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Abstract

A high-quality genome annotation greatly facilitates successful cell line engineering. Standard 

draft genome annotation pipelines are based largely on de novo gene prediction, homology, and 

RNA-Seq data. However, draft annotations can suffer from incorrect predictions of translated 

sequence, inaccurate splice isoforms and missing genes. Here we generated a draft annotation for 

the newly assembled Chinese hamster genome and used RNA-Seq, proteomics, and Ribo-Seq to 

experimentally annotate the genome. We identified 3,529 new proteins compared to the hamster 

RefSeq protein annotation and 2,256 novel translational events (e.g., alternative splices, mutations, 

novel splices). Finally, we used this pipeline to identify the source of translated retroviruses 

contaminating recombinant products from Chinese hamster ovary (CHO) cell lines, including 119 

type-C retroviruses, thus enabling future efforts to eliminate retroviruses by reducing the costs 

incurred with retroviral particle clearance. In summary, the improved annotation provides a more 

*Corresponding Author nlewisres@ucsd.edu. 

Supporting information
The following supporting information is available free of charge at ACS website http://pubs.acs.org

ACCESSION
RNA-Seq raw data: PRJNA504034; Proteomics raw data in MassIVE: doi:10.25345/C5M597, Identified peptides in Synapse: doi:
10.7303/syn17037373. Annotation will be available at CHOgenome.org. Code is available in https://github.com/LewisLabUCSD/
Proteogenomics.

HHS Public Access
Author manuscript
J Proteome Res. Author manuscript; available in PMC 2020 June 07.

Published in final edited form as:
J Proteome Res. 2019 June 07; 18(6): 2433–2445. doi:10.1021/acs.jproteome.8b00935.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/
http://10.25345/C5M597
http://10.7303/syn17037373
http://CHOgenome.org
https://github.com/LewisLabUCSD/Proteogenomics
https://github.com/LewisLabUCSD/Proteogenomics


accurate platform for guiding CHO cell line engineering, including facilitating the interpretation of 

omics data, defining of cellular pathways, and engineering of complex phenotypes.

Graphical Abstract
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Introduction

Chinese hamster ovary (CHO) cells are the primary workhorse for therapeutic protein 

production1 thanks to its ability to efficiently produce biologically active recombinant 

proteins2. Sequencing and assembly of the CHO and Chinese hamster genomes3–5 have 

enabled improvement in protein production using genetic engineering and in cell line 

process optimization using omics technologies67. A recent effort greatly improved the 

reference Chinese hamster genome assembly by combining Pacific Biosciences Single 

Molecule Real Time (SMRT) and short-read Illumina sequencing data, thus reducing the 

number of scaffolds by 28-fold and filling 95% of the sequence gaps8. Despite these great 

improvements in the assembly, the current genome annotation was based primarily on ab 
initio prediction, protein homology, ESTs, and limited publicly available transcriptomic 

data. However, these pipelines have difficulties in translation confirmation, splice form 

detection, and complete novel gene identification9. To improve cell line engineering success, 

an accurate genome annotation is necessary.

Proteogenomics provides a way to address such challenges by integrating mass 

spectrometry-based proteomics, RNA-Seq, and genomic data. For example, peptides can be 

identified by mapping tandem mass spectra to protein databases derived from RNA-Seq and 

genome annotation. The peptides are then used to update the annotation with novel coding 

regions and splice sites. Proteogenomics was first applied to Mycoplasma pneumoniae10 to 

identify new and extended open reading frames (ORFs) and remove low quality gene 

models. It has also been applied to many eukaryotes including plants11, yeast12, and 

human13. In addition to improving annotations, the proteomic data can also identify 

proteomic variation (e.g., in cancer14 and post translational modifications15,16).
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In addition to proteomics data, Ribo-Seq (data from sequencing ribosome-protected coding 

reactions at single nucleotide resolution17), provides a global view of actively translated 

mRNAs, and thus has been used to predict ORFs and translation frames for proteins18 and to 

identify additional predicted proteins for proteogenomics19. When analyzed together, 

transcriptomic, Ribo-Seq, and proteomic data can be invaluable for refining annotation about 

proteins.

To obtain a data-supported refinement of the Chinese hamster genome annotation, here we 

integrated proteomics, RNA-Seq, and Ribo-Seq to verify coding regions, update gene 

models, identify novel translated genes, and verify protein-coding variants in different CHO 

cell lines (Figure 1). To further demonstrate the increased value of this resource, we 

investigated the challenge associated with the Food and Drug Administration (FDA) 

requirement to ensure that viral particles (particularly endogenous retroviral particles) are 

eliminated from the therapeutic protein product, which contributes to the high costs in 

bioprocessing20. Specifically, we identified all translated retrovirus particles in CHO cells, 

including previously unannotated translated loci, thus providing potential knockout targets to 

increase drug purity and reduce demands on viral clearance. This proteogenomic resource 

will be invaluable for future efforts to study and engineer CHO cells for bioprocessing.

Methods

Proteomic sample preparation

Proteomic data were acquired at two different locations using different protocols, different 

biological samples, and different treatments. This increased the diversity in spectra used for 

annotation. These are referred to as batch 1 and batch 2, as follow.

Tissue Sample Collection for batch 1

Chinese hamsters were generously provided by Dr. George Yerganian (Cytogen Research, 

Roxbury, MA). Hamsters were euthanized by CO2 and verified by puncture. Harvested liver 

and ovary tissues were flash frozen on dry ice and stored at −80oC until analysis.

