⊕n, the idempotent defining M comes from an idempotent of S⊕n.
As C is idempotent complete, this idempotent possesses a kernel. This shows that
the functor is essentially surjective. As a result, we have an equivalence of categories
and since both are split exact, this equivalence is necessarily exact. In either case,
the only short exact sequences are the split ones. This finishes the proof. �

Remark 20. Let us quickly address the uniqueness of such a presentation. Suppose
S, S′ ∈ C are objects both satisfying the assumptions of the lemma. For example,
S′ := S ⊕ S. Then the equivalences of categories are related by the functor

Pf (EndC(S)) −→ Pf (EndC(S
′))

M 7−→M ⊗EndC(S) HomC(S
′, S),

which itself is an exact equivalence. Note that this is precisely the shape of a
Morita equivalence: HomC(S

′, S) is the Morita bimodule with the rings EndC(S)
and EndC(S

′) acting from the left- and right respectively. Exchanging the roles of S
and S′ yields the Morita bimodule for the reverse direction.

Suppose C is a split exact category. Moreover, suppose there is a collection {Si}i∈N

of objects Si ∈ C such that every object X ∈ C is a direct summand of some countable
direct sum of these Si. Then C′ := Tateℵ0

C is idempotent complete and split exact
by Lemma 12. Moreover, there is the canonical object

(7.3) Y :=
∏̂

N
S ⊕

⊕̂
N
S,

defined by
∏̂

N
S :=

∏
N

∏
i∈N

Si, and
⊕̂

N
S :=

⊕
N

⊕
i∈N

Si,

viewed as a Pro
a-object (respectively Ind

a-object), and it follows from [BGW14a,

Prop. 5.24] that every object X ∈ Tate
el
ℵ0
C is a direct summand of Y . Then of
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course the same holds in the idempotent completion C′. As a result, we have shown
the assumptions of our argument, but for Tateℵ0

C instead of C and for the family
{Si}i∈N we can take the single object Y . We may now iterate this procedure to
obtain the following.

Definition 14. Let C be a split exact category. For any object X ∈ C define

X((t)) :=
∏

N
X ⊕

⊕
N
X ∈ Tate

elC.

This is just a special case of Equation 7.3 in the case of a single object.

Definition 15. Let C be a split exact category and {Si}i∈N a collection of objects
such that every X ∈ C is a direct summand of a countable direct sum of objects in
{Si}. Then we call

S :=
(∏̂

N
S ⊕

⊕̂
N
S
)
((t2)) · · · ((tn))

a standard object for n-Tateℵ0
C.

Theorem 17. Let C be a idempotent complete and split exact category with a count-
able collection {Si} of objects as in Definition 15.

(1) Then every object X ∈ n-Tateℵ0
C is a direct summand of a standard object.

(2) There is an exact equivalence of exact categories

n-Tateℵ0
(C)

∼
−→ Pf (R)

for R := Endn-Tateℵ0
(C)(S) and S any standard object.

(3) Under this equivalence, the ideals I±i in R correspond to the categorical ideals
of Definition 11.

Proof. The first claim is just [BGW14a, Prop. 7.4] and the second is a direct conse-
quence thanks to Lemma 19. Part (3) is obvious for the standard object and then
use that every object is a direct summand of the latter. �

Let us now adapt this result to the case of ‘Tate modules à la Drinfeld ’, we refer to
[BGW14a, §5.4] for a definition and background information. This type of object has
been introduced by Drinfeld in his paper [Dri06] as a candidate for the local sections
of a reasonable notion of infinite-dimensional vector bundles over a scheme.

Theorem 18. Let R be a commutative ring. Then there is an exact equivalence of
categories

Tate
Dr
ℵ0

(R)
∼
−→ Pf (E),

where E is the Beilinson 1-fold cubical algebra

E := EndTateDr
ℵ0

(R) (R((t)) ) ,

where “R((t))” is understood as the Tate module à la Drinfeld with this name in
Drinfeld’s paper [Dri06].

Proof. We claim that we have exact equivalences of categories, namely

Tate
Dr
ℵ0

(R)
∼
−→ Tateℵ0

(Pf (R))
∼
−→ Pf (E) ,
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where the first equivalence stems from Theorem 16. The latter exists since Pf (R) is
an idempotent complete split exact category so that Theorem 17 is applicable with

E := EndTateℵ0
(Pf (R)) (R((t)) ) .

To justify this, note that every finitely generated projective R-module is a direct
summand of a finitely generated free module R⊕n for n large enough, so R((t)), as
in Definition 14, is indeed a standard object. However, now using the equivalence of
Theorem 16 again, the full faithfulness yields an isomorphism of rings

E ∼= EndTateDr
ℵ0

(R) (R((t)) ) ,

where now R((t)) is to be understood as the (rather: one choice of a) Tate module à
la Drinfeld corresponding to the Tate object with the same name. However, Drinfeld
himself introduced the corresponding object already in his original paper [Dri06,
§3, especially Example 3.2.2], and in fact it is also called R((t)) in loc. cit. This
establishes the claim. �

Open Problem. It would seem interesting to study the analogous problem without the
restriction to countable cardinality. This probably would lead to a very complicated
picture. Kaplansky has shown that a projective module over a ring must necessarily
be a direct sum of countably generated modules. Over the years it has become
increasingly clear that this perhaps surprising appearance of questions of cardinality
permeate the entire field [BT11]. See for example [HT12] or [EGAT14] for intricacies
in the context of Drinfeld’s ideas.

