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Abstract

An important difference between traditional Al systems and
human intelligence is our ability to harness common sense
knowledge gleaned from a lifetime of learning and experi-
ences to inform our decision-making and behavior. This al-
lows humans to adapt easily to novel situations where Al fails
catastrophically for lack of situation-specific rules and gener-
alization capabilities. In order for machines to exploit com-
mon sense knowledge in reasoning as humans do, moreover,
we need to endow them with human-like reasoning strategies.
In problem-solving situations, in particular, several analogous
representations of the same problem should be maintained in
parallel while trying to solve it so that, when problem-solving
begins to fail while using one representation, the system can
switch to one of the others. Sentic panalogy is a technique
that aims to emulate such process by exploiting graph-mining
and dimensionality-reduction techniques to dynamically inter-
change both different reasoning strategies and the foci around
which such strategies are developed.

Keywords: AI; NLP; Cognitive systems; Sentic computing.

Introduction

Emotions are different Ways to Think (Minsky, 2006) that
our mind triggers to deal with different situations we face in
our lives. Our decision-making and problem-solving skills, in
fact, are strictly dependent on both our common sense knowl-
edge about the world and the appraisal associated with this
(Scherer, Shorr, & Johnstone, 2001). The capability to ac-
cordingly compress and exploit such information, which we
term affective common sense reasoning (Cambria, Olsher, &
Kwok, 2012), is a fundamental component in human experi-
ence, cognition, perception, learning, and communication.

For this reason, we cannot prescind from emotions in the
development of intelligent user interfaces: if we want com-
puters to be really intelligent, not just have the veneer of in-
telligence, we need to give them the ability to recognize, un-
derstand, and express emotions. Furthermore, in order not to
get stuck and to be able to tackle different problems from dif-
ferent perspectives, an intelligent machine should not have a
unique way to deal with a task, but rather be endowed with
different reasoning strategies and with the capability to ac-
cordingly switch among these.

This work further develops a recently proposed approach
(Cambria, Mazzocco, Hussain, & Durrani, 2011) for the em-
ulation of the human capability to switch between different
perspectives and find novel ways to look at things. Such ap-
proach is inspired by Minsky’s notion of ‘panalogy’ (parallel
analogy), which states that several analogous representations
of the same problem should be maintained in parallel while
trying to solve it (Minsky, 2006).
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To show the effectiveness of the proposed approach,
termed sentic panalogy, we employ it for the natural lan-
guage processing (NLP) task of sentiment analysis, for which
a faceted and nuanced analysis is mostly needed.

The structure of the paper is as follows: the first section
provides some background information on sentiment anal-
ysis; the second section introduces the concept of affective
common sense reasoning and explains why and how this can
aid sentiment analysis; the third and fourth sections describe
the implementation of the switch among different strategies
and among the foci around which such strategies are devel-
oped, respectively; the fifth section provides an evaluation
of the proposed approach; the last section, finally, comprises
concluding remarks and future directions.

Sentiment Analysis

Sentiment analysis is a branch of the broad field of text data
mining and refers generally to the process of extracting in-
teresting and non-trivial patterns or knowledge from unstruc-
tured text documents. It can be viewed as an extension of data
mining or knowledge discovery from (structured) databases
(Fayyad, Piatetsky, & Smyth, 1996; Simoudis, 1996). As the
most natural form of storing information is text, sentiment
analysis is believed to have a commercial potential higher
than that of data mining. Sentiment analysis, however, is also
a much more complex task as it involves dealing with text
data that are inherently unstructured and fuzzy. It is a multi-
disciplinary research area that involves the adoption of tech-
niques in fields such as text analysis, information retrieval and
extraction, auto-categorization, machine learning, clustering,
and visualization.

Most of the existing approaches to opinion mining and sen-
timent analysis rely on the extraction of a vector representing
the most salient and important text features, which is later
used for classification purposes. Some of the most commonly
used features are term frequency (Wu, Luk, Wong, & Kwok,
2008) and presence (Pang, Lee, & Vaithyanathan, 2002). The
latter, in particular, is a binary-valued feature vectors in which
the entries merely indicate whether a term occurs or not,
and formed a more effective basis for polarity classification.
This is indicative of an interesting difference between typ-
ical topic-based text categorization. While a topic is more
likely to be emphasized by frequent occurrences of certain
keywords, overall sentiment may not usually be highlighted
through repeated use of the same terms.