Cell Culture Sample Collection for batch 1

Suspension CHO cell lines (including CHO-S and CHO DG44) were grown in shake-flask 

batch culture. CHO-S cells were cultured in CD-CHO medium supplemented with 8mM 

glutamine (Thermo Fisher Scientific, Waltham, MA), and CHO DG44 cells were culture in 

DG44 medium supplemented with 2mM glutamine (Thermo Fisher Scientific, Waltham, 

MA). Samples were collected on day 2 for exponential phase and day 4/5 for stationary 

phase. Cells were incubated at 37oC, 8% CO2, and 120RPM. For sample collection, 

approximately 3 million cells were spun down, washed with PBS on ice, frozen rapidly on 

dry ice, and stored at −80oC until analysis.

Cell lysate and Tissue Sample preparation for batch 1

Cell culture lysates and tissue samples were thawed on ice and suspended in 2% sodium 

dodecyl sulfate (SDS) supplemented with 0.1mM phenylmethane sulfonyl fluoride (PMSF) 

and 1mM ethylenediaminetetraacetic acid (EDTA), pH 7–8. Samples were lysed by 
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sonicating for 60 seconds at 20% amplitude followed by a 90 second pause (for three 

cycles). Protein concentration was measured with a bicinchoninic acid (BCA) protein assay 

after briefly spinning to remove cell debris. Three hundred micrograms of each sample were 

reduced in 10mM tris(2-carboxyethyl)phosphine (TCEP), pH 7–8, at 60oC for 1hr on a 

shaking platform. After bringing each sample to room temperature, iodoacetamide was 

added to alkylate the sample to 17mM final concentration for 30 minutes. Next, samples 

were cleaned using 10kDa filters to reduce the SDS concentration as suggested by the filter 

aided sample preparation (FASP) protocol21. The samples were finally digested using a 

trypsin/LysC enzyme mix at an enzyme to substrate ratio of 1:10 (Promega V507A, 

Madison, WI), overnight at 37oC on a shaking platform.

Identification of Proteins by Mass Spectrometry for batch 1

Digested peptides (100μg from each protein digest) were fractionated on a basic reversed 

phase column (XBridge C18 Guard Column, Waters, Milford, MA). Fractions were 

concatenated into 48 prior to second dimension LC and MS analysis. The use of 

fractionation with equal peptides in each was designed to mimic biological replicates for 

each sample. Tandem MS/MS analysis of the peptides was carried out on the LTQ Orbitrap 

Velos MS (Thermo Fisher Scientific, Waltham, MA) interfaced to the Eksigent nanoflow 

liquid chromatography system (Eksigent, Dublin, CA) with the Agilent 1100 auto sampler 

(Agilent Technologies, Santa Clara, CA). Peptides were enriched on a 2cm trap column 

(YMC, Kyoto, Japan), fractionated on Magic C18 AQ, 5μm, 100Å, 75μm × 15cm column 

(Bruker, Billerica, MA), and electrosprayed through a 15μm emitter (SIS, Ringoes, NY). 

The reversed phase solvent gradient consisted of solvent A (0.1% formic acid) with 

increasing levels of solvent B (0.1% formic acid, 90% acetonitrile) over a period of 90 

minutes. LTQ Orbitrap Velos parameters included 2.0kV spray voltage, full MS survey scan 

range of 350–1800m/z, data dependent HCD MS/MS analysis of the top 10 precursors with 

a minimum signal of 2000, isolation width of 1.9, 30s dynamic exclusion limit and 

normalized collision energy of 35. Precursor and fragment ions were analyzed at 60000 and 

7500 resolutions, respectively.

Cell Culture Sample Collection for batch 2

Chinese hamster ovary cell clones that produce a recombinant monoclonal humanized IgG 

with different specific productivities (qP) were a generous gift from an industrial 

collaborator. These cell lines were developed by cotransfecting two plasmids, one containing 

IgG heavy chain (HC) and dihydrofolate reductase (DHFR) genes and the other containing 

IgG light chain (LC) and neomycin phosphotransferase (Neo) genes. Transfected cell lines 

were initially selected in medium containing 400 ug/mL neomycin (G418). After selection, 

the neomycin was removed, and all subsequent cultures were performed in the absence of 

neomycin. Subsequently, gene amplification was performed by stepwise selection with 

increasing methotrexate concentrations. Cell clones A1 and A1 have been previously 

described22,23 (Jiang et al. 2006; Jiang and Sharfstein 2009). Cells were cultured in a serum-

free modification of DME-F12 and alpha MEM as described by Dahodwala et al. with 

Glutamax (ThermoFisher Scientific) used instead of glutamine and 5 mg/l of insulin used. 

Methotrexate was not added during the culture period.
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Cell clones were seeded at~ 0.1 × 106 cells/mL into six flasks per cell line and grown at 

37°C, 5% CO2 in 125 ml shake-flasks (Thomson Scientific) shaken at 125 rpm. Three flasks 

per cell line were harvested in exponential phase (74 hours) and the remaining three flasks in 

stationary phase (96 hours). Cells were harvested by centrifugation and prepared for 

proteomic studies as described below.

In-solution digestion of whole cell lysate for proteomics batch 2

A second batch of samples were prepared and analyzed using a different approach. For 

these, 1mg of protein sample was transferred to a centrifuge tube, and all samples were 

equalized to the same volume using the same lysis buffer. A fresh stock of 0.5M reducing 

agent dithiothreitol (DTT) was prepared, and an appropriate volume of DTT was added to 

achieve a final concentration of 5mM. Samples were incubated for 25 minutes at 56°C. 