8. Trace-class operators

Suppose A is an n-fold cubical algebra as in Definition 1. Then we call the inter-
section of ideals

Itr :=
⋂

i=1,...,n

I+i ∩ I
−
i

the ideal of trace-class operators in A. Let us say a few things about the historical
precursors of this concept: While the name is inspired from a vaguely related defi-
nition in functional analysis, the present format originates from Tate’s 1968 article
on residues for curves [Tat68]. He considers a 1-fold cubical algebra of k-linear maps
and wants to define a trace on Itr, mimicking the usual trace. Sadly, the maps in his
ideal Itr need not have finite rank, so a priori it is not clear whether a notion of trace
exists for them at all. Tate then follows the principle that any nilpotent map should
have trace zero, no matter whether it has finite rank or not. From this he distills the
concept of a ‘finite-potent’ map − a map for which some finite power has finite rank.
Tate manages to develop a well-defined trace for such maps. Nonetheless, this trace
has some fairly mysterious properties. Most notably it is not always linear, as was
conjectured by Tate and later shown by F. Pablos Romo [PR07], see also [AST07],
[RGPR14] for a fairly complete analysis of this issue. However, in all applications
of Tate’s trace one usually only needs it for trace-class operators, i.e. maps in Itr,
rather than all finite-potent maps. Restricted to Itr , Tate’s generalized trace becomes
linear and very well-behaved. In this section we shall generalize this concept to Tate
categories. Just as Tate’s original work takes the classical finite rank trace as input,
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we shall also use a notion of trace on the input category C as the starting point for
the construction:

Definition 16. Let C be an exact category. An exact trace on C with values in an
abelian group Q is for each object X ∈ C a group homomorphism

trX : EndC(X) −→ Q

so that the following properties hold:

(1) (Zero on commutators) For f, g ∈ EndC(X) we have trX(fg − gf) = 0.
(2) (Additivity) For a short exact sequence A →֒ B ։ A/B and f ∈ EndC(B) so

that f |A factors over A, we have

(8.1) trB(f) = trA(f |A) + trA/B(f).

Example 11. For C := Vectf the usual trace of a k-linear endomorphism is an exact
trace with values in the base field k.

Example 12 (Hattori-Stallings trace). Suppose R is any unital associative ring,
not necessarily commutative. Let Pf (R) be the category of finitely generated right
R-modules. For any X ∈ Pf (R) the Hattori-Stallings trace is the morphism

trX : EndR(X) −→ R/[R,R]

X ⊗X∨ −→ R/[R,R]

x⊗ x∨ 7−→ x∨(x).

It is an exact trace. In fact, it is known to be universal on the category Pf (R), i.e.
any exact trace with values in an abelian group Q arises as the composition of the
Hattori-Stallings trace with a morphism R/[R,R]→ Q. See [Hat65], [Sta65] for the
original papers, [Bas79, §1] for a review. If R := k is a field, we recover the classical
trace.

Example 13. In Tate’s theory in [Tat68] every nilpotent endomorphism has trace
zero. This need not hold in our context − for entirely trivial reasons. We give an
explicit counter-example nonetheless: Take C := Pf (Z/2

10). Define a trace trZ/210 :

End(Z/210) → Z/210 as the identity. Since C is split exact, the axiom regarding
additivity for exact sequences determines a unique continuation of trZ/210 to the
entire category C. Clearly, multiplication with 2 is a nilpotent endomorphism of
Z/210, yet has trace 2.

Once such a trace is available, we can lift it to the trace-class operators of n-Tate
objects:

Proposition 19. Suppose C is an idempotent complete exact category and tr(−) an
exact trace with values in an abelian group Q. Then for every object X ∈ n-Tate(C)
there is a canonically defined morphism

τX : Itr → Q

and these morphisms are uniquely determined by the following properties:

(1) If X ∈ C then τX(f) = trX(f) for all f ∈ End(X).
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(2) Suppose N ′ →֒ N →֒ X are any lattices of X such that ϕ ∈ Itr(X) admits a
lift

X X
ϕ

//

N

X

� _

��

X

N

ϕ

??

and for which ϕ |N ′ is zero, and thus factors as N/N ′ ϕ
−→ N/N ′. Then

τX(ϕ) := τN/N ′(ϕ). This element is independent of the choice of N,N ′.
(3) (Zero on commutators) For f, g ∈ Itr(X) we have τX(fg − gf) = 0.
(4) (Additivity) For a short exact sequence A →֒ B ։ A/B and f ∈ Itr(B) so

that f |A factors over A, we have

τB(f) = τA(f |A) + τA/B(f).

We automatically have f |A∈ Itr(A) and f ∈ Itr(A/B).

The endomorphism group in (1) makes sense in view of Lemma 16.

Proof. (Step 1) The case n = 0 is trivial and directly reduces to the axioms of an
exact trace. We deal with the case of an elementary 1-Tate object X first, i.e. assume

n = 1. Suppose X
ϕ
→ X is any endomorphism in Tate

el(C). We call a diagram

N

X

� _

��

X X
ϕ

//

N

X

� _

��

X

N??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

N N
ϕ

//

a 1-factorization if N →֒ X is a lattice, the diagram commutes, and ϕ factors over
ϕ : N/N ′ → N/N ′ with N ′ →֒ N →֒ X a further (smaller) lattice. For any 1-
factorization of ϕ we can define a preliminary trace by τ(ϕ) := trN/N ′(ϕ) ∈ Q for
the simple reason that any quotient of lattices, e.g. N/N ′, must be an object in C,
[BGW14a, Prop. 6.6]. Next, we note that any finite morphism has a 1-factorization:
Since ϕ is bounded, it factors as X → N →֒ X . Now, restrict this to N . Since ϕ is
also discrete, there exists some lattice V with V →֒ X → X being zero, so let N ′ be
any common sub-lattice of V and N . Such exists because of the co-directedness of the
Sato Grassmannian [BGW14a, Theorem 6.7]. Now N and N ′ satisfy all necessary
criteria. Suppose we find a further 1-factorization with N ′ replaced by a smaller
lattice N ′′. From N ′′ →֒ N ′ →֒ N we get the short exact sequence

N ′

N ′′
→֒

N

N ′′
։

N

N ′
.

