
UC Berkeley
UC Berkeley Previously Published Works

Title
Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications.

Permalink
https://escholarship.org/uc/item/5zm5x9c7

ISBN
978-1-4503-3955-1

Authors
Ghosh, Shromona
Sadigh, Dorsa
Nuzzo, Pierluigi
et al.

Publication Date
2016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zm5x9c7
https://escholarship.org/uc/item/5zm5x9c7#author
https://escholarship.org
http://www.cdlib.org/


Diagnosis and Repair for Synthesis
from Signal Temporal Logic Specifications

Shromona Ghosh§ Dorsa Sadigh§ Pierluigi Nuzzo§
Vasumathi Raman† Alexandre Donzé§ Alberto Sangiovanni-Vincentelli§

S. Shankar Sastry§ Sanjit A. Seshia§
§Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA

†United Technologies Research Center, Berkeley, CA

ABSTRACT
We address the problem of diagnosing and repairing spec-
ifications for hybrid systems, formalized in signal temporal
logic (STL). Our focus is on automatic synthesis of con-
trollers from specifications using model predictive control.
We build on recent approaches that reduce the controller
synthesis problem to solving one or more mixed integer lin-
ear programs (MILPs), where infeasibility of an MILP usu-
ally indicates unrealizability of the controller synthesis prob-
lem. Given an infeasible STL synthesis problem, we present
algorithms that provide feedback on the reasons for unre-
alizability, and suggestions for making it realizable. Our
algorithms are sound and complete relative to the synthesis
algorithm, i. e., they provide a diagnosis that makes the syn-
thesis problem infeasible, and always terminate with a non-
trivial specification that is feasible using the chosen synthesis
method, when such a solution exists. We demonstrate the
effectiveness of our approach on controller synthesis for var-
ious cyber-physical systems, including an autonomous driv-
ing application and an aircraft electric power system.

1. INTRODUCTION
The automatic synthesis of controllers for hybrid systems

from expressive high-level specification languages allows rais-
ing the level of abstraction for the designer while ensuring
correctness of the resulting controller. In particular, sev-
eral controller synthesis methods have been proposed for
expressive temporal logics and a variety of system dynam-
ics. However, a major challenge to the adoption of these
methods in practice is the difficulty of writing formal specifi-
cations. Specifications that are poorly stated, incomplete, or
inconsistent can produce synthesis problems that are unre-
alizable (no controller exists for the provided specification),
intractable (synthesis is computationally too hard), or lead
to solutions that fail to capture the designer’s intent. In this
paper, we present an algorithmic approach to reduce the
specification burden for controller synthesis from temporal
logic specifications, focusing on the case when the original
specification is unrealizable.

Logical specifications can be provided in multiple ways.
One approach is to provide monolithic specifications, com-
bining within a single formula constraints on the environ-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC’16, April 12 - 14, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3955-1/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2883817.2883847

ment with desired properties of the system under control.
However, in many cases, a system specification can be more
conveniently provided as a contract separating the respon-
sibilities of the system under control (i. e., the guarantees)
from the assumptions on the external, possibly adversarial
environment [20, 19]. In such a scenario, besides“weakening”
the guarantees, realizability of a controller can be achieved
by “strengthening” the assumptions. Indeed, a specification
could be unrealizable because the environment assumptions
are too weak, the requirements are too strong, or a combi-
nation of both. Finding the “problem” with the specification
manually can be a tedious and time-consuming process, nul-
lifying the benefits of automatic synthesis. Further, in the
reactive setting, when the environment is adversarial, finding
the right assumptions a priori can be difficult. Thus, given
an unrealizable logical specification, there is a need for tools
that localize the cause of unrealizability to (hopefully small)
parts of the formula, and provide suggestions for repairing
the formula in an “optimal” manner.

The problem of diagnosing and repairing formal require-
ments has received its share of attention in the formal meth-
ods community. Ferrère et al. perform diagnosis on faulty
executions of systems with specifications expressed in linear
temporal logic (LTL) and Metric Temporal Logic (MTL) [9].
They identify the cause of unsatisfiability of these properties
in the form of prime implicants, which are conjunctions of
literals, and map the failure of a specification to the failure
of these prime implicants. Similar syntax tree based defini-
tions of unsatisfiable cores for LTL were presented in [24].
In the context of synthesis from LTL, Raman et al. [22]
address the problem of categorizing the causes of unrealiz-
ability, and how to detect them in high-level robot control
specifications. The use of counter-strategies to derive new
environment assumptions for synthesis was first proposed by
Li et al. [13] and further explored by others [2, 14]. Our ap-
proach, based on exploiting information from optimization
solvers, has similarities to these techniques as well as to the
work of Nuzzo et al. [18] on extracting unsatisfiable cores for
satisfiability modulo theories (SMT) solving.

In this paper, we address the problem of diagnosing and
repairing specifications formalized in signal temporal logic
(STL) [16], a specification language that is well-suited for
hybrid systems. Our work is conducted in the setting of
automated synthesis from STL via optimization in a model
predictive control (MPC) framework [23, 21]. In this ap-
proach to synthesis, both the system dynamics and the STL
requirements on the system are encoded as mixed integer
linear constraints on variables modeling the dynamics of the
system and its environment. Controller synthesis is then for-
mulated as an optimization problem to be solved subject to
these constraints [23]. In the reactive setting, this approach
proceeds by iteratively solving a combination of optimiza-
tion problems using a counterexample-guided inductive syn-

http://dx.doi.org/10.1145/2883817.2883847


thesis (CEGIS) scheme [21]. In this context, an unrealizable
STL specification leads to an infeasible optimization prob-
lem. The problem of infeasibility in constrained predictive
control schemes has been widely addressed in the literature,
e.g., by adopting robust MPC, soft constraints, and penalty
functions [12, 25, 4]. Rather than tackling general infeasibil-
ity issues in MPC, our focus is on providing tools to help de-
bug the controller specification at design time. However, the
deployment of robust or soft-constrained MPC approaches
can also benefit from our techniques.

We leverage the ability of existing mixed integer linear
programming (MILP) solvers to localize the cause of infeasi-
bility to so-called irreducibly inconsistent systems (IIS). Our
algorithms use the IIS to localize the cause of unrealizability
to the relevant parts of the STL specification. Additionally,
we give a method for generating a minimal set of repairs
to the STL specification such that, after applying those re-
pairs, the resulting specification is realizable. The set of
repairs is drawn from a suitably defined space that ensures
that we rule out vacuous and other unreasonable adjust-
ments. Specifically, in this paper, we focus on the numerical
parameters in a formula, since their specification is often the
most tedious and error-prone part.

Our algorithms are sound and complete relative to the
synthesis algorithm, i. e., they provide a diagnosis that makes
the synthesis problem infeasible, and always terminate with
a non-trivial specification that is feasible using the chosen
synthesis method, when such a repair exists in the space of
possible repairs. Our use of MILP enables us to handle con-
strained linear and piecewise affine systems, mixed logical
dynamical (MLD) systems [3], and certain differentially flat
systems. We demonstrate the effectiveness of our approach
on the synthesis of controllers for a number of cyber-physical
systems, including autonomous driving and aircraft electric
power system applications.

The paper is organized as follows. We begin in Sec. 2 and 3
with preliminaries and a running example. We formalize
the diagnosis and repair problems in Sec. 4 and describe our
algorithms for both monolithic and contract specifications
in Sec. 5 and 6. Case studies are presented in Sec. 7.

2. PRELIMINARIES
In this section, we introduce notation and definitions for

hybrid dynamical systems, the specification language Signal
Temporal Logic, and the Model Predictive Control frame-
work.

2.1 Hybrid Dynamical Systems
We consider continuous-time hybrid dynamical systems:

ẋt = f(xt, ut, wt), yt = g(xt, ut, wt), (1)

where xt ∈ X ⊆ (Rnc ×{0, 1}nl) represents the hybrid (con-
tinuous and logical) state at time t, ut ∈ U ⊆ (Rmc ×
{0, 1}ml) is the hybrid control input, yt ∈ Y ⊆ (Rpc ×
{0, 1}pl) is the output, and wt ∈ W ⊆ (Rec × {0, 1}el) is
the hybrid external input, including disturbances and other
adversarial inputs from the environment. Using a sampling
period ∆t > 0, the continuous-time system (1) lends itself
to the following discrete-time approximation:

xk+1 = fd(xk, uk, wk), yk = gd(xk, uk, wk), (2)

where state and output evolve over time steps k ∈ N, where
xk = x(bt/∆tc) ∈ X . Given the initial state of the system
x0 ∈ X , a run of the system is expressed as:

ξ = (x0, y0, u0, w0), (x1, y1, u1, w1), (x2, y2, u2, w2), . . . (3)

i. e., as a sequence of assignments over the system variables
V = (x, y, u, w). A run is, therefore, a discrete-time signal.
We define ξk = (xk, yk, uk, wk).

