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Abstract

This paper describes a new architecture for high performance distributed applications

and a supporting framework. This architecture applies object-oriented design and im

plementation techniques to build a framework for platform-independent distributed ap

plication specification and implementation using existing programming languages and

operating systems. It utilizes an efficient and extensible layering architecture that al

lows new abstract data types, new presentation-layer protocols, and new interprocess

communication mechanisms to be added as they become necessary. Experimental re

sults are presented demonstrating that the multiple layers of abstraction used do not

compromise efficiency.

This material is basedupon worksupportedby the National ScienceFoundation underGrantNo. NCR-8907909. This
research is also in pan supported by University of California MICRO program.



I Introduction

Developing high performance distributed applications that must communicate with a diverse
range ofremote entities is anon-trivial task due to the complexity and heteroaeneity of interappli-
cation communication mechanisms and their interfaces. .Adding distribution to existing applica
tions can result in an inordinate amount of reengineering due to the lack of high-level support for
distribution in most traditional environments. There has been considerable research in the areas
of both distnbuted operating systems[ 1.2.3.4.5.6] that seek to provide distributional transparency
to the designer, as well as programming languages for distributed application develop-
mem[7,8,9.10.II] that offer language constructs to facilitate distribution. However these svstems
typically are not designed to interoperate with the wide variety of protocols or data formats that
are used in a global internet environment.

The emergence of large scale high speed networks is shifting the performance bottleneck up from
the communication substrate to the actual bandwidth offered to the user. This bottleneck is due
largely to presentation formatting that must be performed to address heterogeneous internal data
representation. [12] presents an architectural approach to reducing the impact of this processing
based on Application Level Framing and Integrated Layer Processing. This approach benefits not
from eliminating presentation formatting, but from (a) pipelining multiple processing stages to re
duce unnecessary data movement and (b) allowing the application to process incoming data in ap
plication-specified units, thus reducing the penalty (at the presentation layer) for lost or
misordered packets.

This paper describes the G/MAX system, a framework for high performance distributed applica
tion design and implementation. G/MAX is inspired by the concepts proposed in [12], and seeks
to provide flexible and efficient application-based communication architecture. G/MAX provides
language-level constructs and support for efficient and transparent distribution of application data
objects. We are currently implementing and experimenting with this framework using the C++
programming language, which was chosen as the implementation language for its efficiency, its
compatibility with the large body of existing C language code, and its support for object-oriented
programming. The initial system is developed using traditional communication mechanisms

(e.g., sockets[I3], Sun RPC[14], and XTI[15]), which will ultimately be replaced by the ADAP
TIVE system[16] to allow finer grain control of the actual transmission ofdata objects.. This pa
per focuses on the Presentation layer of the system, and describes in detail the abstractions used

for both presentation objects and communication medium convergence.

n Design Goals

The framework described in this paper isdesigned to satisfy the following goals:

Basic Encoding Rule Independence andTransparency: Due to variances in processor architec-



tures. operating systems, programming languages and their compilers, data (objects) that must be
transponed to atoreign host must be encoded into aformat that ail communLtmg partieT a
recogmz. Lnder the OSI Reference ,Model[ 17,. this tas. ,s the responsib.l.tv of Laver 6 the Pre
sentatton Layer, Presentation protocols are traditionally implemented using aJam definnion lan-

:Z : 7 'definitions arthen
tation ot 'Td ' '"'e' specify the exact binars- represen-to Of each data type. For maximum flexibility, our framework allows Presentation LaL ser-

; -'d' existing applications(e.g., ASN,1[18] for compatibility with OSI applications) or for the best match to new applica
tions (e.g.. XDR with Multimedia extensions for bandwidth/processing intensive applications) .A
single object can be transported using multiple encoding schemes, w„h the correct one for av.ven
end-to-end association selected automatically via strong typing and functionyoperator overioad-
mg. This allows acommunicating entity to maintain asingle internal data format that is most ef
ficient for local processing, while using ASN.l to communicate information to network
management applications and amore efficient format for more time-cntical communications,
ObjectA-ask Location Independence and Transparency: The emergence of distnbuted object
management systems and languages! 19,8,20,21] has shown that using adistnbuted object-orient
ed p^adigm IS apowerful and expressive way to design and implement distributed applications
Our framework provides distnbuted object management facilities by augmenting objects with the
necessary member functions to transparently or explicitly designate the location of data members
ant^ the constituent operations performed. The actual location of vanous application objects can
be transparently selected by the application designer to match the communication charactenstics
of the application. Object location can be explicitly designated either at the time of object instan-
..ation, or during the object's lifetime via asingle member function. Finer-grain control of object
location and migration can be specified by designating member functions or data members for re
mote invocation/instantiation, allowing the application designer to distribute asingle object
across multiple locations.