Since ϕ already vanishes onN ′, the trace must be zero on the left-hand side term. The
additivity axiom of the trace, Equation 8.1, implies that trN/N ′′(ϕ) = trN/N ′(ϕ) + 0.

Similarly, if we replace N by a larger lattice N+, we get the short exact sequence

N

N ′
→֒

N+

N ′
։

N+

N
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and as ϕ factors over N by assumption, the trace must be zero on the right-hand side
term. Again, we get trN+/N ′(ϕ) = trN/N ′(ϕ) + 0 by Equation 8.1. This shows that
our preliminary definition of a trace is independent under replacing N ′ by a smaller
lattice and N by a larger one. Since any two lattices have a common sub-lattice
and over-lattice, [BGW14a, Theorem 6.7], and trN/N ′(ϕ) ∈ Q is unchanged under
replacing lattices this way, we conclude that trN/N ′(ϕ) is actually independent of N
and N ′. In the same way we can show that the trace is linear: Pick Ni, N

′
i for i = 1, 2

and both morphisms in consideration and then verify the claim by replacing N1, N2

by a joint over-lattice, resp. sub-lattice for N ′
1, N

′
2. For a general (not necessarily

elementary) 1-Tate object, we proceed as in §4: The morphism ϕ is called finite if
the underlying morphism of elementary Tate objects (X, p)→ (X, p) is finite, so we
can take the trace which we have just constructed.
Summarizing our findings, we have seen that axioms (1) and (2) actually dictate a
well-defined construction of a group homomorphism τX : Itr → Q. This implies the
uniqueness and it remains to show that axioms (3) and (4) hold. Vanishing on [Itr , Itr]
is immediately clear since we find ϕ ◦ ϕ′ = ϕ◦ϕ′ for composable trace-class morphisms
ϕ, ϕ′, so the 1-factorization of a commutator can be expressed as the commutator of
1-factorizations. Now use the vanishing of exact traces on commutators. This proves
(3). For (4), suppose

(8.2) A →֒ B ։ A/B

is a short exact sequence and f ∈ Itr(B) is such that f |A factors over A. In this
situation, Prop. 12 guarantees that f |A∈ Itr(A) and f ∈ Itr(A/B) are also trace-
class. Moreover, if f factors over N/N ′, it supplies us with a short exact sequence

N1/N
′
1 →֒ N/N ′

։ N2/N
′
2,

where N ′
1 →֒ N1 →֒ A and N ′

2 →֒ N2 →֒ A/B are lattices. Of course these quotients
are objects in C, so the additivity of the exact trace tells us that

trN1/N ′

1
(f) = trN/N ′(f |A) + trN ′

2
/N2

(f),

but by (1) and (2) each of these traces is just a way to evaluate our trace τ(−), and
we get

τB(f) = τA(f |A) + τA/B(f),

which is exactly what we wanted to show. This settles axiom (4).
(Step 2) For an elementary n-Tate object proceed exactly as above, but combined
with an induction: Define a n-factorization just like a 1-factorization

N

X

� _

��

X X
ϕ

//

N

X

� _

��

X

N??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

N N
ϕ

//

but with ϕ : N/N ′ → N/N ′ an endomorphism of an (n− 1)-Tate object. By the def-
inition of trace-class operators, Definition 11, this is now again a trace-class operator
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for this (n− 1)-Tate object:

ϕ ∈ Itr = I+1 ∩ I
−
1 ∩

(⋂
i=2,...,nI

+
i ∩ I

−
i

)
,

from which we deduce that ϕ ∈ Itr(N/N
′), as (n − 1)-Tate objects. Next, pick a

(n−1)-factorization for ϕ and proceed this way until we get a 1-factorization. Define
τ(ϕ) as before by τ(ϕ) := trN/N ′(ϕ) of this 1-factorization. As in the case of 1-
factorizations, verify that for any j-factorization (j = 1, . . . , n), replacing lattices
by over- resp. sub-lattices does not affect the value of trN/N ′(ϕ): We prove this by
induction starting from j = 1. But this case has already been dealt with in Step
1. For j ≥ 2 use the same argument as in Step 1, adapted as follows: In Step 1 we
essentially only used the additivity property of the exact trace. Replace this by using
the additivity of our τ , i.e. its axiom (4), of the previous induction step j − 1.
Now, by construction properties (1), (2) in our claim are satisfied. Property (3)
follows easily as in Step 1. In order to show axiom (4), we can again just copy the
proof in Step 1 since it only uses the additivity of the exact trace, which we can again
replace by the additivity of our τ , axiom (4), of the previous induction step. �

It would be very nice if one could prove the following result in greater generality.

Proposition 20 (Strong Commutator Vanishing). Let C be an abelian category.
Suppose X ∈ n-Tate(C) and R := End(X), Itr ⊆ R the trace-class ideal. Then

τX([Itr , R]) = 0,

i.e. a commutator of a trace-class endomorphism with an arbitrary endomorphism
vanishes.

Proof. Let X ∈ n-Tate(C) and ϕ ∈ R, ϕ0 ∈ Itr(R). Since Itr is a two-sided ideal,
ϕ0, ϕϕ0 and ϕ0ϕ are all trace-class and thus we know that for each of them we can
quotient X → X step-by-step through lattices as in Prop. 19 (2), going from n-Tate
objects to 0-Tate objects while preserving the value of τ , so that we may assume
from the outset that X ∈ C. We can also find such lattices simultaneously for all
three of them since in each step the directedness and co-directedness of the Sato
Grassmannian [BGW14a, Theorem 6.7] assures us that we can take a common over-
(respectively sub-)lattice of the lattices we find for each individual morphism. Now
consider the commutative diagram

ker(ϕ0)

X

� _

��

X X
ϕϕ0 //

ker(ϕ0)

X

� _

��

ker(ϕ0) ker(ϕ0)
ϕϕ0

//

X

im(ϕ0)

ϕ0

����

X

im(ϕ0)