Before alkylation samples were cooled to room temperature and an appropriate volume of 

freshly prepared 0.5M iodoacetamide was added to a final concentration of 14mM and 

incubated for 30 minutes at room temperature. Untreated iodoacetamide was quenched by a 

second addition of 0.5M DTT to make total concentration of DTT equal to 10mM and 

incubated for 15 min at room temperature. The protein mixture was diluted 1:5 in 25 mM 

Tris-HCl, pH 8.2, to reduce the concentration of urea to 1.6 M. A double digestion by 

trypsin was performed by adding trypsin to 1/50 enzyme: substrate ratio and incubated at 

37°C. After 4 hours of primary incubation the trypsin was topped up (enzyme: substrate 

ratio 1/100), and the protein mixture was left to digest overnight at 37°C. After the overnight 

digestion, unused trypsin was quenched by adding TFA to a final concentration of 0.4%.

Peptide sample clean-up for proteomics batch 2

Digested peptides were desalted and cleaned up using Sep-Pak c18 Vac cartridge, 200mg 

sorbent per cartridge, 55–500 ^m Particle size (WAT054945) using negative pressure. The 

C18 cartridge was washed and conditioned by using 9ml of ACN followed by 3ml of 

50%ACN and 0.5% acetic acid. C18 resin was then equilibrated with 9ml of 0.1% TFA and 

samples were loaded in 0.4%TFA. Loaded samples were desalted with 9ml 0.1%TFA. TFA 

was removed with 1ml 0.5% acetic acid. Desalted peptides were eluted with 3ml of 

50%ACN 0.5% acetic acid. The eluted fraction was applied twice and collected in a 15ml 

conical tube. The eluate was snap frozen in liquid nitrogen and lyophilized overnight or until 

the white (sometimes yellow) fluffy powder was observed. Dried peptides were stored at 

−20°C or otherwise dissolved in the appropriate buffer for phosphopeptide enrichment.

Draft genome annotation generation

68 RNA-Seq samples from multiple CHO cell lines and hamster tissues were trimmed and 

aligned to the newly assembled hamster reference genome using Trimmomatic 0.3624 and 

STAR 2.5.225, respectively. The aligned reads were assembled into transcripts using stringtie 

v1.3.1c26 for each sample and then the transcripts were consolidated into a union transcript 

set using stringtie-merge26. To improve the transcript coverage, we also mapped the hamster 

RefSeq (GCF_000419365.1, annotation updated in December 2017) transcript sequences to 

the newly assembled hamster genome using gmap 2018–07-0427, which were then 

integrated with transcripts generated from stringtie-merge using the PASA pipeline28. 

Potential proteins encoded in the transcripts were predicted using transdecoder29. Finally the 
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functions of predicted proteins were determined by mapping them to the hamster RefSeq 

proteins and UniProt Swiss-Prot proteins30 using BLASTP 2.7.1+31. Proteins whose 

mapping lengths were greater than 80% were considered and percentage identity of 60% 

when mapping to hamster RefSeq and of 50% when mapping to UniProt were used as 

threshold to further classify proteins into 4 categories with 1 to 4 indicating decreasing 

confidence scores as follows: 1. Percentage of identity (pident) and percentage of length 

(plen) are larger than the threshold and have the same gene name between hamster RefSeq 

and UniProt. 2. Pident and plen are larger than the threshold and have different names 

between hamster RefSeq and UniProt. 3. Pident and plen are less than the threshold and 

have the same gene name between hamster RefSeq and UniProt. 4. Pident and plen are less 

than the threshold and have different gene names between hamster RefSeq and UniProt. 

LncRNAs were predicted by aligned transcripts to hamster lncRNAs using BLASTN 2.7.1+ 

with pident larger than 60% and plen larger than 80%.

Proteogenomics database construction

We prepared 4 protein databases for mass spectrum matching: a known protein database 

(KnownDB), SNP database (SnpDB), splice database (SpliceDB) and a six-frame translation 

of the genome database (SixframeDB). The KnownDB includes protein sequences extracted 

from our draft annotation, while the rest serve as novel protein databases. SnpDB was 

constructed by translating RNA-Seq reads that have mutations32. Mutations were called 

using GATK3.733 and annotated using Annovar34. The SpliceDB was constructed by 

translating all RNA-Seq reads that span splice junctions35. The SixframeDB was derived 

from peptides fragments between stop codons in all frames of the reference genome 

assembly.

Peptide identification The original MS/MS spectra were converted from RAW format to 

Mascot Generic Format (MGF) using msconvert36 and searched against each database 

independently using MSGF+37. Since different databases have different false discovery 

rates, it is recommended to perform multistage FDR correction with 1% cut off for the 

databases14, which means the spectra failed to pass FDR correction were fed to the next 

database to correct again. We corrected FDR for databases in PSM level in the following 

order: KnownDB, SnpDB, SpliceDB, SixframeDB. Then for the final known and novel PSM 

results we corrected FDR in the peptide and protein levels.

New translational event prediction

Significant peptide-spectrum matches (PSM) against the novel databases were used to 

discover new translation events using Enosi pipeline35. Briefly, identified novel peptides 

were mapped to the novel databases to get the loci relative to their mapped proteins. Protein 

headers in the novel databases have loci relative to the reference genome assembly. A 

custom python script was used to deduce peptide loci relative to the reference genome 

assembly from those two loci. Then the loci were compared with the draft annotation to 

decide event type. Peptides in the same translation frame that are less than 300 nucleotides 

(100 amino acids) away are grouped to represent the same event. For SNPs and short 

INDELs, we filtered the false positives by variant calling using Illumina reads from 

sequencing hamster genomic DNA against the reference genome assembly. To determine the 
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confidence of the new translational events, we used the following equation to calculate the 

probability of an event being true:

P−event = 1 − ∏
i = 1

N
1 − 1

hi

hi represents the number of loci a peptide hits in the database. If the probability is greater 

than 0.5, we consider the event is true.