Given an initial state x0, a finite horizon input sequence
uH = u0, u1, . . . , uH−1, and a finite horizon environment se-
quence wH = w0, w1, . . . , wH−1, the finite horizon run of the
system modeled by the system dynamics in (2) is uniquely
expressed as:

ξH(x0,u
H ,wH) =

(x0, y0, u0, w0), . . . , (xH−1, yH−1, uH−1, wH−1),

where x1, . . . , xH−1, y0, . . . , yH−1 are computed using (2).
We finally define a finite-horizon cost function J(ξH), map-
ping H-horizon trajectories ξH ∈ Ξ to costs in R+.

2.2 Signal Temporal Logic
Signal Temporal Logic (STL) has been largely applied

to specify and monitor real-time properties of hybrid sys-
tems [8]. Moreover, it offers a robust, quantitative interpre-
tation for the satisfaction of a formula [7, 6].

An STL formula ϕ is evaluated on a signal ξ at time t:
(ξ, t) |= ϕ denotes that ϕ evaluates to true on ξ at time
t. We instead write ξ |= ϕ, if ξ satifies ϕ at time 0. The
atomic predicates of STL are defined by inequalities of the
form µ(ξ(t)) > 0, where µ is a function of signal ξ at t.
Specifically, µ is used to denote both the function of ξ(t)
and the predicate. Any STL formula ϕ consists of Boolean
and temporal operations on such predicates. The syntax of
STL formulae is defined recursively as follows:

ϕ ::= µ | ¬µ | ϕ ∧ ψ |G[a,b]ψ | F[a,b]ψ | ϕU[a,b]ψ, (4)

where ψ and ϕ are STL formulae, G is the globally operator,
F is the finally operator and U is the until operator. For
example, ξ |= G[a,b]ψ specifies that ψ must hold for signal ξ
at all times of the given interval, i. e., ∀t ∈ [a, b], (ξ, t) |= ψ.
Formally, the satisfaction of a formula ϕ for a signal ξ at
time t is defined as:

(ξ, t) |= µ ⇔ µ(ξ(t)) > 0
(ξ, t) |= ¬µ ⇔ ¬((ξ, t) |= µ)
(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

A quantitative or robust semantics is defined for an STL
formula ϕ by associating it with a real-valued function ρϕ of
the signal ξ and time t, which provides a “measure” of the
margin by which ϕ is satisfied [6].

2.3 Model Predictive Control
Model Predictive Control (MPC), or Receding Horizon

Control (RHC), is a well studied control method for hybrid
dynamical systems [17, 10]. In RHC, at any time step, the
state of the system is observed and an optimal control prob-
lem is solved over a finite time horizon H, for a given set of
constraints and a cost function J . When f , as defined in (2),
is nonlinear, we assume this optimization is performed at
each MPC step after locally linearizing the system dynam-
ics. For example, at time t = k, the linearized dynamics
around the current state and time are used to compute an
optimal strategy uH∗ over the time interval [k, k + H − 1].
Then, only the first component of uH∗ is applied, and a simi-
lar optimization is solved at k+1 to compute a new optimal
control sequence along the interval [k + 1, k + H] for the
model linearized around time step k + 1. While the global
optimality of MPC is not guaranteed, the technique is widely
used and performs well in practice.

In this paper, we use STL to express temporal constraints
on the environment and system runs during MPC. We then
translate an STL specification into a set of mixed integer



linear constraints [23, 21]. Given a formula ϕ to be satisfied
over a finite horizon H, the associated optimization is:

min
uH

J(ξH(x0,u
H)) s. t. ξH(x0,u

H) |= ϕ, (5)

which yields a control strategy uH that minimizes the cost
function J(ξH) over the finite-horizon trajectory ξH , while
satisfying the STL formula ϕ at time step 0. In a closed-loop
setting, we compute a fresh uH at every time step i ∈ N,
replacing x0 with xi in (5) [23, 21].

While (5) applies to systems without uncontrolled inputs,
a more general formulation can be provided to account for
an uncontrolled disturbance input wH that acts, in general,
adversarially [21]. To provide this formulation, we assume
the specification is given in the form of an STL assume-
guarantee (A/G) contract [20, 19] C = (V, ϕe, ϕ ≡ ϕe → ϕs),
where V is the set of variables, ϕe captures the assumptions
(admitted behaviors) over the (uncontrolled) environment
inputs w, and ϕs describes the guarantees (promised behav-
iors) over all the system variables. A game-theoretic formu-
lation of the controller synthesis problem is then represented
as a minimax optimization problem:

minimize
uH

maximize
wH∈We

J(ξH(x0,u
H ,wH))

subject to ∀wH ∈ We ξH(x0,u
H ,wH) |= ϕ,

(6)

where we aim to find a strategy uH that minimizes the
worst case cost J(ξH) over the finite horizon trajectory, un-
der the assumption that the disturbance signal wH acts ad-
versarially. We use We in (6) to denote the set of distur-
bances that satisfy the environment specification ϕe, i.e.,
We = {w ∈ WH |w |= ϕe}.

Mixed Integer Linear Program Formulation.
Following [23, 21], we solve the optimization problems

in (5) and (6) by translating the STL formula ϕ into a set
of mixed integer constraints, thus reducing the problem to
a Mixed Integer Program (MIP). In this paper, we consider
control problems that are encoded as Mixed Integer Linear
Programs (MILP).

The MILP constraints are constructed recursively on the
structure of the STL specification, and express the robust
satisfaction value of the formula. Recall that (ξ, t) |= ϕ ⇔
ρϕ(ξ, t) > 0. The robustness value of a formula with tem-
poral or Boolean operators is expressed recursively as the
min or max of the robustness values of the operands over
time. These operations can in turn be encoded as mixed in-
teger constraints. For instance, to encode min(ρϕ1 , ..., ρϕn),
we introduce Boolean variables zϕi for i ∈ {1, . . . , n} and a
continuous variable p. The resulting MILP constraints are:

p ≤ ρϕi ,
∑

i=1...n

zϕi ≥ 1

ρϕi − (1− zϕi)M ≤ p ≤ ρϕi + (1− zϕi)M,

(7)

where M is a constant selected to be much larger than |ρϕi |
for all i, and i ∈ {1, . . . , n}. The above constraints ensure
that p takes the value of the minimum robustness and zϕi =
1 if ρϕi is the minimum. To get the constraints for max, we
replace ≤ by ≥ in (7).

We solve the MILP with an off-the-shelf solver. If the
receding horizon scheme is feasible, then the controller syn-
thesis problem is realizable, i.e., the algorithm returns a con-
troller that satisfies the specification and optimizes the ob-
jective. However, if the MILP is infeasible, the synthesis
problem is unrealizable. In this case, the failure to synthe-
size a controller may well be attributed to just a portion of
the STL specification. In the rest of the paper we discuss
how infeasibility of the MILP constraints can be used to

Figure 1: Vehicles crossing an intersection. The red car is the
ego vehicle, while the black car is part of the environment.

infer the “cause” of failure and, consequently, diagnose and
repair the original STL specification.

3. A RUNNING EXAMPLE
To illustrate our approach, we introduce a running ex-

ample from the autonomous driving domain. As shown in
Fig. 1, we consider a scenario in which two moving vehicles
approach an intersection. The red car, labeled the ego vehi-
cle, is the vehicle under control, while the black car is part of
the external environment and may behave, in general, ad-
versarially. The state of the system includes the position
and velocity of each vehicle, the control input is the accel-
eration of the ego vehicle, and the environment input is the
acceleration of the other vehicle, i.e.,

x̃t = (xego
t , yego

t , vego
t , xadv

t , yadv
t , vadv

t )

ut = aego
t wt = aadv

t .
(8)

We assume the dynamics of the system is given by a simple
double integrator for each vehicle, e.g.,[

ẋego

ẏego

v̇ego

]
=

[
0 0 0
0 0 1
0 0 0

][
xego

yego

vego

]
+

[
0
0
1

]
u. (9)

A similar equation holds for the environment vehicle which
is, however, constrained to move along the horizontal axis
rather than the vertical axis. We assume the ego vehicle is
initialized at the coordinates (0,−1) and the other vehicle
is initialized at (−1, 0). All units in this example follow
the metric system. We would like to design a controller
for the ego vehicle to satisfy an STL specification under
some assumptions on the external environment, and provide
diagnosis and feedback if the specification is infeasible. We
discuss the following three scenarios.