ϕ0

����

im(ϕ0) im(ϕ0)
ϕ0ϕ //

The kernel and image exist since C is abelian. The top horizontal arrow is clearly
the zero map so that τX(ϕϕ0) = τim(ϕ0)(ϕ0ϕ) by the additivity axiom of the trace.
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Moreover, we have the commutative diagram

im(ϕ0)

X

� _

��

X X
ϕ0ϕ //

im(ϕ0)

X

� _

��

im(ϕ0) im(ϕ0)
ϕ0ϕ //

X

X/im(ϕ0)
����

X

X/im(ϕ0)
����

X/im(ϕ0) X/im(ϕ0)
ϕ0ϕ//

Again, by additivity we must have τX(ϕ0ϕ) = τim(ϕ0)(ϕ0ϕ), since the bottom hori-
zontal arrow is the zero map. �

9. The Tate extension

Next, we recall a construction due to Beilinson [Bĕı80], generalizing Tate’s inge-
nious insight from [Tat68] for n = 1:

Construction 1. Let k be a field. For every n-fold cubically decomposed algebra
(A, (I±i ), τ) over k, as in Definition 4, there is a canonically defined Lie cohomology
class

φBeil ∈ H
n+1
Lie (g, k),

where g := ALie is the Lie algebra associated to A via the commutator [x, y]g :=
xy − yx.

This cohomology class was introduced in [Bĕı80]. An explicit formula and example
computations can be found in [Bra14a], [Bra14b].

Example 14. For n = 1 Tate constructs “the original” cubically decomposed algebra
in [Tat68, Prop. 1] − this is the example which has started the entire subject in a
way. It was independently found by many others, notably Kac-Peterson [KP81] or the
Japanese school, cf. Date-Jimbo-Kashiwara-Miwa [DJKM82]. See also the complete
cohomology computations by Feigin and Tsygan [FT83]. For a certain field K, Tate’s
paper [Tat68, Theorem 1] constructs a map, following the notation of loc. cit.,

res : K ∧K −→ k, (the “abstract residue”)

which can be re-intepreted as φBeil ∈ H
2
Lie(KLie, k). It produces a map Ω1

K/k → k,

fdg 7→ res(f ∧ g) which agrees with the usual one-dimensional residue of a rational
1-form at a point. Going well beyond the viewpoint in [Tat68, Prop. 1], one can
regard the Lie 2-cocycle φBeil as defining a Lie algebra central extension

k −→ ĝ −→ K.

The Lie algebra ĝ is an example of what is nowadays called Tate’s central extension.
In this case, ĝ is known as the Heisenberg Lie algebra. The theory is presented and
used from this perspective for example in [BS88, §2.4], [BBE02, §2.10, §2.13], [BD04,
§2.7], [BZN10], [FZ12], etc. . . Applications abound.
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Example 15. For n = 2 the cocycle φBeil ∈ H
3
Lie(g, k), applied to a doubly infinite

matrix Lie algebra, has been studied in great detail by Frenkel and Zhu [FZ12].

The construction of a trace for trace-class operators in the previous section allows
us to define a higher Tate extension class for the Lie algebras underlying endomor-
phism algebras of suitable n-Tate objects. In [Bra14b] Beilinson’s construction was
lifted from Lie cohomology to Hochschild and cyclic homology. These generalize
analogously to our present situation.

Theorem 21. Let C be a k-linear abelian category with a k-valued exact trace. For
every n-sliced object X ∈ n-Tate(C) the endomorphism algebra E := End(X) is a
cubically decomposed algebra in the sense of Definition 4.

(1) In particular, its Lie algebra gX := ELie carries a canonical Beilinson-Tate
Lie cohomology class,

φBeil ∈ H
n+1
Lie (gX , k)

via Construction 1. Alternatively, one may view this as a functional φBeil :
HLie
n+1(gX , k)→ k.

(2) There is also a canonical Hochschild homology and cyclic homology functional

φHH : HHn(E)→ k resp. φHC : HCn(E)→ k.

The Hochschild and the Lie invariant are not completely independent of each other,
cf. [Bra14b] for details on the interplay of these constructions.

Example 16. Recall that, by Theorem 15, if C is split exact and idempotent com-
plete, every countable n-Tate object is automatically n-sliced. For example, if we
consider the category C := Vectf , then the above theorem applies to all objects in
n-Tateℵ0

(C) .

Proof. (1) By Prop. 14, the endomorphisms E := End(X) form a Beilinson cubical
algebra, but so far without a trace formalism τ . Prop. 19 promotes the k-valued
exact trace on C to a trace

τX : Itr/[Itr, Itr ]→ k

for any n-Tate object X and Itr = Itr(X,X) its trace-class operators. As C is
abelian, Prop. 20, shows that this trace satisfies the stronger axioms of a cubically
decomposed algebra. Finally, Construction 1 constructs φBeil; here we refer to [Bĕı80]
for the actual construction. (2) The construction of these maps just takes a cubically
decomposed algebra as its input, so we can directly feed E into [Bra14b]. �

Example 17. If n = 1, this means that gX comes equipped with a canonical Lie
central extension

0 −→ k −→ ĝX −→ gX −→ 0

and if C := Vectf and we employ the usual trace, this produces most of the classical
examples of Tate’s central extension. For example, if g is a simple Lie algebra, its
loop Lie algebra

g((t)) := colim−−−→
i

lim←−
j

t−ig[t]/tj
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can naturally be viewed as an object in 1-Tateℵ0
C . The adjoint representation can

be promoted to a Lie algebra embedding

ãd : g((t)) →֒ E := End 1-Tateℵ0
C (g((t)))Lie

x 7→ (y 7→ [x, y])

(on the left-hand side view g((t)) as a plain Lie algebra and not as a 1-Tate ob-

ject). The pullback of φBeil ∈ H
2
Lie(E, k) along ãd is the Kac-Moody cocycle. This

mechanism defines a higher Lie cohomology class also for higher loop Lie algebras
g((t1)) . . . ((tn)), [FZ12], [Bra14a].