Protein prediction using Ribo-Seq data

We used previously published Ribo-Seq data of the CHO CS CS13–1.0 cell line38. All Ribo-

Seq and RNA-seq data of each biological sample were trimmed and aligned to the reference 

genome assembly using Trimmomatic 0.3624 and HISAT 2.2.139 respectively. The aligned 

bam files were sorted and merged into one Ribo-Seq and one RNA-Seq bam files using 

Samtools 1.640. The potential translated regions were predicted using RiboTaper41, which 

takes advantage of coverage in coding regions and triplet periodicity of ribosomal footprints. 

A custom python script was used to compare the translation prediction and draft annotation.

We treated the predicted proteins from Ribo-Seq as a novel protein database and combined it 

with the KnownDB. Then we mapped all the mass spectra to these two databases using the 

proteogenomics pipeline. In this case, the identified novel peptides would be the unique 

peptides from the Ribo-Seq database.

Retrovirus in the draft annotation

All viral proteins in the draft annotation were identified by mapping to UniProt and hamster 

RefSeq proteins using BLASTP. Then the retroviral proteins were identified based on the 

full gene names. Peptides supporting annotated retroviral proteins were identified by 

mapping the known peptides to the KnownDB. LTRs were predicted using LTRharvest42. 

Retroviral proteins located between LTR were identified by overlapping LTR regions with 

retroviral annotations using Bedtools 2.2743.

New retrovirus discovery

Since viral proteins lack introns, we filtered novel peptides by removing those with splice 

sites. Retroviral proteins and filtered novel peptides were aligned to the reference genome 

assembly using tblastn44 and mappings with more than 60 pident and 55 plen were 

considered for downstream analysis. Virus mapping and peptide mapping were overlapped 

using Bedtools43 to get the virus sites with peptide support, which were then further 

overlapped with LTR regions to get virus sites with both LTR and peptides support.

We decided the thresholds for virus tblastn mapping as follows (Supplementary Figure S6). 

First, we started with low thresholds (30% for each). Then we assessed the overlap between 

filtered mapping and the draft annotation to identify those associated with known viral 

genes. If the mappings overlap with many non-viral genes, thresholds were incrementally 

increased and overlapped with draft annotation again. This was repeated until the mappings 

overlap with few non-viral genes and the number ceased to decrease.
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Discovery of unique retroviruses in the CHO-S cell line

In-house CHO-S SMRT sequence data were used to check if CHO-S has unique retroviral 

elements, compared to hamster. Firstly, we subsampled hamster SMRT reads to the same 

depth as CHO-S SMRT data, and both datasets were corrected using Illumina paired-end 

reads3 through LoRDEC45. Secondly, retroviral proteins and filtered novel peptides from our 

proteogenomics pipeline were mapped to corrected CHO-S and hamster SMRT reads using 

the same threshold as the previous tblastn mapping. Thirdly, viral and peptide mappings 

were overlapped to get virus sites with peptide support for CHO-S and hamster separately. 

Fourthly, we filtered CHO-S virus sites with hamster SMRT virus sites and mapped the 

unique CHO-S sites to the reference genome assembly. The mapped sites are the new 

retroviral sites and the unmapped sites are unique retroviral elements in CHO-S.

Type-C retrovirus detection in CHO cell lines

The functions of all the identified retroviral proteins were determined by mapping the 

protein sequences to UniProt using BLASTP. The full function descriptions of the proteins 

have the organism resource. Therefore, the types of all the retroviruses were determined by 

manually matching their full virus names to the types defined previously (see appendix 

“Retroviral Taxonomy, Protein Structures, Sequences, and Genetic Maps” of the following 

book: 46). Peptide coverage of a protein is defined as the number of amino acids covered by 

peptides divided by the protein length. The RNA-Seq coverage along the protein body was 

calculated using pysam47.

Results

Draft annotation for the genome

The CHO-K13 and Chinese hamster genome sequences4,5 were originally assembled using 

short read (99bp or 150bp) technology, and therefore resulted in fragmented contigs and 

scaffolds. Thus, efforts to annotate the genomes resulted in errors in protein and gene 

models. The RefSeq pipeline has corrected some such errors; however, the complete 

reassembly of the Chinese hamster genome8 provides an opportunity to obtain a much 

improved annotation of coding regions in the genes and their corresponding protein 

sequences. Therefore, we generated a new draft annotation here (Supplementary Figure S1), 

including predicted protein sequences.

68 RNA-Seq samples were prepared from multiple CHO cell lines and hamster tissues (see 
Methods). Transcripts were assembled for each sample separately using stringtie26 and 

merged using stringtie-merge26, yielding 26,530 genes with 68,082 transcripts. Then 38,654 

hamster RefSeq transcripts were mapped to the newly assembled hamster reference genome 

using GMAP27. Finally, the RefSeq alignments and RNA-Seq assembled transcripts were 

merged to 86,790 transcripts and grouped into 38,511 genes based on genomic locations 

using Program to Assemble Spliced Alignments (PASA).

We then applied TransDecoder29 to the 86,790 transcripts and predicted that 63,331 of them 

encode proteins. These proteins have 47,829 unique protein sequences. To annotate the 

function of the proteins, we aligned the protein sequences to the hamster RefSeq and 
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UniProt Swiss-Prot protein databases using BLASTP31. (Supplementary Table S1). We 

assigned UniProt gene names to the proteins in our draft annotation except for those that 

only map to hamster RefSeq proteins. Furthermore, we identified 4,640 non-coding 

transcripts by aligning the transcripts to the hamster RefSeq non-coding transcripts using 

BLASTN.