Communication Substrate Independence and Transparency: There is presently avery large
number of communication substrates available to the distributed system designer (e g TCPr2-l
OSI-TP4[23j. VMTP[24]. NETBLT[25,, XTPj26,, etc), with new protocols on^he horLl'
(e.g.. Bellcore's TP++, OSI HSTP), Each of these protocols provides varying levels of perfor-
tnance and types of service. To take advantage of advances in network technology, it is essential
that applications sufficiently insulate themselves from idiosyncrasies of agiven substrate without
unduly reducing efficiency. Our framework seeks to decouple object transmission/reception from
the underlying communication subsystem. This allows the same code to be used portably across
many different communication subsystems without regard to the selected substrate. The frame-



work provides a minimal yet tuncticnal base interface to basic communication services, while al

lowing access to substrate-specihc features, functions and formats in an efficient yet isolaiable
manner.

Efficient yet Robust "Higher Layer" Protocol Services: By designing the layering architecture

for both transparency and efficiency, protocol layers which were previously considered bottle

necks in distributed applications can now be used in high performance systems. Studies have

shown that presentation layer processing is a major bottleneck in network performance! 12.27).

due to both the comple.xity of the processing involved and the additional data movement incurred

from translating data between formats. Our framework addresses both of these issues:

1. Complexity — The fundamental data types used in a presentation protocol are hand-coded

and inlined to yield a highly efficient translation. Additionally, every built-in data type has

a hand-tuned r\pe conversion operator to allow efficient processing of built-in types. .As

composite datatypes aredirectly composed of the fundamental orbuilt-in types, their trans
lations are efficient as well. However, implementors are free to experiment with and hand-

tune a given composite object's encoding and/or decoding.

2. Redundant Data Copying — The entire "data path" of the framework is designed to allow

conversion-on-copy operations,scatter-read/gather-write, memory-mapped I/O, and "pipe

lining" of protocol processing operations. Additionally, we are experimenting with alter

natives to the traditional socket interface to funher reduce the need for copying.

Streamlined Development Process: Conventional systems require the designer to maintain a

data description in a language otherthan the language being used to develop the application. Our
framework allows designers and implementors to specify objects directly in the implementation

language (e.g., C-H-), without requiring an additional data description language or stub compiler.
The fundamental data types and formats are precisely defined within the framework specification.
This allows formats to be expressed unambiguously, while allowing the developmentcycle to be

streamlined by using rapid prototyping techniques.

Medium Independence and Transparency: The class libraries used to encode data objectscan

easily be combined with the existing C++ iostream' class libraries currently being standard
ized by ANSI. This allows objects to be stored in a platform-independent format with no addi
tional implementation effort. It also allows persistent objects to be "played out" over a
communication channel by an application that is unaware of the underlying format simply by
transmitting the contents of a file. This capability is also useful for debugging purposes, as anen
tire communication sessioncan be captured to a file for laterexamination.

' The iostream library is the C++ analog to the Cprogramming language's scdio library. However, itoffers the advantages of
being type-safe andextensible to encompass newdata typesand I/Odevices
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Figure I: G/MAX Layering Architecture

Figure 1 shows the layering model used in our architecture. The Data Transport and Media
Convergence layers correspond to the Communication Substrate Dependent level, as shown in
Figure 2. The Presentation and Distribution layers correspond to the Communication Substrate

Independent level, as shown in Figure 3. The following is a description ofeach layer.

Data Transport Layer

The DataTransport Layer provides the basic local and remote interprocess communication chan
nel. This layer represents both the IPG mechanisms and theirconstituent Application Program
matic Interfaces (APIs). It is assumed that each underlying IPG mechanism provides either (I) a

basic duplex data stream with either connection-oriented or connectionless semantics or (2) a

shared memory interface with support for mapping a memory segment into and out of an address

space.

