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Networks play a critical role in many physical, biological, and social systems. In this

thesis, we investigate tools to model and analyze networked systems. We first examine some

of the ways in which we can model social dynamics that take place on networks. We then

study two recently developed data-analysis methods that employ a network framework and

explore new ways in which they can be used to find meaningful signals in large data sets.

In the first half of the thesis, we study opinion dynamics on networks. We begin by

examining a class of opinion models, known as coevolving voter models (CVM), that couple

the mechanisms of opinion formation and changing social connections. We then propose a

version of CVMs that incorporates nonlinearity. In our models, we assume that individuals

strive to achieve harmony and avoid disagreement, both by changing their social connections

to reflect their opinions and by changing their opinions to reflect their social connections.

By taking a minimalist approach to modeling social dynamics, we hope to gain a deeper

understanding of how these two mechanisms can give rise to social phenomena such as the

“majority illusion”. Comparing several versions of CVMs, we find that seemingly small

changes in update rules can lead to strikingly different behaviors. A particularly interesting

feature of our nonlinear CVMs is that, under certain conditions, the opinion state that

is held initially by a minority of the nodes can effectively spread to almost every node

in a network if the minority nodes view themselves as the majority. We then discuss an
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ongoing project that involves another class of opinion models called bounded-confidence

models. Specifically, we examine extensions of bounded-confidence models on hypergraphs

and discuss some preliminary findings.

In the second half of the thesis, we study problems in data analysis. We begin by consid-

ering topological structures as a tool to study integrated circuit (IC) devices. In particular,

we examine a problem in the design and manufacturing of IC devices using topological data

analysis (TDA), which is based on network structures called simplicial complexes. Failures

in IC devices generally occur near the tolerance limits of photolithography systems, such

as at the minimum separation distance between adjacent electronic components. However,

for complex arrangements of electronic components, simply ensuring minimal separation is

insufficient to guarantee that one can manufacture an IC design accurately and reliably. We

apply tools from TDA to compare data from IC designs. Without inputting domain knowl-

edge, we are able to infer several results about the IC design-manufacturing process. Finally,

we discuss an ongoing project in the analysis of network data. Specifically, we explore ap-

plications of a recently developed algorithm called network dictionary learning (NDL) and

discuss problems of network reconstruction and denoising using NDL on both synthetic and

real-world networks.
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CHAPTER 1

Introduction

1.1 Opinion Models on Networks

Whether it’s which candidate to choose in an election or where to eat, our social circles

influence our opinions and how they change [Ban71]. When choosing the people with whom

we interact, our opinions in turn influence our social circles [MSC01]. The desire to improve

understanding of this complex interplay between opinion formation and evolving social con-

nections has become increasingly prominent amidst the ubiquity of social media and inten-

sifying political polarization [Sun18]. Mathematical modeling of this interplay — such as

with agent-based models — can yield insights into many pertinent questions [GJ10]. For

example, do social-media platforms amplify extreme viewpoints by creating majority illu-

sions [LYW16], such that certain opinions appear more mainstream than they really are?

How do so-called “echo chambers”, in which individuals have selective exposure to ideas that

reinforce their own views, develop in these environments? More broadly, under what con-

ditions does this complex interplay become a positive feedback loop in which opinions and

social circles reinforce one another, driving individuals to extremes and potentially stifling

civil discourse? To help understand these phenomena and examine these questions, it is

important to develop sociological theory and accurate models of this interplay.

Opinion and social network formation have been studied using a variety of lenses from

numerous disciplines [DVB16, JD15, SZL18, GLH19], including longstanding efforts to de-

velop mathematical frameworks for modeling opinion dynamics by employing ideas from

subjects such as statistical physics and nonlinear dynamics [CFL09]. There has also been

much cross-fertilization with research in the modeling of disease spread [KMS17]. For ex-
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ample, one can examine the “virality” of memes or seemingly contagious behaviors [LA18].

In developing mathematical frameworks for studying opinion dynamics, incorporating social

network structure can significantly improve both the accuracy of mathematical models and

the understanding of spreading processes [NVT19, LA18, PCV15]. For example, research on

the severe acute respiratory syndrome (SARS) outbreaks by L. A. Meyers et al. illustrated

the utility of accounting for social networks when assessing public-health strategies [MPN05].

This stems from a network’s influence on the properties of dynamical processes that take

place on them [PG16]. Additionally, networks themselves are typically not time-independent,

as they often evolve in response to a dynamical process and in turn influence that pro-

cess [SPS13, DVB14]. For instance, in the spread of diseases, networks of interactions can

change as a result of quarantines or different daily habits when somebody is ill. Similarly,

in social media, individuals can choose to “follow” or “unfollow” other individuals (or other

types of accounts) in response to posted content. The interplay of dynamics on networks and

dynamics of networks1 is a rapidly growing area of study in many disciplines [PG16, LA18].

Although much of the prior work on such “coevolving” (also known as “adaptive”) network

dynamics has focused on studying the complex behavior of simple models in abstract set-

tings, there have also been efforts at incorporating further realism into such models [Red19]

and at applying such models to study empirical data in situations — including vote shares

in United States elections [FSR14] and the swarming dynamics of locusts [HZD11] — that

can involve notions of “opinions” and consensus.

In Chapter 2, we briefly review the literature on voter models by giving a short history

of their origin. We present several variants of voter models and discuss their differences. We

then discuss some of the techniques that are used to study these models, with particular

attention to moment equations. We then describe some of the (many) extensions of voter

models that incorporate various additional features. Finally, we focus in on one particular

extension, coevolving voter models (CVMs), in which node states and network structure

update as a coupled stochastic process.

1See Refs. [HS12, Hol15, HS19] for reviews of research on time-dependent networks.
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In Chapter 3, we investigate a nonlinear version of CVMs. In contrast to linear versions of

CVMs, in our nonlinear version, the probability that a node rewires or adopts is a function of

how well it “fits in” with the nodes in its neighborhood. To explore this idea, we incorporate a

local-survey parameter σi that represents the fraction of neighbors of an updating node i that

share its opinion state. In an update, with probability σqi (for some nonlinearity parameter

q), the updating node rewires; with complementary probability 1 − σqi , the updating node

adopts a new opinion state. We study this mechanism using three rewiring schemes: after

an updating node deletes one of its discordant edges, it then either (1) “rewires-to-random”

by choosing a new neighbor in a random process; (2) “rewires-to-same” by choosing a new

neighbor in a random process from nodes that share its state; or (3) “rewires-to-none” by

not rewiring at all (akin to “unfriending” on social media). We compare our nonlinear CVM

to several existing linear CVMs on various network architectures. Relative to those models,

we find in our model that initial network topology plays a larger role in the dynamics and

that the choice of rewiring mechanism plays a smaller role. A particularly interesting feature

of our model is that, under certain conditions, the opinion state that is held initially by a

minority of the nodes can effectively spread to almost every node in a network if the minority

nodes view themselves as the majority. In light of this observation, we relate our results to

recent work on the majority illusion in social networks. Chapter 3 contains work done in

collaboration with Mason A. Porter (UCLA) in Ref. [KP20].

In Chapter 4, we turn our attention to bounded-confidence models (BCM), another class

of opinions models on networks. We discuss work that is a collaboration with Heather Z.

Brooks (UCLA), Michelle Feng (UCLA), and Mason A. Porter on adaptations of BCMs to

hypergraphs. We discuss the model formulation, preliminary analysis, and a few numerical

computations.

1.2 Data Analysis of Networked Systems

Physical defects and electrical failures of integrated circuit (IC) devices generally occur near

the tolerance limits of photolithography systems, such as at the minimum separation distance

4



between adjacent electronic components. However, for complex arrangements of electronic

components, simply ensuring minimal separation is insufficient to guarantee that one can

manufacture the IC design accurately and reliably. In Chapter 5, we apply tools from

topological data analysis to data sets that were extracted from IC layouts using pattern

matching. We find that plotting Betti numbers (a topological invariant [Hat05]) as a function

of a resolution parameter enables both (1) a compressed yet robust signature of IC layout

data sets and (2) an efficient means of quantitatively comparing data within a single IC

layout and across multiple IC layouts. Without inputting domain knowledge, we are able

to infer several results about the design-manufacturing process. This chapter contains work

that was done in collaboration with Vito Dai (Motivo, Inc.) and Luigi Capodieci (Motivo,

Inc.) in Ref. [KDC19].

In Chapter 6, we discuss an ongoing collaboration on data analysis of networks. We

explore applications of a new algorithm called network dictionary learning (NDL) that was

recently developed by Lyu et al. in Ref. [LNB19]. We discuss problems of network reconstruc-

tion and denoising using NDL on both synthetic and real-world networks. This in-progress

work is in collaboration with Hanbaek Lyu (UCLA), Josh Vendrow (UCLA), and Mason A.

Porter.
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CHAPTER 2

Background on Voter Models

2.1 Brief History of Voter Models

“The main reason for [the] introduction [of voter models] was not so much a desire

to model political systems, as the name might suggest, but rather the fact that

voter models are exactly the class of spin systems to which duality can be applied

most completely and successfully.” – Thomas M. Liggett [Lig99]

The family of interacting particle systems known as “voter models” arose in the 1970s

independently by Clifford and Sudbury [CS73] and by Holley and Liggett [HL75]. Clifford

and Sudbury interpreted voter models in the context of spatial conflict. Two populations —

call them red and blue — compete for territory, where each region is a node on a network.

The types of networks that they considered are d-dimensional integer lattices. Each node

in the lattice is held either by the red or the blue population. A stochastic invasion process

converts a pair of adjacent red–blue territories (i.e., nodes connected by an edge held by

different populations) into either red–red or blue–blue, with both of these events occurring as

a Poisson process with rate 1. That is, a node held by the red population is invaded at a rate

proportional to the number of neighboring nodes that are controlled by the blue population,

and vice versa. For Holley and Liggett, the interpretation was nominally one of opinion

dynamics, such that individuals intermittently reevaluate their position on some issue. Each

individual is a node in a network (specifically, a d-dimensional integer lattice), and and each

holds one of two possible positions, denoted by 0 and 1, on an issue. An individual waits an

exponential time with parameter 1 (which is equivalent to Poisson process with rate 1) and

then adopts the position of a neighbor chosen uniformly at random.
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The voter models of Refs. [CS73, HL75] are Markov processes with two absorbing states.

A model that is similar to voter models arose a decade earlier in the work of Glauber [Gla63].

Glauber formulated a stochastic version of the Ising model1 to study its time-dependent

statistics. In Glauber’s stochastic Ising model, particles are arranged in a ring and have

spin +1 or −1. Each particle’s spin randomly flips between +1 or −1 at some Poisson rate.

Glauber’s model includes the tendency for the spin of a particle to positively correlate (or

negatively correlate) with its neighboring particles’ spins by having the transition probability

for a particle’s spin depend on the spins of its neighbors. The stochastic Ising model is also

a Markov process, but (unlike the voter models of Refs. [CS73, HL75]) it does not have an

absorbing state.

Since their inception, voter models have stimulated much research in fields such as prob-

ability and statistical mechanics [Lig99, CFL09, PG16]. Soon after, (perhaps due to their

simplicity and partly due to their name), voter models started to spark interest in mathe-

matical sociology [KS80]. Over the past forty years, scientists have studied various aspects

of voter models, such as stationary states and how long it takes to converge to those states.

Researchers have also used voter models as a starting point to formulate more intricate opin-

ion models. In many cases, one endeavors to imbue a voter model with realism based on

sociological theory, real-word phenomena, or current events. In Section 2.2, we attempt to

disentangle some of the ambiguities that have arisen in the definition of “the” voter model.

In Section 2.3, we review some of the tools that have been used for analyzing voter models.

We pay special attention to moment closure approximations [Kue16]. In Section 2.4, we

discuss some reality-inspired extensions of voter models. Finally, in Section 2.5, we focus

our study on one particular extension, coevolving voter models (which we then generalize in

Chapter 3).

1See Refs. [Len20, Isi25] for the original formulations of the Ising model.
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2.2 “The” Voter Model

In the decades following the introduction of Holley and Liggett’s voter model [HL75], there

has been substantial research on the topic. During this time, the precise definition of “voter

model” has splintered into several versions. Nowadays, voter models refer to a class of

similar but unidentical models; unfortunately, this class of models is occasionally called

“the” voter model in the literature (leading to ambiguity). Although it is not entirely clear

what delineates a voter model from another similar opinion model, a voter model generally

consists of the following features:

1. individuals (nodes),

2. their connections (edges) to other individuals (neighbors),

3. their opinions (so-called “opinion states”),

4. and a rule (a stochastic process) for updating opinions.

The first two items, nodes and edges, yield a network on which the dynamics takes place. For

simplicity, we disallow multi-edges (i.e., more than one edge between two nodes) and self-

edges (i.e., an edge between a node and itself). In Section 3.4, we discuss some situations in

which one can relax these stipulations. The third item, opinion states, represent the possible

opinions that the nodes may hold, with each node holding exactly one opinion at a time. The

system’s space of states, which we call “system states” to distinguish them from the opinion

states, is given by the space of triples (V,E, S), where V is the set of nodes, N := |V | denotes

the number of nodes (if the network is finite), E is the set of edges2, S : V → O is the state

function that records the opinion state of each node, and O is the space of opinions. Most

voter models use a binary opinion space such as O = {A,B}, but some use arbitrarily large

sets [VR04, HN06, SMD13]. We focus on spaces with binary opinion states.

The fourth item, a stochastic process, defines how the system updates. In defining

the update process, one must choose whether the system evolves in discrete or continu-

ous time. The voter models in Refs. [CS73, HL75] were formulated in continuous time to

2We focus on edges that are pairwise, undirected, and unweighted but one can consider more general
types of edges [SKV09, HUK10, CT12, BCP11, HK20].
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obtain a system that evolves between system states following some transition rates. Discrete-

time voter models, in which transition rates between systems states are replaced by tran-

sition probabilities, have also been studied frequently [Lig99, SR05]. The ways in which

continuous-time and discrete-time voter models coincide and differ is an interesting topic;

see Refs. [FMG16, SAR08] for details. The decision to use discrete-time or continuous-time

involves many factors, such as the structure of one’s data and the ability to simulate a

model numerically3; or it may simply be personal/mathematical preference. In this thesis,

we consider only discrete-time voter models and their extensions.

Discrete-time voter models evolve between system states in a stochastic, memoryless fash-

ion, so we can construe each such system as a first-order Markov chain4 in which the stochas-

tic process determines the transition probabilities. For voter models on time-independent

networks, the set V of nodes and the set E of edges remain fixed as a system evolves, but

the function S updates as nodes change states. When we refer to the state function at a

certain time, we use the notation St to explicitly indicate time-dependence, but otherwise

we suppress explicit notation for time. When evaluating the function S for a specific node,

we use square brackets, so S[i] indicates the state of node i and St[i] indicates the state of

node i at time t. We use ED [and ED(t) when specifying the time t explicitly] to denote the

set

ED = {(u, v) ∈ E : S[u] 6= S[v]} (2.1)

of discordant edges, which are edges between disagreeing nodes, in E. We refer to edges

between agreeing nodes as concordant edges.

An important choice to make when defining update rules for a discrete-time voter model

is the use of synchronous versus asynchronous updating. Synchronous updating entails

updating all of the nodes in unison at each time step. By contrast, in asynchronous updating,

one chooses a node (at random using a specified random process) at each step to interact

with one of its neighbors, while the state of the rest of the system is fixed. If the random

3See Appendix A, Stochastic simulation of epidemics, of Ref. [KMS17] for an introduction to simulating
dynamics on a network.

4A Markov chain is the discrete-time version of a Markov process.
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process for choosing which node to update has a uniform distribution over the nodes, then

after N steps in an asynchronous voter model, one updates each node once on average in an

N -node network. That is, N steps in an asynchronous model corresponds to one time step

in a synchronous model [SAR08]. Therefore, when comparing an asynchronous model that

uses a uniform random distribution to a synchronous model, the former evolves at a rate that

is scaled by 1/N relative to the latter. The choice between synchronous and asynchronous

updating is an important one, as it can have significant effects on the dynamics of voter

models (in addition to the time scaling), including differences in the number of absorbing

states [Gas15]. See Refs. [HG93, RCS09, FES11] for detailed discussions of the effects of

synchronous versus asynchronous updating in voter models.

Another important choice to make is that between “node-based” and “edge-based” updat-

ing. In node-based voter models, in each step, one first selects a node i (at random following

some distribution over the set of nodes) and then chooses a neighbor j (at random following

some distribution over the set of neighbors of node i). If node i is isolated, the system does

not change in that step. Another modeling choice that one needs to make is whether to

update node i or node j. Under “direct” node-based rules, one updates the state of node

i by copying the state of node j; under “reverse” node-based (which is also called “invasion

process”) rules, the roles are switched, so one updates the state of node j by copying the

state of node i [SAR08]. The two node-based rules place focus on the entities of the system.