Example 1 (Collision Avoidance). We want to
avoid a collision between the ego and the adversary vehicle.
In this example, we assume the environment vehicle’s
acceleration is fixed at all times, i.e., aadv

t = 2, while the
initial velocities are vadv

0 = 0 and vego
0 = 0. We encode our

requirements using the formula ϕ := ϕ1 ∧ ϕ2, where ϕ1 and
ϕ2 are defined as follows:

ϕ1 = G[0,∞)¬
(
(−0.5 ≤ yego

t ≤ 0.5) ∧ (−0.5 ≤ xadv
t ≤ 0.5)

)
,

ϕ2 = G[0,∞)

(
1.5 ≤ aego

t ≤ 2.5
)
.

We prescribe bounds on the system acceleration, and state
that both cars should never be confined together within a box
of width 1 around the intersection (0, 0), to avoid a collision.

Example 2 (Non-adversarial Race). In the race
scenario, assuming the adversary’s velocity always exceeds
0.5, the ego vehicle must maintain a velocity above 0.5. We
formalize our requirement as a contract (ψe, ψe → ψs),
where ψe are the assumptions made on the environment and
ψs are the guarantees of the system provided the environment
satisfies the assumptions. Specifically:

ψe = G[0,∞)(v
adv
t ≥ 0.5),

ψs = G[0,∞)(−1 ≤ aego
t ≤ 1) ∧ (vego

t ≥ 0.5).
(10)



The initial velocities are vadv
0 = 0.55 and vego

0 = 0, while the

environment vehicle’s acceleration is aadv
t = 1 at all times.

We require the acceleration to be bounded by 1.

Example 3 (Adversarial Race). We discuss an-
other race scenario, in which the environment vehicle ac-
celeration aadv

t is no longer fixed, but varies up to a value
of 2. Initially, vadv

0 = 0 and vego
0 = 0 hold. Under these

assumptions, we would like to guarantee that the velocity of
the ego vehicle exceeds 0.5 if the speed of the adversary ve-
hicle exceeds 0.5, while maintaining an acceleration in the
[−1, 1] range. Altogether, we capture the requirements above
via a contract (φw, φw → φs), where:

φw = G[0,∞)

(
0 ≤ aadv

t ≤ 2
)
,

φs = G[0,∞)

(
(vadv
t > 0.5)→ (vego

t > 0.5)
)
∧
(
|aego
t | ≤ 1

)
.

4. PROBLEM STATEMENT
In this section, we define the problems of specification

diagnosis and repair in the context of controller synthesis
from STL. We assume the discretized system dynamics fd
and gd, the initial state x0, the STL specification ϕ, and a
cost function J are given. The controller synthesis problem,
denoted P = (fd, gd, x0, ϕ, J), is to solve (5) (when ϕ is
a monolithic specification of the desired system behaviors)
or (6) (when ϕ represents a contract between the system and
the environment).

If synthesis fails, the diagnosis problem is, intuitively, to
return an explanation in the form of a “subset” of the origi-
nal problem that is already infeasible when taken alone. The
repair problem is to return a “minimal” set of changes to
the specification that would render the resulting controller
synthesis problem feasible. To diagnose and repair an STL
formula, we focus on its atomic predicates and the time in-
tervals of its temporal operators. We start by providing a
definition of the support of a formula’s atomic predicates,
i.e., the set of times at which the value of a predicate affects
satisfiability of the formula. We build on this definition to
formalize the set of repairs that we allow.

Definition 1 (Support). The support of a predicate
µ in an STL formula ϕ is the set of times t such that µ(ξ(t))
appears in ϕ.

For example, given ϕ = G[6,10](xt > 0.2), the support of
predicate µ = (xt > 0.2) is the time interval [6, 10].

Definition 2 (Allowed Repairs). Let Φ denote the
set of all possible STL formulae. A repair action is a relation
γ : Φ→ Φ consisting of the union of the following:

• A predicate repair returns the original formula after
modifying one of its atomic predicates µ to µ∗. We
denote this sort of repair by ϕ[µ 7→ µ∗] ∈ γ(ϕ);

• A time interval repair returns the original formula
after replacing the interval of a temporal operator.
This is denoted ϕ[∆[a,b] 7→ ∆[a∗,b∗]] ∈ γ(ϕ) where
∆ ∈ {G,F,U}.

We can compose repair actions to get a sequence of repairs
Γ = γn(γn−1(. . . (γ1(ϕ)) . . . )). Given an STL formula ϕ, we
denote as REPAIR(ϕ) the set of all possible formulae obtained
through allowed sequences of repairs on ϕ. Further, given a
set of atomic predicates D and a set of time intervals T , let
REPAIRT ,D(ϕ) ⊆ REPAIR(ϕ) denote the set of repair actions
that act only on predicates in D or time intervals in T . We
are now ready to formulate the problems addressed in this
paper, namely that of diagnosis and repair of a monolithic
specification ϕ (general diagnosis and repair), and of an A/G
contract (ϕe, ϕe → ϕs) (contract diagnosis and repair).

Detect IIS and map to 
predicates and intervals
 of the STL specification 

(Diagnosis)

Inform the designer 

Repair intervals 
and predicates (D’) 

of the STL

System Specification

Controller Synthesized
Yes

No

D’

Convert to 
MILP and check 

feasibility

Not Repaired

Updated Specification
Repaired

Figure 2: Diagnosis and repair flow diagram.

Problem 1 (General Diagnosis and Repair).
Given a controller synthesis problem P = (fd, gd, x0, ϕ, J)
such that (5) is infeasible, find:

• A set of atomic predicates D = {µ1, . . . , µd} or time
intervals T = {τ1, . . . , τd} of the original formula ϕ,

• ϕ′ ∈ REPAIRT ,D(ϕ),

such that P ′ = (fd, gd, x0, ϕ
′, J) is feasible, and the following

minimality conditions hold:

• (predicate minimality) if ϕ′ is obtained by predicate re-
pair1, si = µ∗i−µi for i ∈ {1, . . . , d}, sD = (s1, . . . , sd),
and || · || is a norm on Rd, then

@ (D′, sD′) s.t. ||sD′ || ≤ ||sD|| ∧ ∃ ϕ′′ ∈ REPAIRT ,D′(ϕ)

s.t. P ′′ = (fd, gd, x0, ϕ
′′, J) is feasible.

(11)

• (time interval minimality) if ϕ′ is obtained by time in-
terval repair, T ∗ = {τ∗1 , . . . , τ∗l } are the non-empty re-
paired intervals, and ||τ || is the length of interval τ :

@ T ′ = {τ ′1, . . . , τ ′l}, s.t.

∃i ∈ {1, . . . , l}, ||τ∗i || ≤ ||τ ′i || ∧ ∃ ϕ′′ ∈ REPAIRT ′,D(ϕ)

s.t. P ′′ = (fd, gd, x0, ϕ
′′, J) is feasible.

(12)

Problem 2 (Contract Diagnosis and Repair).
Given a controller synthesis problem P = (fd, gd, x0, ϕ ≡
ϕe → ϕs, J) such that (6) is infeasible, find:

• Sets of atomic predicates De = {µe1, . . . , µed},
Ds = {µs1, . . . , µsd̄} or sets of time intervals Te =
{τe1 , . . . , τel },Ts = {τs1 , . . . , τsl̄ }, respectively, of the
original formulas ϕe and ϕs,

• ϕ′e ∈ REPAIRTe,De(ϕe), ϕ′s ∈ REPAIRTs,Ds(ϕs),

such that P ′ = (fd, gd, x0, ϕ
′, J) is feasible, and D = De∪Ds,

T = Te ∪ Ts, and ϕ′ satisfy the minimality conditions of
Problem (1).

5. MONOLITHIC SPECIFICATIONS
Fig. 2 represents the workflow adopted to diagnose in-

consistencies in the specification and provide constructive
feedback to the designer. In this section, we describe our so-
lution to Prob. 1, as summarized in Alg. 1. Given a problem
P, defined as in Sec. 4, the method GenMILP reformulates (5)
in terms of the following MILP:

minimize
uH

J(ξH)

subject to fdyn
i ≤ 0 i ∈ {1, . . . ,md}
f stl
k ≤ 0 k ∈ {1, . . . ,ms},

(13)

where fdyn and f stl are mixed integer linear constraint func-
tions over the states, outputs, and inputs of the finite hori-
zon trajectory ξH associated, respectively, with the system
1For technical reasons, our minimality conditions are predicated
on a single type of repair being applied to obtain ϕ′.