Example 18. The classical residue for a rational 1-form on a curve can be obtained
as follows: Let X/k be a smooth integral curve and x ∈ X a closed point. Then the
field of fractions of the completed local ring at x has a canonical structure as a 1-Tate
object in C := Vectf : To see this, observe that

ÔX,x = lim←−
i

OX,x/m
i
X,x

is a Pro-object of finite-dimensional k-vector spaces. The field of fractions K̂X,x :=

Frac ÔX,x can be written as the colimit over all finitely generated ÔX,x-submodules of

K̂X,x. Combining both presentations allows us to view K̂X,x ∈ 1-Tateℵ0
C . Of course,

this is only a special case of the Parshin-Beilinson adèles, see §2. The Hochschild
functional of Theorem 21 supplies us with a canonical map

φHH : HH1(End 1-Tateℵ0
C (K̂X,x)) −→ k.

Since the multiplication map z 7→ α · z for any α ∈ K̂X,x defines an endomorphism
of this 1-Tate object, there is a canonical ring map from the rational function field

k (X) (or K̂X,x) to the above endomorphism algebra. Composing them, we get

HH1(k (X)) −→ k

and the Hochschild-Kostant-Rosenberg isomorphism identifies the left-hand side with
Ω1
k(X)/k. This map turns out to be the residue. This is the Hochschild analogue of

Tate’s construction of the residue. See [Bra14b] for details.

Note that Beilinson’s paper [Bĕı80] would have used Beilinson’s cubically decomposed
algebra, see Theorem 9, instead of using a Tate category. However, by our Theorem
5 these are isomorphic. Alternatively, one could also use Yekutieli’s cubically decom-
posed algebra, see [Yek15].

Remark 21. The structures produced by Theorem 21 can be viewed as “linearizations”
of a more involved non-linear extension on the level of groups, resp. algebraic K-
theory. See [BGW14b] for the non-linear version. For K-groups in low degrees,
notably K1 and K2, this has been pioneered by [KP81] and [ADCK89]. See [PS86]
for the analogue in topological K-theory.
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10. Applications to adèles of schemes

We refer to [BGW14a, §7.2] for a detailed treatment of the relation between
Parshin-Beilinson adèles and n-Tate objects. Let Ab (resp. Abf ) be the category
of all (resp. finite) abelian groups. Suppose X is a scheme, finite type of pure Krull
dimension n over SpecR for R some commutative ring. Moreover, let F be a quasi-
coherent sheaf on X and we fix a subset △ ⊆ S (X)n of the flags of scheme points.

The treatment of [BGW14a, §7.2] views adèles as an elementary n-Tate object
in coherent sheaves of X with zero-dimensional support, i.e. with a slight abuse of
language, we could say

A(△,F) ∈ n-Tateel(Coh0X) .

This gives an exact functor QCoh (X)→ n-Tateel(Coh0X) , F 7→ A(△,F). Of course,
one might wish to distinguish between A(△,OX) as an n-Tate object of coherent
sheaves, or as the OX -module sheaf one obtains by carrying out the respective limits
and colimits in the bi-complete category ofOX -module sheavesA(△,F) ∈ Mod(OX) .
However, this distinction will always be clear from the context.

Remark 22. The category of quasi-coherent OX -module sheaves QCoh (X) is also bi-
complete, but carrying out the limits in this category instead would not form an exact
functor n-Tateel(Coh0X) → QCoh (X), and furthermore the resulting objects do not
appear to be particularly interesting. In fact, in QCoh (X) even taking countable
infinite products

∏
Z
is not an exact functor.

However, if R = k is a field, we may alternatively take global sections, Coh0X
Γ
−→

Vectf , and view the adèles as an n-Tate object in finite-dimensional k-vector spaces,

A(△,F) ∈ n-Tateel(Vectf ) .

For applications in number theory it is interesting to look at schemes over SpecZ.
Then the global section functor allows to formulate the adèles as an n-Tate object in
finite abelian groups, that is

A(△,F) ∈ n-Tateel(Abf ) .

All these variations of the adèles provide a rich source of examples of higher Tate
objects. We shall show:

Theorem 22. Let k be a field and X/k a reduced finite type scheme of pure dimension
n. For any quasi-coherent sheaf F and subset △ ⊆ S (X)n the Beilinson-Parshin
adèles A(△,F), viewed as an elementary n-Tate object in finite-dimensional k-vector
spaces, i.e. so that

A(△,F) ∈ n-Tateel (Vectf ) ,

is n-sliced (cf. Definition 13). In particular,

ETate
△ := End (A(△,OX))

carries the structure of an n-fold cubical Beilinson algebra (cf. Definition 1).

The claim of this theorem fails if we instead view the adèles as n-Tate objects over
Coh0 (X) or Abf . These variations are usually not n-sliced. We defer the proof and
begin with some negative examples:
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Example 19. Suppose X := SpecZ[t]. We shall only consider singleton flags △ =

{(η0 > η1 > η2)}, defining objects in the category 2-Tateel(Abf ) . We shall look
at some examples modelled after 2-local fields of mixed characteristics (0, 0, p) and
(0, p, p).

(1) A((0) > (t) > (p, t),OX) evaluates to what could be called Qp((t)). The
objects tnQp[[t]] for n ∈ Z are lattices and the relative quotients

(10.1)
tnQp[[t]]

tmQp[[t]]
≃ Q⊕(m−n)

p

form ≥ n lie in 1-Tateel(Abf ) . Here the sub-objects p
iZ

⊕(n−m)
p are examples

of lattices, with respective quotients ≃ (Z/pjZ)⊕n−m ∈ Abf . We have

(10.2) I+i (X,X) + I−i (X,X) = End(X)

for i = 1 by the presence of the splitting Qp((t)) ։ Qp[[t]] which chops off the
principal part of the Laurent series. On the other hand, for i = 2 Equation
10.2 fails. It suffices to apply Example 7 to the lattice quotients appearing
in Equation 10.1.