By contrast, under edge-based (i.e., link-based) rules, in each step, one first selects an edge

(i, j) at random following some distribution over the set of edges and then uniformly ran-

domly selects one of the edge’s incident nodes to update. That is, with equal probability,

one updates node i by copying the state of node j or one updates node j by copying the

state of node i.

The seemingly minor choice between direct node-based, reverse node-based, and edge-

based rules can have very substantial effects on the dynamics of a voter model, including

convergence time and steady-state behavior [NKB08, SR05, DVB14, PG16]. One can observe

an immediate difference between the three rules based on how they bias the relationship

between the degrees of nodes i and j. In the above node-based rules, the expected degree
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of node j can differ from the expected degree of node i [Fel91, New18]. By contrast, in the

above edge-based rules, it follows from symmetry that nodes i and j have identical expected

degrees.

2.3 Analysis of Voter models

The tools that one uses to study voter models are often context-dependent. For questions

about stationary system states on the d-dimensional integer lattice Zd, techniques from

random-walk theory and duality theorems have been very useful [HL75, Lig99]. For ques-

tions about the time to consensus or probability of a certain type of consensus on finite

heterogeneous networks, the Kolmogorov equations provide an effective framework in which

to study voter models [SAR08]. In this section, we present tools that have more generic utility

but are geared more for approximations than for exact results. These tools are particularly

useful to study extensions of voter models [DGL12, DVB14, Jed17].

A complete description of the system state of a voter model is given by (V,E, S). Even for

small networks, this amount of information is difficult to study, so we seek a coarse-grained

description of the dynamics [Kue16]. One type of summary is a count of “state-specified

motifs”, which are subgraphs H in which the nodes of H are in specified states. Relevant

counts of state-specified motifs include

1. NX(t) = |{i ∈ V : St[i] = X}|, the number of nodes i at time t that are in state

X ∈ O = {A,B} ;

2. NXY (t) = |{(i, j) ∈ V × V : (i, j) ∈ E(t) , St[i] = X ,St[j] = Y }|, the number of node

pairs (i, j) at time t in which i and j are adjacent, node i is in state X ∈ O = {A,B},

and node j is in state Y ∈ O ; and

3. NXY Z(t) = |{(i, j, k) ∈ V × V × V : (i, j), (j, k) ∈ E(t) , St[i] = X ,St[j] = Y , St[k] =

Z}|, the number of node triples (i, j, k) at time t in which i and j are adjacent, j and

k are adjacent, node i is in state X ∈ O = {A,B}, node j is in state Y ∈ O, and node

k is in state Z ∈ O .
11



One can also compute counts for state-specified motifs with more than three nodes or with

other subgraph structures, but we will not pursue this. Note that

NA(t) +NB(t) = N ,

NAA(t) +NAB(t) +NBA(t) +NBB(t) = 2|E| ,

NAB(t) = NBA(t) = |ED(t)| .

We refer to a node in state X as an X-node, to a pair in the NXY count as an XY -pair,

and to a triple in the NXY Z count as an XY Z-triple. It is also helpful to examine state

densities NX(t)/N , which give the fraction of nodes in a state X. We are also interested in

the expected values (i.e., moments) of these quantities [KMS17]. Three examples of moments

are

[X] = [X](t) = 〈NX(t)〉 = E[NX(t)] ,

[XY ] = [XY ](t) = 〈NXY (t)〉 = E[NXY (t)] ,

[XY Z] = [XY Z](t) = 〈NXY Z(t)〉 = E[NXY Z(t)] .

(2.2)

We call moments for state-specified motifs with k nodes (k − 1)th-order moments.

One way of approximately capturing the dynamics of voter models is by writing balance

equations for the moments, which are called moment equations. Writing moment equations

involves calculating the rates of all processes that result in either the creation or destruction

of state-specified motifs. In Figure 2.1, we show a flux diagram that captures this information

for an asynchronous edge-based voter model. For example, the rate at which nodes in state

A are converted to nodes in state B is proportional to the number of AB-pairs and BA-pairs.

With rates from Figure 2.1, we arrive at the following system of differential equations:
d

dt
[A] =

d

dt
[B] = 0 ,

d

dt
[AA] = [AB]− [AAB] + [ABA] ,

d

dt
[BB] = [AB]− [BBA] + [BAB] ,

d

dt
2[AB] = −2[AB]− [ABA]− [BAB] + [AAB] + [BBA] .

(2.3)

The vanishing of the time derivative of the 0th-order moments is a consequence of the

symmetry that arises from edge-based updates. For all k ≥ 1, the time derivative of a
12
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Figure 2.1: Voter model flux diagram for asynchronous, edge-based updates. We show

the moments with rounded rectangles and draw arrows to indicate flows between them.

We label the arrows with the transition rate that are associated with the corresponding

creation–destruction processes. For example, the arrow from [AA] to [AB] with label [AAB]

corresponds to the destruction of an AA-pair and creation of an AB-pair via an AAB-triple

in which the node in the third slot (which is in state B) causes the node in the middle slot

to switch from state A to state B.

kth-order moment involves (k + 1)th-order moments. The full system of moment equations

is thus infinite-dimensional. To make such a system tractable for analytical and numerical

techniques, it is often necessary to close the moment equations by approximating higher-order

moments in terms of lower-order moments [Kue16].

For the system in Equation (2.3), the simplest (nontrivial) moment closure is by pair

approximations, in which we approximate 2nd-order momenets in terms of 1st-order and

0th-order moments [KRM97, DVB14, Kue16]. One builds such an approximation based on

assumptions about the system, and different assumptions lead to different approximations.

As an example, let us write an approximation for the moment [ABA] following the method
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of Ref. [DVB14]. To estimate the number of ABA-triples, we start with the number of AB-

pairs. We then find the expected number of nodes in state A that are attached to the B-node

in an AB-pair. Let 〈qB,AB〉 be the mean excess degree of B-nodes in AB-pair. Th mean

excess degree qY,XY is the expected number of additional edges incident to the Y -node in

an XY -pair. If we assume that AB-pairs are uncorrelated (except for the effect on degree),

then the probability that the additional edge is a BA-pair is approximately [BA]
[BA]+[BB]

. This

gives the pair approximation

[ABA] ≈ [AB]〈qB,AB〉
[BA]

[BA] + [BB]
= cB

[AB]2

[B]
, (2.4)

where cB is the ratio of 〈qB,AB〉 and the mean degree of the B-nodes. The parameter cB

is generally unknown unless the graph has certain properties (such as degree regularity).

Demirel et al. report that cB = 1 for ER networks [DVB14]. Substituting the pair approxi-

mation from Equation (2.4) into Equation (2.3), we arrive at the following closed system of

differential equations:

d

dt
[AA] = [AB]− [AA][AB]

[A]
+

[AB]2

[B]
,

d

dt
[BB] = [AB]− [BB][BA]

[B]
+

[AB]2

[A]

d

dt
2[AB] = −2[AB]− [AB]2

[B]
− [AB]2

[A]
+

[AA][AB]

[A]
+

[BB][BA]

[B]
.

(2.5)

One can then study Equation (2.5) to gain an approximate understanding of the temporal

evolution of the moments. For example, we can can compute the steady state of [AA] to get

d

dt
[AA] = 0 =⇒ [AB] =

(〈k〉 − 1)

N
[A](N − [A]) . (2.6)

This suggests that the asynchronous edge-based voter model has a quasi-stationary (i.e.,

quasi-steady-state) distribution [DGL12, Kue16], so after an initial transient, the system

slowly evolves along the manifold that is described by Equation (2.6).

The type of moment approximation in Equation (2.6) is more precisely called a ho-

mogeneous moment approximation, because it involves only state-specified motif informa-

tion [DVB14]. In addition to this information, one can also take into account the degrees
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of each of the nodes in a motif; this yields a heterogeneous moment approximation. The

difference between homogeneous and heterogeneous moment approximations is in their level

of granularity. Two methods closely related to heterogeneous moment approximations are

the improved compartmental formalism [NDB09, MNH10] and approximate master equa-

tions [Gle11, Gle13, DGL12].

2.4 Extensions of Voter Models

Voter models are undeniably a highly-idealized model for opinion dynamics.5 However,

their simplicity and tractability (from a mathematical perspective) make them an excellent

foundation upon which one can build more intricate (and possibly more realistic) opinion

models. In many cases, one formulates an extension of voter models with mechanisms, rules,

or structures that are based on sociological theory, real-word phenomena, or current events.

In Table 2.1, we list some notable extensions. For review articles on some extensions, see

Refs. [CFL09, Red19, JS19].

The voter model extensions that we list in Table 2.1 are only some of the extensions that

researchers have studied. One can combine or mix together the extensions to produce further

extensions (e.g., threshold q-voter models [VA18] and q-voter model with zealots [Mob15]).

One particularly interesting family of extensions are coevolving voter models, which we

describe in detail in Section 2.5.

2.5 Coevolving Voter Models

We now study a popular extension of voter models, called coevolving voter models (CVM).

that incorporates adaptive networks. In CVMs, node opinions (the node states) coevolve

with network structure [PG16]. (These models are also sometimes called “adaptive voter

models”.) Coevolving voter models combine the classical framework of voter models [CS73,

HL75, Cox89], in which individuals update their opinions based on their neighbors’ opinions,

5The question of how well voter models can model voters was pursued in Ref. [FSR14].
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Extension References

contrarian voter models (similar to alternation pro-

cesses)

[CS73, Mas13, DBZ13]

dissonant voter models [Mat77]

biased voter models [Fer90]

threshold voter models [CD91, ALM92]

noisy voter models [GM95, FSR14]

Axelrod models [Axe97, Red19]

zealot voter models [Mob03, HD19]

coevolving voter models [HN06, ZG06, VES08]

vacillating voter models [LR07]

voter models with heterozygosity selection [SS08]

non-conservative voter models [LR08]

q-voter models [CMP09]

latent voter models [LSB09, HD18]

partisan/stubborn voter models [MGR10, YOA13]

rebellious voter models [SV10]

concealed voter models [GOG18, GTG19]

Table 2.1: Some notable extensions of voter models and relevant references.

with an evolving network structure (in which individuals change their relationships with other

individuals in response to their opinions [EB02, BR00, GDB06, GB07]). A coevolving voter

model consists of a network of individuals, two or more opinion states, and a rule (e.g., in

the form of a stochastic process) for updating both the network and the states of its nodes

or edges. We restrict our attention to a binary opinion space, but one can also study models

with more than two opinions [HN06, SMD13]. There is also an interesting CVM that includes

states both on the nodes and on the edges [SST19].

One of the motivations for studying coevolving voter models is their fascinating dynamics,

16



and scholars have analyzed them using approaches from subjects like dynamical systems, sta-

tistical physics, partial differential equations, and probability theory [HN06, DGL12, DVB14,

SDH14, CM20]. A particularly interesting aspect of the dynamics of CVMs is the apparent

phase transition that can occur in “linear” CVMs. In this context, “linear” refers to the

linearity of the rewiring probability function fr(x) and adoption probability function fa(x):

A node with a fraction x of disagreeing neighbors has a probability fr(x) = αx (for some

parameter α) to rewire and a probability fr(x) = (1 − α)x to adopt. The parameter α is

sometimes called the “rewiring rate”, and (1− α) is sometimes called the “adoption rate”.

In some variants of linear CVMs (such as those in Refs. [HN06, DGL12]), there appears

to be a phase transition as one increases the adoption rate (and thus decreases the rewiring

rate) from a regime of “rapid disintegration” to a regime of “prolonged persistence of the

dynamics”. In the former regime, a network separates into components so quickly that the

densities of the opinion states are unable to change significantly. In the latter regime, the

system progresses slowly toward a steady state in which almost all nodes has the same

opinion state. Basu and Sly presented a mathematically rigorous proof of the existence of

phase transitions for two variants of linear CVMs on dense Erdős–Rényi (ER) networks (using

the G(N, p) model with p = 1/2) [BS17]. However, it has not yet been proven that a phase

transition occurs for sparse networks or other classes of dense networks. In Section 2.6, we

review some of the existing computational results for linear CVMs on sparse ER networks

and present computational results for these CVMs on sparse networks that we construct

from a stochastic block model (SBM). We demonstrate that, although these linear CVMs

modify the structure of their associated network, their steady-state behavior appears to be

insensitive to the examined initial network structures in a sense that we make precise in

Section 2.6.

We examine three different rewiring schemes, which we illustrate in Figure 2.2. First, we

explore a “rewire-to-random” (RTR) scheme, in which nodes sever connections (specifically,

discordant edges) with disagreeing neighbors and replace them with new connections to

nodes in a way that is agnostic to opinion states. We then explore a “rewire-to-same”

(RTS) scheme, in which nodes sever connections with disagreeing neighbors and replace
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them with new connections to nodes that share their opinion state. Finally, we explore a

“rewire-to-none” (RTN) scheme, in which nodes sever connections with disagreeing neighbors

without forming any new connections to other nodes. This third type of rewiring models

behavior on social media in which individuals “unfriend” (or “unfollow”) someone after a

disagreement [Bod16, YBR17, ZSS17]. A fascinating feature of linear CVMs is that the

choice of rewiring scheme has a dramatic impact on their steady-state properties [DGL12].

However, for the nonlinear CVM that we introduce in Chapter 3, the choice between the

above rewiring schemes does not seem to have major qualitative effects on their steady-

state behavior. Although we study each of the rewiring schemes separately, it is possible to

combine the heterophilic aspects of RTR and the homophilic aspects of RTS into a single

CVM [KH08].

For CVMs, as with voter models on time-independent networks, the set V of nodes

remains fixed as a system evolves, but now both the set E of edges and the function S

can update. When we refer to the edge set at a certain time, we use the notation E(t) to

explicitly indicate time-dependence, but otherwise we suppress explicit notation for time.

As before, we use ED [or ED(t) when specifying the time t explicitly] to denote the set

ED = {(u, v) ∈ E(t) : S[u] 6= S[v]} (2.7)

of discordant edges in E(t).

2.6 Linear Coevolving Voter Models on Erdős–Rényi Networks

2.6.1 Linear Rewire-to-Random CVM on ER Networks

Using simulations, we examine the linear RTR-CVM that was studied in Ref. [DGL12]. This

CVM is asynchronous; for each elementary time step t = {1, 2, . . .}, we update the state of

one node or rewire one edge. In an elementary time step, we select a discordant edge (i, j)

uniformly at random from ED. Equivalently, we can think of choosing the edges from E
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Figure 2.2: Illustration of three rewiring schemes for CVMs. The highlighted edges in the

top part of the figure are the discordant edges that we will rewire, and the highlighted nodes

are the focal nodes. The bottom part of the figure shows all possible rewiring outcomes for

each scheme. (Left) Rewire-to-random scheme, in which the focal node either rewires to

some node to which it is not adjacent or restores the original edge. (Center) Rewire-to-same

scheme, in which the focal node rewires only to nodes that share its opinion state. (Right)

Rewire-to-none scheme, in which we delete the discordant edge.
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according to the probability mass function

fE((i, j)) =


1
|ED|

, (i, j) ∈ ED

0 , (i, j) /∈ ED .

The only effect that choosing uniformly at random from ED, rather than uniformly at random

from E, has on the dynamics is that we can skip steps in which nodes i and j already

share the same state, as such steps do not affect the state of the system. This leads to a

logarithmic speedup in the time to reach a steady state (compare this to the coupon-collector

problem [Fel68]) and was called an “efficient version” of CVMs in Ref. [BDZ15]. We select

one of the two nodes (which we can take to be the one with the label i without loss of

generality) at random with equal probabilities to be the primary node; we take the other

node (j) to be the secondary node. With probability α, node i performs a rewiring action;

with probability 1−α, it adopts j’s opinion. A rewiring action consists of deleting edge (i, j)

and then uniformly randomly creating a new edge (i, k) where node k is chosen uniformly

at random from the set V \ Γ(i, E) of nodes that are not in the closed neighborhood Γ(i, E)

of i. Node j is available for selection.

Here and throughout this thesis, when we simulate a voter model, we let the system evolve

until it terminates in an absorbing steady state (i.e., until there are no discordant edges).

This yields a “terminal” state. We focus on studying properties of terminal states, so we are

interested in what happens as t→∞. For example, we examine the terminal state densities

NA(t)/N and NB(t)/N and the terminal minority-state density min{NA(t)/N,NB(t)/N}.