Algorithm 1 DiagnoseRepair

1: procedure DiagnoseRepair

2: Input: P
3: Output: uH , D, repaired, ϕ′

4: (J, C)← GenMILP(P), repaired← 0

5: uH ← Solve(J,C)

6: if uH = ∅ then
7: D ← ∅, S ← ∅, I ← ∅,M← (0, C)
8: while repaired = 0 do
9: (D′,S′, I′)← Diagnosis(M, P)
10: D ← D ∪D′, S ← S ∪ S′, I ← I ∪ I′
11: options← UserInput(D′)
12: λ ← ModifyConstraints(I′, options)
13: (repaired,M, ϕ′)← Repair(M, I′, λ,S, ϕ)
14: uH ← Solve(J, M.C)

Algorithm 2 Diagnosis

1: procedure Diagnosis(M, P)
2: Input: M, P
3: Output: D, S, I′
4: IC ← IIS(M)
5: (D,S)← ExtractPredicates(IC,P)
6: I′ ← ExtractConstraints(M,D)

dynamics and the STL specification ϕ. We let (J,C) repre-
sent this MILP, where J is the objective, and C is the set
of constraints. If Prob. (13) is infeasible, we iterate between
diagnosis and repair phases until the repaired feasible speci-
fication ϕ′ is obtained. We let D and I denote, respectively,
the set of predicates returned by the diagnosis procedure,
and the constraints corresponding to those predicates.

Optionally, we support an interactive repair mechanism,
where the designer provides a set of options that prioritize
which predicates to modify (UserInput) and get converted
into a set of weights λ (ModifyConstraints). The designer
can leverage this weighted-cost variant of the problem to de-
fine “soft” and “hard” constraints in the controller synthesis
problem. In the following, we detail the operation of the
Diagnosis and Repair subroutines.

5.1 Diagnosis
Our diagnosis procedure is summarized in Alg. 2. The

method Diagnosis receives as inputs the controller synthesis
problem P and an associated MILP formulationM. M can
either be the feasibility problem associated with the original
problem in Eq. (13), or a relaxation thereof. This feasibil-
ity problem has the same (possibly relaxed) constraints as
Eq. (13), but zero cost. Formally, we provide the following
definition of a relaxed constraint and optimization problem.

Definition 3 (Relaxed Problem). We say that a
constraint f ′ ≤ 0 is a relaxed version of f ≤ 0 if there
exists a slack variable s ∈ R+ such that f ′ = (f − s). In this
case, we say that f ≤ 0 is relaxed into f ′ ≤ 0. An optimiza-
tion problem O′ is a relaxed version of another optimization
problem O if it is obtained from O by relaxing at least one
of its constraints.

WhenM is infeasible, we rely on the capability of state-of-
the-art MILP solvers to provide an Irreducibly Inconsistent
System (IIS) [1, 5] of constraints IC , defined as follows.

Definition 4 (Irreducibly Inconsistent System).
Given a feasibility problem M with constraint set C, an
Irreducibly Inconsistent System IC is a subset of constraints
IC ⊆ C such that: (i) the optimization problem (0, IC) is
infeasible; (ii) ∀ c ∈ IC , problem (0, IC \ {c}) is feasible.

In other words, an IIS is an infeasible subset of constraints
that becomes feasible if any single constraint is removed. For
each constraint in IC , ExtractPredicates traces back to the

Algorithm 3 Repair

1: procedure Repair

2: Input: M, I, λ, S, ϕ
3: Output: repaired,M, ϕ

4: M.J ←M.J + λ>sI
5: for c in I do
6: if λ(c) > 0 then
7: M.C(c)←M.C(c) + sc
8: (repaired, s∗) ← Solve(M.J, M.C)

9: if repaired = 1 then
10: ϕ← ExtractFeedback(s∗,S,ϕ)

set of STL predicates from which it originates, which is then
used to construct the setD = {µ1, . . . , µd} in Problem 1, and
the corresponding set of support intervals S = {σ1, . . . , σd}
(adequately truncated to the current horizon H), as ob-
tained from the STL syntax tree. The set D will be used
to produce a relaxed version of M as further detailed in
Sec. 5.2. The procedure also returns the subset I of all the
constraints in M that are associated with predicates in D.

5.2 Repair
The diagnosis procedure isolates a set of STL atomic pred-

icates that jointly produce a source of infeasibility for the
synthesis problem. For repair, we are instead interested in
how to modify the original formula to make the problem
feasible. The repair procedure is summarized in Alg. 3. We
formulate relaxed versions of the feasibility problem M as-
sociated with Eq. (13) by using slack variables.

Let fi, i ∈ {1, . . . ,m} denote both categories of con-
straints fdyn and f stl in the feasibility problem M. We re-
formulateM as the following feasibility problem with slacks:

minimize
s∈R|I|

||s||

subject to fi − si ≤ 0 i ∈ {1, . . . , |I|}
fi ≤ 0 i ∈ {|I|+ 1, . . . ,m}
si ≥ 0 i ∈ {1, . . . , |I|},

(14)

where s = s1...s|I| is a vector of slack variables added to the
set I obtained after the latest call of Diagnosis. Note that
not all the constraints in the original optimization Eq. (13)
can be modified. For instance, the designer will not be able
to arbitrarily modify constraints that can directly affect the
dynamics of the system, i. e., constraints encoded in fdyn.
Solving Eq. (14) is equivalent to looking for a set of slacks
that make the original control problem feasible while mini-
mizing a suitable norm || · || of the slack vector. In most of
our applications, we choose the l1-norm, which tends to pro-
vide sparser solutions for s, i.e., nonzero slacks for a smaller
number of constraints. However, other norms can be used,
including weighted norms based on the set of weights λ. If
Problem (14) is feasible, ExtractFeedback uses the solution
s∗ to repair the original infeasible specification ϕ. Other-
wise, an infeasible problem is returned for another round of
diagnosis to retrieve further constraints to relax. Next, we
provide details on the implementation of ExtractFeedback.

Given a minimum norm solution s∗ to Eq. (14), the slack
variables s∗ are mapped to a set of predicate repairs sD,
as defined in Problem 1, as follows. The slack vector s∗ in
Alg. 3 includes the set of slack variables {s∗µi,t}, where s∗µi,t is
the variable added to the optimization constraint associated
with an atomic predicate µi ∈ D at time t, i ∈ {1, . . . , d}.
We then set ∀ i ∈ {1, . . . , d},

si = µ∗i − µi = max
t∈{1,··· ,H}

s∗µi,t, (15)

H being the time horizon for (13), and sD = {s1, . . . , sd}.
To find a set of time-interval repairs instead, we proceed as
follows:



1. The slack vector s∗ in Alg. 3 includes the set of slack
variables {s∗µi,t}, where s∗µi,t is added to the optimization
constraint associated with atomic predicate µi ∈ D at time
t. For each µi, with support interval σi, we search for the
largest time interval σ′i ⊆ σi such that ∀t ∈ σ′i, s∗µi,t = 0. If
µi /∈ D, we set σ′i = σi.

2. We convert every temporal operator in ϕ into a com-
bination of G (timed or untimed) and untimed U by using
the following transformations:

F[a,b]ψ = ¬G[a,b]¬ψ,

ψ1U[a,b]ψ2 = G[0,a](ψ1U ψ2) ∧ F[a,b]ψ2,

where U is the untimed (unbounded) until operator. Let ϕ̂
be the formula obtained from ϕ after these transformations2.

3. We construct the syntactic parse tree of ϕ̂ based on (4):
each node is an operator, and the leaves are atomic predi-
cates. The nodes of the parse tree of ϕ̂ can be partitioned
into three subsets, ν, κ, and δ, respectively associated with
the atomic predicates, Boolean operators, and temporal op-
erators (G,U) in ϕ̂. We traverse this parse tree from the
leaves (atomic predicates) to the root and recursively define
for each node i a new support interval σ∗i as follows:

σ∗i =


σ′i if i ∈ ν⋂
j∈C(i)

σ∗j if i ∈ κ ∪ δU

σ∗j∈C(i) if i ∈ δG

(16)

where C(i) denotes the children of node i, while δG and δU
are, respectively, the subsets of nodes associated with the G
and U operators. We observe that a G node has a single
child. Therefore, with some abuse of notation, we use C(i)
in (16) to denote a single node in the parse tree.