(2) A((0) > (p) > (p, t),OX) evaluates to something interesting. It is denoted
by Qp{{t}} in [FK00], and can be described explicitly as doubly infinite
Qp-valued sequences with boundedness conditions, namely

Qp{{t}} =

{
+∞∑

i=−∞

ait
i

∣∣∣∣∣∃C ∈ R : ai ∈ Qp, |ai|p ≤ C, lim
i→−∞

|ai|p = 0

}
.

It carries the structure of a 2-local field. The objects Ln := pnA((p) >
(p, t),OX) for n ∈ Z, which identify with

Ln =

{
+∞∑

i=−∞

ait
i

∣∣∣∣∣ ai ∈ Qp, |ai|p ≤ p
−n, lim

i→−∞
|ai|p = 0

}
,

are lattices and the relative quotients

pnA((p) > (p, t),OX)

pmA((p) > (p, t),OX)
≃ (Z/pm−nZ)((t))

for m ≥ n lie in 1-Tateel(Abf ) . Here we are in the opposite situation. Equa-
tion 10.2 holds for i = 2, but fails for i = 1. The argument of Example 7 can
be adapted to show the latter. For this note that Qp{{t}}/Ln is a p-primary
torsion group.

See for example [FK00, Ch. I] or [Mor12] for a further discussion of higher local
fields. These sources also explain the construction of F{{t}} for F a general complete
discrete valuation field. We leave it to the reader to formulate its Tate object structure
in general. All these higher local fields arise as special cases of adèles of suitably chosen
singleton flags.

Example 20. Suppose X := Spec k[t] and we view its adèles as an elementary 1-Tate

object in 1-Tateel(Coh0X) . We show that it cannot be sliced. For simplicitly, let us
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look at △ = {(0) > (t)} and △′ = {(t)}. Then

A(△′,OX) →֒ A(△,OX) ։ A(△,OX)/A(△′,OX)

is a short exact sequence. Roughly speaking, it identifies with

k[[t]] →֒ k((t)) ։ k((t))/k[[t]].

The Ind-object k((t))/k[[t]] = colim−−−→
i

1
ti k[[t]]/k[[t]] is t-torsion. In particular, if there

was a section to k((t)), the latter would have to possess non-trivial t-torsion elements.

This is a contradiction. Quite differently, in 1-Tateel (Vectf ) a section exists.

Proof of Theorem 22. This is not very difficult because we can produce the required
idempotents explicitly. For the sake of simplicity let us write ηi to denote the i-th

ideal power of the ideal sheaf of the reduced closed sub-scheme {η} for a given scheme
point η ∈ X . Moreover, let us write “O

〈
f−1

〉
” to denote coherent sub-sheaves of

OX,η, indexed by f , so that the quasi-coherent sheaf OX,η is presented as the OX -
module colimit over them, i.e. as depicted on the left below:

OX,η = colim−−−→
f /∈η

O
〈
f−1

〉
. RP = colim−−−→

f /∈P

1

f
R ⊂ R[

1

f
]

(This notation is supposed to be suggestive of the corresponding presentation if R is
a ring and P ∈ SpecR a prime ideal, as depicted above on the right). We unwind
the formation of adèles directly from the definition; but recall that by the limits and
colimits we really mean the respective diagrams of n-Tate objects and do not refer to
carrying out actual limits in the categories themselves, see [BGW14a, §7.2] for details
on how this can be implemented explicitly. We arrive at

A(△,OX) =
∏

η0∈X

lim←−
i0

A

(
η0△ ,

OX,η0
ηi00

)

=
∏

η0∈X

lim←−
i0

colim−−−→
f0 /∈η0

A

(
η0△ ,

O
〈
f−1
0

〉

ηi00

)

=
∏

η0∈X

lim←−
i0

colim−−−→
f0 /∈η0

∏
η1∈X

lim←−
i1

A

(
η1η0△ ,

O
〈
f−1
0

〉

ηi00
⊗
OX

OX,η1
ηi11

)

=
∏

η0∈X

lim
←−
i0

colim
−−−→
f0 /∈η0

∏
η1∈X

lim
←−
i1︸ ︷︷ ︸

Tateel

colim
−−−→
f1 /∈η1

A

(
η1η0△ ,

O
〈
f−1
0

〉

ηi00
⊗
OX

O
〈
f−1
1

〉

ηi11

)

=
∏

η0∈X

lim←−
i0

colim−−−→
f0 /∈η0

∏
η1∈X

lim←−
i1︸ ︷︷ ︸

Tateel

colim−−−→
f1 /∈η1

∏
η2∈X

lim←−
i2︸ ︷︷ ︸

Tateel

colim−−−→
f2 /∈η2

(. . .)

and so forth. . . ,

where we only run through those η0, . . . , ηn such that η0 > · · · > ηn ∈ △. The
underbraces emphasize which parts of this expression are to be read as limits or
colimits respectively, and how to group them to form Tate diagrams. We need to
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justify why the left-most limits, left of the initial underbrace, exist: Since our scheme
is of finite type and η0 runs through the irreducible components of X , the product
over the η0 is finite. Similarly, the ideal sheaf of each respective irreducible component
is necessarily nilpotent so that for each η0 the limit over i0 is over an essentially finite
diagram. Unwinding this further presents the adèle object as an elementary n-Tate
object (in the sketch above only the first two outer-most Tate category iterations is
visible). Our claim is proven if we can exhibit pairwise commuting idempotents P+

j ,
j = 1, . . . , n, projecting this object onto the respective lattice, indexed by fj−1 = 1.
This reduces to constructing sections

O
〈
f−1
0

〉

ηi00
⊗ · · ·

O
〈
f−1
j−1

〉

η
ij−1

j−1

· · · ⊗
O
〈
f−1
n−1

〉

ηinn−1

։
O
〈
f−1
0

〉

ηi00
⊗ · · ·

OX

η
ij−1

j−1

· · · ⊗
O
〈
f−1
n−1

〉

ηinn−1

in the category of finite-dimensional k-vector spaces (since once these exist, they
define straight morphisms between the respective Tate diagrams and therefore the
desired idempotents in the category of n-Tate objects). However, the latter is obvious
since the category of vector spaces is split exact. �

Of course Theorem 22 provokes a question:

EBeil
△ = ETate

△ ?