Proteogenomics identifies novel proteins in the draft annotation

To quantify novel proteins predicted in the draft annotation compared to the hamster RefSeq 

proteins, we mapped 47,829 unique draft proteins to the RefSeq proteins using BLASTP. We 

classified the mappings into 5 main categories: (1) 15,787 perfectly mapped proteins; (2) 

7,483 proteins mapping perfectly on only one end between the draft and RefSeq sequences; 

(3) 11,780 high quality mapped proteins (over 90% percentage of identity (pident) and over 

80% percentage of length (plen) on both sides of homology protein mapping pair between 

draft and RefSeq); (4) 6,688 high quality mapped proteins (over 90% pident and over 80% 

plen on either side), but only mapping well on one end; (5) 5,820 low quality or non-

mapping proteins. 289 proteins failed to map. We defined proteins that were not in category 

(1) as novel proteins. Among the one-sided perfect mapping proteins, 3,336 proteins are 

shorter in the draft, compared to RefSeq, while 4,147 proteins are longer than RefSeq. 

Interestingly, isoforms of some of the former proteins map perfectly to RefSeq. This 

indicates the draft annotation pipeline is sensitive to splice sites, which resulted in more 

isoforms being assembled than seen in RefSeq.

Next, we sought peptide support for the novel proteins in the draft annotation. We acquired 

and prepared12,870,725 mass spectra from multiple CHO cell lines and hamster tissues. We 

merged the draft and RefSeq proteins and extracted the unique protein sets as a reference 

protein database. Then we used MS-GF+37 to search the peptide-spectrum matches (PSMs) 

with 1% FDR correction and identified 205,294 peptides with 1% FDR correction in peptide 

level. Here we only consider proteins with at least two uniquely-mapping peptides of at least 

9 amino acids in length48. For each pair of homologous draft and RefSeq proteins, the draft 

protein was considered as novel if it has extra peptide support compared to the 

corresponding RefSeq protein. As a result, we identified 3,529 draft novel proteins, 3,389 of 

which have additional unique peptide support not seen in the RefSeq sequence (Figure 2A). 

The remaining 140 novel proteins have extra peptides mapping to multiple locations. (Figure 

2B). The high-quality protein mappings category (>90% pident and >80% plen) has the 

most novel proteins. 5,608 draft proteins have the same peptide support as similar RefSeq 

proteins, which may require additional data to verify their novel features. The numbers of 

novel proteins in each mapping category are depicted in Figure 2.

Proteogenomics and Ribosome profiling identify additional translational events

In addition to verifying novel protein sequences, proteomics can also help identify other 

translational events, e.g., novel splice sites, gene fusions, etc. (Figure 3A). Thus, to obtain a 

more comprehensive view of protein sequence verification and identification of other 

translation events, we created 4 putative protein databases: (1) KnownDB-predicted from 

draft annotation, (2) SnpDB-translated from RNA-Seq reads that have non-synonymous 

mutations and short INDELs, (3) SpliceDB-translated from spliced RNA-Seq reads, and (4) 
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SixframeDB-peptides between stop codons in all 6 frames of the genome (Figure 1). As 

previously recommended14, we performed multi-stage 1% FDR correction for the databases 

sequentially (Supplementary Figure S2), and 1% FDR correction in the peptide level. This 

pipeline (Supplementary Figure S3) identified 3,656,801 (28%) significant PSMs resulting 

in 194,470 significant unique peptides mapping to the KnownDB and 8,003 peptides 

mapping to the remaining databases (Figure 3B). Among all the peptides identified from 

KnownDB, 168,862 (87%) map to unique genomic locations.

We required each validated protein to have at least two uniquely mapping peptides with at 

least 9 amino acids (i.e., to only one locus) as recommended in Human Proteome Project 

Mass Spectrometry Data Interpretation Guidelines 2.148. Using this strategy, we verified 

35,112 proteins, which represent 73.4% of the sequences in the KnownDB.

After known protein sequence validation, we explored additional novel peptide events. To 

guarantee high confidence of the events, we filtered out those with fewer than 3 RNA-Seq 

supporting reads and required each event to have at least one uniquely mapped peptide. Most 

proteins are longer than 100 amino acids. Thus, if novel peptides are close and in the same 

translational frame, they are likely to support the same protein. Therefore, we clustered 

novel identified peptides that were in the same translational frame and fewer than 100 amino 

acids away from each other to represent the same event. In total, we discovered 2,256 new 

translational events, 86.5% of which are novel splice and nonsynonymous single nucleotide 

polymorphisms (SNPs) (Figure 3A). Novel splice sites represent 44% of the total events, 

covering 857 genes. We also identified 54 alternative splice events, 20 reverse strand 

translation events, 6 novel ORFs (not predicted by the draft annotation) and 4 gene fusion 

events.

Ribo-Seq offers orthogonal evidence to further support protein sequences and can help 

discover new proteins as well. Ribo-Seq and corresponding RNA-Seq data sets for an IgG-

producing CHO cell line were acquired at both exponential and stationary phase38. We used 

RiboTaper41 to predict the translating ORFs under the guidance of the draft annotation. 

28,700 transcripts were predicted to encode proteins, with 24,709 (86%) having a single 

ORF (Figure 3C). Among these, 13,666 transcripts have the same protein sequences as the 

draft annotation. In addition, 1,318 “non-coding transcripts” in the draft annotation are 

predicted to encode proteins. The remaining Ribo-Seq predicted sequences were classified 

into two groups: (1) in the same frame (8775) and (2) in different frames (950) with the draft 

annotation (Figure 3D, Supplementary Table S2).