4. We define the interval repair τ̂j for each (timed) tem-
poral operator node j in the parse tree of ϕ̂ as τ̂j = σ∗j .
If τ̂j is empty for any j, no time-interval repair is possible.
Otherwise, we map the set of intervals {τ̂j} to a set of in-
terval repairs T ∗ for the original formula ϕ according to the
transformations in step 2 and return T ∗. We provide an ex-
ample of predicate repair below, while time interval repair
is demonstrated in Sec. 6.1.

Example 4 (Collision Avoidance). We diagnose
the specifications introduced in Example 1. To formulate
the synthesis problem, we assume a horizon H = 10 and a
discretization step ∆t = 0.2. The system is found infeasible
at the first MPC run, and Diagnosis detects the infeasibility
of ϕ1 ∧ ϕ2 at time t = 6. Intuitively, given the limits on
the acceleration of the ego vehicle, both the cars end up
entering the forbidden box at the same time. Alg. 1 chooses
to repair ϕ1 by adding slacks to all of its predicates, such
that ϕ′1 = (−0.5 − sl1 ≤ yego

t ≤ 0.5 + su1) ∧ (−0.5 − sl2 ≤
xadv
t ≤ 0.5 + su2). Table 1 shows the optimal slack values

at each t, while su1 and sl2 are set to zero at all t. We
conclude that the specification replacing ϕ1 with ϕ′1

ϕ′1 = G[0,∞)¬
(
(−0.24 ≤ yego

t ≤ 0.5)∧(−0.5 ≤ xadv
t ≤ 0.43)

)
is feasible, i.e., the cars will not collide, but the original
requirement was overly demanding.

Alternatively, the user can choose to run the repair pro-
cedure on ϕ2 and change its predicate by (1.5− sl ≤ aego

t ≤
2.5 + su). In this case, we keep the original requirement
on collision avoidance, and tune, instead, the control “ef-
fort” to satisfy it. Under the assumption of constant ac-
celeration (and bounds), the slacks will be the same at all

2While the second transformation introduces a new interval [0, a],
its parameters are directly linked to the ones of the original inter-
val [a, b] (now inherited by the F operator) and will be accordingly
processed by the repair routine.

time 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
sl1 0 0 0 0 0 -0.26 0 0 0 0
su2 0 0 0 0 0 0 -0.07 0 0 0

Table 1: Slack variables for horizon, with ∆t = 0.2, and H = 10.

t. We then obtain [sl, su] = [0.82, 0], which ultimately gives
ϕ′2 = G[0,∞)

(
0.68 ≤ aego

t ≤ 2.5
)
. The ego vehicle should

then slow down to prevent entering the forbidden box at the
same time as the other car.

Our algorithm offers the following guarantees, for which
a proof sketch is given below. The complete proofs can be
found in the extended version of this paper [11].

Theorem 1 (Soundness). Given a controller synthe-
sis problem P = (fd, gd, x0, ϕ, J), such that (5) is infeasible
at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired formula re-
turned from Alg. 1 for a given set of predicates D or time
interval T . Then, P ′ = (fd, gd, x0, ϕ

′, J) is feasible at time t
and (ϕ′, D, T ) satisfy the minimality conditions in Prob.1.

Theorem 2 (Completeness). Assume the controller
synthesis problem P = (fd, gd, x0, ϕ, J) results in (5) being
infeasible at time t. If there exist a set of predicates D or
time-intervals T and Φ ⊆ REPAIRD,T (ϕ) for which ∀ φ ∈ Φ,
P ′ = (fd, gd, x0, φ, J) is feasible at time t and (φ, D, T ) are
minimal in the sense of Problem 1, then Alg. 1 returns a
repaired formula ϕ′ in Φ.

Proof Sketch. We start by discussing the case of
soundness for predicate repair. Let M be the MILP encod-
ing of P as defined in (13), M′ be the encoding of P ′, and
M′′ the feasible MILP obtained from Alg. 1, together with
the optimal slack set {s∗µ,t|µ ∈ D, t ∈ {1, . . . , H}}. We note
that M′ and M′′ are both relaxed versions of M. More-
over, each constraint with a nonzero slack variable inM′′ is
relaxed inM′, and offset by the largest slack value over the
horizon H. Since M′′ is feasible, M′, and subsequently P ′,
are feasible. To prove that (ϕ′,D) satisfy the predicate min-
imality condition, by Definition 4, at least one predicate in
D generates a conflicting constraint and must be repaired.
Moreover, because Alg. 1 finds all the IISs in the original
optimization problem and allows relaxing any constraints in
the union of the IISs, repairing any predicate outside of D
is redundant. Therefore, if a formula ϕ̃ is obtained from
ϕ after repairing a set of predicates D̃, then the associated
repair set sD̃ is seen as a repair set on the same predicate
set as sD. Finally, by the norm minimization in (14), we
conclude ||sD|| ≤ ||sD̃||.

We now consider the MILP formulation M′ associated
with ϕ′ in the case of time-interval repairs. For each atomic
predicate µi ∈ D, M′ includes only the associated con-
straints evaluated over time intervals σ′i for which the slack
variables {s∗µi,t} are zero. Such a subset of constraints is
trivially feasible. Moreover, because of the structure of the
MILP encoding and the manner in which slacks are added,
if the constraints corresponding to the atomic predicates in
D have slack zero, so will any constraints enforcing Boolean
or temporal combinations of these predicates. Thus, M′ is
feasible. To show the satisfaction of the minimality condi-
tion, we observe that Alg. 1 selects, for each µi ∈ D, the
largest interval σ′i such that the associated constraints are
feasible, i.e., their slack variables are zero after norm min-
imization. Because feasible intervals for Boolean combina-
tions of atomic predicates are obtained by intersecting these
maximal intervals, and then propagated to the temporal op-
erators, the length of the intervals of each G operator in ϕ̂,
and finally of the temporal operators in ϕ, will be maximal.

To prove completeness, we first observe that Alg. 1 always
terminates with a feasible solution since the set of MILP
constraints to diagnose and repair is finite. Let D be the



set of predicates modified to obtain φ ∈ Φ and D′ the set
of diagnosed predicates returned by Alg. 1. Then, because
D′ includes all the predicates responsible for inconsisten-
cies, as argued above, we conclude D ⊆ D′. By Eq. (14),
||sD′ || ≤ ||sD||, hence ϕ′ ∈ Φ. Further, if φ ∈ Φ repairs
a set of intervals T = {τ1, . . . , τl}, then there exists a set
of constraints associated with atomic predicates in ϕ which
are consistent in the MILP associated with φ and make the
overall problem feasible. Then, the relaxed MILP associated
with ϕ after slack norm minimization will include a set of
constraints admitting zero slacks over the same set of time
intervals, thus terminating with a set of non-empty intervals
T ′ = {τ ′1, . . . , τ ′l}. Finally, because Alg. 1 finds the longest
such intervals, we are guaranteed that ||τ ′i || ≥ ||τi|| for all
i ∈ {1, . . . , l}, hence ϕ′ ∈ Φ holds.

In the worst case, Alg. 1 solves a number of MILP prob-
lem instances equal to the number of atomic predicates in
the STL formula. While the complexity of solving a MILP
is NP-hard, the actual runtime depends on the size of the
MILP, which is quadratic in the size (number of predicates
and operators) of the STL specification.

6. CONTRACTS
In this section, we consider specifications provided in the

form of a contract (ϕe, ϕe → ϕs), where ϕe expresses the
assumptions and ϕs captures the guarantees. To repair con-
tracts, we capture tradeoffs between assumptions and guar-
antees in terms of minimization of a weighted norm of slacks.
We now describe our results for both non-adversarial and
adversarial environments.

6.1 Non-Adversarial Environment
For a contract, we distinguish between controlled inputs ut

and uncontrolled (environment) inputs wt of the dynamical
system. In this section we assume that the environment
signal wH can be predicted over a finite horizon and set to
a known value for which the controller must be synthesized.
With ϕ ≡ ϕe → ϕs, equation (6) reduces to:

minimize
uH

J(ξH(x0,u
H ,wH))

subject to ξH(x0,u
H ,wH) |= ϕ,

(17)

Because of the similarity of Eq. (17) and Eq. (5), we di-
agnose and repair a contract using the same methodology
illustrated in Sec. 5. However, to reflect the different struc-
ture of the specification, i.e., its partition into assumption
and guarantees, we adopt a weighted sum of the slack vari-
ables in Alg. 1, allocating different weights to predicates in
the assumption and guarantee formulae. We provide the
same guarantees as in Thms. 1 and 2, where ϕ ≡ ϕe → ϕs
and the minimality conditions are stated with respect to the
weighted norm.