In our first simulation, we seed the system using ER G(N, p) networks with N = 20, 000

nodes and an edge probability of p = 4
N−1

. The ER G(N, p) random graph model generates

a random graph on N nodes in which each pair of nodes is connected by an edge with

probability p independent from each other [New18]. In Figure 2.3a, we initialize half of the

nodes in state A and the other half in state B. In Figure 2.3b, we initialize 1/4 of the nodes

in state A and the other 3/4 of nodes in state B. In Figure 2.3, we plot the terminal density

of state A for 20 realizations of the simulations for each value of q. In this figure, we also

show the means of terminal densities for each q as crosses (×).
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(a) NA(0)/N = 1/2
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(b) NA(0)/N = 1/4

Figure 2.3: Terminal density of state A in simulations for the linear RTR-CVM from

Ref. [DGL12] for α ∈ [0, 1] with a step size of ∆α = 0.01. For each value of α, we sim-

ulate 20 realizations. We seed each realization with a different ER network with N = 20, 000

nodes and an edge probability of p = 4
N−1

. In (a), we initialize half of the nodes in state A

and half of the nodes in state B. In (b), we initialize 1/4 of the nodes in state A and 3/4 of

the nodes in state B. We plot individual realizations with blue dots and means over the 20

realizations with × symbols. Note that the horizontal axis is (1− α).

In Figure 2.3a, when 1 − α / 0.25, rewiring actions dominate. The fraction of nodes

that terminate in state A is approximately constant, with a value of 0.5. For progressively

larger values of 1− α (i.e., as we consider a progressively smaller rewiring rate α and hence

a progressively larger adoption rate), rewiring and adoption actions begin competing and

the plot appears to branch, with one branch decreasing to 0 and the other increasing to 1

as 1 − α → 1. This illustrates that, by the time the system terminates, there are larger

changes to the state densities of the system for progressively larger values of 1−α. Because

the system begins with NA(0)/N = NB(0)/N = 1/2, terminating along either branch (i.e.,

whether there is a positive or negative change for NA(t)/N) is equally probable, as indicated

by the values of the means of the terminal state-A densities.

When 1−α = 1, no rewiring occurs, so isolated nodes do not change their opinion state.

In our simulations in Figure 2.3a, the seed ER networks have an expected mean degree of
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4. In our realizations, the seed networks have a largest connected component (LCC) that

consists of approximately 98.2% of the nodes on average, and most of the other nodes have

degree 0. When the system terminates and the nodes in the LCC settle in either state A or

state B, approximately 0.9% of nodes are in the other opinion state, because we initialize

half of the nodes in each state and those nodes never update their states.

In Figure 2.3b, we observe behavior that is qualitatively similar to that in Figure 2.3a.

For 1− α / 0.35, rewiring actions dominate. The fraction of nodes that terminate in state

A is approximately constant, with a value of 0.25. For progressively larger values of 1 − α,

rewiring and adoption actions begin competing and the plot appears to branch, with one

branch decreasing to 0 (indicating a negative change to NA(t)/N) and the other increasing

to 1 (indicating a positive change to NA(t)/N) as 1−α→ 1. Unlike in Figure 2.3a, we begin

with NA(0)/N = 1/4. We observe that approximately 1/4 of the realizations terminate

along the upper branch (i.e., with a positive change to NA(t)/N) by examining the means

of the terminal state-A densities. This result is expected based on random-walk theory. See

Section 3.3.1 for details.

2.6.2 Linear Rewire-to-Same CVM on ER Networks

We now perform a brief exploration of the linear RTS-CVM that was studied in Ref. [DGL12].

The update rules for this model are identical to those described in Section 2.6.1, except for

the rewiring action. Under this RTS scheme, a rewiring action consists of deleting edge (i, j)

and then uniformly randomly creating a new edge (i, k) where node k is chosen uniformly

at random from the set {k ∈ V \ Γ(i, E) : S[k] = S[i]} of nodes that are in the same

opinion state as i but not in the closed neighborhood of i. There is a boundary case to

consider when this set is empty, which is not mentioned explicitly in Ref. [DGL12]. For

the simulations here, we account for this by reforming the recently deleted edge (i, j). We

discuss this boundary case of RTS schemes in detail and discuss some of the possible ways

to resolve it in Section 3.4.

For our first simulation, we seed the system using ER G(N, p) networks with N = 20, 000
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Figure 2.4: Terminal density of state A in simulations of the linear RTS-CVM from

Ref. [DGL12] for α ∈ [0, 1] with a step size of ∆α = 0.01. For each value of α, we sim-

ulate 20 realizations. We seed each realization with a different ER network with N = 20, 000

nodes, an edge probability of p = 4
N−1

, half of the nodes in state A, and half of the nodes in

state B. We plot individual realizations with blue dots and means with × symbols.
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nodes and an edge probability of p = 4
N−1

. We initialize half of the nodes in state A and the

other half in state B. In Figure 2.4, we observe what appears to be a discontinuous phase

transition for a critical value of α. For 1− α / 0.57, rewiring dominates and state densities

do not change significantly. However, when 1− α ' 0.57, almost all nodes terminate in the

same state. The system begins with NA(0)/N = NB(0)/N = 1/2, so it is equally probable

for almost all nodes to terminate in state A or almost all nodes to terminate in state B. As

we noted in Section 2.6.1, when 1 − α = 1, there are no rewiring actions, so isolated nodes

do not change their opinion state.

2.6.3 Linear Rewire-to-None CVM on ER Networks

We now discuss some results from our simulations of linear CVMs with edge deletion, which

we call rewire-to-none (RTN) to parallel the rewire-to-random and rewire-to-same terminol-

ogy. As in the previous CVMs, this model involves picking a discordant edge uniformly at

random from the set of discordant edges and choosing one of the incident nodes uniformly

at random to be the primary node. With probability α, one then deletes the discordant edge

or, with complementary probability 1 − α, one updates the primary node’s opinion state.

Although the number |E(t)| of edges is not conserved, edge deletions occur at a fixed rate α,

so the expected number of edges is E[|E(t)|] = |E(0)| − αt, which is valid until the system

terminates, after which the number of edges is constant. A generalized version of this linear

RTN-CVM was studied in Refs. [GZ06, ZG06].

In Figure 2.5, we plot the terminal minority-state density of our simulations. We seed

the system with an ER G(N, p) network with N = 20, 000 nodes and an edge probability

of p = 4
N−1

. Initially, there are approximately 20, 000 discordant edges. We compute an

estimate for the terminal minority-state density in terms of α by assuming that the adoption

mechanism does not significantly increase or decrease the numberNAB(t) of discordant edges.

Because we delete discordant edges at a constant rate α, we expect the system to terminate

in approximately ED(0)
α

elementary time steps. During this time, the expected number of

adoption actions is (1−α)ED(0)
α

. Each adoption action increases the number NA(t) of nodes in

24



0.0 0.2 0.4 0.6 0.8 1.0
1

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

Te
rm

in
al

 D
en

sit
y 

of
 M

in
or

ity
 S

ta
te

Estimated (R2 0.959)
Simulated

Figure 2.5: Terminal minority-state density in simulations of a linear CVM with edge deletion

(i.e., using a rewire-to-none scheme) for α ∈ [0, 1] with a step size of ∆α = 0.01. For each

value of α, we simulate 20 realizations. We seed each realization with a different ER network

with N = 20, 000 nodes and an edge probability of p = 4
N−1

. Half of the nodes start in state

A, and the other half start in state B. Each green point is the mean over 20 realizations for

a given value of α. The magenta curve is the estimated terminal minority-state density from

Equation (2.8).
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state A by 1 with probability 1/2 and decreases it by 1 with probability 1/2. We can thus

think of NA(t) as a simple, symmetric 1D random walk during the steps in which adoption

occurs. For a simple, symmetric 1D random walk that starts at the origin, the expected

distance of the walker to the origin after n steps is
√

2n

π
[Fel68]. Therefore, after (1−α)ED(0)

α

steps, we expect that NA(t) has either increased or decreased by 1
N

√
2(1−α)ED(0)

πα
.

In Figure 2.5, we include a plot of our estimate

1

2
− 1

N

√
2(1− α)ED(0)

πα
(2.8)

for the terminal minority-state density, where the 1/2 term comes from the initial densities

of 1/2 and we subtract from this value because we are calculating the minority-state den-

sity. The plot illustrates that our estimate captures the behavior of the linear RTN-CVM

accurately, with a coefficient of determination of R2 ≈ 0.959.
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CHAPTER 3

Nonlinear Coevolving Voter Models

The following sections are adapted from an original paper [KP20] that I co-authored with my

advisor Mason A. Porter.

3.1 Making a Coevolving Voter Model Nonlinear

In this chapter, we propose a simple mathematical model that combines nonlinear q-voter

models and coevolving voter models (CVM) that couples the mechanisms of opinion forma-

tion and changing social connections. By taking a minimalist approach to modeling social

dynamics, we are able to gain a deeper understanding of how these two mechanisms can give

rise to phenomena that we observe in modern social discourse. For example, in our model, if

an extreme opinion is held only by a small portion of a population but there is an “illusion”

that the opinion is prevalent because of the social network structure, the extreme opin-

ion can spread to everyone. We explore our new model numerically through Monte Carlo

simulations on a variety of random networks and analytically through moment equations

and mean-field approximations. We observe that our model behaves remarkably differently

from prior CVMs. One of the most striking differences is that the choice of rewiring mech-

anism, which significantly affected steady-state dynamics in some linear models, has little

qualitative impact on the steady-state behavior our model. Our model provides a basis for

further studies of various important questions of social dynamics, especially the coevolution

of opinion propagation and network structure. Our model may also be helpful for designing

and testing intervention methods to curtail ideological extremism and opinion segregation

in online social media.
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For over a decade, linear CVMs have been a challenging, popular, and fruitful topic to

study. From a practical perspective, however, nonlinearity appears to be a critical ingredient

for opinion models. For example, Couzin et al. [CID11] successfully predicted the existence of

novel collective behaviors of schooling fish using nonlinear adaptive-network opinion models.

In our setting, individuals seek to achieve social harmony (in the form of having the same

opinion state as all of their neighbors) by rewiring and adopting at rates that depend on

the states of their neighbors in a nonlinear way. Each node is in one of two states, and

neighboring nodes “agree” if they are in the same opinion state and “disagree” if they are

in different opinion states. As in Chapter 2, we refer to edges between agreeing neighbors

as concordant and edges between disagreeing neighbors as discordant. When updating, a

node that is not in a local consensus (i.e., it disagrees with at least one neighbor) performs

one of two actions with respect to a disagreeing neighbor: (1) it adopts the opinion of

the disagreeing neighbor, causing other neighbors who had been in agreement with it to

now disagree; or (2) it abandons the edge that connects it to the disagreeing neighbor and

possibly forms a new connection. Similar to the CVM in Ref. [HN06], a node makes a

random choice between options (1) and (2). However, unlike in that model, the probability

that a node chooses a given option is not homogeneous; instead, it depends nonlinearly on

the states of the node’s neighbors. In our model, nodes conduct a local survey of all of their

neighbors. Those who agree with a large fraction of their neighbors (i.e., those who “fit in”)

are more likely to remove the edge and possibly rewire than to adopt a new opinion (which

can place them in a local minority opinion). Conversely, nodes that are in a local minority

among their neighbors are more likely to adopt a neighbor’s opinion (which can place them

in a local majority opinion) than to remove a discordant edge and possibly rewire.

A node’s local survey provides it with a sample view of a population. The sample

is susceptible to bias, as nodes survey only their neighbors in a network. Under certain

conditions, the local surveys can accurately estimate global statistics, such as an opinion’s

popularity, which is equal to the fraction of nodes that hold that opinion. However, it is

possible to configure systems such that the sampling bias leads nodes to construe globally

popular opinions as locally unpopular, and vice versa. In some situations, we find in our
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nonlinear CVM that when certain nodes’ local surveys are so distorted that they perceive the

minority opinion to instead be the majority opinion, almost every node eventually adopts

the opinion that was initially unpopular. Consequently, such distorted sampling in local

surveys, which we relate to recent work by Lerman et al. [LYW16] on what they called the

“majority illusion”, has important implications for the dynamics of our nonlinear CVM.

We examine our nonlinear CVM with three different rewiring schemes (see Figure 2.2 in

Section 2.5 for a schematic). In Section 3.3, we explore a rewire-to-random (RTR) scheme,

in which nodes sever discordant edges and replace them with new edges to nodes in a way

that is agnostic to opinion states. In Section 3.4, we explore a rewire-to-same (RTS) scheme,

in which nodes sever discordant edges and replace them with new edges to nodes that share

their opinion state. In Section 3.5, we explore a rewire-to-none (RTN) scheme, in which nodes

sever discordant edges without forming any new edges to other nodes. This third type of

rewiring models behavior on social media in which individuals unfriend (or unfollow) someone

after a disagreement [Bod16, YBR17, ZSS17]. In Section 3.6, we examine a linear CVM with

the RTR, RTS, and RTN rewiring schemes on SBM networks to facilitate comparisons with

our nonlinear CVM (see Section 2.5 for additional experiments of a linear CVM on ER

networks). In Section 3.7, we summarize our results and discuss possibilities for future

work. We find that our nonlinear CVM has several features, such as a strong dependency

on network structure, that distinguish it from previously studied linear CVMs.

3.2 Nonlinear Coevolvinvg Voter Model

We now formally introduce nonlinear CVM. In all variants of our nonlinear CVM, we consider

binary opinion states O = {A,B} and networks with finitely many nodes and edges. The

space of system states is given by the space of triples (V,E, S), where V is the set of nodes,

N := |V | denotes the number of nodes, E is the set of edges (which represent changing,

pairwise, undirected, unweighted ties between individuals), and S : V → O is a function

that records the opinion state of each node. For simplicity, we disallow multi-edges and self-

edges. In Section 3.4, we discuss some situations in which we can relax these stipulations.
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In our nonlinear CVM, we find that it is simpler to define update rules in an asynchronous

manner (see Section 2.2).1 We use “edge-based” updates to select the updating node (see

Section 2.2). We perform one update for each elementary time step t = {1, 2, . . .}. In

an elementary time step, we select a discordant edge (i, j) uniformly at random from ED.

Alternatively, one can think of choosing the edges from E according to the probability mass

function

fE((i, j)) =


1
|ED|

, (i, j) ∈ ED ,

0 , (i, j) /∈ ED .

We then select one of the two nodes (which we can take to be the one with the label i

without loss of generality) at random with equal probabilities to be the primary node; we

take the other node (j) to be the secondary node. After selecting the primary node i, it

takes a local survey of it neighbors. We measure the result of the local survey by calculating

σi := si/ki, where si = |{j : (i, j) ∈ E , S[i] = S[j]}| and ki is the degree of node i. We

also define s̄i := ki − si, which counts the number of discordant edges that are incident to

node i. Therefore, σi is the fraction of neighbors of node i that agree with i. For node i

to be selected for updating, it needs to have at least one disagreeing neighbor (i.e., at least

one discordant incident edge), so σi ∈ [0, 1). Note that σi is not defined for isolated nodes;

however, because our CVM is edge-based, it is not possible to select an isolated node for

updating.

3.3 Rewire-to-Random Formulation

3.3.1 Model and Associated Discussion

Our nonlinear CVM has a parameter q that is akin to a parameter in nonlinear q-voter

models [CMP09]. With probability σqi , node i performs a rewiring action, in which it deletes

its edge to the chosen secondary node and then uniformly randomly forms a new edge to a

1We are not aware of any studies of CVMs with synchronous updating. One challenge in formulating
such a model is establishing a protocol for the situation in which two adjacent nodes select each other for
updating and both simultaneously attempt to rewire the same edge.
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node that is not currently one of its neighbors. This type of rewiring scheme, which yields an

edge between node i and any node (irrespective of its opinion state), is known as a rewire-

to-random (RTR) strategy [DGL12]. With complementary probability 1− σqi , node i takes

an adoption action, in which it adopts the opinion state of the chosen secondary node. We

then repeat this process until there are no discordant edges in the network. If the system

reaches a system state with no discordant edges at time t∗, then the dynamics reach a steady

state, and we say that the system terminates at that system state, such that the system

remains in that system state for all t ≥ t∗. Both the rewiring and adoption actions conserve

the number of edges, so |E(t)| is constant in time.2

When q is a positive integer, one can interpret our updating process above as the primary

node i randomly selecting a panel of q of its neighbors with repetition allowed. The secondary

node j need not be in the panel. If any member of the panel is in a different opinion state

from the primary node i, the latter undertakes an adoption action. Therefore, only if the

panel and the primary node i are all in the same opinion state does node i perform a rewiring

action. We summarize the rewiring process in Algorithm 1 and give a schematic of the process

in one elementary time step in Figure 3.1.

Because σi ∈ [0, 1) for nodes that can update, it follows that in the q → ∞ limit, we

recover a voter model with only adoption (and no rewiring). However, as q → 0+, we do not

recover a model with only rewiring, because for some nodes i, it can be the case that σi = 0

if all of node i’s incident edges are discordant; in that case, node i performs an adoption

action for all q > 0. We also perform simulations with q = 0; for these simulations, we take

00 to be 1 to recover a pure rewiring model.