Network Subsystems: The remote interprocess communication substrate. The basicconnection-

oriented network service is expected to provide an error-free, in-order delivery of bytes
{i.e., TGP[22] or equivalent). The basic connectionless network service is expected to simply

provide a best effort delivery of datagrams {i.e.. UDP[28] or equivalent). Additionally, more di
verse classes of network services can also be supported in this model. For example, ADAP-

TIVE[16] provides a multi-stream transport substrate that can be flexibly and adaptively
configured to provide diverse grades of service to multimedia applications.

The Network Subsystem Layer also includes the APIs to network services, that allow user-space



applications to access data transport operations in a protocol independent manner. Several net

work APIs supported include the BSD sockets. System V TLI. POSIX XTI, ADAPTIVE API. x-

kernel[29]. NetBIOS[301. and the VVINS0CK[311 library. Each of the interfaces provides both
communication operations {e.g.. open, close, send, recv) and addressing/naming services

(e.g.. address formats, name resolution and registration).

socketbuf

ocketSAP TLISAP

adactivebuf

ADAPTIVE-

SAP

shmbuf

SHMSAP

^ M MSockets ' - mman '

UNIX Domain

sockets ADAPTIVE

Substrate Independent

Substrate Dependent

buf Layer

Media
Convergence

SAP Layer

API Layer

Mechanism

Data

Transport

Figure 2: Communication Substrate-Dependent Level

Media Convergence Layer

The Media Convergence Layer provides a consistent, buffered interface to Data Transport servic

es. It provides a basic data source/sink interface for higher layer subsystems, and uses the under

lying Data Transport services to drain or replenish its internal buffering layer.

SAP Layer: The collection of uniform Service Access Points (SAPs) that provide a consistent in

terface to diverse interapplication communication services. Each SAP provides an impedance

match between the native API provided by a given communication substrate and the basic com

munication service abstraction required by higher layer subsystems. There are two primary class

es of SAPs, those based on duplex communication channels and those based on shared memory.

SAPs based on duplex channels are required to support read, write, and connection management

operations. SAPs basedon shared memory must support basicattachment and detachment opera

tions. Both classes of SAP must support a SAPAddress that can represent a communications

endpoint for a given communication mechanism. This separation of addressing from basic com

munication operations allows a given communication mechanism (e.g., TCP) to utilize several



possible API's (e.g.. sockets. XTI) and still maintain a single abstract SAPAddress format, thus

decoupling the mechanism from the API. The uniformity of the SAP abstraction decouples the
Communication Substrate from higher layer client subsystems. SAPs currently provided include

socketSA?. TLISA?, ADA?TIV£3A?. SHMSA? (Shared Memory %'ia mrr.ap). SAPAddresses

include TCPAddress. 'JDPAddress, 'JNIXDSAddress iL'NIX Domain Sockets). ADA?-

TIVHAddress. and SHXAddress.

buf Layer: The collection of transparent buffer managers that provide an efficient buffering

scheme to the SAPs provided above. The buf layer is necessary to reduce the number of system

calls needed to send a composite object {i.e.. an object with multiple data members) and to mini

mize the amount of redundant data copying. The buf Layer is based on and is interoperable with

the C-I-+ iostream library[32,33], which provides two sets of abstractions:

1. streambuf— the abstraction for a consumer/producer of bytes. To extend the iostream

library to include a new I/O device or interface, one need only supply a streambuf interface

to the device, and combine it with four specific classes via object composition" to allow

existing classes to read and write to it automatically. The iostream library that accompanies

the AT&T distribution of C-h- provides streambuf interfaces to files and in-core mem

ory.

2. iostream — the abstraction for formatted insertion and extraction of objects into/from a

stream. The base classes ostream and istreameach provide the insertion (output) and

extraction (input) operators (<< and >> respectively) for each of the built-in data types sup

ported by the language {e.g., char. int. float), istreams and ostreams must be

combined with a streambuf to provide a usable stream {e.g., istream -i- f ilebuf =

ifstream, a stream that extracts objects from afile), iostresuns are not only extensible

with respect to the devices they can support, but also with respect to the types of objects

they can insert or extract. User-created data types (classes) can define their own input and

output operations by overloading the insertion and extraction operators to support the new

data type.