Beilinson had already shown, see Theorem 9, that for flags △ = {(η0 > · · · > ηn)}
in a scheme X a cubical algebra EBeil

△ can be formed from his notion of lattices.
Its definition hinges crucially on geometric data of X simply because the underlying
notion of lattice depends on X . On the other hand, we have just seen that ETate

△

is also a cubical algebra. It comes with its own notion of lattices, which now only
depends on the structure as a Tate object. One can show that these two types of
lattices are different, albeit very closely related to each other. We refer to [BGW15a,
§5] for an explicit example illustrating this discrepancy.

However, the answer to our question is still affirmative:

Theorem 23. Let k be a field. Suppose X/k is a reduced scheme of pure dimension
n, and view the Beilinson-Parshin adèles A(△,OX), for △ = {(η0 > · · · > ηn)} with

codimX {ηi} = i, as an n-Tate object in finite-dimensional k-vector spaces. Then
there is a canonical isomorphism of Beilinson cubical algebras

EBeil
△
∼= ETate

△ .

We shall split the proof into several lemmata. For notational clarity, let us tem-
porarily introduce the following distinction:

Definition 17. Suppose M is a finitely generated Oη0-module and △ = {(η0 > · · · >
ηn)} a flag, △′ := {(η1 > · · · > ηn)}.

(1) A Beilinson lattice is a lattice in the sense of Definition 5, i.e. a finitely
generated Oη1-module L ⊆M such that Oη0 · L =M .

(2) A Tate lattice is a lattice in the sense of Tate objects, i.e. a sub-object of the
n-Tate object M△ := A(△,M) which is a Pro-object with an Ind-quotient.

Lemma 23. For △ = {(η0 > · · · > ηn)} and M a finitely generated Oη0-module,
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(1) M△ is an elementary n-Tate object and
(2) for every Beilinson lattice L ⊆M we have that L△′ →֒M△ is a Tate lattice,
(3) for every Tate lattice T there exist Beilinson lattices L1 ⊆ L2 such that

L1△′ ⊆ T ⊆ L2△′ .

Proof. (1) The statement about M△ = A(η0 > · · · > ηn,M) is clear from the discus-
sion opening the section, i.e. essentially nothing but [BGW14a, §7.2].
(2) Unwinding Equation 10.4 for L△′ = A(η1 > · · · > ηn, L), we see that L is one of
the Tate lattices in the outer-most colimit so that we clearly have, just by unwinding
definitions, a canonical morphism

L△′ →֒M△

A(△′, L) →֒ A(△,M)

lim
←−
L′

1

colim
−−−→
L2

· · · colim
−−−→
Ln

lim
←−
L′

n

Ln
L′
n

︸ ︷︷ ︸
(n−1)-Tate object

→֒ colim
−−−→
L1

lim
←−
L′

1

colim
−−−→
L2

· · · colim
−−−→
Ln

lim
←−
L′

n

Ln
L′
n

︸ ︷︷ ︸
(n−1)-Tate object

,

where on the left-hand side we have replaced the colimit over L1 by the single value
for L1 := L the lattice at hand. This is visibly a Pro-object with an Ind-quotient,
thus a Tate lattice.
(3) Let T →֒ M△ be a Tate lattice. Since we may write M△ as M△ = colim−−−→LL△′

(by definition), i.e. as an Ind-diagram over Pro-objects, where L runs through all
Beilinson lattices, the Pro-subobject T must factor through one of these L△′ . If
L2 denotes one such index, i.e. the underlying Beilinson lattice, this means that
T →֒ L2△′ . The other direction is a little more complicated: Let L be any Beilinson
lattice. Then the composition

L△′ →֒M△ ։M△/T

is a morphism from a Pro-object to an Ind-object. Thus, it must factor through an
(n− 1)-Tate object C, i.e.

(10.3) L△′ → P →֒M△/T

(Proof: Since Pro-objects are left filtering in Tate objects by [BGW14a, Prop. 5.8],
the composed arrow L△′ → M△/T factors as L△′ → P →֒ M△/T , with P a Pro-
object. But M△/T is an Ind-object, so P must be an Ind-object, too. By [BGW14a,
Prop. 5.9] it follows that P is an (n − 1)-Tate object). The object L△′ can be
presented as the Pro-diagram

L 7→ (L/L′)△′ = L△′/L′
△′ ,

where L′ ⊆ L runs through all Beilinson sub-lattices, partially ordered by inclusion.
The quotients (L/L′)△′ are (n − 1)-Tate objects, and since these are right filtering
in Pro-objects over them, [BGW14a, Theorem 4.2 (2)], it follows that the arrow
L△′ → P factors through the projection to an object in the Pro-diagram

L△′ ։ (L/L′)△′ → P
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for a suitable L′ ⊆ L. Thus, returning to Equation 10.3 the composition

L′
△′ →֒ L△′ →M△/T

is zero. Thus, L′
△′ →֒ T follows from the universal property of kernels. �

Remark 24. The apparent asymmetry in the complexity of proving the existence of
L1 resp. L2 in L1△′ ⊆ T ⊆ L2△′ is caused by the fact that we view Tate objects as a
sub-category of IndaProa(C). This is the place where this kind of asymmetry is built
in.