Example 5 (Non-adversarial Race). We consider
Example 2 with the same discretization step ∆t = 0.2 and
horizon H = 10. The MPC scheme results infeasible at time
0. In fact, we observe that ψe is always true as vadv

0 ≥ 0.5
and aadv

t = 1 ≥ 0 holds at all times. Since vego0 = 0,
the predicate ψs2 = G[0,∞)(v

ego
t ≥ 0.5) in ψs is found to

be failing. As in Sec. 5.2, we modify the conflicting pred-
icates in the specification by using slack variables as fol-
lows: vadv

t + se(t) ≥ 0.5 and vego
t + ss(t) ≥ 0.5. More-

over, we assign weights to the assumption (λe) and guaran-
tee (λs) predicates, our objective being λe|se| + λs|ss|. By
setting λs > λe, we encourage modifications in the assump-
tion by falsifying it, which would provide a trivial solution.
We instead prefer setting λs < λe, obtaining the slack val-
ues in Table 2, which leads to the following predicate repair:
ψ′s2 = G[0,∞)(v

ego
t ≥ −0.01).

time 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
ss 0.51 0.31 0.11 0 0 0 0 0 0 0

Table 2: Slack variables used in Example 2 and 5.

∧ "[$,&)

"[$,&)"[$,&) ()*+, ≥ 0.5 ()123 ≥ 0.5

|5)123| ≤ 1→

Figure 3: Parse tree of ψ ≡ ψe → ψs used in Example 2 and 5.

We can also modify the time interval of the temporal op-
erator associated with ψs2 to repair the overall specifica-
tion. Based on the slack values in Table 2, we conclude
σ′1 = σ′2 = [0, 9] (the optimal slack values for these predicates
are always zero), while σ′3 = [3, 9]. For the syntax tree in
Fig. 3, we have σ∗1 = σ′1, σ∗2 = σ′2, and σ∗3 = σ′3 for the tem-
poral operator nodes that are parent nodes of µ1, µ2, and µ3.
Since none of the above intervals are empty, a time interval
repair is indeed possible by modifying the time interval of the
parent node of µ3, thus achieving τ∗3 = σ∗3 . This leads to the
following proposed sub-formula ψ′s2 = G[0.6,∞)(v

ego
t ≥ 0.5).

In this example, repairing the specification over the first
horizon is enough to guarantee controller realizability in the
future, and we can keep the upper bound of the G operator
at infinity.

6.2 Adversarial Environment
When the environment behaves adversarially, the control

synthesis problem assumes the structure in (6). In this pa-
per, we allow wt to lie in an interval [wmin, wmax] at all times;
this corresponds to the STL formula ϕw = G[0,∞)(wmin ≤
wt ≤ wmax). We decompose a specification ϕ of the form
ϕw ∧ ϕe → ϕs, representing the contract, as ϕ ≡ ϕw → ψ,
where ψ ≡ (ϕe → ϕs). Our diagnosis and repair method is
summarized in Alg. 4.

We first check the satisfiability of the control synthesis
problem by examining whether there exists a pair of uH

and wH for which Prob. (6) is feasible (CheckSAT routine):

minimize
uH ,wH

J(ξH(x0,u
H ,wH))

subject to ξH(x0,u
H ,wH) |= ϕ

wH |= ϕw ∧ ϕe.

(18)

If (18) is unsatisfiable, we use the techniques introduced in
Sec. 5.2 and 6.1 to diagnose and repair the infeasibility.
Therefore, we assume that (18) is satisfiable, hence there
exist uH0 and wH

0 that solve (18). To check realizability, we
use the following CEGIS loop (SolveCEGIS routine). By first
fixing the control trajectory to uH0 , we find the worst case
disturbance trajectory wH

1 that minimizes the robustness
value of ϕ by solving the following problem:

minimize
wH

ρϕ(ξH(x0,u
H ,wH), 0)

subject to wH |= ϕe ∧ ϕw
(19)

with uH = uH0 . The optimal wH
1 from (19) will falsify the

specification if the resulting robustness value is below zero3.
If this is the case, we look for a uH1 which solves (17) with
the additional restriction of wH ∈ Wcand = {wH

1 }. If this

3A tolerance ρmin is selected to accommodate approximation er-
rors, i.e., ρϕ(ξH(x0,uH0 ,w

H
1 ), 0) < ρmin.



Algorithm 4 DiagnoseRepairAdversarial

1: procedure DiagnoseRepairAdversarial

2: Input: P
3: Output: uH , P′
4: (J, C)← GenMILP(P)
5: (uH0 ,w

H
0 , sat)← CheckSAT(J,C)

6: if sat then
7: W∗cand ← SolveCEGIS(uH0 ,P)
8: Wcand ←W∗cand
9: while Wcand 6= ∅ do
10: Pw ← RepairAdversarial(Wcand,P)
11: Wcand ← SolveCEGIS(uH0 ,Pw)
12: Wcand ←W∗cand, Pψ ← P
13: while Wcand 6= ∅ do
14: Pψ ← DiagnoseRepair(Pψ)
15: Wcand ← SolveCEGIS(uH0 ,Pψ)
16: P′ ← FindMin(Pw,Pψ)

step is feasible, we once again attempt to find a worst-case
disturbance sequence wH

2 that solves (19) with uH = uH1 :
this is the counterexample-guided inductive step. At each
iteration i of this CEGIS loop, the set of candidate distur-
bance sequences Wcand expands to include wH

i . If the loop
terminates at iteration i with a successful uHi (one for which
the worst case disturbance wH

i in (19) has positive robust-
ness), we conclude that the formula ϕ is realizable.

The CEGIS loop may not terminate if the set Wcand is
infinite. We, therefore, run it for a maximum number of
iterations. If SolveCEGIS fails to find a controller sequence
prior to the timeout, then (17) is infeasible for the current
Wcand, i.e., there is no control input that can satisfy ϕ for
all disturbances in Wcand. We conclude the specification
is not realizable (or, equivalently, the contract is inconsis-
tent). While this infeasibility can be repaired by modifying
ψ based on the techniques in Sec. 5.2 and 6.1, an alternative
solution is to repair ϕw by minimally pruning the bounds on
wt (RepairAdversarial routine). To do so, a basic linear
search procedure is implemented as follows. Let:

wu = max
wHi ∈Wcand
t∈{1,...,H−1}

wi,t wl = min
wHi ∈Wcand
t∈{1,...,H−1}

wi,t, (20)

and define su = wmax − wu and sl = wl − wmin. The differ-
ences su and sl are used to update the range for wt in ϕw
to a maximal interval [w′min, w

′
max] ⊆ [wmin, wmax] and such

that at least one wH
i ∈ Wcand is excluded. Specifically, if

su ≤ sl, [w′min, w
′
max] is set to [wmin, wu − ε], ε ∈ R+ be-

ing a suitable (small) constant; otherwise [w′min, w
′
max] is set

[wl + ε, wmax]. We implement an improved version of the
above procedure, which allows optimizations over subsets of
the time sets in (20) based on the time instants at which
an infeasibility occurs. Moreover, we use binary search over
the range of wt for faster convergence. Finally, we use the
updated formula ϕ′w to run SolveCEGIS again until a realiz-
able control sequence uH is found. In Alg. 4, for a predicate
repair procedure, FindMin provides the solution with mini-
mum slack norm over all solutions repairing ψ and ϕw.

Example 6 (Adversarial Race). We consider the
specification in Example 3. For the same horizon as in
the previous examples, after solving the satisfiability prob-
lem, for the fixed uH0 , the CEGIS loop returns aadv

t = 2
for all t ∈ {0, . . . , H − 1} as the single element in Wcand

for which no controller sequence is found. We then choose
to tighten the environment assumptions to make the con-
troller realizable and shrink the bounds on aadv

t by using
Alg. 4 (with ε = 0.01). After a few iterations, we fi-
nally obtain w′min = 0 and w′max = 1.24, and therefore
φ′w = G[0,∞)

(
0 ≤ aadv

t ≤ 1.24
)
.

To account for the error introduced by ε, given ϕ′ ∈
REPAIRD,T (ϕ), we say that (ϕ′, D, T ) are ε-minimal if the
magnitudes of the predicate repairs (predicate slacks) or
time-interval repairs differ by at most ε from a minimal re-
pair in the sense of Problem 2. Assuming that SolveCEGIS
terminates before reaching the maximum number of itera-
tions4, the following theorems state the properties of Alg. 4.