Differently from topics, in fact, sentiments can often be
expressed in a more subtle manner, making it difficult to be
identified by specific keywords, especially when considering
multiple domains. Humans readers do not face such difficulty
as they can infer the cognitive and affective information asso-
ciated with natural language text through their affective com-
mon sense knowledge, that is, obvious or widely accepted
things that people normally know about the world, but which
are usually left unstated in discourse, e.g., that people smile
when they are happy and things fall downwards (and not up-
wards). An important feature of affective common sense rea-
soning, in fact, is the sensitivity to nuanced readings of natu-
ral language.

A sentence can be read differently depending on nuances
in opinionated text and such nuanced reading can lead to
markedly different reasoning trajectories. The first step in hu-
man cognitive and affective information processing, in fact, is
in an appraisal of the current situation (Scherer et al., 2001).
In order to accordingly infer semantics and sentics (Cambria,
Benson, Eckl, & Hussain, 2012), i.e., the cognitive and affec-
tive information associated with natural language text, next-
generation sentiment analysis methods need to go beyond a
mere word-level analysis and use affective common sense
reasoning to better grasp the conceptual rules that govern sen-
timent and the clues that can convey these concepts from re-
alization to verbalization in the human mind.

Affective Common Sense Reasoning

Current thinking in cognitive psychology suggests that hu-
mans process information at a minimum of two distinct lev-
els. There is extensive evidence for the existence of (at least)
two processing systems within the human brain, one that in-
volves fast, parallel, unconscious processing, and one that in-
volves slow, serial, more conscious processing (Kirkpatrick
& Epstein, 1992; Chaiken & Trope, 1999; Smith & DeCoster,
2000; Epstein, 2003; Kahneman, 2011). Dual-process mod-
els of automatic and controlled social cognition have been
proposed in nearly every domain of social psychology.

Evidence from neurosciences supports this separation,
with identifiably different brain regions involved in each of
the two systems (Lieberman, 2007). Such systems, which
we term U-level (unconscious) and C-level (conscious), can
operate simultaneously or sequentially, and are most effec-
tive in different contexts. The former, in particular, works
intuitively, effortlessly, globally, and emotionally. The latter,
in turn, works logically, systematically, effortfully, and ra-
tionally. According to different contexts and purposes, more-
over, the systems should be capable to dynamically swap both
different reasoning strategies and the foci around which such
strategies are developed.

In this work, we emulate such dual-process model through
an ensemble application of dimensionality-reduction and
graph-mining techniques on AffectNet (Cambria & Hussain,
2012), an affective common sense knowledge base built upon
WordNet-Affect (WNA) (Strapparava & Valitutti, 2004), a
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linguistic resource for the lexical representation of affect, and
ConceptNet (Havasi, Speer, & Alonso, 2007), a semantic
network of common sense knowledge. In particular, multi-
dimensionality reduction techniques are employed on Affect-
Net to dynamically configure it and, hence, to model the
switch between different reasoning strategies, while graph
mining and clustering methods are applied to model the
switch between the foci around which those strategies are de-
veloped, in order to accordingly exploit the different facets of
the affective common sense knowledge base.

Swapping Reasoning Strategies

To some extent, our reasoning capability can be re-conducted
to the identification of useful patterns in our acquired knowl-
edge about the world. Our experience and common sense
knowledge is likely to be organized in our mind as inter-
connected concepts and events and most of these links are
weighted by affective information, as we tend to forget or
hardly recall memories that are not associated with any kind
of positive or negative emotion. Therefore, the human ca-
pacity to envision possible outcomes of a decision might lie
both in the capability of crawling the semantic network of
concepts we have acquired through experience (C-level), and
in the capability of summarizing the huge amount of inputs
and outputs of previous situations to find useful patterns that
might work at the present time (U-level).

The latter capability, in cognitive science, is termed ‘com-
pression’ and refers to transforming diffuse and distended
conceptual structures that are less congenial to human un-
derstanding so that they become better suited to our human-
scale ways of thinking. Compression is hereby implemented
by representing affective common sense knowledge in a way
that it is neither too concrete nor too abstract with respect to
the detail granularity needed for performing a particular task.