Each available communication subsystem has a corresponding SAP and buf that accesses its ser

vices (e.g., socketbuf, tlibuf, adaptivesap, shmbuf). These bufscan then be combined

with the standard istream and ostream classes to provide a formatted I/O channel, or with a

new stream class (described below) to provide an encoded I/O channel.

There are two primary mechanisms for object reuse, compostion and inheritance. Composition expresses has-a relationships,
where object A contains an instanceof object B. Inheritanceexpressesis-a relationships, whereobject A is a (specialized) instance
of object B.



Presentation Layer

The Presentation Layer is responsible for resolving differences in data representations between

heterogeneous host architectures. It accomplishes this by translating local internal data formats

into an external formal that can interpreted by the remote entity. It typically accomplishes this via

one of two means:

1. Explicit Typing — each data object is tagged with a type identifier field that specifies the

data type of the object in transit. It can then be followed by a length field that indicates the

remaining number of octets {or fundamental data units). These two fields are then followed

by the actual data octets. This is Icnown as aT-L-V scheme (Tag-Length-Value) and is used

as the basis for the Basic Encoding Rules of OSI ASN.l. This approach is in contrast to:

2. Implicit Typing — it is assumed that the receiver of the data is aware of exactly what type

of data object is coming, therefore the tag field is redundant at best. This is the approach

taken by XDR. a protocol that is designed to take advantage of regular data alignment and

hardware-dictated formats.

[34] contains a comparison of three well known presentation protocols (XDR, ASN. 1. and Apollo

NOR). The authors resolve that T-L-V encodings are more general and potentially more band

width efficient, yet can be more complex to process, while fixed-format encodings such as XDR

are more efficient to process, only slightly less efficient with respect to bandwidth, and can pro

vide T-L-V functionality if necessary.

xdrstream

Remote Method Dispatching

Access Synchronization

Distributed Collection Classes

Distributed Instantiation

GEncode

ASN1

asn1 stream

Remota

Detegatlon

Distribution

Location

Management
Layer

GEncode Layer

Presentation

maxstream sfrM/n Layer

Substrate Independent

Substrate Dependent

Figure 3: Communication Substrate-Independent Level



stream Layer: The stream layer is used to bind the various coding schemes listed below to an U

O channel (via its corresponding buf). For a given encoding scheme Z. an izstream and

ozstream are implemented, providing at least the basic insertion or extraction operators tor the
built-in data types. Additionally, insenion or extraction operators will be provided for the corre

sponding GEncode class hierarchy that defines the basic data types used by the encoding scheme.

In addition to providing the capability to statically bind an encoding scheme (stream) to an I/Ode

vice (buf) via object composition, stream manipulators^ are provided to allow encoding schemes
to be switched on the fly. By inserting (or extracting) a z_cn manipulator into a stream, the pre
vious formatting/encoding scheme is suspended and replaced with the : encoding. Inserting (or

extracting) a z_o f f manipulator restores the onginal formatting/encoding scheme.

GEncode/XDR: GEncode/XDR is a class librarv' of primitive base classes which correspond di
rectly with the standard eXternal Data Representation (XDR)[35]. as shown in Figure 4. This

provides a set of Basic Encoding Rules that allow objects to be shared across diverse host plat
forms. For each built-in data type {e.g., char, int, double) a type-conversion operator is pro

vided to convert between language/compilerdependent types and formats to their corresponding

GEncode/XDR base class. By leveraging off of C++ type management mechanisms, the presence

of the GEncode layer can be completely transparent to the application programmer. GEncode

also supports collection classes (e.g.. Lists, Dictionaries, Sets), C-t-i- references, and pointers.

Signedlnteger Enumeration

Unsignedlnteger Boolean

SignedHyperinteger
typedef

UnsignedHyperlnteger

Floatingpoint inhentance

DPFIoatingPoint VanaoieLengthOpaqueOata CharacterStnng

OpaqueDat fill RxeOLengtnOpaqueData

(abstract base class)

Figure 4; GEncode/XDR Class Hierarchy

GEncode/ASN.l: An OSI Abstract Syntax Notation One version of GEncode/XDR. GEncode/

ASN. 1 is more complex than GEncode/XDR, as it must address overflow issues for all data types

^ Manipulators are "functions" that can be inserted orextracted into/from a stream. Inserting/extracting amanipulator has the effect
of calling the manipulator s corresponding function with the target stream as the function s first argument. Manipulators allow oth
erwise complex encoding/formatting expressions to be written as a simple series of insertions/extractions.