Theorem 3 (Soundness). Given a controller synthe-
sis problem P = (fd, gd, x0, ϕ, J), such that (6) is infeasible
at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired formula re-
turned from Alg. 4 for a given set of predicates D or time
interval T . Then, P ′ = (fd, gd, x0, ϕ

′, J) is feasible at time
t and (ϕ′, D, T ) is ε-minimal.

Theorem 4 (Completeness). Assume the controller
synthesis problem P = (fd, gd, x0, ϕ, J) results in (6) being
infeasible at time t. If there exist a set of predicates D and
time-intervals T such that there exists Φ ⊆ REPAIRD,T (ϕ)
for which ∀ φ ∈ Φ, P ′ = (fd, gd, x0, φ, J) is feasible at time
t and (φ, D, T ) is ε-minimal, then Alg. 4 returns a repaired
formula ϕ′ in Φ.

Proof Sketch. When ψ = ϕe → ϕs is modified us-
ing Alg. 1, soundness and completeness are guaranteed by
Thm. 1 and the termination of the CEGIS loop. Assuming
Alg. 4 modifies the atomic predicates in φw, the RepairAd-
versarial routine and (20), together with the termination
of the CEGIS loop, assure that ϕw is repaired in such a way
that the controller is realizable and ε-optimal. This gives us
soundness. For completeness, we assume there exists a min-
imum norm repair for the atomic predicates of ϕw, which re-
turns a maximal interval [w′min, w

′
max] ⊆ [wmin, wmax]. Then,

given the termination of the CEGIS loop, repeated applica-
tion of (20) and RepairAdversarial will produce a predi-
cate repair such that the corresponding interval [w′′min, w

′′
max]

makes the control synthesis realizable and is maximal within
an error bounded by ε. Hence, ϕ′ ∈ Φ holds.

7. CASE STUDIES
We developed the toolbox DiaRY (Diagnosis and Repair

for sYnthesis)5 implementing our algorithms. DiaRY uses
Yalmip [15] to formulate the optimization problems and
Gurobi [1] to solve them. It interfaces to different synthesis
tools, e.g., BluSTL6 and CrSPrSTL7. Here, we summarize
some of the results of DiaRY for diagnosis and repair.

7.1 Autonomous Driving
We consider the problem of synthesizing a controller for

an autonomous vehicle in a city driving scenario. We ana-
lyze the following two tasks: (i) changing lanes on a busy
road; (ii) performing an unprotected left turn at a signal-
ized intersection. We use a simple point-mass model for the
vehicles on the road. For each vehicle, we define the state as
x = [x y θ v]>, where x and y denote the coordinates, and
θ and v represent the direction and speed, respectively. Let
u = [u1 u2]> be the control input for each vehicle, where u1

is the steering input and u2 is the acceleration. Then, the
vehicle’s state evolves according to the following dynamics:

ẋ = v cos θ ẏ = v sin θ

θ̇ = v · u1/m v̇ = u2,
(21)

where m is the vehicle mass. To determine the control strat-
egy, we linearize the overall system dynamics around the ini-
tial state at each run of the MPC, which is completed in less

4Under failing assumptions, Alg. 4 terminates with UNKNOWN.
5https://github.com/shromonag/DiaRY
6https://github.com/BluSTL/BluSTL
7https://github.com/dsadigh/CrSPrSTL



(a) (b)

Figure 4: Lane Change: (a) Infeasible at t = 1.2 s, (b) Repaired.

than 2 s on a 2.3-GHz Intel Core i7 processor with 16-GB
memory. We further impose the following constraints on the
ego vehicle (i.e., the vehicle under control): (i) a minimum
distance must be established between the ego vehicle and
other cars on the road to avoid collisions; (ii) the ego vehicle
must obey the traffic lights; (iii) the ego vehicle must stay
within its road boundaries.

7.1.1 Lane Change
We consider a lane change scenario on a busy road as

shown in Fig. 4a. The ego vehicle is in red. Car 1 is at the
back of the left lane, Car 2 is in the front of the left lane,
while Car 3 is on the right lane. The states of the vehicles
are initialized as follows: xCar 1

0 = [−0.2 − 1.5 π
2

0.5]>,

xCar 2
0 = [−0.2 1.5 π

2
0.5]>, xCar 3

0 = [0.2 1.5 π
2

0]>, and

xego
0 = [0.2 − 0.7 π

2
0]>. The control inputs are initialized

as follows: uCar 1
0 = [0 1]>, uCar 2

0 = [0 − 0.25]>, uCar 3
0 =

[0 0]> and uego
0 = [0 0]>. The objective of ego is to safely

change lane, while satisfying the following requirements:

ϕstr = G[0,∞)(|u1| ≤ 2) Steering Bounds

ϕacc = G[0,∞)(|u2| ≤ 1) Acceleration Bounds

ϕvel = G[0,∞)(|v| ≤ 1) Velocity Bounds

(22)

The solid blue line in Fig. 4 is the trajectory of ego as ob-
tained from our MPC scheme, while the dotted green line
is the future trajectory pre-computed for a given horizon at
a given time. MPC becomes infeasible at time t = 1.2 s
when the no-collision requirement is violated, and a possi-
ble collision is detected between the ego vehicle and Car 1
before the lane change is completed (Fig. 4a). Our solver
takes 2 s, out of which 1.4 s are needed to generate all the
IISs, consisting of 39 constraints. The run time is negligible
with respect to the time needed to encode the original op-
timization problem, which is typically higher by an order of
magnitude. To make the system feasible, the proposed re-
pair increases both the acceleration bounds and the velocity
bounds on the ego vehicle as follows:

ϕnew
acc = G[0,∞)(|u2| ≤ 3.5), ϕnew

vel = G[0,∞)(|v| ≤ 1.54).

When replacing the initial requirements ϕacc and ϕvel with
the modified ones, the revised MPC scheme allows the ve-
hicle to travel faster and safely complete a lane change ma-
neuver, without risks of collision, as shown in Fig. 4b.

7.1.2 Unprotected Left Turn
In the second scenario, we would like the ego vehicle to

perform an unprotected left turn at a signalized intersec-
tion, where the ego vehicle has a green light and is supposed
to yield to oncoming traffic, represented by the yellow cars
crossing the intersection in Fig. 5. The environment vehicles
are initialized at the states xCar 1

0 = [−0.2 0.7 − π
2

0.5]>

and xCar 2
0 = [−0.2 1.5 − π

2
0.5]>, while the ego vehicle is

(a) (b)

Figure 5: Left turn becomes infeasible at time t = 2.1 s in (a)
and is repaired in (b).

20 60 100 140 180 220 260 300 340

 160 ms

Time [ms]

Va
ria

bl
es

G0

B0

C0

R0

C3

DB0

G1

B1

C1

R1

C4

DB1

C2

Figure 6: Simplified model of an aircraft electric power system
(left) and counterexample trajectory (right). The blue, green and
red lines represent environment, state, and controller variables,
respectively, for a 380-ms run.

initialized at xego
0 = [0.2 − 0.7 π

2
0]>. The control input

for each vehicle is initialized at [0 0]>. Moreover, we use
the same bounds as in (22).

The MPC scheme becomes infeasible at t = 2.1 s. The
solver takes 5 s, out of which 2.2 s are used to generate the
IISs, including 56 constraints. As shown in Fig. 5a, the ego
vehicle yields in the middle of intersection for the oncoming
traffic to pass. However, the traffic signal turns red in the
meanwhile, and there is no feasible control input for the ego
vehicle without breaking the traffic light rules. Since we do
not allow modifications to the traffic light rules, the original
specification is repaired again by increasing the bounds on
acceleration and velocity, thus obtaining:

ϕnew
acc = G[0,∞)

(
|u2| ≤ 11.903

)
, ϕnew

vel = G[0,∞)

(
|v| ≤ 2.42

)
.

As shown by the trajectory in Fig. 5b, under the assump-
tions and initial conditions of our scenario, higher allowed
velocity and acceleration make the ego vehicle turn before
the oncoming cars get close or cross the intersection.