To this end, we first generate a matrix representation of Af-
fectNet by applying blending (Havasi, Speer, Pustejovsky, &
Lieberman, 2009), a technique that performs inference over
multiple sources of data simultaneously, taking advantage of
the overlap between them. In particular, the alignment of
ConceptNet and WNA yields A, a matrix in which common
sense and affective knowledge coexist, i.e., a matrix 14,301 x
117,365 whose rows are concepts (e.g., ‘dog’ or ‘bake cake’),
whose columns are either common sense and affective fea-
tures (e.g., ‘isA-pet’ or ‘hasEmotion-joy’), and whose val-
ues indicate truth values of assertions. Therefore, in A, each
concept is represented by a vector in the space of possible
features whose values are positive for features that produce
an assertion of positive valence (e.g., ‘a penguin is a bird’),
negative for features that produce an assertion of negative va-
lence (e.g., ‘a penguin cannot fly’), and zero when nothing is
known about the assertion. The degree of similarity between
two concepts, then, is the dot product between their rows in A.
The value of such a dot product increases whenever two con-
cepts are described with the same feature and decreases when
they are described by features that are negations of each other.



In particular, we use truncated singular value decomposi-
tion (TSVD) (Wall, Rechtsteiner, & Rocha, 2003) in order
to obtain a new matrix containing both hierarchical affective
knowledge and common sense. The resulting matrix has the
form A = Uy X VkT and is a low-rank approximation of A, the
original data. This approximation is based on minimizing
the Frobenius norm of the difference between A and A under
the constraint rank(A) = k. For the Eckart-Young theorem
(Eckart & Young, 1936), it represents the best approximation
of A in the least-square sense, in fact:

~min [A-A] = _ min [E-U*AV|
Alrank(A)=k Alrank(A)=k
= _min [Z-S|
Alrank(A)=k

assuming that A has the form A = USV*, where S is diago-
nal. From the rank constraint, i.e., S has k non-zero diagonal
entries, the minimum of the above statement is obtained as
follows:

_min
Alrank(A)=k

Therefore, A of rank k is the best approximation of A in
the Frobenius norm sense when 6; =s; (i = 1,...,k) and the
corresponding singular vectors are the same as those of A.
If we choose to discard all but the first k principal compo-
nents, common sense concepts and emotions are represented
by vectors of k coordinates: these coordinates can be seen as
describing concepts in terms of ‘eigenmoods’ that form the
axes of AffectiveSpace, i.e., the basis ey,...,ex—1 of the vector
space. For example, the most significant eigenmood, e, rep-
resents concepts with positive affective valence. That is, the
larger a concept’s component in the e direction is, the more
affectively positive it is likely to be. Concepts with negative
ep components, then, are likely to have negative affective va-
lence.

Thus, by exploiting the information sharing property of
TSVD, concepts with the same affective valence are likely to
have similar features - that is, concepts conveying the same
emotion tend to fall near each other in AffectiveSpace. Con-
cept similarity does not depend on their absolute positions in
the vector space, but rather on the angle they make with the
origin. For example we can find concepts such as ‘beauti-
ful day’, ‘birthday party’, ‘laugh’, and ‘make person happy’
very close in direction in the vector space, while concepts like
‘sick’, ‘feel guilty’, ‘be laid off’, and ‘shed tear’ are found in
a completely different direction (nearly opposite with respect
to the centre of the space). By reducing the dimensionality
of the matrix representation of A, AffectiveSpace compresses
the feature space of affective common sense knowledge into
one that allows to better gain global insight and human-scale
understanding.
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The number k of singular values selected for building
AffectiveSpace, in fact, is a measure of the trade-off between
precision and efficiency in the representation of the affective
common sense knowledge base. Switching between different
vector space dimensionalities can be seen as looking at the
data from many different points of view. Balancing the num-
ber of singular values discarded when synthesizing Affective-
Space, hence, corresponds to calibrate the affective common
sense knowledge representation in a way that it is neither too
concrete nor too abstract with respect to the detail granularity
needed for performing a particular task. Different k values,
for example, work differently according to the affective di-
mension we consider, e.g., for Pleasantness the best k appears
to be closer to 100, while for Sensitivity a space of about 70
dimensions appears to be enough for precisely and efficiently
represent affective common sense knowledge.