{i.e., reading an S octet integer into a 4 octet long). Also, it is difficult to directly support the

ASM 1 notion of Set using only C++ constructs.

GEncodeALAX: A set of primitive base classes that represent .Multimedia .Activity extensions.

These classes allow multimedia objects and basic application activities to be represented in a host

platform independent manner. The .Multimedia extensions we are currently implementing in

clude support for

• 8KHz, 8 bit )i-law PCM audio

• 44.1 KHz 16 bit linear PCM audio

• 44.1 KHz 16 bit linear PCM audio (multi-channel)

• Indexed and Direct Color Pixmaps

• JPEG Still Image

• MPEG Motion Image

The Activity extensions we are currently incorporating include non-blocking and asynchronous

remote procedure calls, C++ pointer-to-member-function semantics, and language-independent

procedure name binding.

Distribution Layer

From the Presentation layer down, the support for distribution consists primarily of efficient

mechanisms for copying objects to and from heterogeneous systems. The Distribution layer is the

layer that creates an infrastructure for transparently migrating objects both with and without ex

plicit initiation from the programmer. The application programmer can simply specify the loca

tion where the object should be located fit" desired) and can then access the object as if it were

located in the local address space. The Distribution layer consists of the following 2 sublayers:

Location Management Layer: The Location Management layer orchestrates the migration of

objects based on both explicit {i.e., the object s existOn member function is explicitly invoked)

and implicit {i.e., a member function declared as remote is invoked) events. Object locations are

managed through the use of:

1. Distributed Instantiation — a technique where by overloading the language's new and de

lete operators, objects can be instantiated on remote hosts simply by passing an addition

al argument to the new operator. Calls to new without this parameter are routed to the

standard new operator that allocates the object locally. The dereference operators (-> and

*) automatically dispatch member calls and accesses to the appropriate host (local or re

mote).

2. Distributed Collection Classes — a set of SmallTalk-like collection classes that allow a



collection ofobjects to be distributed across the network. Distributed Iterators are used to
dispatch member function calls to multiple objects in acollection at once. Additionally,
these classes can w'ork in tandem with the .AD.\PTIVE svstem to perform prefetchins of
related objects to compensate high latency environments. When used with .ADAPTIVE,
these classes also allow application-based delivery of objects to the application [e.g.. po
tentially out-of-order, via upcalls, etc.),

Remote Delegdtion Layer. The Remote Delegation layer manages and execution of application
objects member functions and arbitrates multiple accesses to a single object. By using a tech
nique called remote delegation, an object's member functions are automatically invoked on the
proper host system without programmer intervention. This is accomplished via two mechanisms:
(1) overloading the dereference operators I-> and *) to transparently dispatch member function
calls, and (2) passing an additional remote parameter to the member function, which allows
member functions to be executed on arbitrary hosts, not just the local host or the host the object
actually exists on.

IV Object/Class Relationships

U»f Defined

ob/sct
composition

» conversion

operators insert/extract

operators

ob/ect composition
Of xdron/xdr^ozfmanipulators

Oiatribut^a
Object*

Co//toetfon

C/MM«

oDiea
composition

Figure 5: Object/Class Relationships

As the previous section describes, the G/MAX system consists of multiple hierarchies of C-t-+
classes. This section provides concrete examples using the G/MAX system to illustrate the rela

tionships among these class and object hierarchies. Figure 5 illustrates one vertical slice of the



system. The configuration shown uses the BSD socket facilities for IPG. and the Sun XDR en
coding for presentation formatting. The xdrs-ream and sockbuf classes can bind the XDR

protocol to the underlying communication channel either siatically though composition and inher

itance. or dynamically via the use of stream manipulators.

Figure 6 shows the detailed class and object hierarchy used to compose an xsockstrea.T\. a stat

ic binding of XDR to a buffered socket. The has-a relationships are via object composition, and

the is-a relationships are via inheritance. The sockbuf uses its socksap data member as a uni

form interface to the BSD send and recv calls. The sockstreambase acts as a vinual base

class for all stream classes that will use sockbuf services, sockstreambase adds a consis

tent mechanism for error handling and exports the sockbufs connection management interface

to derived stream classes. The classes ixdrstream and oxdrscream provide the insertion

(<<) and extraction (>>) operators for both the set of built-in types {e.g., int, float) and the

set of GEncode/XDR (£.g., Signedlnteger, Floatingpoint) classes.