The nonlinear CVM that we just described is an absorbing Markov chain. The absorbing

system states are those in which a network has no discordant edges. Such a situation occurs

when each connected component of the network is in a consensus, but it does not necessarily

2Recently, Min and San Miguel [MS17] introduced a nonlinear CVM that also incorporates such a pa-
rameter q. Under their direct node-based rules, once one selects a node i, it is with probability (1−σi)q that
node i performs any update at all, and then a separate parameter p determines the relative probabilities of
rewiring and adoption actions. This differs from our edge-based rules; under our rules, we select a node i to
update, and σq

i determines the relative probabilities of rewiring and adoption actions.
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require all components to achieve a consensus with the same opinion state. There has been

significant prior work on noisy voter models [GM95, CTS16], and some recent work has

studied noisy CVMs with random opinion-state mutations [JXC13]. In these systems, in

addition to the rewiring and adoption updates, there is also a mechanism that alters the

opinion states of nodes according to some random process. Incorporating such noise yields

a Markov chain that no longer is absorbing, because the system can exit a system state

with component-wise consensus through random creation of discordant edges. The resulting

models are ergodic, so one can approximate the non-Markovian second-order (and higher-

order) moment terms (see Equation (2.2)) using Markovian terms [CM20].

Algorithm 1 Nonlinear Rewire-to-Random (RTR) Coevolving Voter Model
1: procedure FittingInVM(V,E, S, q) . Input: Initial network and opinion states

2: ED ← Discordant(V,E, S); t← 0; Record(V,E, S, t)

3: while ED 6= ∅ do . While there are disagreeing neighbors

4: (i, j)← RandomChoice(ED)

5: PrimaryNode, SecondaryNode← RandomPermutation(i, j)

6: σ ← LocalV ote(PrimaryNode, V, E, S)

7: u← U(0, 1)

8: if u ≤ σq then . Rewire

9: E.remove(PrimaryNode, SecondaryNode)

10: NewNeighbor ← RandomChoice(V \ Γ(PrimaryNode,E))

11: E.add(PrimaryNode,NewNeighbor)

12: else . Adopt

13: S[PrimaryNode]← S[SecondaryNode]

14: ED ← Discordant(V,E, S); t← t+ 1; Record(V,E, S, t)

We recall our notation for counts of state-specified motifs (see Section 2.3):

1. NX(t) = |{i ∈ V : St[i] = X}|, the number of nodes i at time t that are in state

X ∈ O = {A,B} and
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Figure 3.1: Schematic representation of an elementary time step in our nonlinear CVM. We

highlight the selected discordant edge and the primary node. With probability 1 − σq, the

primary node adopts the opinion state of its neighbor that is incident to this discordant edge.

With complementary probability σq, the primary node performs a rewiring action. Under

a RTR scheme, there are three possible outcomes of rewiring (see Figure 2.2). Each of the

possible rewiring outcomes is equally probable. (For the rewire-to-same scheme, the depicted

outcome is the only possible one, so it occurs with probability 1 if there is a rewiring action.)

The value of σ in this example is 1/2.
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2. NXY (t) = |{(i, j) ∈ V × V : (i, j) ∈ E(t) , St[i] = X ,St[j] = Y }|, the number of node

pairs (i, j) at time t in which i and j are adjacent, node i is in state X ∈ O = {A,B},

and node j is in state Y ∈ O .

Because the node set V is fixed in our model, we also make use of state densities NX(t)/N ,

which give the fraction of nodes in a state X.

We compare our nonlinear RTR-CVM (Algorithm 1) to the RTR-CVM that we studied

in Section 2.6.1. Although there are many possible variants, we henceforth write “the linear

RTR-CVM” when referring to this specific model. In the linear RTR-CVM, the system

updates in a way that is similar to our nonlinear RTR-CVM, except that the probability for

which action to take is given by a parameter α ∈ [0, 1]. With probability α, a node performs

a rewiring action; with probability 1 − α, it adopts a neighbor’s opinion. Therefore, in the

linear RTR-CVM, until ED = ∅, the count NA(t) increases by 1 with probability
1− α

2
,

decreases by 1 with probability
1− α

2
, and does not change with probability α in each

elementary time step. If we take α = 0 (entailing that the network topology never changes)

and begin with a finite, connected network (V,E), then NA(t) behaves equivalently to a

simple, symmetric, one-dimensional (1D) random walk3 (i.e., the two possibilities each have

a probability of 1/2) [MPL17] on the integers with boundary {0, N}. This implies that

for any finite, connected network, the probability at time t that opinion state A eventually

becomes the consensus opinion state is NA(t)
N

. For α > 0, the quantity NA(t) behaves like a

symmetric, 1D random walk with step sizes +1 and−1 that each occur with equal probability
1− α

2
and a zero-move step that occurs with probability α.

In the linear RTR-CVM, it is equivalent to take the view that one is choosing the type

of action (rewire or adoption) before choosing which node of the selected edge is the primary

one. This makes it clearer that even when the number of nodes in state A is not equal to the

number of nodes in state B (i.e., when NA(t) 6= NB(t)), a rewiring action causes the number

3In a 1D random walk, “simple” refers to the rule that, at each time step, a walker must move by either
+1 or −1; “symmetric” refers to these outcomes being equally probable. In a symmetric random walk with
possible moves of +1, −1, and 0, one requires only that the first two possibilities are equiprobable to each
other.
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NAB(t) of discordant edges to decrease by 1/2 in expectation, regardless of the system state.

By contrast, the effect of an adoption on the number NAB(t) of discordant edges does depend

on the system state, and it is possible for an adoption to increase NAB(t) in expectation.

As an extreme case, consider a star network with a hub node in state A and k leaf nodes,

and suppose that one node is in state B but all others are in state A. An update step

is guaranteed to select the network’s single discordant edge; if an adoption occurs, NAB(t)

increases by k−3
2

in expectation. However, for a system on a degree-regular network (i.e., a

network in which each node has the same degree) that satisfies the conditions

σi ≈ NA(t)/N for all nodes i in state A ,

σj ≈ NB(t)/N for all nodes j in state B ,
(3.1)

an adoption causes NAB(t) to decreases by 1 in expectation. We use the term locally well-

mixed for a system on any network that satisfies the conditions in Equation (3.1), which

entails that there are no correlations between the opinion states of nodes and the network

topology. In a recent paper, Lee et al. [LKW19] defined a related quantity called social

perception bias that measures the ratio of a node’s perception of the fraction of nodes whose

opinion state is in the minority to the true fraction of nodes in the minority, where a value

of 1 implies perfect perception of the frequency of the minority state in a network. Using

this terminology, one can alternatively characterize a system as locally well-mixed using the

condition that all nodes have a social perception bias that is close to 1. One can give a

mathematically precise definition of locally well-mixed in the limit that the number N of

nodes becomes infinite. Specifically, a system is locally well-mixed if almost all nodes have a

social perception bias of 1− o(1) as N →∞.

In our nonlinear CVM, there is no longer a symmetry between the two nodes that are

incident to the same discordant edge (i, j). The local survey σi of node i can differ from the

local survey σj of node j, so the probabilities of which action (rewiring or adoption) occurs

depend on which node is the primary one. That is, in an update that involves node i in state

A and node j in state B (i.e., after one selects the discordant edge (i, j), but before selecting

which node is the primary one), NA(t) either (1) increases by 1 with probability
(1− σqj )

2
,
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corresponding to node j adopting node i’s state; (2) decreases by 1 with probability
(1− σqi )

2
,

corresponding to node i adopting node j’s state; or (3) remains the same with probability
σqi + σqj

2
, corresponding to either node i rewiring or node j rewiring. Therefore, although

we can still view NA(t) as a 1D random walk, it is no longer symmetric, because the step

probabilities can differ from each other.

The effect of this asymmetry on NAB(t) is more subtle. Consider a locally well-mixed

system on a connected network. We also assume that one of the states, which we take to

be B without loss of generality, is the majority [so NB(t) > NA(t)]. In an elementary time

step, suppose that we select the discordant edge (i, j) with node i in state A and node j

in state B. The local surveys then satisfy σi < 1/2 < σj. When q = 1, this implies that

if i is the primary node, it is more likely to adopt than to rewire. If node i adopts state

B, then NAB(t) decreases by more than 1 in expectation, because more of i’s neighbors are

in state B than in state A. If node j is the primary node, it is more likely to rewire than

to adopt. If node j rewires to a node that we choose uniformly at random, then NAB(t)

decreases by NB(t)/N > 1/2 in expectation. Overall, we observe that the number NAB(t)

of discordant edges decreases more rapidly in our nonlinear CVM than it does in the linear

RTR-CVM under locally well-mixed conditions. Additionally, our nonlinear CVM has rather

different dynamics when it is locally well-mixed than when it is not locally well-mixed. In

Section 3.3.4, we explore how to construct systems with correlations between nodes’ opinion

states and network topology, and we investigate how their dynamics differ from situations

in which a system is locally well-mixed.

3.3.2 Simulations on Erdős–Rényi Networks

We begin exploring our nonlinear RTR-CVM by simulating it on Erdős–Rényi (ER) G(N, p)

networks. We seed each realization with an ER network with N = 50, 000 nodes, half of

which begin in state A and the other half of which begin in state B. The edge probability

p is 4
N−1

, so the mean degree is 〈k〉 ≈ 4. As we did in Section 2.6.1, we focus on studying

properties of terminal states, so we are interested in what happens as t→∞. For example,
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(b) State A

Figure 3.2: Terminal density for (a) the minority state and (b) state A in RTR simulations

(see Algorithm 1) of our nonlinear CVM for q ∈ [0, 6] with discretization ∆q = 0.02. For

each value of q, we simulate 20 realizations. We seed each realization with a different ER

network with N = 50, 000 nodes and edge probability p = 4
N−1

; we initialize half of the nodes

in state A and the other half in state B. In panel (a), each green point is the mean over the

20 realizations of min{NA(t)/N,NB(t)/N} at the termination of the simulation. In panel

(b), each small blue dot is NA(t)/N at the termination of the simulation. Each cross (×) in

(b) is the mean over the 20 realizations of NA(t)/N at the termination of the simulation.
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we examine the terminal state densities NA(t)/N and NB(t)/N and the terminal minority-

state density min{NA(t)/N,NB(t)/N}.

In Figure 3.2a, we plot the terminal minority-state density from simulations for a range

of values of q with discretization ∆q = 0.02. When q < 1, we observe that the minority-state

density is approximately 0.5. This implies that the network is fragmented, in the sense that

it is separated into multiple components that are disconnected from one another, such that

all nodes of a component are in the same opinion state. This behavior is similar to the

fragmentation that was observed in Ref. [DGL12] for the linear RTR-CVM with sufficiently

large rewiring rates. We interpret such fragmentation as individuals segregating into isolated

communities, in which no pair of disagreeing individuals are neighbors of each other. This

typically occurs when rewiring actions dominate the system, in the sense that the rewiring

actions resolve most disagreements so the densities NX(t)/N do not change significantly. As

we consider progressively larger values of q between 1 and 3.5, we observe a smooth transition

(with an inverted ‘S’ shape) in the terminal minority-state density from approximately 0.5

to approximately 0.03. The small terminal minority-state densities for larger values of q

suggest that adoption actions dominate the system, leading to large changes in the state

densities. For expository convenience, we say that “almost every” node ends up in state

X if 90% or more of the nodes are in state X when a system terminates by reaching an

absorbing state. (In these scenarios, the percentage of nodes in state X is often much larger

than 90%, but we use this cautious phrasing because of particular examples.) Initially,

NA(0)/N = NB(0)/N = 1/2. However, by the end of a simulation, one of the opinion states

dominates, in the sense that max{NA(t)/N,NB(t)/N} ≈ 1. The other nearly vanishes, so

min{NA(t)/N,NB(t)/N} ≈ 0, as one can see in Figure 3.2a.

In Figure 3.2b, we plot the terminal density of state A from simulations for a range of

values of q. In this plot, each of the small blue dots is the terminal value of NA(t)/N for one

of the 20 realizations that we simulate for each value of q. The crosses (×) indicate the means

over these realizations of the terminal quantity of NA(t)/N . In the “branching” of the data

points in this figure, we observe what appears to be a transition between a fragmentation

regime (with no significant changes to state densities) and a regime with competition between
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the adoption and rewiring mechanisms. Because our initial state densities are NA(0)/N =

NB(0)/N = 1/2 in these simulations, it is equally likely for almost every node to terminate

in state A as it is for almost every node to terminate in state B. We confirm this result in

the means of the terminal state-A densities that we plot in Figure 3.2b.

With respect to coarse qualitative behavior, both our nonlinear RTR-CVM and the linear

RTR-CVM of Ref. [DGL12] have a regime — when q / 1 for our model, and when 1−α / 0.2

for the linear RTR-CVM— in which rewiring dominates the system, as suggested by terminal

minority-state densities that are close to the starting densities of 0.5. However, outside this

regime, the two models differ significantly, as one can see by comparing Figure 3.2b with

Figure 2.3a. The linear RTR-CVM appears to have a continuous (but non-smooth) phase

transition from the rewiring-dominated regime to a regime in which rewiring and adoption

are competitive [DGL12, SDH14, CM20]. In our nonlinear RTR-CVM, there seems to be

a smooth transition between a regime in which rewiring dominates and a regime in which

adoption dominates.

3.3.3 Approximations

Although mean-field approximations have been unable thus far to produce precise quan-

titative results in previous work on CVMs, they have been useful for exploring some of

their qualitative behavior [KH08, PC09, BG11, GMW12, NKB08]. Writing a mean-field

approximation of our model will require developing a mean-field analog of σi. We consider a

state-heterogeneous mean, so we average the local surveys of nodes in state A and separately

average the local surveys of nodes in state B. First, we consider the unweighted mean

σA =

∑
i:S[i]=A, ki 6=0 σi∑
i:S[i]=A, ki 6=0 1

. (3.2)

The unweighted mean σA is useful, because it has a simple interpretation and is well-

approximated 4 by NAA(t)
NAA(t)+NAB(t)

. We will use the unweighted mean σA in Section 3.3.4.3, but

it is not suitable as a mean-field approximation of our nonlinear RTR-CVM. In edge-based

models such as ours and the linear RTR-CVM of Ref. [DGL12], nodes are not equally likely

4This approximation is exact for non-empty, degree-regular networks with at least one node in state A.
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to be selected for an update. Instead, the probability to select a node increases with its num-

ber of neighbors in the other opinion state, as nodes with more such neighbors contribute

more edges to the set ED of discordant edges (from which we sample uniformly). Therefore,

a suitable mean-field analog of σi should weight each node based on its probability of being

selected. The probability that we select a particular node i to be the primary node in an

update is
1

2

ki − si
NAB(t)

=
1

2

s̄i
NAB(t)

, (3.3)

where s̄i is the number of discordant edges that are incident to node i and the 1/2 accounts

for the random choice between the primary and secondary nodes. Therefore, our mean-field

analogs of σi, which we denote by σX for X ∈ {A,B}, are

σA =
∑

{i:S[i]=A , ki 6=0}

σi
1

2

ki − si
NAB(t)

(3.4)

=
1

2NAB(t)

NAA(t)−
∑

{i:S[i]=A , ki 6=0}

s2
i

ki

 , (3.5)

σB =
1

2NAB(t)

NBB(t)−
∑

{i:S[i]=B , ki 6=0}

s2
i

ki

 . (3.6)

The equation for the first moment, which we express in terms of state A, is

d[A]

dt
= ([AB] + [BA])(σqA − σ

q
B) . (3.7)

Equation (3.7) arises from taking the difference of the “incoming rate” (i.e., nodes that change

their state to A) minus the “outgoing rate” (i.e., nodes that change their state from A) to

determine the net rate of opinion change into state A. Nodes in state B that are adjacent

to a node in state A adopt state A at rate 1 − σqB. Nodes in state A that are adjacent

to a node in state B adopt state B at rate 1 − σqA. Summing these rates over all nodes

gives ([AB] + [BA])(1− σqA). Similarly, the rate at which nodes in state B adopt state A is

([AB] + [BA])(1− σqB).

Equation (3.7) indicates that the local surveys, which we capture in our mean-field ap-

proximation by σA and σB, have a global effect on the drift of opinion states, as they control
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the sign of d[A]
dt

. (By contrast, d[A]
dt

= 0 in the linear RTR-CVM of Ref. [DGL12].) This

suggests that network structure plays a more prominent role in how [A] and [B] evolve in

our nonlinear RTR-CVM than in the linear RTR-CVM. For example, consider a network

with two communities, where one community is densely connected and consists of CA nodes

in state A and the other community is sparsely connected and consists of CB nodes in state

B. We suppose that the second community is larger than the first (i.e., CB > CA). We also

suppose that the two communities are linked to each other (in a way that we will make more

precise in Section 3.3.4). When we select a discordant edge (i, j) with node i in state A and

node j in state B, the local surveys satisfy σi > σj. On average, at least initially, we expect

that more nodes in state B convert to state A than the reverse. However, the values of σA

and σB can change rapidly in non-obvious ways as the system evolves, potentially reversing

the sign of d[A]
dt

. Therefore, it is not guaranteed that such a two-community network will

terminate in a state with a large fraction of nodes in state A. In fact, as we will see in

Section 3.3.4, whether this occurs depends on the nonlinearity parameter q.