The capability to look at things from a different perspec-
tive, moreover, can be emulated by applying different space
transformations to AffectiveSpace. The distribution of the
values of each AffectiveSpace dimension is bell-shaped, with
different centers and different degree of dispersion around
them. In order to more uniformly distribute affective com-
mon sense knowledge in the vector space, an alternative
strategy to represent AffectiveSpace consists in centering the
values of the distribution of each dimension on the origin
and in mapping dimensions according to a transformation
x € R — x* € [-1,1]. This transformation is often pivotal
for better clustering AffectiveSpace as the vector space tends
to have different grades of dispersion of data points across
different dimensions, with some space regions more densely
populated than others.

The switch to a different space configuration helps to dis-
tribute data more uniformly, possibly leading to an improved
(or, at least, different) reasoning process. Switching be-
tween different space configurations, in fact, changes how
each dimension is influent in the vector space representa-
tion of AffectNet and, hence, changes how we are looking
at the affective common sense knowledge because similarity
in AffectiveSpace does not depend on concepts’ absolute po-
sition, but rather on the angle they make with the origin of the
vector space. In particular, the transformation x;; — x;; — g
is first applied, being y; the average of all values of the i-th
dimension. Then a normalization is applied, combining the
previous transformation with a new one x;; %, where G;
is the standard deviation calculated on the i-th dimension and
a is a coefficient that can modify the same proportion of data
that is represented within a specified interval.

Finally, in order to ensure that all components of the vec-
tors in the defined space are within [—1,1] (i.e., that the
Chebyshev distance between the origin and each vector is
smaller or equal to 1), a final transformation x;; — s(x;;) is
needed, where s(x) is a sigmoid function. Different choices
for the sigmoid function may be made, influencing how ‘fast’
the function approaches 1 while the independent variable ap-
proaches infinity.



Combining the proposed transformations, two possible
mapping functions are expressed in the following formulae:

Xii— U
x;‘j:tanh i~ M

a- o;
X
a'0i+|xij—,ui|

*

This space transformation leads to two main advantages,
which could be of notable importance depending on the prob-
lem being tackled. First, this different space configuration
ensures that each dimension is equally important by avoiding
that the information provided by dimensions with higher (i.e.,
more distant from the origin) averages predominates. Second,
normalizing according to the standard deviations of each di-
mension allows a more uniform distribution of data around
the origin, leading to a full use of information potential.

Swapping Reasoning Foci

The capability of switching among different Ways to Think
can be thought as changing the foci around which we de-
velop our different reasoning strategies. Such approach can
be implemented in AffectiveSpace by changing the centroids
around which the vector space is clustered. Such a clustering
process is implemented by adopting a k-medoids approach
(Kaufman & Rousseeuw, 1990) to partition the given obser-
vations into k clusters around as many centroids, trying to
minimize a given cost function. Differently from the k-means
algorithm, which does not pose constraints on centroids, k-
medoids do assume that centroids must coincide with k ob-
served points.

The most commonly used algorithm for finding the &
medoids is the partitioning around medoids (PAM) algorithm,
which determines a medoid for each cluster selecting the most
centrally located centroid within the cluster. After selec-
tion of medoids, clusters are rearranged so that each point is
grouped with the closest medoid. Since k-medoids clustering
is a NP-hard problem, different approaches based on alter-
native optimization algorithms have been developed, though
taking risk of being trapped around local minima. We use a
modified version of the algorithm recently proposed by Park
and Jun (Park & Jun, 2009), which runs similarly to the k-
means clustering algorithm.

This has shown to have similar performance when com-
pared to PAM algorithm while taking a significantly reduced
computational time. In particular, we have N concepts (N =
14,301) encoded as points x € R?(p = 100). We want to
group them into k clusters and, in our case, we can fix k = 24
as we are looking for one cluster for each sentic level of the
Hourglass of Emotions (Cambria, Livingstone, & Hussain,
2012), a novel biologically-inspired and psychologically-
motivated emotion categorization model, based on Plutchik’s
studies on human emotions (Plutchik, 2001), that can poten-
tially describe any human emotion in terms of four indepen-
dent but concomitant dimensions, whose different levels of
activation make up the total emotional state of the mind.