The classes just described are used in both the static and dynamic cases. To statically bind the

XDR encoding to a buffered socket, the classes ixsockstream, oxsockstream, and

xsockstream are used, ixsockstream is a class that is derived from both sockstream

base and ixdrstream. Using multiple inheritance, the new subclass inherits the behavior and

interfaces of both superclasses {e.g., the communication management is inherited from sock

streambase, and the XDR decoding is inherited from ixdrstream ). It is this relationship

that allows the encodings for a given data type to be defined exactly once (for ixsockstream)

and to be inherited by all subsequent ix*streains, irrespective of the underlying communica

tion mechanism. The oxsockstream is derived in a similar manner.

Finally to create a class capable of both sending and receiving XDR encoded data, the class
xsockstream iscomposed of both an ixsockstream andan oxsockstream. It should be

noted that for each xsockstream there is exactly one sockbuf. This is because the sock

streambase is a virtual base class"^ to the classes ixsockstream and oxsockstream.

^ Virtual base classes allow multiple inheritance hierarchies to safely take the form ofaDAG as well as atree. Ifclass Ais avirtual
base ofclasses BandC.andclasses B and C arebases of class D. Dwill only have one instance ofclass A. Ifclass A were a non-
virtual base, objects oftype Dwould have two instances ofA. one for Band one for C.
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Figure 6: xsockstream Class/Object Hierarchy

Listing 1 demonstrates the steps necessary to encode a user defined type using xdrstreams. In the

class declaration file (foo.h), one preprocessor macro declares the insertion and extraction opera

tors and grants them friend status. As the operators are not actually member functions, friend sta

tus is necessary to access the class's private and protected data strucmres. The class definition file

(foo.cp) requires a single macro to actually implement the insertion and extraction operators. Pre

processor macros are used to avoid the overhead of an additional preprocessor step (G/MAX mac

ros are expanded by the standard C preprocessor). The form of the macros used is consistent

enough to warrant a dedicated preprocessor, however, macros are used while the system is being

developed to reduce initial development time. The use of macros also provides flexibility, as the

programmer can choose to implement the insertion and extraction operators by hand, allowing se

lective transmission of each data member. Additionally, when used with the ADAPTIVE system,

the programmer will be able to explicitly specify both what sub-stream a given data member will

be transmitted on as well as what mechanisms will be used to send the member.



•include <xscraam.

class fao (

flcac f;

dcucla i:

char ruf;

3EClAP.£_xdrfriends 'fco>; chis macro gives x_ops friend access
and expands co:

frieTid oxdrszrssjTt& cperaccr << icxdrscrearji ox. ccnsz 5cc4 V;
friend ixdrszrear.& cperazcr >> :ixdrszrean& ix. foo& v> ;

public:
// ... additional member declaration

/ ! foo. Cp . ' '• / - / i '•

•include "foo.h"

I:: i 11! i! 111 i 111:1 i! 111111

IMPLEMn>rr_xdrfriends'foo, . ..) this macro implements the << and >> ops
// Che generated code is as follows:
II oxdrstreaxti& operator « (oxdrstreamk ox, const foo& v)
// {
// return ox « v.I << v.s « v.c « v.f << v.d « v.buf;
// ;
II ixdrstreamk operator » fixdrscreami ix. took v)
// (
// return ix » v.L » v.s >> v.c » v.f >> v.d >> v.buf;
// ;
// ... additional class member definitions

Listing 1: foo.h/foo.cp

Listing 2 demonstrates the use of sockstreams both statically and dynamically bound to the XDR
format. The object nstr is a sockstream that uses the standard istream and ostream classes
that accompany the standard iostream library. Objects sent via nstr would be formatted as
ASCn text. The object xnstr is an xsockstream that uses the ixdrstream and
oxdrstream classes that use XDR for data encoding. The use of C++'s strong typing and oper

ator overloading allows the appropriate insertion orextraction operator tobe selected based onthe
type of stream being used.