3.3.4 Simulations on Stochastic Block Models

To explore how mesoscale network structures impact the dynamics of our nonlinear RTR-

CVM, we simulate it on networks that we seed with such structures using a stochastic block

model (SBM) [FH16, New18]. We assign each of the N nodes to one of two blocks, which we

call “community” a and “community” b. Community a consists of cN nodes and community

b consists of (1 − c)N nodes, with c < 1/2. That is, community b has more nodes than

community a. In our discussion, we seed all nodes in community a with opinion state A

and all nodes in community b with opinion state B. We examine two types of mesoscale

structures: “two-community structure” and “core–periphery structure”.

In Section 3.3.3, we explored a mean-field approximation of our nonlinear CVM with an

RTR scheme. This necessitated finding a suitable mean-field analog of the local surveys σi.

We considered a state-heterogeneous approximation, in which we separately average over

nodes in state A and state B. Denoting these approximations as σA and σB, we saw in
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Equation (3.4) that

σA =
1

2NAB

NAA −
∑

i:S[i]=A, ki 6=0

s2
i

ki

 (3.8)

and

σB =
1

2NAB

NBB −
∑

i:S[i]=B, ki 6=0

s2
i

ki

 . (3.9)

Equivalently, we can write

σA =
∑

i:S[i]=A, s̄i 6=0

sis̄i
(si + s̄i)

∑
j:S[j]=A s̄j

(3.10)

and

σB =
∑

i:S[i]=B, s̄i 6=0

sis̄i
(si + s̄i)

∑
j:S[j]=B s̄j

. (3.11)

We seek to compute E[σA(0)] for systems that we seed with two-community SBM net-

works. (If we take all edge probabilities in the SBM to be equal, we obtain ER networks.)

We calculate

E[σA(0)] = E

 ∑
i:S[i]=A, s̄i 6=0

sis̄i
(si + s̄i)

∑
j:S[j]=A s̄j


=

∑
i:S[i]=A, s̄i 6=0

E

[
sis̄i

(si + s̄i)
∑

j:S[j]=A s̄j

]

≈ NA(0)[1− exp(PabNB(0))]× E

[
sis̄i

(si + s̄i)
∑

j:S[j]=A s̄j

∣∣∣∣∣ s̄i > 0

]

= NA(0)[1− exp(PabNB(0))]× E

 sis̄i

(si + s̄i)
(
s̄i +

∑
j:S[j]=A, j 6=i s̄j

)
∣∣∣∣∣∣ s̄i > 0

 .

(3.12)

The quantity si is the number of neighbors of node i that have the same opinion as i; it

is distributed binomially with parameters n = NA(0) − 1 and p = Paa. The quantity s̄i

is the number of neighbors of node i that have a different opinion from i; it is distributed

binomially with parameters n = NB(0) and p = Pab. There are NA(0) nodes in state A; with

probability

1− (1− Pab)NB(0),
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each such node has at least one discordant edge. In the N →∞ limit, there are

NA(0)[1− exp(PabNB(0)]

nodes in state A with at least one discordant neighbor. We use this expression as a large-N

approximation in Eq. 3.12. In this approximation, we replace summing over nodes that are

in state A and are incident to at least one discordant edge by multiplying by the expected

number of such nodes.

Edges in our SBM networks are independent of each other, so si, s̄i, and s̄j are all

independent random variables. For convenience, we define the notation

z :=
∑

j:S[j]=A, j 6=i

s̄j.

The sum of independent and identically distributed binomial random variables is another

binomial random variable, so z is distributed binomially with parameter values

n = (NA(0)− 1)NB(0)

and p = Pab. Using the law of the unconscious statistician, we obtain

E
[

sis̄i
(si + s̄i) (s̄i + z)

∣∣∣∣ s̄i > 0

]

=

∑
ti≥0, t̄i≥1, t≥0

(
tit̄i

(ti + t̄i)(t̄i + z)
P (si = ti)P (s̄i = t̄i)P (z = t)

)
1− P (s̄i = 0)

.

(3.13)

With Equation (3.13), we can numerically approximate E[σA(0)] for both ER and two-

community SBM networks.

3.3.4.1 Two-Community SBM

To create a two-community network in which the smaller community (i.e., community a) is

denser than the larger community (i.e., community b), the edge-probability matrix

P =

Paa Pab

Pba Pbb

 (3.14)
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Figure 3.3: Density NA(t)/N of state A for the first 10, 000 elementary time steps for nine

values of q in RTR simulations (see Algorithm 1) of our nonlinear CVM. We seed each of the

nine realizations with two-community SBM networks, as described in Section 3.3.4.1. We

show only initial and transient dynamics. For the terminal behavior of the simulations, see

Figure 3.4a.

has probabilities that satisfy Paa > Pbb > Pab = Pba. We initialize our simulations with

networks with c = 1/4, and we set the SBM parameters to be Paa = 12
cN−1

, Pbb = 4
(1−c)N−1

(so

that NAA(0) ≈ NBB(0)), and Pab = 1/N . In our simulations, we check that the expectations

of σA and σB satisfy the inequality E[σA(0)] > E[σB(0)]. See Equation (3.13) for details.

Accordingly, we expect that, at least initially, the density NA(t)/N of state A increases as

the system evolves. In Figure 3.3, we plot NA(t)/N for the first 10, 000 elementary time steps

of simulations for nine different values of q. In this plot, we show the initial (and transient)

dynamics, rather than the full temporal evolution of our simulations to termination. The

plot confirms the initial increase of NA(t)/N . However, in Figure 3.4a, we observe that —

despite this initial increase — the terminal value of NA(t)/N depends on the nonlinearity

parameter q.
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In Figure 3.4a, we plot the terminal state-A density from 20 simulations for each q.

For q ∈ [0, 3.8), between approximately 25% and 60% of the nodes terminate in state

A, implying that the network fragments into multiple components. We observe what may

be a hybrid phase transition [VES08, LCS16] at qcr ≈ 3.8, where there appears to be a

higher-order transition (i.e., at least second order) as q → (qcr)
− and a first-order transition

as q → (qcr)
+. For q ∈ (qcr, 6.2), almost every node terminates in state A in all of our

realizations, suggesting that rewiring dynamics are not fragmenting the system into multiple

components.

For q ∈ (6.2, 7), either almost every node terminates in state A or almost every node

terminates in state B, and the latter occurs in progressively more realizations as we increase

q. Although we do not show this in Figure 3.4a, the system has an additional regime for

sufficiently large q. In this regime, the adoption action dominates and the system behaves

like a voter model that does not coevolve with network structure (see Section 3.3.4.4). In

this situation, state A becomes the consensus opinion with probability NA(0)/N = c = 1/4.

In Figure 3.14a, we conduct simulations using the linear RTR-CVM seeded with a two-

community SBM network with the same parameter values. We observe that Figure 3.14a

resembles the outcome of initializing the linear RTR-CVM with an ER network (see Fig-

ure 2.3b). This suggests that, with respect to terminal state densities, the linear RTR-CVM

may be less sensitive than our nonlinear RTR-CVM to initial community structure in a

network.

As we show in Equation (3.13), we are able to numerically approximate the quantity

E[σA(0)q − σB(0)q] for two-community SBM networks. We find that it depends on the

parameters q, c, Paa, Pab, and Pba. As the system evolves, however, it becomes challenging

to track E[σA(t)q − σB(t)q] over time t. Nevertheless, from Figure 3.4a, we know that the

temporal evolution is affected by the value of the nonlinearity parameter q.
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(a) Two-Community Structure
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(b) Core–Periphery Structure

Figure 3.4: Terminal density of state A from RTR simulations (see Algorithm 1) for our

nonlinear CVM with q ∈ [0, 12] and discretization ∆q = 0.04. For each value of q, we

simulate 20 realizations. In (a), we seed each realization with two-community SBM networks,

as described in Section 3.3.4.1. In (b), we seed each realization with an SBM network with

core–periphery structure, as described in Section 3.3.4.2. We plot individual realizations

with blue dots and means with × symbols.

3.3.4.2 Core–Periphery Structure

We now investigate the dynamics of our nonlinear RTR-CVM with σA(0) � σB(0) and

NA(0) � NB(0) using a core–periphery configuration of the SBM [CLW13, RPF17]. Our

initial networks now have a small, densely connected core of nodes in state A and a large

periphery of sparsely-connected nodes in state B. We label the core as block a and the pe-

riphery as block b. In this core–periphery network, the SBM probabilities in Equation (3.14)

satisfy Paa > Pab > Pbb. In this scenario, a node i’s local survey σi differs from the true

global densities. For core nodes, σi > 1/2, so such nodes believe that their state (namely,

state A) is the majority state, even though it is not. Conversely, for the peripheral nodes,

σj < 1/2, so such nodes believe that their state (i.e., state B) is the minority state, even

though it is not. When q = 1, if we select a core node as the primary node in an update,

it is more likely to rewire than to adopt, at least initially. However, as most nodes are in
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state B initially, the core node is likely to rewire to another node in state B. If we select a

peripheral node as the primary node for an update, it is more likely to adopt than to rewire.

At least initially, such adoptions convert peripheral nodes from the majority state B to the

minority state A.

In our simulations of our nonlinear RTR-CVM on SBM networks with core–periphery

structure, we take 3NA(0) = NB(0), and we set the probabilities to be Paa = 20
NA(0)−1

,

Pbb = 1
NB(0)−1

, and Pab = 5
N
. In Figure 3.4b, we plot the terminal density of state A for

various values of q from simulations on networks with N = 50, 000 nodes. We observe a

transition in the qualitative dynamics when q is in (4, 4.5). As we increase q from 0 to 4,

there are progressively more nodes that terminate in state A before the network fragments,

with approximately 90% of the nodes terminating in state A when q = 4. When q ∈ (4, 4.5),

the system appears to exhibit a phase transition that is similar to that of the ostensible hybrid

phase transition of Figure 3.4a. In this case, however, the hybrid transition is discontinuous.

In Section 3.3.4.4, we explore q ∈ [0, 100]. For q ∈ (4.5, 39), we find that almost every node

terminates in state B (see Figure 3.7).

3.3.4.3 Majority and Minority Illusions

Recent work by Lerman et al. [LYW16] on the majority illusion in social networks examined

the phenomenon of distorted local observations when an opinion state that is globally rare in a

network may be dramatically overrepresented in the local neighborhoods of many individuals.

Using a model of threshold opinion dynamics, Lerman et al. illustrated that majority illusions

can accelerate the spread of states that are initially rare. For our work with binary opinion

states, we find it useful to distinguish between two different types of illusions. By a majority

illusion, we mean the phenomenon of nodes in a minority state perceiving their state to be

in the majority. Analogously, by a minority illusion, we mean the phenomenon of nodes in

the majority state perceiving their state to be in a minority. In a model with binary opinion

states, the minority illusion implies that nodes in the majority state incorrectly perceive that

the minority state is held by the majority of nodes.

47



In our nonlinear CVM, a node i’s local survey σi is based on a sample of the global

population. In a locally well-mixed system (see Equation (3.1)), the sample leads to good

estimates of the global densities NA(t)/N and NB(t)/N . However, when seeding the system

as in Section 3.3.4.1 and Section 3.3.4.2, the samples are biased initially. In Figure 3.5

and Figure 3.6, we plot the means of the local surveys σA (solid blue curves) and σB (solid

red curves) versus elementary time steps and compare them to the true global densities,

NA(t)/N (dashed blue curves) and NB(t)/N (dashed red curves), for simulations on systems

that we seed with two-community structure and core–periphery structure, respectively. We

calculate the unweighted means σA and σB from Equation (3.2), so we are treating all local

surveys equally. In mathematical language, assuming that state A is in the minority (i.e.,

NA(t)/N < 1/2), the majority illusion occurs when σA > 1/2. Analogously, assuming that

state B is in the majority (i.e., NB(t)/N > 1/2), the minority illusion occurs when σB < 1/2.

In Table 3.1, we summarize how we seed networks with different types of illusions using an

SBM network with NA(0) = cN and c < 1/2.

Illusion Edge Probabilities

No Illusion Paa = Pab = Pbb

Majority Illusion for A c
1−cPaa � Pab

Minority Illusion for B 1−c
c
Pbb � Pab

Both Illusions 1−c
c
Pbb � Pab � c

1−cPaa

Table 3.1: Summary of SBM parameters that we use to seed a network with a majority

illusion, a minority illusion, both types of illusions, or neither illusion using an SBM network

with NA(0) = cN nodes in state A and c < 1/2.

In Figure 3.5, we seed a network using the SBM two-community structure that we de-

scribed in Section 3.3.4.1. Initially, the larger community (which has 3/4 of the nodes)

consists of nodes in state B, and the smaller community (which has the remaining 1/4 of the

nodes) consists of nodes in state A. However, the local surveys of the nodes in the smaller

community lead them to perceive state A as the majority state and thus state B as the

minority. Similarly, the local surveys of the nodes in the larger community lead them to
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perceive state B as the majority state and thus state A as the minority. In other words,

the larger community of nodes (which are in the majority state) correctly believe that their

state is in the majority. However, the smaller community of nodes (which are in the minor-

ity state) experience a majority illusion, as they incorrectly believe that their state is in the

majority.

0
5000

10000
15000

Step

0

1
(a) q=0

0
200000

400000
600000

Step

0

1
(b) q=4

0
200000

400000
600000

Step

0

1
(c) q=8

0
200000

400000

Step

0

1
(d) q=12

Figure 3.5: Unweighted means [σA (solid blue curve) and σB (solid red curve)] of local surveys

for nodes in states A and B (see Equation (3.2) for details) and global state densities [NA/N

(dashed blue curve) and NB/N (dashed red curve)] of states A and B versus elementary

time steps in four RTR simulations (see Algorithm 1) of our nonlinear CVM. We seed each

realization using the SBM two-community structure that we described in Section 3.3.4.1.

As we observed in Figure 3.4a, the effect on the terminal densities of initializing the

system with a majority illusion depends on the value of the nonlinearity parameter q. For

q = 0, in which only rewiring occurs, the state densities do not change, but the system

fragments, such that each node only has neighbors that share its opinion state. Therefore,

σA and σB increase to 1, and the majority illusion of state A increases in severity. For q = 4,

the illusion becomes a reality, in the sense that NA/N increases to match σA. The system

ultimately reaches an absorbing state with most nodes in state A, but there are still small
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isolated clusters (i.e., separate components) of nodes that remain in state B, so σB increases

to 1 near the end of a simulation (the mean that we take is over only these nodes). For q = 8

and q = 12, the nodes “wise up”, in the sense that σA decreases to match NA/N . The system

ultimately reaches an absorbing state with most nodes in state B, but there are still small

clusters of nodes in state A that cause σA to increase to 1 near the end of our simulations.

In Figure 3.6, we seed the system using the SBM core–periphery structure that we de-

scribed in Section 3.3.4.2. Initially, all peripheral nodes (which constitute 3/4 of the nodes)

are in state B, and the core nodes (which constitute the remaining 1/4 of the nodes) are

in state A. The local surveys of the peripheral nodes lead them to perceive state B as the

minority state and thus state A as the majority. Similarly, the local surveys of the core

nodes lead them to perceive state A as the majority state and thus state B as the minority.

The core nodes (which are in the minority state) experience a majority illusion, incorrectly

believing that their state is in the majority. Conversely, the peripheral nodes (which are in

the majority state) experience a minority illusion, incorrectly believing that their state is in

the minority.

As we saw for two-community structure, the effect of the majority and minority illusions

depends on the value of the nonlinearity parameter q in our networks with core–periphery

structure. For q = 0, in which only rewiring occurs, state densities do not change, but

the network fragments, such that each node only has neighbors that share its opinion state.

Therefore, σA and σB increase to 1, and the majority illusion for state A increases in severity,

but the minority illusion for state B dissipates. For q = 4, the majority illusion for state

A becomes a reality, in the sense that NA/N increases to match σA. The minority illusion

for state B also becomes a reality, in the sense that NB/N decreases to match σB initially.

However, near the end of a simulation, σB increases to 1 near the end, because there are still

small clusters of nodes (i.e., separate components) in state B and σB is a mean over only

these nodes. For q = 8 and q = 12, the nodes wise up to both illusions, as σA decreases to

match NA/N and σB increases to match NB/N . The system ultimately reaches an absorbing

state with most nodes in state B, but there are still small clusters of nodes in state A that

cause σA to increase to 1 near the end of our simulations.