Next, we observe that one can present the limits and colimits underlying the adèles
in a particularly convenient format:

Lemma 25. Suppose we are in the situation of the theorem.

• Then for any j = 1, . . . , n the following describes the same object:

colim−−−→
L1

lim←−
L′

1

· · · colim−−−→
Lj

lim←−
L′

j

A

(
ηj+1 > · · · > ηn,

Lj
L′
j

)

where all the Lℓ run increasingly through all finitely generated Oηℓ-submodules

of
Lℓ−1

L′

ℓ−1

(if ℓ ≥ 2) or Oη0 (if ℓ = 1); the L′
ℓ ⊆ Lℓ run decreasingly through all

finitely generated Oηℓ-submodules of Lℓ having full rank.
• This statement holds true irrespective of whether we carry out the limits and
colimits in the category of all k-vector spaces, or interpret it as an elemen-
tary j-Tate object with values in an elementary (n− j)-Tate object of finite-
dimensional k-vector spaces.

Proof. The immediate evaluation of A(η0 > · · · > ηn,OX) straight from the definition
unravels easily to become the case j = 1 in the statement. Inductively, one can
transform the expression into its counterpart for j + 1. For details, cf. [BGW15a,
Lemma 30]. This procedure works with both interpretations, verbatim. �

We may read this lemma as a kind of induction step. For its final step, j = n, we
arrive at

(10.4) A(η0 > · · · > ηn,OX) = colim−−−→
L1

lim←−
L′

1

· · · colim−−−→
Ln

lim←−
L′

n

Ln
L′
n

,

presenting the adèle object on the left-hand side entirely in terms of Beilinson lattices.
This presentation bridges from the definition of the adèles in Beilinson’s original paper
[Bĕı80] (or [Hub91], [Yek92], [HY96] for secondary sources) to the ideals in Beilinson’s
cubical algebra structure as given in Definition 1:

Lemma 26. We keep the assumptions as in the theorem. Below, the ‘roof symbol’

(̂· · · ) will denote omission:

(1) Suppose M1,M2 are finitely generated Oη0-modules. Then a k-linear map
f ∈ Homk(M1△,M2△) lies in Hom△(M1,M2) if and only if it stems from a
compatible system of k-linear morphisms

Ln
L′
n

−→
Nn
N ′
n

,



OPERATOR IDEALS IN TATE OBJECTS 45

with L′
n ⊆ Ln (in M1) and N ′

n ⊆ Nn (in M2) suitable Beilinson lattices,
inducing a morphism in the limit/colimit

f :M1△ −→M2△

colim−−−→
L1

lim←−
L′

1

· · · colim−−−→
Ln

lim←−
L′

n

Ln
L′
n

−→ colim−−−→
N1

lim←−
N ′

1

· · · colim−−−→
Nn

lim←−
N ′

n

Nn
N ′
n

.

(2) We remain in the situation of (1). We have f ∈ I+i△(M1,M2) if and only if
f factors as

colim−−−→
L1

lim←−
L′

1

· · · colim−−−→
Ln

lim←−
L′

n

Ln
L′
n

−→ colim−−−→
N1

lim←−
N ′

1

· · · ĉolim−−−→
Ni

· · · colim−−−→
Nn

lim←−
N ′

n

Nn
N ′
n

,

i.e. instead of the colimit over all Ni we can take a fixed Ni (depending on
N1, N

′
1, . . . , Ni−1, N

′
i−1). We have f ∈ I−i△(M1,M2) if and only if f factors

as

colim−−−→
L1

lim←−
L′

1

· · · l̂im←−
Li

· · · colim−−−→
Ln

lim←−
L′

n

Ln
L′
n

−→ colim−−−→
N1

lim←−
N ′

1

· · · colim−−−→
Nn

lim←−
N ′

n

Nn
N ′
n

,

i.e. instead of the limit over all Li we can take a fixed Li (depending on
L1, L

′
1, . . . , Li−1, L

′
i−1).

Proof. This follows rather directly from the definition. Firstly, unravel A(η0 > · · · >
ηn,OX) in terms of iterated limits and colimits of lattices as in Equation 10.4. But
then ideal membership for I±i is exactly the property to factor through a Beilinson
lattice of the target, resp. a Beilinson lattice of the source. �

Proof of Thm. 23. For the sake of clarity, we shall denote a Beilinson lattice by the
letter L in this proof, and Tate lattices by the letter L. We know that every Beilinson
lattice gives rise to a Tate lattice, Lemma 23, and conversely by the same Lemma
every possible Tate lattice L is sandwiched as L1△ ⊆ L ⊆ L2△ between Beilinson
lattices L1,L2. We now claim that

(10.5) EBeil
△
∼= ETate

△

holds as sets. This is seen as follows: Given a k-linear map f ∈ EBeil
△ the definition of

the subgroup Hom△(Oη0 ,Oη0) ⊆ Endk(OX△,OX△) in Definition 6 guarantees that
there exist factorizations

f : (L1/L
′
1)△′ → (L′2/L2)△′

over suitable Beilinson lattices L1,L
′
1,L

′
2,L2. By the exactness of the adèle functor

(−)△′ , this is nothing but f : L1△′/L′1△′ → L′2△′/L2△′ . Hence, we get a (straight)
morphism of the explicit Tate diagrams arising from the presentation of Equation
10.4. In particular, this datum induces a morphism of n-Tate objects. Conversely,
any morphism of n-Tate objects can be factored over lattice quotients in the desired
shape by Lemma 14. This proves Equation 10.5 as an equality of sets because both
maps are inverse to each other. However, it is easy to check that these maps are in
fact group homomorphisms and also respect composition, so we get an isomorphism
of associative algebras. Lemma 26 then establishes the equality of ideals I±i : Just



46 O. BRAUNLING, M. GROECHENIG, J. WOLFSON

unravel the ideal membership conditions and use that all Beilinson lattices give rise
to Tate lattices, and conversely we have the sandwiching property. �
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