Proteins predicted by Ribo-Seq can expand the databases for proteomics so that more 

proteins can be verified. Here we used Ribo-Seq predicted proteins as a novel database and 

ran the proteogenomics pipeline together with KnownDB. After filtering all peptides 

identified in the previous proteogenomics pipeline, the Ribo-Seq data facilitated the 

identification of 2,286 new peptides. Here we require at least two unique peptides with 

length of at least 9 amino acids in an ORF to verify translation. Among 1,628 non-protein-

coding transcripts in the draft annotation, 218 were verified to encode proteins by Ribo-Seq 

and proteomics. While Ribo-Seq enabled the successful identification of many new peptides, 

including those in transcripts previously thought to be non-coding, it was less successful at 
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identifying the translation start sites. Supporting peptides were found for only 8 out of the 

305 ORFs that were predicted to be longer than the draft annotation. In addition, Ribo-Seq 

helped identify translation events in 5’UTR and 3’UTR regions in 213 genes, consistent with 

previous reports in human49. For more details, see Supplementary Table S2.

Proteomic-based validation of SNPs and INDELs in CHO cell lines and hamster tissues

The peptides obtained from proteomic studies enabled the validation of genetic variants in 

the various CHO cell lines and hamster tissues. To discover these mutations, we used our 

SnpDB (Figure 1) as the novel database in the proteogenomics pipeline, which includes 

peptides translated from all the RNA-Seq reads supporting SNPs and small INDELs. 

Proteomics identified fewer mutations than RNA-Seq (Supplementary Table S3), mainly 

because of its lower depth of coverage compared to RNA-Seq. Furthermore, mutated 

proteins can be degraded, and therefore not detected. In total we identified 959 

nonsynonymous SNPs, located in 722 genes. Most genes have one SNP while there are 6 

genes with more than 5 SNPs: GAPDH, GOLGB1, AHNAK2, PKM, MYH9 and EEF1A1. 

Surprisingly, only one protein lost a stop codon (ribosome protein gene RPS23) while others 

change amino acids. 75% of the SNPs are homozygous, which indicates CHO cell lines may 

have developed and retained those mutations after long periods of evolution. Furthermore, 

the distributions of the 6 SNP types showed that transitions occurred more frequently than 

transversions, and the proteomic data captured a similar distribution of mutations as RNA-

Seq data (Figure 4A, Figure 4B). We identified 43 insertions and 6 deletions, located in 42 

and 6 genes respectively. There are more homogeneous frameshift INDELs than other types. 

The 8 genes harboring both SNPs and insertions include AHNAK2, CALR, HNRNPUL1, 

HSP90B1, PLEKHG5, PTMA, RIF1, and VAT1, while only SIK3 had both SNPs and 

deletions.

Next, we looked at the mutation distribution across the protein body. Since there are far 

fewer INDELs than SNPs, we focused on the distribution of SNPs. Figure 4C shows that 

SNPs are distributed relatively evenly across the protein body.

Many different CHO cell lines (e.g., CHO-K1, CHO-S and DG44), have been used to 

develop different recombinant protein-producing cells. Each cell line has a lengthy history of 

mutation and selection during cell line development4, and therefore can have unique 

genomic variants4,50. To check the variations between these CHO cell lines, we compared 

their peptide-supported SNPs in the coding regions. Most of the SNPs are shared among the 

cell lines, which means these variants have been conserved during the long period of cell 

line development, either due to early mutations obtained in CHO cells when derived in 1957 

or genetic drift of the Chinese hamster colony since then (Figure 4D).

Proteomics elucidate translated retroviral elements in the genome

For decades, it has been known that CHO cells shed retroviral particles51; while these were 

shown to be non infectious52,53, the safety concern has required companies to filter out all 

such viral particles and conduct extensive testing to verify non-infectivity. This adds a 

substantial cost to production. Viral particles have been isolated, but the few mRNAs that 

have been sequenced from these particles were all non-coding, in that they contained many 
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early stop codons. Thus, it remains unclear which loci encode the translated viral particles. 

Here, we analyzed the transcriptomic and proteomic data to identify the loci of expressed 

and translated retroviral particles, to enable further efforts to eliminate these particles and 

reduce drug purification costs.

To identify translated endogenous retroviruses in CHO cells, we first extracted peptides that 

support retroviral proteins from our draft annotation (Figure 5A). Since retroviruses can 

have multiple similar copies across the whole genome, we consider peptides that can map to 

multiple locations. We found 457 retroviral genes covered by 723 transcripts, 151 of these 

genes (corresponding to 209 transcripts) have peptide support and 104 transcripts map well 

to RefSeq (>60% pident, >80% plen) and UniProt (>50% pident, >80% plen). Infectious 

retroviral DNA is flanked by two identical non-coding repeats called long terminal repeats 

(LTR)54, which aid in retroviral mobility and integration into the host genome, along with 

regulation of retroviral gene expression. In the hamster genome, we identified 3,324 LTR 

pairs in the reference genome using LTRharvest42 and found only 40 retroviral transcripts 

locate between those LTRs, all of which have peptide support. If one LTR is disrupted, the 

other side can still effectively induce transcription. Thus, genes not flanked by LTR pairs can 

still produce retroviral particles.

We next aimed to identify unannotated translated retroviral sites in the genome (Figure 5A). 

For this, we aligned all retroviral proteins from NCBI to the reference genome using 

tblastn44. Then we overlapped the mapping sites with the 4,265 novel peptides identified 

against novel protein databases from our proteogenomics pipeline and obtained 41 novel 

retroviral sites, 1 of which localized between an LTR pair and was covered by 5 peptides. 