50



0
25000

50000
75000

Step

0

1
(a) q=0

0
100000

200000

Step

0

1
(b) q=4

0
100000

200000

Step

0

1
(c) q=8

0
100000

200000
300000

Step

0

1
(d) q=12

Figure 3.6: Unweighted means [σA (solid blue curve) and σB (solid red curve)] of local surveys

for nodes in states A and B (see Equation (3.2) for details) and global state densities [NA/N

(dashed blue curve) and NB/N (dashed red curve)] for states A and B versus elementary

time steps in four RTR simulations (see Algorithm 1) of our nonlinear CVM. We seed each

realization using the SBM core–periphery structure that we described in Section 3.3.4.2.

The examples in this subsection demonstrate that, under certain conditions, seeding our

nonlinear RTR-CVM with illusions can lead to the spreading of initially rare opinion states.

For instance, when we seed the system with an SBM two-community network such that

there is a majority illusion but not a minority illusion and take the value of the nonlinearity

parameter to be q = 4, almost every node adopts the initially rare opinion state in all

realizations of our simulations. However, under other conditions, seeding the system with

illusions can also stifle the spread of initially rare opinion states. For example, when we seed

the system with core–periphery structure with both types of illusions and take the value

of the nonlinearity parameter to be q = 8, the initially rare opinion state vanishes almost

entirely in all realizations of our simulations. This behavior contrasts sharply with what

we observe in the linear RTR-CVM, in which the probability that an initially rare opinion

state spreads, conditioned on the event that an opinion state does indeed spread, is equal
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to the initial fraction of nodes in the rare state. In other words, the rewiring rate α in the

linear RTR-CVM affects whether some opinion state spreads to almost every node, but the

initial state densities determine the probability of which state it will be. By contrast, the

nonlinearity parameter q in our nonlinear RTR-CVM affects not only whether some opinion

state spreads to almost every node but also the probabilities of which state it will be. See

Section 3.6 for details.

3.3.4.4 Simulations of our Nonlinear CVM for Large Values of q
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Figure 3.7: Terminal density of state A in simulations of our nonlinear RTR-CVM (see

Algorithm 1) for q ∈ [0, 100] with a step size of ∆q = 2. For each value of q, we simulate

20 realizations. We seed each realization with a different SBM network with core–periphery

structure (see Section 3.3.4.2), but now there are N = 20, 000 nodes. We plot individual

realizations with blue dots and means with × symbols.

In Figure 3.4, we observed regimes of q values in which almost every node terminates in

state B, which initially has density 3/4, for all 20 realizations. This regime extends past

q = 12, but we know that as q →∞, we must recover a voter model that does not coevolve
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with network structure. We repeat one of our case studies for large values of q to improve

our understanding of this limiting behavior.

We extend our case study from Section 3.3.4.2, in which we examined our nonlinear RTR-

CVM seeded with core–periphery structure, by now considering q ∈ [0, 100] for networks

with N = 20, 000 nodes. In Figure 3.7, we plot the terminal density of state A. In this

case, we see that when q ' 38, the adoption mechanism begins to dominate and state A

becomes competitive with state B. In some trials, state A spreads to almost every node. For

sufficiently large values of q, adoption actions should completely dominate and the system

should behave like a voter model that does not coevolve with network structure; in such a

scenario, almost every node terminates in the same state. Specifically, we expect that almost

every node terminates in state A in NA(0)/N = 1/4 of the realizations. In our computations,

we observe this scenario for q ' 80.

As we noted for Figure 3.14b, with our initial networks, approximately 10% of nodes

start in state B and are isolated. Therefore, when q ' 80, the system terminates with these

nodes still in state B (see Figure 3.7), even when state A has spread to every node in the

largest connected component.

3.4 Rewire-to-Same

3.4.1 Model

In this section, we explore our nonlinear CVM with an RTS scheme. The key difference from

the RTR scheme is that when rewiring occurs in the RTS scheme, the primary node deletes

its discordant edge to the secondary node and then forms an edge with a node that we choose

uniformly at random from the set of nodes in the same opinion state as the primary node. In

Section 2.6.2, we compare our nonlinear RTS-CVM of Algorithm 2 to the linear RTS-CVM

of Ref. [DGL12]. Based on previous work [BS17, SDH14], it seems that RTS schemes have

been more difficult to analyze quantitatively than RTR schemes in linear CVMs.

To fully specify the RTS scheme, we start by examining a peculiarity of the RTS scheme.
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What happens when a rewiring action cannot take place, because the primary node is already

adjacent to all nodes in its opinion state (including the trivial case in which there are no

other nodes in its state)? This situation is likely to arise if a system approaches consensus or

if a network is densely connected (specifically, if the mean degree satisfies 〈k〉 ≥ N/2) [BS17,

BDZ15]. There are several possible rules to employ, and the choice of rule may affect both

the outcome and the analysis. Possible specifications include the following:

(i) stipulate that there is no replacement edge;

(ii) stipulate that we instead perform an RTR action;

(iii) stipulate that the recently deleted discordant edge reforms;

(iv) stipulate that the recently deleted discordant edge reforms and that the primary node

instead performs an adoption action; and

(v) stipulate that we allow multi-edges, self-edges, or both.

Each of these choices either introduces a new mechanism, such as edge deletion, or changes

the class of allowed networks. (Previously, we demanded that networks have neither self-

edges nor multi-edges.) We choose to use option (i) of letting no replacement edge form, such

that |E(t)| is no longer a conserved quantity. By contrast, recent work on CVMs on dense

random graphs allowed the formation of multi-edges [BS17]. We give a formal description of

our nonlinear RTS-CVM in Algorithm 2.
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Algorithm 2 Nonlinear Rewire-to-Same (RTS) Coevolving Voter Model
1: procedure FittingInVM(V,E, S, q) . Input: Initial network and opinion states

2: ED ← Discordant(V,E, S); t← 0; Record(V,E, S, t)

3: VA ← GetNodesByState(V, S,A); VB ← GetNodesByState(V, S,B)

4: while ED 6= ∅ do . While there are discordant neighbors

5: (i, j)← RandomChoice(ED)

6: PrimaryNode, SecondaryNode← RandomPermutation(i, j)

7: σ ← LocalV ote(PrimaryNode, V, E, S)

8: u← U(0, 1)

9: PotentialNewNeighbors← VS[PrimaryNode] \ Γ(PrimaryNode,E)

10: if u ≤ σq then . Rewire

11: E.remove(PrimaryNode, SecondaryNode)

12: if PotentialNewNeighbors 6= ∅ then

13: NewNeighbor ← RandomChoice(PotentialNewNeighbors)

14: E.add(PrimaryNode,NewNeighbor)

15: else . Adopt

16: S[PrimaryNode]← S[SecondaryNode]

17: VA ← GetNodesByState(V, S,A); VB ← GetNodesByState(V, S,B)

18: ED ← Discordant(V,E, S); t← t+ 1; Record(V,E, S, t)

3.4.2 Simulations

We first simulate our nonlinear RTS-CVM on ER networks. In Figure 3.8, we observe similar

qualitative behavior as we did in our nonlinear RTR-CVM (see Figure 3.2b). Specifically,

there seems to be a continuous transition between fragmentation and consensus regimes. One

difference between these models is that the transition occurs at about q ≈ 4.5 in the RTS

variant of the model. The similarity of these two models contrasts starkly with results for the

linear CVM of Ref. [DGL12]; the behavior of that CVM differs significantly under the two

rewiring schemes (see Figure 2.3a and Figure 2.4). Prior research on linear CVMs suggests
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Figure 3.8: Terminal density of state A in RTS simulations (see Algorithm 2) for our non-

linear CVM for q ∈ [0, 6] with an increment of ∆q = 0.02. For each value of q, we simulate

20 realizations. We seed each realization with a different ER network with N = 50, 000

nodes and an edge probability of p = 4
N−1

, and we initialize half of the nodes in state A and

the other half in state B. We plot individual realizations with blue dots and means with ×

symbols.
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that the rewiring scheme affects linear CVMs significantly because of strong correlations

between network structure and node states that arise from RTS actions, but not from RTR

actions [DVB14]. By contrast, the similarity of results between the RTR and RTS variants

for our nonlinear CVM suggests that such correlations play a less prominent role in our

model than they do in the previously studied linear CVMs.

The sketch in Figure 3.9 illustrates what Demirel et al. [DVB14] reported as a “typical”

configuration that is near fragmentation for a linear RTS-CVM. As the system evolves, nodes

group into communities, which are connected to each other by only a few edges. Occasionally,

there is an adoption that creates many discordant edges that are concentrated at one node.

This leads to a disproportionately large number of ABA-triples that are concentrated on

one node and constitutes a strong three-node correlation. However, in our nonlinear RTS-

CVM, such situations occur much less frequently than they do in the linear RTS-CVM of

Ref. [DGL12]. In fact, in our nonlinear CVM, the more ABA-triples that a node in state A

would create by adopting state B, the less likely it is to adopt state B. To illustrate this

observation, suppose that node i is in state A and has at least two neighbors in state A. If we

select node i for an update, it adopts state B with probability 1−σqi , where σi is the fraction

of nodes that are adjacent to node i and are also in state A. Consequently, the probability

of node i creating ABA-triples by adopting state B decreases as the number of concordant

edges that are incident to node i (i.e. the edges that would form the ABA-triples) increases.

In Figure 3.10, we plot the temporal evolution of the unweighted means, σA and σB,

of local surveys and compare them to global state densities (as in Section 3.3.4.3). We

observe fragmentation in our simulations with q = 0, q = 2, and q = 4. Fragmentation

causes the local surveys of nodes to become distorted, because nodes are in clusters and

have no neighbors in a different opinion state. This leads to a weak form of a majority

illusion for nodes in each opinion state. Although roughly half of the nodes are in state

A and roughly half are in state B, almost every node perceives its own state to be in the

majority. In our simulations with q = 6, we again initially observe a weak majority illusion

for nodes in both states. As the system evolves, the density of state A decreases and σA

decreases commensurately, but nodes in state A still experience a majority illusion. The
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Figure 3.9: “Typical” configuration near fragmentation for a linear RTS-CVM. In this exam-

ple, the highlighted node changes from state A to state B, and all of its previously concordant

edges become discordant. Several discordant edges are now associated with a single node,

thereby inducing ABA-triple correlations. [This illustration is our version of Figure 5 of

Ref. [DVB14].]
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Figure 3.10: Unweighted means [σA (solid blue curve) and σB (solid red curve)] of local

surveys for nodes in states A and B (see Equation (3.2) for details) and global state densities

[NA/N (dashed blue curve) and NB/N (dashed red curve) for states A and B, respectively]

versus elementary time steps in four RTS simulations (see Algorithm 2) in our nonlinear

CVM. We seed each realization with an ER network with N = 50, 000 nodes and edge

probability p = 4
N−1

, and we initialize half of the nodes in state A and the other half in state

B.
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system ultimately reaches an absorbing state with most nodes in state B, but there are

still small clusters of nodes in state A that cause σA to increase to 1 near the end of our

simulations.
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(a) Two-Community Structure

0 2 4 6 8 10 12
q

0.0

0.2

0.4

0.6

0.8

1.0

Te
rm

in
al

 D
en

sit
y 

of
 S

ta
te

 A
(b) Core–Periphery Structure

Figure 3.11: Terminal density of state A for RTS simulations (see Algorithm 2) of our

nonlinear CVM for nonlinearity parameters q ∈ [0, 12] with an increment of ∆q = 0.04.

For each value of q, we simulate 20 realizations. In (a), we seed our simulations with the

two-community SBM networks that we described in Section 3.3.4.1. In (b), we seed our

simulations with the SBM core–periphery structure that we described in Section 3.3.4.2. We

plot individual realizations with blue dots and means with × symbols.

We conclude this section on our nonlinear RTS-CVM by conducting simulations that we

seed with (1) two-community structure and (2) core–periphery structure using SBM networks

(see Section 3.3.4). In Figure 3.11a, we observe that our nonlinear RTS-CVM seeded with

two-community structure exhibits qualitatively similar long-time behavior as our nonlinear

RTR-CVM seeded with the same two-community structure (see Figure 3.4a). Nevertheless,

simulations using these two rewiring schemes do exhibit quantitative differences, such as in

the locations of the transitions between regimes with qualitatively different terminal statis-

tics. In Figure 3.11b, we see that the results of simulations of our nonlinear RTS-CVM

that we seed with core–periphery structure are similar to those of our nonlinear RTR-CVM

seeded with the same structure (see Figure 3.4b).
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3.5 Rewire-to-None

3.5.1 Model

We now examine our nonlinear CVM with an RTN scheme. In this RTN-CVM, adoption

occurs with probability 1 − σqi , and edge deletion occurs with probability σqi ; there are no

replacement edges. We give a precise description of this model in Algorithm 3.

Algorithm 3 Nonlinear Rewire-to-None (RTN) Coevolving Voter Model
1: procedure FittingInVM(V,E, S, q) . Input: Initial network and opinion states

2: ED ← Discordant(V,E, S); t← 0; Record(V,E, S, t)

3: while ED 6= ∅ do . While there are discordant neighbors

4: (i, j)← RandomChoice(ED)

5: PrimaryNode, SecondaryNode← RandomPermutation(i, j)

6: σ ← LocalV ote(PrimaryNode, V, E, S)

7: u← U(0, 1)

8: if u ≤ σq then . Rewire

9: E.remove(PrimaryNode, SecondaryNode)

10: else . Adopt

11: S[PrimaryNode]← S[SecondaryNode]

12: ED ← Discordant(V,E, S); t← t+ 1; Record(V,E, S, t)

There have been some studies of RTN schemes in opinion models. For example, Refs. [GZ06,

ZG06] examined an RTN scheme in a linear CVM. Additionally, a bounded-confidence opin-

ion model with edge deletion (to model unfollowing on social media) was studied recently

in Ref. [SCP19]. In Section 2.6.3, we investigated a linear CVM with our RTN scheme both

analytically and computationally. There are many reasons to study an RTN mechanism in

opinion models. In some sense, the edge-deletion mechanism is simpler than mechanisms

that require additional parameters and specification of a rewiring rule 5. Moreover, edge

5However, edge deletion can pose a mathematical challenge, because the number of edges and the mean
degree are no longer constant [KMS17].
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Figure 3.12: Terminal density of state A in RTN simulations (see Algorithm 3) of our

nonlinear CVM for q ∈ [0, 40] with an increment of ∆q = 0.2. For each value of q, we simulate

20 realizations. We seed each realization with a different ER network with N = 25, 000 nodes

and an edge probability of p = 4
N−1

, and we initialize half of the nodes in state A and the

other half in state B. We plot individual realizations with blue dots and means with ×

symbols.

deletion may also be more relevant than rewiring for internet social dynamics, because in-

dividuals perform actions such as unfriending or unfollowing without necessarily friending

or following another account [JD15, GLH19, SZL18]. Edge deletion is also an important

network mechanism in the structural evolution of social networks [FWG17, SRU08].

3.5.2 Simulations

We seed our nonlinear RTN-CVM with ER G(N, p) networks with N = 25, 000 nodes and

an edge probability of p = 4
N−1

, and we initialize half of the nodes in state A and the other

half of the nodes in state B. We plot the terminal state density of A in Figure 3.12. When

q = 0, nodes do not adopt new opinions, so state densities do not change before the network
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(b) Core–Periphery Structure

Figure 3.13: Terminal density of state A in simulations of our nonlinear RTN-CVM for

q ∈ [0, 12] with an increment of ∆q = 0.04. For each value of q, we simulate 20 realizations.

In (a), we seed the system with the two-community SBM networks that we described in

Section 3.3.4.1. In (b), we seed the system with the SBM core–periphery networks that we

described in Section 3.3.4.2. We plot individual realizations with blue dots and means with

× symbols.

fragments. With edge deletion (i.e., the RTN mechanism), fragmentation of a network into

disconnected components can occur for a wide range of q values (up to at least q = 20). This

is a larger range than what we observed for the RTR and RTS schemes for our nonlinear

CVM. For the RTR scheme, we did not observe fragmentation for q ' 3; for the RTS scheme,

we did not observe fragmentation for q ' 5.5.

We conduct simulations using two-community SBM networks (see Section 3.3.4.1) to seed

the system. We plot the terminal density of state A in Figure 3.13a. For q ∈ (0, 8.5), we

observe that the two communities separate from each other and that there are no signficant

changes to the densities of opinion states. In contrast to the RTR scheme that we illustrated

in Figure 3.4a and the RTS scheme in Figure 3.11a, for the nonlinear RTN-CVM, we do not

observe any values of q in which almost every node terminates in state A for every realization

of a simulation. Near q ≈ 9.52, state A spreads to most nodes in most realizations, with

a mean terminal density of approximately 0.75 over the 20 realizations. However, in some
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realizations near q ≈ 9.52, almost every node terminates in state B.