7.2 Aircraft Electric Power System
Fig. 6 shows a simplified architecture for the primary

power distribution system in a passenger aircraft [20]. Two
power sources, the left and right generators G0 and G1, de-
liver power to a set of high-voltage AC and DC buses (B0,
B1, DB0, and DB1) and their loads. AC power from the
generators is converted to DC power by rectifier units (R1

and R2). A bus power control unit (controller) monitors
the availability of power sources and configures a set of elec-
tromechanical switches, denoted as contactors (C0, . . . , C4),
such that essential buses remain powered even in the pres-
ence of failures, while satisfying a set of safety, reliability,
and real-time performance requirements [20]. Specifically,
we assume that only the right DC bus DB1 is essential, and
use our algorithms to check the feasibility of a controller that
accommodates a failure in the right generator G1, by rerout-



ing power from the left generator to the right DC bus in a
time interval which is less than or equal to tmax = 100 ms.
In addition, the controller must satisfy the following set of
requirements, all captured by an STL contract.

Assumptions. When a contactor receives an open
(close) signal, it shall become open (closed) in 80 ms or
less. Let the time discretization step ∆t = 20 ms, c̃i,
i ∈ {0, . . . , 4} be a set of Boolean variables describing the
controller signal (where 1 (0) stands for “closed” (“open”)),
ci be a set of Boolean variables denoting the state of the con-
tactors. The system assumptions are a conjunction of formu-
las of the form: G[0,∞)(c̃i → F[0,4]ci), providing a model for
the discrete-time binary-valued contactor states. The actual
delay of each contactor is modeled using an integer (environ-
ment) variable ki for which we require: G[0,∞)(0 ≤ ki ≤ 4).

Guarantees. If a generator becomes unavailable (fails),
the controller shall disconnect it from the power network in
20 ms or less. Let g0 and g1 be Boolean environment vari-
ables representing the state of the generators, where 1 (0)
stands for “available” (“failure”). We encode the above guar-
antees as G[0,∞)(gi → F[0,1]c̃i). A DC bus shall never be
disconnected from an AC generator for 100 ms or more, i.e.,
G[0,∞)(¬bi → F[0,5]bi), where bi, i ∈ {0, . . . , 3} is a set of
Boolean variables denoting the status of a bus, where 1 (0)
stands for “powered” (“unpowered”). Additional guarantees
expressed as STL formulas, include: (i) If both AC genera-
tors are available, the left (right) AC generator shall power
the left (right) AC bus. C3 and C4 shall be closed. (ii) If
only one generator is available, all buses shall be connected
to it. (iii) Two generators must never be directly connected.

We apply the diagnosis and repair procedure in Sec. 6.2
to investigate if there exists a control strategy that satisfies
the specification above over all possible values of contactor
delays. Fig. 6 shows the controller is unrealizable; a trace of
contactor delays equal to 4 at all times provides a counterex-
ample, which leaves DB1 unpowered for 160 ms, exceeding
the maximum allowed delay of 100 ms. In fact, the con-
troller cannot close C2 until C1 is tested as being open, to
ensure that G1 is safely isolated from G2. To guarantee
realizability, Alg. 4 suggests to modify our assumptions to
G[0,∞)(0 ≤ ki ≤ 2) for i ∈ {0, . . . , 4}. Alternatively, by
interpreting the provided counterexamples, it is possible to
relax the guarantee on DB1 to G[0,∞)(¬b3 → F[0,8]b3). The
execution time was 326 s, which includes formulating and ex-
ecuting 3 CEGIS loops, requiring 6 optimization problems.

8. CONCLUSION
We presented a set of algorithms for diagnosis and repair

of STL specifications in the setting of controller synthesis
for hybrid systems using a mixed integer programming ap-
proach. Given an unrealizable specification, our algorithms
detect possible reasons for infeasibility and suggest repairs
to make it realizable. We showed the effectiveness of our
approach on the synthesis of controllers for several applica-
tions. As future work, we plan to investigate techniques that
better leverage the structure of the STL formulas, handle a
broader range of environment assumptions, and apply to the
control of human-in-the-loop systems as explored in [14].

9. ACKNOWLEDGMENTS
This work was partially supported by IBM and United

Technologies Corporation via the iCyPhy consortium, Ter-
raSwarm, one of six centers of STARnet, a Semiconduc-
tor Research Corporation program sponsored by MARCO,
DARPA, NSF grants CCF-1139138 and CCF-1116993, and
NDSEG Fellowship.

10. REFERENCES
[1] Gurobi Optimizer. [Online]: http://www.gurobi.com/.

[2] R. Alur, S. Moarref, and U. Topcu. Counter-strategy
guided refinement of GR(1) temporal logic specifications. In
Formal Methods in Computer-Aided Design, 2013.

[3] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints. Automatica,
35, 1999.

[4] A. Bemporad and M. Morari. Robust model predictive
control: A survey. In Robustness in identification and
control, pages 207–226. Springer, 1999.

[5] J. W. Chinneck and E. W. Dravnieks. Locating minimal
infeasible constraint sets in linear programs. ORSA Journal
on Computing, 3(2):157–168, 1991.

[6] A. Donzé, T. Ferrère, and O. Maler. Efficient robust
monitoring for STL. In Computer Aided Verification, 2013.

[7] A. Donzé and O. Maler. Robust satisfaction of temporal
logic over real-valued signals. In FORMATS, 2010.

[8] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu,
and S. Smolka. On temporal logic and signal processing. In
Automated Technology for Verification and Analysis. 2012.

[9] T. Ferrère, O. Maler, and D. Nickovic. Trace diagnostics
using temporal implicants. In Proc. Int. Symp. Automated
Technology for Verification and Analysis, 2015.

[10] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive
control: theory and practice–a survey. Automatica, 25,
1989.

[11] S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donze,
A. Sangiovanni-Vincentelli, S. Sastry, and A. Seshia.
Diagnosis and repair for synthesis from signal temporal
logic specifications. http://arxiv.org/abs/1602.01883, Feb
2016.

[12] E. C. Kerrigan and J. M. Maciejowski. Soft constraints and
exact penalty functions in model predictive control. In
Control 2000 Conference, Cambridge, 2000.

[13] W. Li, L. Dworkin, and S. A. Seshia. Mining assumptions
for synthesis. In ACM/IEEE Int. Conf. Formal Methods
and Models for Codesign, 2011.

[14] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia. Synthesis
for human-in-the-loop control systems. In TACAS. 2014.

[15] J. Löfberg. Yalmip: A toolbox for modeling and
optimization in MATLAB. In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[16] O. Maler and D. Nickovic. Monitoring temporal properties
of continuous signals. In Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems. 2004.

[17] M. Morari, C. Garcia, J. Lee, and D. Prett. Model
predictive control. Prentice Hall Englewood Cliffs, NJ, 1993.

[18] P. Nuzzo, A. Puggelli, S. A. Seshia, and A. L.
Sangiovanni-Vincentelli. CalCS: SMT solving for non-linear
convex constraints. In IEEE Int. Conf. Formal Methods in
Computer-Aided Design, 2010.

[19] P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin,
L. Geretti, and T. Villa. A platform-based design
methodology with contracts and related tools for the design
of cyber-physical systems. Proc. IEEE, 103(11), Nov. 2015.

[20] P. Nuzzo, H. Xu, N. Ozay, J. Finn,
A. Sangiovanni-Vincentelli, R. Murray, A. Donzé, and
S. Seshia. A contract-based methodology for aircraft
electric power system design. IEEE Access, 2:1–25, 2014.

[21] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A.
Seshia. Reactive synthesis from signal temporal logic
specifications. In Proc. Int. Conf. Hybrid Systems:
Computation and Control, 2015.

[22] V. Raman and H. Kress-Gazit. Explaining impossible
high-level robot behaviors. IEEE Trans. Robotics, 29, 2013.

[23] V. Raman, M. Maasoumy, A. Donzé, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. A. Seshia. Model
predictive control with signal temporal logic specifications.
In IEEE Conf. on Decision and Control, 2014.

[24] V. Schuppan. Towards a notion of unsatisfiable cores for
LTL. In Fundamentals of Software Engineering, 2009.

[25] P. O. Scokaert and J. B. Rawlings. Feasibility issues in
linear model predictive control. AIChE Journal,
45(8):1649–1659, 1999.

http://www.gurobi.com/
http://arxiv.org/abs/1602.01883

	Introduction
	Preliminaries
	Hybrid Dynamical Systems
	Signal Temporal Logic
	Model Predictive Control

	A Running Example
	Problem Statement
	Monolithic Specifications
	Diagnosis
	Repair

	Contracts
	Non-Adversarial Environment
	Adversarial Environment

	Case Studies
	Autonomous Driving
	Lane Change
	Unprotected Left Turn

	Aircraft Electric Power System

	Conclusion
	Acknowledgments
	References