As xnstr is statically bound to XDR, all objects inserted (sent) to it will be formatted using
XDR. To send objects via nstr using XDR, the xdr_on manipulator must be used to transform
the type ofnstr from sockstreeun to xsockstream . This transformation is temporary, and
can be defeated either by an accompanying xdr_of f manipulator or upon complete evaluation
ofthe expression. Due the strong typing in C-H-, unbalanced x_on and x_of f manipulators are
detected at compile time. As xnstr is statically bound to XDR, no maiupulator is necessary.
The use of the flush manipulator in both statements is needed to force the stream to send the



contents or" its send buffer.

'ir.cluda <x3-reain.h>

ir.3_^da <-3;cks:rear'..r.>

create a Tt? ccnnecti-cn

cckstrear. r-str Ir.terr.scAddrsss lender., irs .uci. edu', 32::

create a.-, y.z?. ?:? cenneccicn

<s =c«stream xr.str IncernecAddress 'par-s . ics .uci. edu-. 3:i3)i

.-cid f: -void;

foo red. green, blue;

send three objects to paris and flush the buffer
xnscr << red << green << blue << flush;

send three objects to london and flush the buffer
nstr << xdr_oa << red << green << blue << flush;

Listing 2: sendFoo.cp

V Experimental Results

This section describes the results from aseries of benchmarks of the system described in the pre
vious section compared to several altemative solutions. The experiments were designed to illus
trate the performance of the Presentation and Media Convergence layers described above. The
first set of benchmarks measures the presentation formatting costs relative to memory bandwidth.
The second set measures the end-to-end throughput when moving data between two hosts. Both
sets of measurements were taken using Sun SPARCstation 2workstations on an idle Ethernet.
All tests were performed using the class foo that appears in the previous examples. The first five
data members were held constant, occupying 24 bytes when encoded. The sixth member ranged
from a16 bytes to 4K bytes and was represented as afixed length opaque data object. This mix
was chosen to exercise avariety of data cons ersions as well as allow some opaque data transfer.

Processing Costs vs. Memory Bandwidth

As has been described in this paper, there are many classes and objects that must participate in the
transmission or reception of agiven object. This series of measurements compares the processing
costs of using xdrstreams to Sun's XDR library. AdditionaUy, aversion that simply copies an
equivalent number of bytes of data from one location to another is included for comparison. The
test program XDR-encoded an array of up to 1024 foo objects into a1MB array of memory The
decoding of the array was measured as well, and the results of encoding and decoding were aver
aged. The behavior of the test program is similar to the behavior of amultimedia application that



might read data from a codec and write/encode it to either the playout buffer or a network connec-
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Figure 7: Processing vs. Copying Costs

Figure 7 illustrates the impact of formatting cost on throughput. When the data size is sufficiently

large, the raw copy throughput approaches the memory bandwidth of the host. While both encod

ing mechanisms were less efficient than no processing at all, the relative performance of the two

implementations varies by only +/- 6.3%. As the size of the opaque data member increases, the

closer throughput of the two schemes approaches that of no processing whatsoever.

This result demonstrates that the processing costs incurred by the additional flexibility and ab

straction of xdrstreams is only marginally greater than that incurred by the SunRPC library.

End-to-end Performance

To observe end-to-end performance, both the xdrstream and sockbuf/socksap classes are

used. To reduce the system call overhead incurred per object transmission and reception, objects

are passed to and from the kernel eight at a time. A larger number was not chosen to reduce the

latency introduced by buffering. This required exactly one line of application code for the sock

buf, and was hand coded for the Sun XDR and raw cases.
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Figure 8: Processing Impact on End-to-end Throughput

As Figure 8 illustrates, the xdrstream outperforms the Sun implementation by an average of

3.4%. This is despite the fact that the Sun implementation was on average 1.2% faster than

xdrstreams. This is due to the fact that the soclcbuf/xdrstream combination are more

tightly coupled than the hand-coded buffering scheme and Sun XDR, and thus (a) the compiler is

able to make better optimizations, and (b) the behavior of the sockbuf is better suited to receiv

ing partial data objects.

VI Conclusions

This paper has outlined a new architecture for the design and implementation of high performance

distributed applications. We have verified experimentally that despite the additional flexibility

they offer the application designer, the abstractions chosen for the Presentation and Media Con

vergence layers implemented thus far impose no performance penalty over production systems

currently used. We are currently implementing the ADAPTIVE system as the Data Transport ser

vice, and are experimenting with a prototype of the Distribution layer described above which

should offer higher application throughput than traditional techniques.
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