Specifically, we need to cluster AffectiveSpace four times,
once for each dimension. According to the Hourglass catego-
rization model, in fact, each concept can convey, at the same
time, more than one emotion (which is why we get compound
emotions) and this information can be expressed via a sentic
vector specifying the concept’s affective valence in terms of
Pleasantness, Attention, Sensitivity, and Aptitude. Therefore,
given that the distance between two points in AffectiveSpace

is defined as D(a,b) = /Y1, (a;i — b;)?, the used algorithm,
applied for each of the four affective dimensions, can be sum-
marized as follows:

1. Each centroid C, € R'% (n = 1,2, ..., k) is set as one of the
six concepts corresponding to each s in the current affective
dimension

2. Assign each record x to a cluster £ so that x; € &, if
D(x;,Cp) <D(x;,Cp) m=1,2,....k

3. Find a new centroid C for each cluster = so that C; = x; if
Youez; D(xisxm) < Yoex; D, Xm) Van € Ej

4. Repeat step 2 and 3 until no changes on centroids are ob-
served

After such a clustering process (performed at U-level),
concepts that are semantically and affectively related to the
input data can be intuitively retrieved by analogy and uncon-
sciously crop out to the C-level. According to the initial cen-
troid we choose, the final clusterization of AffectiveSpace can
be very different. Hence, the way such initial medoids are
chosen can be re-conducted to the human capability to switch
between different perspectives to grasp the different facets of
a problem.

At C-level, moreover, reasoning is performed by exploiting
AffectNet’s connectivity to find semantically and affectively
related concepts by means of spectral association (Havasi,
Speer, & Holmgren, 2010). Spectral association is a tech-
nique that involves assigning activation to seed concepts and
applying an operation that spreads their values across the
graph. This operation, an approximation of many steps of
spreading activation, transfers the most activation to concepts
that are connected to the seed concepts by short paths or many
different paths in affective common sense knowledge.

Seed concepts can also be associated with negative activa-
tion values in order to reduce the spreading operation in the
parts of the graph we are specifically not interested in. If we
want to find concepts semantically related to ‘bank’ as a fi-
nancial institution without getting concepts related to ‘river
bank’, for example, we can set as positive seeds concepts like
‘money’, ‘savings’, or ‘investment’, and, as negative seeds,
concepts like ‘river’, ‘water’, or ‘shore’. The outcomes of
spectral association can be very different according to which
seeds we select as starting points for the spreading activation
steps. Since spectral association involves TSVD, results also
depend on the number k of singular values selected.
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While choosing different k£ values can be seen as devel-
oping different reasoning strategies, choosing different seeds
can be associated to changing the foci around which those
strategies are developed. Through spectral association, pos-
itive and negative values of these concepts are spread across
the graph representation of AffectNet, resulting in a set of
contextually semantic related instances. Letting a machine
switch between such seeds according to its own intuition
(e.g., concepts obtained through AffectiveSpace at U-level)
can be re-conducted to the human capability to change the
foci around which different reasoning strategies are devel-
oped and, hence, to iterate on the ways to look at a problem
until one that works is found.

Evaluation

In order to efficiently and timely swap different reasoning
strategies and foci, we perform all the computations (relative
to the most significant configurations) a priori and save the
results in a semantic-aware format, using an approach pre-
viously adopted for building SenticNet (Cambria, Havasi, &
Hussain, 2012). The result is a system for affect recogni-
tion that has multiple ways to deal with natural language se-
mantics and sentics. We tested sentic panalogy on a bench-
mark for affective common sense knowledge (BACK) built
by applying CF-IOF (concept frequency - inverse opinion fre-
quency), a technique similar to TF-IDF, on a 5,000 blogpost
database extracted from LiveJournal', a virtual community of
users who keep a blog, journal, or diary. An interesting fea-
ture of this website is that bloggers are allowed to label their
posts with both a category and a mood tag, by choosing from
predefined categories and mood themes.