The site showed homology to the gag proteins from Gibbon ape leukemia virus and Spleen 

focus-forming virus. Finally, since CHO cells were originally derived in 1957, we further 

checked if new infections may have emerged in CHO (Supplementary Figure S4). For this 

analysis, we aligned all known retroviral proteins and novel peptides from our 

proteogenomics pipeline, using tblastn, to in-house Illumina-corrected single molecule real 

time (SMRT) sequence data from CHO-S and the Chinese hamster8. After filtering out the 

putative viral sites identified in hamster, we found no evidence that wild type CHO-S cell 

lines have acquired any new retroviral sites.

Mammalian retroviruses have been classified into different types based on the genomic 

compositions. We mapped retroviral protein sequences identified from previous steps to 

UniProt and used protein full names to discover 3 main retroviral types in hamster: type-A, 

type-B, and type-C55. We found type-C retroviruses to be the most highly transcribed and 

translated (Supplementary Figure S5). In addition, type-C viral particles have been identified 

in CHO cell lines before and regulatory agencies now require the verification that products 

are non-infectious type-C particles53,56. The vast majority of type-C proteins had little or no 

peptide support, suggesting these are silenced or noncoding. Of the 119 type-C retroviral 

proteins with peptide support that we identified, most were gag and envelope proteins 

(Figure 5B). Only 4 proteins had more than 20 detected peptides, and most proteins had low 

coverage of supporting peptides (Figure 5C). Figure 5D shows an example of highly 

translated envelope protein with 33 peptides, covering 30% of the coding sequence. 

Although it has many secondary reads, it also has many uniquely mapping reads, which 
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indicates this locus is truly expressed. The proteins with high coverage and more supported 

peptides should be prioritized in efforts to eliminate viral particle production. The genomic 

locations, RNA-Seq and peptide coverage of all endogenous retroviral genes are provided in 

Supplementary Table S4.

Discussion and Conclusion

Here we presented the first proteogenomic reannotation of the Chinese hamster genome, in 

which we utilized RNA-Seq, Ribo-Seq, and proteomics to improve the annotation. To 

identify as many peptide-supported proteins as possible, we mapped spectra to a known 

protein database from a draft annotation and several novel protein databases derived from 

different data types. We identified 3,529 novel proteins in the draft annotation compared to 

the hamster RefSeq protein database and 2,256 novel translational events and mutations in 

hamster and CHO cell lines. Furthermore, we identified the potential sources of retroviral 

particles shed from CHO cells, including 119 type-C retrovirus genes, 4 of which are 

supported by more than twenty peptides.

Usually an annotation is required before running proteogenomics pipeline. The typical first 

step of genome annotation is masking the repeats to avoid getting millions of seeds during 

BLAST57. However, masking the genome can hide important annotation information, 

including common domains and retroviral elements. To avoid this loss of information, we 

aligned assembled transcripts to the unmasked genome using gmap. Doing so resulted in 

only 0.7% transcript mappings to be ambiguous (i.e., with >2 mappings). This enabled the 

annotation and analysis of endogenous retroviral genes, which usually have multiple similar 

copies. Masking repeats often removes such information58. Thus, future annotation efforts 

would benefit from the acquisition and alignment of high-quality transcripts or protein 

sequences to the genome of interest.

Different pipelines have been designed for genome annotation in higher eukaryotes57, and 

most include ab initio prediction, mapping of homologous protein sequences, and transcript 

assembly and alignment. As the throughput and resolution of mass spectrometry techniques 

is increasing, more studies are integrating these data types to refine annotations59. Here we 

discovered thousands of genes and novel translational events using proteomics data. Despite 

their value, proteomics data can be sparse since the chemical properties of some peptides are 

less compatible with the experimental setup (e.g., due to hydrophobicity) or size of the 

peptides post-digestion60. Furthermore, many peptides have diverse post-translational 

modifications, thus making it difficult to align peptides to predicted peptide sequences from 

genomes. Thus, Ribo-Seq provides a complementary method to further discover new genes 

or correct annotations61. The Ribo-Seq datasets we used here are from the DG44 CHO cell 

line, and CHO cells may only express half to two thirds of their genes62,63. Thus, further 

annotation efforts would benefit from the acquisition of Ribo-Seq from many other hamster 

tissues and developmental stages. In summary, as more tools and proteomic and Ribo-Seq 

data accumulates, these data types will become increasingly integrated into standard 

pipelines for genome annotation.
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Finally, the reannotation here provides an invaluable resource for the development of 

improved CHO cell lines. While CHO cells provide several advantages as an expression host 

for recombinant protein production, HCPs are continuously secreted64,65, thus impacting 

recombinant protein quality and safety. Thus, expensive chromatographic columns, filtration 

systems, and assays for infection and HCPs are required during downstream processing. 

This adds considerable cost to biopharmaceuticals. One particular regulatory concern has 

been the endogenous retroviruses that are shed by CHO cells56. For these, assays were 

developed to quantify retroviral particles and ensure infectious retroviral particles are not 

found in the drug product after extensive filtration66. Here, we identified, among hundreds of 

retroviral genes in the hamster genome, which ones are expressed and translated in several 

CHO cell lines. This information will enable future efforts to remove these from CHO cells, 

thereby reducing burdens to downstream processing. To further facilitate such efforts, many 

endogenous retroviral genes show high levels of homology. In our work, this was manifested 

in the identification of many retroviral RNA-Seq reads and tryptic peptides that map to 

multiple genomic loci. As many of these also share DNA sequence, multiple viruses can be 

knocked out simultaneously by targeting the conserved regions, as accomplished in the 

pig67. Doing this in CHO cells can reduce the costs by simplifying expensive purification 

steps where product can also be lost, and also simplify viral testing steps for the final 

product.