Finally, we simulate our nonlinear RTN-CVM model using SBM core–periphery networks

(see Section 3.3.4.2) to seed the system. In Figure 3.13b, we observe that the RTN scheme

produces terminal behavior that is qualitatively very similar to what we observed with the

RTR (see Figure 3.4b) and RTS (see Figure 3.11b) schemes.

3.6 Linear Coevolving Voter Models on Stochastic Block Models

We compare the simulation results for our nonlinear CVM to the linear CVM that was

studied in Ref. [DGL12]. In Section 2.6, we presented the linear model and studied it

through simulations on ER networks. Now we study it on SBM networks.

3.6.1 Linear Rewire-to-Random CVM on SBMs

First, we compare the simulation results for our nonlinear CVM with an RTR scheme to

the linear RTR-CVM that was studied in Ref. [DGL12]. We seed the system with two-

community structure using SBMs. We use the same parameter values as in Section 3.3.4.1,

so NA(0)/N = 1/4 of the nodes are in state A. In Figure 3.14a, we plot the terminal density

of state A from our simulations. The plot has roughly the same shape as when we seeded

the linear CVM with an ER network (see Figure 2.3b). When 1− α / 0.2, rewiring actions

dominate. The terminal minority-state densities are constant, with a value of 0.25. Adoption

actions compete with rewiring actions when 1 − α ' 0.2, and the plot appears to branch,

with one branch decreasing to 0 and the other increasing to 1 as 1−α→ 1. This illustrates

that, by the time the system terminates, there are progressively larger changes to the state

densities of the system for progressively larger values of 1 − α. Because the system begins

with NA(0)/N = 1/4, terminating along the upper branch (i.e., there is a positive change

for NA(t)/N) occurs in approximately 1/4 of the realizations, as indicated by the values of

the means of the terminal state-A densities.

In Figure 3.14b, we plot simulations of the linear RTR-CVM in which we seed the system
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with core–periphery structure. We use the same parameter values as in Section 3.3.4.2. The

plot’s similarity to Figure 3.14a illustrates an insensitivity of this linear RTR-CVM to some

types of initial network structure. With the parameter values of our seed core–periphery

networks, approximately 10% of the nodes begin in state B and are isolated. When 1−α = 1,

there is no rewiring, so these nodes remain isolated and thus do not change their opinion

states. Therefore, in the realizations with 1 − α = 1 in which opinion state A ultimately

dominates the network, only approximately 90% of the nodes adopt state A.

There are values of α in Figure 2.3b and Figure 3.14 for which none of our realizations

terminate with almost all nodes in state A. The probability that a realization terminates

along the top branch (signifying a net positive change in the density of state A) is NA(0)/N =

1/4, so we expect on rare occasions (specifically, with probability (3/4)20 ≈ 0.0032) that all

20 realizations for a particular value of α terminate along the bottom branch (i.e., with a

net negative change in the density of state A).

3.6.2 Linear Rewire-to-Same CVM on SBMs

Next, we compare the results of simulations of our nonlinear RTS-CVM to simulations of

the linear RTS-CVM from Ref. [DGL12]. In Figure 3.15, we plot the terminal state-A

densities from simulations on networks that we seed with two-community structure (see Sec-

tion 3.3.4.1) and on networks that we seed with core–periphery structure (see Section 3.3.4.1).

In both cases, we observe qualitatively similar results as in Figure 2.4, which again suggests

that this linear CVM is less sensitive than our nonlinear CVM to some initial network struc-

tures. It also suggests that this linear CVM is more sensitive than our nonlinear CVM to

the choice of rewiring mechanism.

3.7 Conclusions and Discussion

We explored a novel nonlinear coevolving voter model in which nodes take local information

into consideration for their update actions, and we examined variants of our model with

three different rewiring schemes: rewire-to-same, rewire-to-random, and rewire-to-none (i.e.,
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(b) Core–Periphery Structure

Figure 3.14: Terminal density of state A in simulations of the linear RTR-CVM from

Ref. [DGL12] for α ∈ [0, 1] with a step size of ∆α = 0.01. For each value of α, we sim-

ulate 20 realizations. In (a), we seed each realization with a different two-community SBM

network (as described in Section 3.3.4.1). In (b), we seed each realization with a different

core–periphery structure using SBM networks (as described in Section 3.3.4.1). We plot

individual realizations with blue dots and means with × symbols.
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(b) Core–Periphery Structure

Figure 3.15: Terminal density of state A in simulations of the linear RTS-CVM from

Ref. [DGL12] for α ∈ [0, 1] with a step size of ∆α = 0.01. For each value of α, we sim-

ulate 20 realizations. In (a), we seed each realization with a different two-community SBM

network (as described in Section 3.3.4.1). In (b), we seed each realization with a different

core–periphery structure using SBM networks (as described in Section 3.3.4.1). We plot

individual realizations with blue dots and means with × symbols.
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unfriending). In our nonlinear CVM, each node can be in one of two opinion states. Ad-

ditionally, updates are edge-based and occur asynchronously. An updating node i surveys

its neighbor and records the fraction σi that share its state. With probability σqi , for a

nonlinearity parameter q, the node rewires a selected discordant connection; otherwise, with

complementary probability 1− σqi , it adopts a new opinion state.

By conducting extensive numerical simulations, we observed that our nonlinear CVM

exhibits qualitatively similar characteristics as the linear CVM of Ref. [DGL12] with respect

to terminal state densities when both models are initialized on ER networks with equal

state densities NA(0)/N = NB(0)/N = 1/2. For example, both types of models possess a

regime with rapid fragmentation into communities of different opinion states and a regime

in which the system reaches a consensus. However, when we seed our nonlinear CVM

with more complicated network structures, such as ones with community structure or core–

periphery structure, we observed striking differences between our nonlinear CVM and the

aforementioned linear CVM. In these scenarios, when the nodes have distorted views of

local densities — such that they believe that they are in the majority or minority when the

opposite is true — the value of the nonlinearity parameter q has a major effect on terminal

state densities. For certain values of q and certain initial network topologies, the initially

minority state consistently became the consensus in our simulations; for other values of

q, the initially majority state consistently became the consensus. Although further analysis

(especially of finite-size effects) is necessary, our work suggests that, on certain networks, our

nonlinear CVM exhibits a rich assortment of phase transitions. The impact of initial network

topology on terminal state densities distinguishes our nonlinear CVM from the linear CVM

of Ref. [DGL12]. We also demonstrated that unlike the linear CVM of Ref. [DGL12], which

is very sensitive to the choice of rewiring mechanism, our nonlinear CVM yields qualitatively

similar behavior with both the RTR and RTS mechanisms.

Our nonlinear CVM also exhibits fascinating manifestations of both majority and minor-

ity illusions. For example, we observed that majority illusions can arise as a system evolves,

and we also found that such illusions can resolve in different ways (e.g., by becoming true

or by nodes wising up) for different values of the nonlinearity parameter q.
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Our investigation of our nonlinear CVM raises several interesting questions. For example,

we noted in Section 3.4 and Section 3.5 that the differences in model behavior from rewiring

schemes in our nonlinear CVM are far less pronounced than they are in the linear CVM of

Ref. [DGL12], and it is desirable to develop a mechanistic understanding of this qualitative

difference between these families of models. It will also be interesting to develop precise

conditions that determine when majority and minority illusions arise in our nonlinear CVM.

Such illusions can either accelerate or stifle the spread of rare opinion states, so it is worth-

while to develop an understanding of the mechanisms that lead to these effects. To examine

these ideas further, it will be interesting to explore the dynamics of our models on a larger

variety of networks, such as those that were developed recently by Stewart et al. [SMD19].

It is also desirable to extend tools for approximating the dynamics of linear CVMs (such as

approximate master equations [Gle13] and pair approximations [Jed17]) to nonlinear CVMs.

There are also many fascinating ways to extend our nonlinear CVM (see Section 2.4).

We anticipate that it will be particularly interesting to incorporate ideas from recent efforts

that have examined the effects of noise (e.g., random state mutations) [JXC13], hipsters (in

the form of nodes that try to be in a minority) [JP19], and zealots (in the form of nodes

that do not change states) [KWD17].

Opinions and social networks are coupled to each other intimately in a complex way.

Developing and refining models for coevolving opinions and social networks can help improve

understanding not only of their relationships with each other but also of their impact on

political and social polarization, echo chambers, and other social phenomena.
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CHAPTER 4

A Polyadic Extension of Bounded-Confidence Models

In this chapter, I present an ongoing project on opinions models that is a collaboration with

Heather Z. Brooks (UCLA), Michelle Feng (UCLA), and Mason A. Porter. We are exploring

extensions of bounded-confidence models to hypergraphs.

Thus far, we have focused on voter models, a single (but very popular) class of opin-

ion models. We now consider bounded-confidence models (BCM), which differ from voter

models in two key ways. First, the opinion space for BCMs typically is continuous. This is

useful for issues that occur on a continuum, such as beliefs about minimum wages or taxes.

Real-valued intervals are also suitable for representing a probability of choosing one of two

choices. Second, in the BCMs that have traditionally been studied, individuals behave de-

terministically. (There is a layer of randomness if one uses asynchronous updates.) Using

deterministic, instead of stochastic, dynamics is primarily a modeling decision, but it also

affects what analytical techniques one uses.

4.1 Background

Bounded-confidence models (BCM) are continuous-opinion state models in which an indi-

vidual only interacts with neighbors who hold opinions that are sufficiently close to their

own [Lor07]. The two most common BCMs are the (asynchronous) Deffuant–Weisbuch

model [DNA00, WDA02] and the (synchronous) Hegselmann–Krause model [HK02].1 For a

review of the two models, their similarities, and their differences, see Ref. [Lor07].

1See Section 2.2 for a discussion about asynchronous versus synchronouns updates in the context of voter
models
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For concreteness, let us consider the Deffuant–Weisbuch (DW) model. In the DW model

on a complete (all-to-all) graph, at each time step t, one chooses a pair (i, j) of nodes

uniformly at random. If the difference |xi(t)−xj(t)| of opinions is below some threshold εi,j,

then they adjust their opinions by

xi(t+ 1) = xi(t) + µi,j(xj(t)− xi(t))

and

xj(t+ 1) = xj(t) + µi,j(xi(t)− xj(t)) ;

otherwise xi(t + 1) = xi(t) and xj(t + 1) = xj(t). The opinions of all other nodes remains

fixed. With this type of averaging, the mean opinion of the population is a conserved

quantity of the system. The parameters εi,j ∈ [0,∞) are the confidence bounds and they

model how open-minded or closed-minded individuals are to each other’s opinions [PC86].

The parameters µi,j ∈ [0, 0.5] are called the “multipliers” and they control the rate at which

individuals adjust their opinion. Using a single value ε and µ for all pairs leads to what is

sometimes called the “homogeneous” DW model. For a DW model on a network, rather than

select a pair of nodes uniformly at random, one typically selects an edge from the edge set

uniformly at random.

4.2 A BCM on Hypergraphs

We now define our BCM for a hypergraph as an extension of the homogeneous DW model.

Hypergraphs are a polyadic generalization of graphs [New18, SBH20]. In addition to dyadic

(i.e., pairwise) edges, we allow hyperedges, which encode connections between an arbitrary

number of nodes. The space E of possible hyperedges is the power set P(V ) of the set V

of nodes. Let N := |V | denote the number of nodes. For the hypergraphs (V,E) that we

consider in the context of our BCM, we restrict the hyperedge set E ⊂ {e ∈ E| |e| ≥ 2} so

that each hyperedge is incident to at least two nodes. In addition to a hypergraph, we have

the time-dependent opinion configuration x(t) ∈ ON , where we take the opinion space O to

be the the real line R.
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To generalize the notion of confidence to hyperedges, we define a discordance function

d : E×ON → R≥0 that maps a hyperedge and opinion configuration to a real number. This

function measures the lack of agreement in a hyperedge; we use it to determine whether the

members of the hyperedge update their opinions. We present a class of discordance functions

dα(e,x) =

(
1

|e| − 1

)α∑
i∈e

(xi − x̄e)2 , (4.1)

parameterized by α, where x̄e = 1/|e|
∑

i∈e xi. We focus on two specific cases, α = 0 and

α = 1. In the former case, d0(e,x) penalizes large hyperedges, in the sense that

d(e,x) ≤ d(e′,x) if e ⊂ e′, (4.2)

with equality holding if and only if xi = x̄e for all i ∈ e′ \ e. We call a discordance function

that satisfies Equation (4.2) hyperedge monotonic. This models a situation in which large

groups tend to be less effective than small groups at changing opinions. In the latter case,

d1(e,x) coincides with the unbiased sample variance of the opinions of the nodes in e. The

scaling by 1/(|e|−1) prevents hyperedges with many nodes from being disadvantaged relative

to hyperedges with few nodes. Specifically, if the opinions are independent and identically

distributed, then the expected d1-discordance for any subset of nodes is

E[d1(e,x)] = E[d1(e′,x)] , for all e, e′ ∈ E . (4.3)

Unlike d0-discordance, d1-discordance is not hyperedge monotonic. For example, let x =

(0, 1, 0.5) and consider the hyperedges e = {1, 2} and e′ = {1, 2, 3}. We have that d1(e,x) =

0.5 > 0.25 = d1(e′,x), even though e ⊂ e′. One can interpret node 3’s role in the interaction

as that of a mediator who reduces the amount of discordance, thereby potentially allowing

an update to take place that otherwise could not.

We employ DW-type (i.e., asynchronous) updates. In each step, we randomly select a

hyperedge e from E according to some probability distribution. For mathematical conve-

nience, we use the uniform distribution over E. If the discordance d(e,x) is less than the

confidence bound c, then the nodes i ∈ e update their opinions xi to the mean opinion x̄e;

otherwise, their opinions do not change. That is, if we select hyperedge e at time t, then for
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all i ∈ e, we have that

xi(t+ 1) =


x̄e(t) , if d(e,x) < c

xi(t) , otherwise
(4.4)

and xj(t+ 1) = xj(t) for all j 6∈ e.

If the hypergraph is a simple graph (i.e., if |e| = 2 for all e ∈ E), this generalized BCM

reduces to a standard DW model with a rescaled confidence bound c. This rescaling is due

to the difference in discordance functions: the standard DW model uses the absolute value

|xi−xj| of the difference of opinions, whereas our model uses 1
2
(xi−xj)2 from Equation (4.1).

4.2.1 Preliminary Analysis

The sequence x(0),x(1),x(2), . . . of opinion configurations is a discrete-time continuous-

state-space Markov chain, where the evolution process is defined by the hypergraph (V,E),

the confidence bound c, and the discordance function d. An opinion configuration x is an

absorbing state if x(t′) = x(t) for all t′ ≥ t. For a configuration x to be an absorbing

state, d(e,x) ∈ {0} ∪ [c,∞) for all e ∈ E, so each hyperedge is either in consensus or is too

discordant.

Henceforth, We use the discordance function d = d1 from Equation (4.1), set the confi-

dence bound c = 1, and focus on the case in which our hypergraph is a complete hypergraph

E = {e ∈ E| |e| ≥ 2}. A peculiar property of our model is that if a hyperedge e non-

trivially updates at time t, then the discordance of each hyperedge e′ ⊃ e decreases (i.e.,

d(e′,x(t+ 1)) < d(e′,x(t))). This follows from the following lemma.

Lemma 1. Let C be a collection of n real values {x1, x2, . . . , xn}, and let C ′ = {xi1 , xi2 , . . . , xi`}

be some subcollection of C. Construct a new collection D by taking the union of C \C ′ and

` copies of the mean x̄C′ = 1
`
(
∑`

j=1 xij) of C ′. The sample variances satisfy s2(D) ≤ s2(C),

where equality holds if and only if C = D.

Proof. The collections C and D have the same mean x̄C . We have

(n− 1)(s2(C)− s2(D)) =
∑̀
j=1

(xij − x̄)2 − `(x̄C′ − x̄)2.
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Expanding the the right-hand side’s second term, we get

∑̀
j=1

(xij − x̄)2 − 1

`

(∑̀
j=1

(xij − x̄)

)2

.

Define yj := xij − x̄ to simplify the notation and write

∑̀
j=1

y2
j −

1

`

(∑̀
j=1

yj

)2

.

Expanding the second term further and simplifying yields

1

`

(
(`− 1)

∑̀
j=1

y2
j − 2

∑̀
j=1

∑̀
k=j+1

yjyk

)
=

1

`

(∑̀
j=1

∑̀
k=j+1

(yj − yk)2

)
≥ 0 .

We have equality if and only if y1 = . . . = y`, which proves the lemma.