CF-IOF identifies common domain-dependent semantics
in order to evaluate how important a concept is to a set of
opinions concerning the same topic. Firstly, the frequency of
a concept ¢ for a given domain d is calculated by counting the
occurrences of the concept ¢ in the set of available d-tagged
opinions and dividing the result by the sum of number of oc-
currences of all concepts in the set of opinions concerning
d. This frequency is then multiplied by the logarithm of the
inverse frequency of the concept in the whole collection of
opinions, that is:

Hed

CFA1OF = 5= Ik
k Tk,

log

& e

where n. 4 is the number of occurrences of concept ¢ in
the set of opinions tagged as d, ny is the total number of
concept occurrences, and n. is the number of occurrences of
c in the whole set of opinions. A high weight in CF-IOF
is reached by a high concept frequency in a given domain
and a low frequency of the concept in the whole collection
of opinions. Specifically, we exploited CF-IOF weighting to
filter out common concepts in the LiveJournal corpus and de-
tect relevant mood-dependent semantics for each of the Hour-
glass sentic levels. The result was a benchmark of 2000 af-

"http://livejournal.com
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fective concepts that were screened by 21 English-speaking
students who were asked to map each concept to the 24 dif-
ferent emotional categories that form the Hourglass of Emo-
tions. BACK’s concepts were compared with the classifica-
tion results obtained by applying the AffectiveSpace process,
spectral association, and sentic panalogy. Results showed that
sentic panalogy achieves +9.7% and +6.2% accuracy than the
standard (i.e., 100-dimensional) AffectiveSpace process and
the default (i.e., fixed on the Hourglass sentic levels) spectral
association, respectively.

Brain-Inspired Sentiment Analysis

In order to test sentic panalogy also within a real-world sce-
nario, we developed a brain-inspired software engine for sen-
timent analysis. This software engine consists of four main
components: a pre-processing module, a semantic parser, a
target spotting module, and an affect interpreter.

The pre-processing module firstly interprets all the affec-
tive valence indicators usually contained in opinionated text
such as cross-linguistic onomatopoeias, exclamation words,
degree adverbs, and emoticons. Secondly, it lemmatizes text
and splits the opinion into single clauses according to gram-
matical conjunctions and punctuation. Then, the semantic
parser deconstructs text into concepts using a lexicon based
on sequences of lexemes that represent multiple-word con-
cepts extracted from AffectNet.

The target spotting module aims to individuate one or more
sentiment targets, e.g., people, places, events, and ideas, from
the input concepts. This is done by projecting the retrieved
concepts into both the graph and the vector space representa-
tion of AffectNet, in order to assign these to a specific concep-
tual class. The categorization does not consist in simply la-
beling each concept, but also in assigning a confidence score
to each category label, which is directly proportional to the
value of belonging to a specific conceptual cluster (number of
steps in the graph and dot product in the vector space). The af-
fect interpreter, similarly, projects the retrieved concepts into
the vector space representation of AffectNet, in order to as-
sign these to a specific affective class and, hence, calculates
polarity in terms of the Hourglass dimensions.

Approach Comparison

In order to evaluate the different facets of the engine from
different perspectives, we used a PatientOpinion? dataset and
compared results obtained using standard AffectiveSpace, de-
fault spectral association, and sentic panalogy. The resource
is a dataset obtained from PatientOpinion, a social enterprise
pioneering an on-line feedback service for users of the UK
national health service to enable people to share their recent
experience of local health services on-line. It is a manu-
ally tagged dataset of 2,000 patient opinions that associates
to each post a category (namely, clinical service, communi-
cation, food, parking, staff, and timeliness) and a positive or
negative polarity.

2http://patientopinion.org.uk



Category Affective- Spectral Sentic
Label Space Association | Panalogy
clinical service 62.4% 71.5% 80.0%
communication 62.3% 59.8% 71.2%
food 70.7% 69.6% 78.5%
parking 56.3% 53.7% 69.4%
staff 58.5% 49.2% 63.9%
timeliness 69.2% 61.9% 75.1%

Table 1: F-measures relative to PatientOpinion evaluation.

We used it to test the detection of opinion targets and the
polarity associated with these (F-measure values are reported
in Table 1).

Conclusion

Sentic panalogy is novel approach to affective common sense
reasoning inspired by Minsky’s notion of parallel analogy. It
employs different KR strategies and reasoning techniques to
maintain several analogous representations of the same prob-
lem so that, when a particular strategy begins to fail, the sys-
tem can switch to one of the others. In the future, we plan
to develop heuristics to swap reasoning strategies and foci
in real-time, rather than performing all the computations a
priori, in order to pave the way for more brain-inspired ap-
proaches to affective common sense reasoning.
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