In conclusion, our work provides a refined and more extensive annotation of the Chinese 

hamster genome, which will enable more accurate CHO cell line engineering6,68–70, as 

systems are targed such as glycosylation71–74 and apoptosis pathways75,76. The improved 

annotation will also facilitate improved processing of omics data77 as the gene models 

improve. Finally, a more complete list of all genes will enable efforts to map out molecular 

pathways in CHO cells to enable systems approaches to cell line development6,78.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of the proteogenomic pipeline.
Multiple databases of putative protein sequences were generated based on the newly 

assembled hamster genome7 and additional data. The KnownDB contains protein sequences 

from our draft annotation generated here. The SNP/SpliceDB was derived from RNA-Seq 

samples, and contains candidate mutated or novel spliced proteins compared to the draft 

annotation. The RiboDB was derived from predicted translated ORFs from Ribo-Seq and 

RNA-Seq. The SixFrameDB is derived from the reference genome7. After database 

construction, mass spectra were mapped against the protein databases using MSGF+ to 

identify the peptides. The peptides were then mapped back to the genome and compared 
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with the draft annotation to verify translated known proteins, enumerate novel translation 

events, and the identity of retroviral proteins.
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Figure 2: Number of novel draft proteins verified by draft-only peptides in different categories.
The draft annotation predicted thousands of novel protein sequences. (A) Of these, 3,389 

had peptides mapping to proteins uniquely supporting the novel protein sequences. (B) Only 

140 did not have extra peptide support from peptides that map to proteins uniquely, and 

thousands provided peptide support. RefSeq perfect short: RefSeq proteins map perfectly 

but are shorter than draft proteins; High quality: high quality mapping proteins between 

draft and RefSeq; Draft high quality: draft proteins map to RefSeq with high quality, but 

the reverse doesn’t hold; RefSeq high quality: RefSeq proteins map to draft with high 

quality, but the reverse doesn’t hold; Low quality: low quality mapping between draft and 

RefSeq.
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Figure 3: Proteogenomics and RiboTaper verified predicted protein sequences and identified 
novel translation events.
(A) Numerous novel translational events were identified, including novel splice sites that are 

not in the draft annotation file (new splice), non-synonymous mutations (SNP), peptides that 

map to UTR regions or to transcripts with no CDS (new CDS), alternative splice sites (alter 

splice), peptide mapping to reverse strand of reference CDS (reverse), insertions (INS), 

peptide mapping to intergenic regions (new gene), deletion (DEL), and gene fusions 

connecting two genes (fusion). (B) Statistics for the number of spectra, peptides and protein 

isoforms identified in proteogenomics. (C) Number of ORFs identified using RiboTaper. 

Outer circle: Number of transcripts predicted with single ORF (blue) or multiple ORFs 

(orange). Inner circle: Number of transcripts with (darker blue and orange) or without (light 

blue and orange) peptide support. (D) Number of proteins that are shorter/longer than the 

draft annotation. Positive x axis means the RiboTaper proteins are shorter (i.e., start later) 

than the draft annotation.
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Figure 4: Hundreds of SNPs in hamster and different CHO cell lineages are validated.
A comparison of the (A) distribution of SNP types identified from RNA-Seq and (B) SNP 

types verified by proteomics validates the overall distribution of SNPs. (C) Peptide-validated 

non-synonymous SNPs are located throughout the protein bodies. The length of each protein 

is scaled to 1, and 0 represents the start codon. SNPs that locate below 0 or above 1 

represent peptide-supported SNPs in 5’-UTR and 3’-UTR regions, respectively. (D) Venn 

diagram of 353 peptide-supported SNPs from CHO-K1, CHO-S and DG44 cell lines shows 

that most SNPs are shared across cell lines.
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Figure 5: A proteogenomic identification of the source of translated endogenous retroviral 
particles shed from CHO cells.
(A) Two strategies were taken to identify translated retroviral loci. In strategy 1, peptides 

were mapped to the annotated retroviral proteins. For strategy 2, the sequences from the 

NCBI retroviral protein database were aligned to the genome using BLASTP. Then we 

evaluated the overlap of these aligned peptides with the novel peptides identified from the 

novel databases in our proteogenomics pipeline. (B) The strategies recovered 119 type-C 

peptide-supported retroviral proteins in CHO cell lines (the “other” category represents non-

typical retroviral proteins, such as the p12 protein). (C) Peptide-supported type-C virus 

proteins were analyzed to assess the portion of protein sequence covered by peptides against 
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peptide number. (D) Coverage of an envelope protein in reverse strand. uni: reads map 

uniquely to the locus, sec: reads are secondary reads and map to multiple loci.

Li et al. Page 26

J Proteome Res. Author manuscript; available in PMC 2020 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Proteomic sample preparation
	Tissue Sample Collection for batch 1
	Cell Culture Sample Collection for batch 1
	Cell lysate and Tissue Sample preparation for batch 1
	Identification of Proteins by Mass Spectrometry for batch 1
	Cell Culture Sample Collection for batch 2
	In-solution digestion of whole cell lysate for proteomics batch 2
	Peptide sample clean-up for proteomics batch 2
	Draft genome annotation generation
	Proteogenomics database construction
	New translational event prediction
	Protein prediction using Ribo-Seq data
	Retrovirus in the draft annotation
	New retrovirus discovery
	Discovery of unique retroviruses in the CHO-S cell line
	Type-C retrovirus detection in CHO cell lines

	Results
	Draft annotation for the genome
	Proteogenomics identifies novel proteins in the draft annotation
	Proteogenomics and Ribosome profiling identify additional translational events
	Proteomic-based validation of SNPs and INDELs in CHO cell lines and hamster tissues
	Proteomics elucidate translated retroviral elements in the genome

	Discussion and Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:



