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Abstract

Background

Considerable geographic variation exists in the prevalence of chronic kidney disease across

the United States. While some of this variability can be explained by differences in patient-

level risk factors, substantial variability still exists. We hypothesize this may be due to under-

studied environmental exposures such as air pollution.

Methods

Using data on 1.1 million persons from the 2010 5% Medicare sample and Environmental

Protection Agency air-quality measures, we examined the association between county-level

particulate matter�2.5 μm (PM2.5) and the prevalence of diagnosed CKD, based on claims.

Modified Poisson regression was used to estimate associations (prevalence ratios [PR])

between county PM2.5 concentration and individual-level diagnosis of CKD, adjusting for

age, sex, race/ethnicity, hypertension, diabetes, and urban/rural status.

Results

Prevalence of diagnosed CKD ranged from 0% to 60% by county (median = 16%). As a con-

tinuous variable, PM2.5 concentration shows adjusted PR of diagnosed CKD = 1.03 (95%

CI: 1.02–1.05; p<0.001) for an increase of 4 μg/m3 in PM2.5. Investigation by quartiles

shows an elevated prevalence of diagnosed CKD for mean PM2.5 levels�14 μg/m3 (highest

PLOS ONE | https://doi.org/10.1371/journal.pone.0200612 July 31, 2018 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bragg-Gresham J, Morgenstern H,

McClellan W, Saydah S, Pavkov M, Williams D, et

al. (2018) County-level air quality and the

prevalence of diagnosed chronic kidney disease in

the US Medicare population. PLoS ONE 13(7):

e0200612. https://doi.org/10.1371/journal.

pone.0200612

Editor: Martin H. de Borst, University Medical

Center Groningan and University of Groningan,

NETHERLANDS

Received: October 24, 2017

Accepted: June 29, 2018

Published: July 31, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All PM2.5 files are

available from the CDC Wonder database (https://

wonder.cdc.gov/nasa-pm.html). Medicare Data are

available from the Centers for Medicare and

Medicaid through ResDAC (https://www.resdac.

org/).

Funding: This research was supported by the

Supporting, Maintaining and Improving the

Surveillance System for Chronic Kidney Disease in

https://doi.org/10.1371/journal.pone.0200612
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200612&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200612&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200612&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200612&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200612&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200612&domain=pdf&date_stamp=2018-07-31
https://doi.org/10.1371/journal.pone.0200612
https://doi.org/10.1371/journal.pone.0200612
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://wonder.cdc.gov/nasa-pm.html
https://wonder.cdc.gov/nasa-pm.html
https://www.resdac.org/
https://www.resdac.org/


quartile: PR = 1.05, 95% CI: 1.03–1.07), which is consistent with current ambient air quality

standard of 12 μg/m3, but much lower than the level typically considered healthy for sensi-

tive groups (~40 μg/m3).

Conclusion

A positive association was observed between county-level PM2.5 concentration and diag-

nosed CKD. The reliance on CKD diagnostic codes likely identified associations with the

most severe CKD cases. These results can be strengthened by exploring laboratory-based

diagnosis of CKD, individual measures of exposure to multiple pollutants, and more control

of confounding.

Introduction

The body of evidence suggesting that long-term exposure to air particles less than 2.5 microm-

eter in diameter, called fine particulate matter (PM2.5) air pollution, contributes to adverse

health outcomes continues to grow. Early work focused on acute exposure to high levels of

micro-particle air pollution where it was found to increase overall daily mortality by 7% per 50

pg/m3 increase in PM2.5, and cause-specific mortality by 25%, 11%, and 0.4% for respiratory,

cardiovascular, and other causes, respectively [1]. Recently, there has been a growing interest

in exploring outcomes from long-term air pollution exposure in high-risk groups, such as

those with underlying cardiovascular and metabolic or respiratory disorders [2]. Even more

recently, studies examining the possible effects of air pollution on the risk of chronic kidney

disease (CKD) have been conducted [3–7].

Some of the first evidence of the association between PM2.5 and kidney disease was discov-

ered in an ecological study of health outcomes in coal mining areas of Appalachia, where they

found a 19% higher relative risk of CKD among men and a 13% higher relative risk among

women in mining counties with population > 4 million compared to non-mining counties

[3]. Two studies focused on the Boston community and examined estimated glomerular filtra-

tion rates (eGFR), a measure of kidney function. The first examined eGFR in patients hospital-

ized for acute ischemic stroke and found that individuals living closer to major roadways (<50

m) had eGFR on average lower by 3.9 ml/min/1.73m2 compared to patients living�1000 m

from a major roadway [4]. The second study was a small longitudinal sample of elderly veter-

ans and showed that individuals exposed to higher levels of ambient air pollution also had

lower average estimated glomerular filtration rates and a larger annual decrease in kidney

function [5]. The largest study to date have been conducted using data from the Department

of Veteran Affairs where they found higher risks of multiple measures of kidney function of

20% or higher for every 10 μg/m3 higher PM2.5 level and higher rates for specific components

including NO2 and CO [6,7].

CKD is a common condition with important long-term health implications that often goes

unrecognized until advanced stages or kidney failure [8–10]. CKD currently afflicts about 27

million Americans and significantly elevates the risk of death, cardiovascular disease, end-

stage renal disease (ESRD), and other complications [11]. Individuals with CKD are at an 8-

10-fold increased risk of cardiovascular mortality, compared to those without kidney dysfunc-

tion [12]. CKD is typically a progressive disease with loss of kidney function over time. The

rate of function loss is variable and dependent on both treatment and patient factors, including

level of proteinuria, older age, diabetes mellitus, blood pressure control, obesity, metabolic
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syndrome, and family history of kidney disease. Early recognition and treatment of CKD and

of the risk factors for CKD may slow progression of the disease [13–15]. Although much atten-

tion has been given to treatment of personal CKD risk factors, less has been focused on poten-

tial environmental contributors to the development and progression of CKD, despite the

higher prevalence of both CKD and air-pollutions exposure among disadvantaged and minor-

ity populations in the United States [12].

Sources of PM2.5 include all types of combustion activities, such as motor vehicle emissions,

power plants, and wood burning, as well as common indoor activities, such as smoking, cook-

ing, burning candles or oil lamps, and operating fireplaces and fuel-burning space heaters

(e.g., kerosene heaters) [16]. The major components of PM2.5 include: ammonium sulfate,

ammonium nitrate, organic carbonaceous mass, elemental carbon, and crustal material [16].

Air pollution from these sources can be mitigated; thus, it is important to study its link with

CKD.

Several pathophysiologic mechanisms have been proposed to explain the possible causal

link between air pollution and adverse cardio-metabolic and respiratory outcomes. Many of

these mechanisms are similar to factors known to play a role in initiation and progression of

CKD, including: increased sympathetic nervous system activity, activation of the renin-angio-

tensin-aldosterone system (RAAS), vascular endothelial dysfunction, oxidative stress, inflam-

mation, platelet adhesion and aggregation, insulin resistance, and metabolic dysregulation

[17–19]. For example, there is evidence that individuals in areas with high PM2.5 have high lev-

els of sympathetic activity and RAAS activation [20]. These are known contributors to initia-

tion and progression of CKD, and treatment of individuals with medications that inhibit

RAAS have been shown to slow CKD progression. Studies using experimental mouse models

have also demonstrated that air pollution is associated with high mouse levels of oxidative

stress and vascular endothelial dysfunction [19]. Experimental studies suggest that treating

these conditions can slow CKD progression [20]. Additionally, air pollution is known to con-

tain heavy metals. Lead, mercury, and cadmium are common heavy metal toxins known to

have toxicological kidney effects at high levels. Exposure to some of these metals from the air,

even at low levels, could also potentially play a role in CKD progression [21,22].

We postulate that, similar to high-risk individuals with cardiopulmonary disease, individu-

als with CKD would be particularly susceptible to the effects of air pollution. We, therefore,

conducted an exploratory study to determine whether an association exists between county

levels of ambient air pollution and CKD prevalence, controlling for potential confounders,

among older adults living in the United States. Evidence of a link between air pollution and

kidney disease in this study would support future studies involving individual exposures

measures.

Materials and methods

Study sample

This study is an analysis of anonymous, secondary data sources and met University of Michi-

gan’s Institutional Review Board standards for “Not Regulated” Status. We conducted a cross-

sectional study of 1,164,057 adults�65 years old enrolled in the U.S. Medicare program in

2010 (Medicare 5% sample). To be included, patients were required to be enrolled in Medicare

parts A and B for the full year, with no health management organization (HMO) coverage.

CKD was defined using a large set of ICD-9-CM diagnosis codes indicating CKD, which are

identical to the codes utilized by the United States Renal Data System [23–24]. The full set of

ICD-9-CM codes were included in this study to capture all possible mechanisms for an associ-

ation between PM2.5 and kidney disease. ICD-9-CM codes were also employed to calculate

Air quality and the prevalence of diagnosed chronic kidney disease
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indicators of diabetes and hypertension status and were derived from both inpatient and/or

outpatient diagnosis claims. This year of Medicare data was chosen to specifically align with

the county-level exposure data.

Other measures

County-level concentrations of PM2.5 were obtained for the year 2006 from the Centers for

Disease Control and Prevention (CDC) Wonder database [25]. A full description of this data

can be found on the website. Briefly, this database includes PM2.5 concentrations measured

daily in the outdoor air and geographic aggregates of these measures of fine particulate matter.

To create these data, two sources of environmental data were used as input to the surfacing

algorithm, US EPA AQS PM2.5 in-situ data and NASA MODIS aerosol optical depth remotely

sensed data and continuous spatial surfaces (grids) of daily PM2.5 for the whole conterminous

U.S. were created for 2003–2011. County-level data were aggregated from 10 kilometer square

spatial resolution grids [26]. Aggregated county-level PM2.5 values provided directly from the

Wonder database were employed for this study for the year 2006. Particles with aerodynamic

diameter< 2.5 micrometers (PM2.5) were the focus of this work, as evidence already exists for

the effect of larger particular matter in the etiology of kidney disease and it is believed that

finer particles pose a greater health risk because they are more readily inhaled and can lodge

deeply into the lungs and enter the blood stream [27,28].

A 6-category ordinal variable for urban/rural status was used to account for other unmea-

sured differences between counties, as this measure is known to be associated with potential

confounders, such as obesity, physical activity, nutrition, and poverty, as well as air pollution

levels [29–33]. Data were derived from the CDC’s Urban-Rural Classification Scheme for

Counties, for 2006 [34]. The six categories included: two large metropolitan groups, consisting

of> 1 million residents, divided by designation as central or fringe/suburban; medium metro-

politan with 250,000–999,999 residents; small metropolitan with< 250,000 residents; and two

non-metropolitan categories, micropolitan if containing an urban cluster of> 10,000 residents

and non-core if no urban cluster. County-level data on poverty and education, from the 2006

Behavioral Risk Factor Surveillance System BRFSS Supplement [35], were examined as mark-

ers of socioeconomic status, but were not associated with CKD in our analysis after accounting

for the urban-rural status of each county and were therefore not used in the final models.

Statistical analysis

Although the main exposure variables in this analysis are ecologic (aggregated) measures of

PM2.5 at the county level, the unit of analysis is the individual level outcome of CKD status and

all covariates except urban/rural status are measured at the individual level [36]. The county of

residence for every individual in the study population was indicated by the 5-digit Federal

Information Processing Standard (FIPS) codes and was used to merge the air pollution data to

each patient in the sample [37].

Descriptive statistics are presented for the total sample and the sample stratified by the

median PM2.5 concentration (12.2 μg/m3), which lies very near the middle of the bimodal dis-

tribution of this measure. The individual-level diagnosis of CKD was modelled as the outcome,

using modified Poisson regression with robust errors. This modeling approach was chosen, as

opposed to logistic regression, because it yields estimates of prevalence ratios (PRs), rather

than odds ratios [38,39]. The final model accounted for clustering of the outcome within coun-

ties, using a compound symmetry covariance matrix. Two parameterizations of county-level

mean PM2.5 were examined: as a continuous variable (expressed for an increase of 4 μg/m3,

which is approximately the interquartile range) and by quartiles. All PM2.5 measures are

Air quality and the prevalence of diagnosed chronic kidney disease
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reported in micrograms per cubic meter (μg/m3). PR estimates, comparing mean exposure lev-

els, were adjusted for the following available potential confounders: age, sex, race/ethnicity

(Non-Hispanic White, Non-Hispanic Black, Hispanic, Asian, North American Native, Other,

and Unknown), diagnosed hypertension, diagnosed diabetes, and urban/rural status.

Results

Of 3,143 U.S. counties, CKD diagnosis information was available for enrollees within 3,108,

PM2.5 data was available for 3,111, and both variables were available for 3,049 counties. The

overall prevalence of diagnosed CKD in the sample was 17.2%. When examined at the county-

level, the median county-level prevalence of diagnosed CKD in the Medicare population was

16%, ranging from 0%-60%, with an interquartile range of 13%-19%. The median county-level

PM2.5 concentration was 12.2 μg/m3, ranging from 6.1 to 16.8 μg/m3, with an interquartile

range of 10.2–13.8 μg/m3. The distribution of county-level PM2.5 concentration was bimodal,

as displayed in Fig 1.

When examining characteristics of Medicare enrollees by the two clusters of PM2.5 concen-

tration: high (PM2.5 > 12.2 μg/m3) and low (PM2.5� 12.2 μg/m3), we see that enrollees in

counties with higher PM2.5 were slightly younger, contained a higher proportion of females

and non-Hispanic Blacks, higher prevalence of both diabetes and hypertension, and a higher

proportion of enrollees living in large metropolitan areas (Table 1).

Fig 1. Histogram of county-level PM2.5. Data Source: http://wonder.cdc.gov/nasa-pm.html.

https://doi.org/10.1371/journal.pone.0200612.g001
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Maps of the county-level quartiles of both diagnosed CKD and mean PM2.5 concentration

are displayed in Fig 2A and 2B. No striking patterns of diagnosed CKD appear, though lower

prevalence are observed between Montana and New Mexico and West Texas. Fig 2B illustrates

higher concentrations of PM2.5 from the Ohio Valley southward along the Mississippi, in

Nevada and eastern California, and the Appalachian mountains.

There was a clear pattern of higher prevalence of diagnosed CKD in large central metropoli-

tan areas (18.4%), decreasing steadily to 16.0% and 15.1% in micropolitan and non-core

Table 1. Characteristics of the Medicare enrollees stratified by level of exposure to county-level PM2.5 (μg/m3)ᵼ.

Measure Low PM2.5

(� 12.2 μg/m3)

High PM2.5

(> 12.2 μg/m3)

Age (years, SD) 75.4 (7.7) 75.2 (7.6)

Male (%) 42.1 40.6

Race/Ethnicity: (%)

Non-Hispanic White 90.2 86.0

Non-Hispanic Black 3.6 11.0

Hispanic 1.9 0.8

Other/Missing 4.3 2.2

Diabetes� (%) 28.6 32.2

Hypertension� (%) 73.2 77.4

Rural Urban Status:

Large Metro 39.8 47.3

Small-Medium Metro 34.0 30.2

Micropolitan or non-core 26.2 22.5

�Diabetes and Hypertension identified by ICD-9-CM codes
ᵼ All p-value<0.0001 when comparing measures between low and high PM2.5 counties.

https://doi.org/10.1371/journal.pone.0200612.t001

Fig 2. U.S. county distributions. a: Proportion of Medicare Sample with Diagnosed CKD by County, b: Average PM2.5 (μg/m3) by County, Non-shaded counties had

missing information and were not used in the analysis.

https://doi.org/10.1371/journal.pone.0200612.g002
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counties, respectively (p<0.0001). Due to this observed association, all models examining the

association between diagnosed CKD and fine particulate matter in air accounted for the

county’s urban-rural status, as well as the risk factors shown in Table 1.

We examined PM2.5 concentration as both a continuous and as a 4-category ordinal vari-

able (quartiles) in separate analyses. In unadjusted models, a 4 μg/m3 higher PM2.5 concentra-

tion was associated with a 1.12 (95% CI: 1.10–1.14) PR of diagnosed CKD. After adjustment

for patient characteristics and urban/rural status, the PR was 1.03 (95% CI: 1.02–1.05). Catego-

rizing average PM2.5 level in quartiles and treating the first (lowest) quartile as the reference

group, where PM2.5 <10.2 μg/m3, the adjusted PR was 1.02 (95% CI: 0.99–1.04) for counties in

the second quartile, 1.01 (95% CI: 0.98–1.03) for the third quartile, and 1.05 (95% CI: 1.03–

1.07) for the fourth quartile where the average PM2.5 level was�13.8 μg/m3 (Fig 3).

Discussion

In a large population of subjects, aged 65 years and older, enrolled in the Medicare insurance

program of the United States, county-level concentration of ambient PM2.5 was positively asso-

ciated with diagnosed CKD. This association was attenuated, but remained statistically signifi-

cant even after adjusting for individual demographic characteristics, diagnosed hypertension

and diabetes, and county level urban-rural status. In all models, higher average concentrations

of PM2.5 were associated with higher prevalence of CKD. We also found no evidence that this

Fig 3. Prevalence ratios for CKD by county-level PM2.5
�. Adjusted models included age, sex, race, diabetes, hypertension, and six categories of county urban/

rural status. NOTE: Vertical bars display the 95% Confidence Intervals of the estimates.

https://doi.org/10.1371/journal.pone.0200612.g003
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association is due to differences in the age, sex, race, diabetes, or hypertension prevalence dif-

ferences between regions. Although there could be other confounders affecting this relation-

ship, these characteristics are some of the most common risk factors related to CKD. While

the effect size of PR = 1.05 may not seem large, one should remember that this effect is for all

residents of the county, not just those of a specific age, race/ethnicity, or with a certain comor-

bid condition. The effect size is also similar to those found in studies of other chronic disease

outcomes [40].

This finding is important in regards to standards for air quality. The U.S. Environmental

Protection Agency currently sets the lower limit threshold for PM2.5 at 12 μg/m3; which could

be interpreted to mean that levels lower than this threshold are deemed safe, and vice versa
[27]. This value is much lower than the daily level typically considered healthy for sensitive

groups (~40 μg/m3) and almost half of the counties had mean PM2.5 levels that were above

these guidelines [19]. Moreover, it is not entirely clear that lower levels are indeed safe for

those with health conditions that raise their risk of cardiopulmonary complications. If these

findings can be validated in future research, they may point to the importance of assuring ade-

quate protection from environmental air pollution for individuals at risk of, or already suffer-

ing from, varying severity of CKD.

The findings from this study are consistent with results from studies that have examined

the association between air pollution and other chronic conditions, such as cardiovascular and

pulmonary disease, but these studies are few in number. In one study, Schwartz, et al.[40],

found that after controlling for age, race, sex, and cigarette smoking, annual average total sus-

pended particulate concentrations were associated with increased risk of chronic bronchitis

(odds ratio = 1.07; 95% CI: 1.02–1.12). Most studies of air pollution and its effects on health

have been limited to looking at cardiac or mortality events [41–45]. Our results are also consis-

tent and extend recent work examining associations between air pollution and kidney disease

[3–7], while focusing on a large, novel population of elderly Medicare recipients. Future

research among kidney disease patients will examine hospitalization and mortality, as well as

incidence of kidney disease in this patient population.

The significant overlap in risk factors, pathogenesis, progression, and complications of car-

diovascular and kidney disease is, in general, well recognized [46,47]. The cardiovascular sys-

tem is especially vulnerable even in early stages of CKD with early onset of endothelial

dysfunction [48]. Free radical-mediated injury, activation of vasoactive and pro-inflammatory

cytokines, the central role of activation of renin-angiotensin-aldosterone, abnormal autonomic

imbalance with abnormalities in heart rate variability, increased arterial stiffness, accelerated

atherosclerosis, and a high propensity to acute cardiovascular events including sudden death

are common to both cardiovascular disease (CVD) and CKD [49–51]. A number of other met-

abolic abnormalities unique to the uremic milieu additionally render patients with CKD even

more vulnerable to environmental and other insults/stressors, such as air pollution. The kid-

ney, while seemingly remote from air in the environment, is intimately linked to the circula-

tory system–by virtue of the high rates of blood flow through its parenchyma–and therefore to

the environment, thereby sharing vulnerability with the respiratory and cardiovascular systems

[52].

We recognize that the association between air pollution levels and prevalence of diagnosed

CKD does not indicate a (causal) effect and may be confounded by county-level differences in

a number of unmeasured characteristics, including health system capacity and other environ-

mental factors. By adjusting for each county’s urban-rural status, we have aimed to minimize

this potential confounding. This study was restricted to a population at the highest risk for kid-

ney disease, Medicare enrollees (aged 65 years and older), and the results are not generalizable

to younger age groups. While older individuals are at high risk, an examination of younger

Air quality and the prevalence of diagnosed chronic kidney disease
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ages would benefit any future work. The main methodological limitations of the current work

are its cross-sectional design and lack of individual-level exposure data.

This study was also limited to the use of administrative healthcare claims data for identifica-

tion of CKD. It is likely that individuals with early stages of CKD do not have a diagnosis and

are therefore classified as non-cases. We chose to use the list of ICD-9 codes utilized by the

United States Renal Data System, which includes all diagnoses of CKD, because although

some diagnoses, such as posterior urethral valves or pyelonephritis, are not likely associated

with air pollution, we cannot exclude this possibility based on our study. Also, a systematic

review of coding for CKD and related conditions has shown the sensitivity of using only diag-

nostic codes to be low, typically under 50% [53]. Moreover, these conditions would be

extremely rare in the population under study. The reliance on claims data also excluded an

examination of these associations by stage of CKD. Future work would benefit by focusing on

cohorts that include laboratory data for use in classifying individuals into appropriate CKD

categories. The authors also acknowledge that there may be air pollution data quality limita-

tions and refer the reader to the CDC Wonder website for details.

If indeed a variety of studies consistently further support the hypothesis that air pollution is

a risk factor for kidney disease incidence, progression and other complications, it may lend

greater impetus to encourage public health and clinical efforts to not only offer greater protec-

tion to these higher risk individuals, but also to establish evidence at lower thresholds for air

pollution standards, in general. Specific toxins in the environment (e.g., lead, aristolochic acid,

heavy metals, etc.) have definitively been linked with nephrotoxicity, and minimal exposure

has been advised. It is well known that patients with kidney disease are especially susceptible to

cardiopulmonary complications and when in highly polluted areas, may benefit from the use

of preventive measure that are relatively simple and easy to implement. It may also be advisable

for such individuals to consider limiting long hours commuting to work in high traffic areas

where there is significantly higher exposure to environmental pollutants and other stressors

[54–55].

Although this study included over one million individuals, the cross-sectional design

and lack of individual exposure data severely limit causal inference. It does, however, sup-

port further research in this area, using more detailed air pollution exposure data mapped

to the patient- or zip-code level rather than the more crude averaged, county-level estimates

utilized in this study. If this association is borne out by future studies, it would have clinical

and public health implications for reducing air pollution exposure for those with CKD and

also for those at risk for the condition. The potential public health significance of this find-

ing is even greater for regions and countries with much higher levels of air pollution than

the United States.
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