As a direct consequence of Lemma 1, the discordance for the hyperedge e = V decreases

monotonically as the system evolves. Suppose that we independently seed each individual’s

opinion with a random number that we draw from a normal distribution with mean µ and

variance σ2. The distribution of the discordance of hyperedges follows a mixture of scaled

chi-squared distribution, and the expected discordance is σ2 [Coc34]. If σ2 < γ for some

constant γ ≈
(
1− 4

9N

)−3 that relates the mean and median of the mixed scaled chi-squared

distribution, then most hyperedges can update on average. However, if σ2 > γ, then most

hyperedges cannot update on average.

In the N →∞ limit, one can approximate the distribution of hyperedges’ initial discor-

dance by a normal distribution [HM13] with a mean of about σ2 and a variance of about 2σ4

n
.

The exact distribution of initial discordance has a slight positive (right) skew. Therefore,

for the complete hypergraph with N nodes and opinions seeded independently by taking

xi(0) ∼ N (0, σ2), we expect a phase transition in convergence time at σ = 1 as N →∞. In

Section 4.2.2, we numerically examine the effect that σ2 has on convergence time.

One can also consider the “continuum” formalism from Ref. [BKR03]. Consider a hyper-

graph that has every hyperedge of size ` ∈ L ⊂ {2, . . . , n}. Let P (x, t)dx be the fraction of

nodes that have opinions in the interval [x, x+dx] at time t. The distribution P (x, t) evolves
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according to the rate equation

∂

∂t
P (x, t) =

∑
`∈L

∫
· · ·
∫
∑`
j=1(yj−ȳ)2<`−1

dy1 · · · dy`P (y1, t) · · ·P (y`, t) [δ(x− ȳ)− δ(x− y1)] .

(4.5)

The `-fold integrals in the summand are over all `-tuples of points whose sample variance is

less than 1. The δ functions reflect the gains (from nodes that update their opinion to ȳ)

and losses (from nodes that update their opinions away from their current values) from the

update process. One of our current goals is to study special cases of this integro-differential

equation.

4.2.2 Simulations

In our ongoing work, we are also conducting Monte Carlo simulations of our model. We

use a complete hypergraph, the discordance function d = d1 from Equation (4.1), and the

confidence bound c = 1. In Figure 4.1, we show some simulations of the evolution of

opinions for a complete hypergraph with 500 nodes and opinions seeded independently using

xi(0) ∼ U(0, b). We allow the system to run until d(V,x) < 10−5 or until t = 104. The

variance of the uniform distribution U(0, b) is 1
12
b2, so we expect that if b �

√
12 ≈ 3.5,

the system takes much longer to converge than if b / 3.5. Because we are drawing a

hyperedge uniformly over E in each update, the size the hyperedge (i.e., |e|) in each update

approximately follows the binomial distribution B(n, 1/2).

In Figure 4.2, we plot the empirical convergence time t∗, which is the earliest time that the

system satisfies d(V,x) < 10−5. If the system does not reach such an opinion configuration

by t = 104, we record t∗ as 104. We simulate a system on a complete hypergraph with 50, 000

nodes and opinions seeded independently using xi(0) ∼ N (0, σ2) for σ ∈ [0.9, 1.1] with a step

size of ∆σ = 0.004. For each value of σ, we perform 20 trials. The black curve indicates

the mean of t∗ over the 20 trials, and the blue area depicts one standard deviation from the

mean. The plot is consistent with the possibility of a phase transition in convergence time

as a function of σ.
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Figure 4.1: Simulations of our BCM on a complete hypergraph with 500 nodes and opinions

seeded independently using xi(0) ∼ U(0, b). The curves indicate the evolution of opinions

in time. We stop the simulation when either d(V,x) < 10−5 or t > 104. In panels (a)–(c),

the system converges in the sense that d(V,x) < 10−5 ; in panel (d), the system does not

converge before t = 104.
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Figure 4.2: Empirical convergence time for our BCM on a complete hypergraph with 50, 000

nodes and opinions seeded independently using xi(0) ∼ N (0, σ2) for σ ∈ [0.9, 1.1] with a

step size of ∆σ = 0.004. The empirical convergence time t∗ is the first time that the system

reaches an opinion configuration satisfies d(V,x) < 10−5. If the system does not reach such

an opinion configuration by t = 104, we record t∗ as 104. We simulate 20 trials for each

σ. The black curve indicates the mean of t∗ over the trials, and the blue area depicts one

standard deviation from the mean. We include a dashed red line at σ =
(
1− 4

9n

)−3/2 ≈ 1.00

for reference.
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4.2.3 Current Plans

We expect that BCMs on hypergraphs with nontrivial architectures (e.g., heterogeneous

degree distribution) may yield a richer landscape of behaviors than those on complete hy-

pergraphs. To pursue this, we will examine BCMs seeded with random hypergraph models

such as the hypergraph configuration model defined in Ref. [Cho19].

We also plan to investigate different mechanisms for hyperedge selection in each time

step. In Section 4.2.2, we used a uniform distribution over the hyperedge set. This mecha-

nism favors interaction that comprise nearly half of the population. A possibly more realistic

distribution is one in which the sizes of the selected hyperedges follow a power-law distribu-

tion. In Figure 4.3, we show three case studies that are similar to those in Figure 4.1, but

rather than choosing a hyperedge uniformly at random from E, we first select a hyperedge

size ` using a power-law distribution

P (` = 1 + k) =
1

ζ(α + 1)kα+1
for k = 1, 2, . . . (4.6)

with α = 4 and then choose a hyperedge uniformly at random from { e ∈ E | |e| = ` }.2 In

our three case studies, we observe that opinions converge into distinct clusters. In Fig-

ure 4.3a, we observe that individuals “jump” from one opinion cluster to another. This

type of phenomenon cannot happen in the original DW model, because opinion clusters are

separated by a distance that is larger than the confidence bound [Lor07]. However, in our

hypergraph extension of BCMs, such jumps occur if one chooses to update a hyperedge that

has sufficiently many nodes from one cluster and sufficiently few (but at least one) from

another such that the discordance is smaller than the confidence bound.

2If we sample ` > N , we replace it with ` = N .
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Figure 4.3: Simulations of our BCM with power-law-distributed (α = 4) meeting size. We

use a complete hypergraph with 50 nodes and opinions seeded independently using xi(0) ∼

U(0, b). We simulate until t = 104. In each plot, the dash red line indicates the population’s

mean opinion.
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CHAPTER 5

Applications of Topological Data Analysis to IC Layouts

In this chapter, I give an extended presentation of original research that was published as

Ref. [KDC19], which I co-authored with Vito Dai and Luigi Capodieci of Motivo, Inc. All of

the data sets used in this chapter are owned by Motivo, Inc.

5.1 Background

5.1.1 A Challenge in Integrated-Circuit Design

Integrated circuit (IC) manufacturing yield is the result of the interaction of complex, high-

dimensional layout configurations with process parameters, materials, tool settings, and

random events such as photon shot noise and particle defects. When yield-limiting layout

configurations enter an IC fabrication plant, engineers may observe physical defects and

electrical failures of the IC. These defects generally occur near the tolerance limits of pho-

tolithography systems that ‘print’ the IC using light. An example of a tolerance limit is the

minimum separation distance between adjacent electronic components, such as transistors

or interconnect wires. However, for an IC with a complex design with many potential causes

of failure, merely observing the minimum separation of electronic components is insufficient

to ensure that the IC is manufacturable.

An IC (also called a ‘chip’) is a set of electronic circuits on a small, flat piece of semi-

conductor material. In the last 60 years, there has been an immense increase in computing

power due in no small part to advances in IC technology [Cer03]. An observation known as

Moore’s law (named after engineer Gordon Moore) describes the doubling that occurs nearly
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every two years in the number of electronic components per integrated circuit [Sha20].1 To

keep pace with Moore’s law, IC manufacturers strive to place a progressively larger number

of transistors on progressively smaller chips.

Manufacturing a chip is a long, multi-stage process that involves expertise in many sci-

entific and engineering fields. The specific problem that we explore occurs at the interface

between the design stage and fabrication. In the design stage of IC, a layout engineer places

and connects all of the components that make up a chip in a kind of blueprint (see Fig-

ure 5.1a). This blueprint, called an IC layout, represents an IC using planar geometric

shapes that correspond to the patterns of metal, oxide, or semiconductor layers that make

up the components of a chip. An IC layout must meet certain criteria, including ones based

on size, performance, and manufacturability [LGS99, LS20]. An IC layout meets the man-

ufacturability criterion if it can be accurately and reliably fabricated, given the expected

variability of the photolithography process. Manufacturability is a quality that can be mea-

sured through yield, which is the ratio of the number of functioning chips to the total number

of fabricated chips. For simplicity, we sometimes treat manufacturability as a binary qual-

ity in the sense that we call an IC layout ‘manufacturable’ if it meets some desired yield

threshold.

Because modern chips have billions of electronic components, IC layout engineers use

computer-aided design (CAD) systems to automate parts of the design process [YK82,

RSS85, MCF96]. However, for the manufacturability criterion, traditional CAD systems

check against design rules that only specify simple conditions, such as having a minimal

separation between adjacent electronic components [LS20].2 These design rules account only

for 2–15% percent of the IC layout [DTX17]. Therefore, when an IC layout moves from

the design stage to the testing stage, the manufacturability of 85–98% of the IC layout is

unknown. The testing stage involves printing a portion (5–50%) of a chip to check for proper

1Moore’s initial 1965 observation was a doubling every year, but he revised it in 1975 to a doubling every
two years [Moo06].

2Some CAD systems’ design rules check for more complicated rules, but these involve compound conditions
that reduce the speed of the CAD system and are difficult for humans to understand [TDC14].
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(a) Sample metal layer layout (b) Sample cross-sectional view

(c) Illustration of defects

Figure 5.1: Sample layout, cross-sectional view, and potential defects in an IC. In (a), we

show a sample of one layer (specifically, one metal layer), in an IC layout. In (b), we show

a sample cross-sectional view of an IC layout. In (c), we show an illustration of potential

defects that can occur. The dotted lines represent the intended shape from an IC layout,

and the reddish-orange shapes indicate potential output in manufacturing. A ‘near open’ is

a type of defect in which a feature nearly disconnects and a ‘near bridge’ is a type of defect

in which disconnected features nearly connect. Panel (a) is reproduced from Principles of

Lithography, Figure 10.24 [Lev05], with permission from SPIE. Panel (b) is reproduced from

Technology Know-How: From Silicon to Devices, Figure 2.24 [LS20], with permission from

Springer. Panel (c) is reproduced from “Modeling manufacturing process variation for design

and test”, Figure 2 [KS11], with permission from IEEE © 2011 .
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Figure 5.2: An example of a pattern that is used in pattern matching. In (a), we show the

bitmap representation of the pattern. In this representation, we denote an ‘occupied’ cell

by 1 and an ‘empty’ cell by 0. In (b), we show the color-coded representation of the same

pattern.

functionality [DTX17]. This provides additional information about manufacturability. How-

ever, this does not guarantee manufacturability of the complete layout, and the process of

iterating back and forth between the testing stage and the design stage is both costly and

slow.

To augment traditional design rules, some CAD systems have begun to incorporate a

technique called pattern matching [CFP17, LS20]. Pattern matching is a geometric approach

that involves searching an IC layout for snippets of the layout that have a certain arrangement

of electronic components. A pattern is an abstract arrangement of electronic components,

and pattern matching finds all configurations in an IC layout that fit the pattern [YPM15,

TDC14]. In Figure 5.2, we give an example of a pattern, which we represent in two different

ways. In the bitmap (i.e., a binary matrix) representation, each cell is annotated either with

a 1 to indicate an occupied cell or with a 0 to indicate an empty cell. Neither the heights

nor the widths of the cells are specified. We call a specific realization of a pattern with all

of the heights and all of the widths specified a configuration.
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Figure 5.3: Identifying snippets of an IC layout with a pattern. In (a), we show a snippet

of the IC layout. We decompose the snippet into cells in (b). In (c), we convert this

decomposition into a bitmap that encapsulates the pattern.

In Figure 5.3, we show a how a snippet of an IC layout is matched to a pattern. We

can convert a snippet (i.e., a rectangular patch) of layout to its bitmap representation by

first decomposing the layout representation into rectangular cells that are aligned with the

edges of the shaded regions (see Figure 5.3b). In this example, there are 3 × 4 rectangular

cells, which we then convert into a 3×4 bitmap in which a shaded ‘occupied’ cell is recorded

as a 1 and an unshaded ‘empty’ cell is recorded as a 0. Because we use a rectangular

decomposition, within each row of cells, all of the cell heights are the same. Likewise, within

each column of cells, all of the cell widths are the same. Thus, for a pattern with n × m

cells, one can specify n heights and m widths. However, as we illustrate in Figure 5.4, there

are only (n − 2) + (m − 2) critical dimensions ; that is, there are only (n − 2) + (m − 2)

dimensions that meaningfully describe the snippet. Specifically, there are n − 2 critical

heights and m − 2 critical widths, because the heights of the cells in the top row and the

bottom row and the widths of the cells in the leftmost column and the rightmost column

can be shrunk arbitrarily small and still match a given pattern (see Figure 5.4). Therefore,

the critical dimensions represent the parameters of interest in pattern matching. For our

purposes, when a configuration in an IC layout matches a pattern that we seek, we record

only the critical dimensions (X1, . . . , Xn−2, Y1, . . . , Ym−2), where the first n − 2 coordinates
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Figure 5.4: Critical dimensions of a pattern. We match the pattern in (a) to the configuration

in (b). If we zoom in on the configuration as in (c), we see that the pattern still matches

the zoomed-in configuration. To avoid counting essentially the same configuration multiple

times, we record only the critical dimensions (X1, X2, Y1).

are the critical widths and the last m − 2 coordinates are the critical heights. Therefore,

configurations for patterns with different numbers of critical dimensions are embedded in

spaces of different dimensions.

For each layer in an IC layout and for each pattern, we obtain a multiset of k-tuples, where

k is the number of critical dimensions of the pattern. Each k-tuple in the multiset corresponds

to a configuration in the IC layout, and the k-tuple records the critical dimensions of the

configuration. The reason that we obtain a multiset in general is that the same configuration

may occur in multiple places in an IC layout. We refer to the multiset of k-tuples as the

coverage of the pattern. Although the coverage data form a multiset of points rather than a

set, we still use the term point cloud (a term that typically refers to sets) to describe it.

To understand how pattern matching is used to aid in the design process, consider a

simple example. Suppose that we collect data sets from an IC layout that we know to

be manufacturable. Looking specifically at the coverage data for the two patterns that
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Figure 5.5: Comparing coverage data of a pattern between IC layouts. In (a), we show the

‘line ends’ pattern. It has two critical dimensions, X1 and Y1. In (b), we show a cartoon plot

of the coverage of the pattern in two toy example IC layouts, ‘Design A’ and ‘Design B’.
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correspond to the matrices

[
1 0 1

]
and


1

0

1

 ,
we have a record of all measurements of horizontal and vertical separation between adjacent

electronic components. By taking the minimum of all of these measurements (and knowing

that the data come from a manufacturable IC layout) allows us to infer an upper bound

on the minimal separation distance needed between adjacent components. Another way in

which pattern matching can be useful in the design process is by comparing the coverage of

patterns between multiple IC layouts. In Figure 5.5, we show a cartoon plot of the coverage

of the ‘line ends’ pattern for two toy examples of IC layouts. If Design B’s coverage is

properly contained in Design A’s coverage for all patterns (as illustrated in the figure), we

can reasonably conclude that Design B is manufacturable if Design A is manufacturable.

Unfortunately, coverage data is more complicated than in the toy example of Figure 5.5.

The data for a pattern with k critical dimensions in an IC layout is a finite multiset of

points in a k-dimensional space. We depict this in Figure 5.6, in which we indicate the

multiplicity of a point by the size of its marker. We use this convention of scaling markers

according to multiplicity for all subsequent scatter plots in this chapter. Because of the size

and complexity of IC layouts, it is unlikely that the coverage of one pattern in one layout is

a proper subset of the coverage of the same pattern in a different layout. In practice, one

asks if the configurations that appear in one IC layout are similar to the ones that appear

in another. For concreteness, we consider the following problem: suppose that we know the

coverage data C for a pattern from a manufacturable IC layout and we want to know whether

a configuration c′ that we do not observe in that layout (i.e., c′ 6∈ C) is yield-limiting, meaning

that if it were to be included in an IC layout, then the layout would have strictly smaller

yield. It is impossible to know with certainty whether c′ is yield-limiting based on knowledge

of C. However, we can perform some probabilistic classification, in which we infer that if c′

is near some {ci} ⊂ C (viewing c′ and the elements of C as points in a k-dimensional space

equipped with some metric), then it is more likely to not be yield-limiting than if c′ were not
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Figure 5.6: Scatter plot of the coverage data for the ‘line ends’ pattern from a manufacturable

IC layout. We use blue dots to represent points and we scale the dot size in proportion to

the point’s multiplicity. The region outlined yellow indicates what we infer to be ‘safe’

configurations based on their proximity to blue points.

88



Figure 5.7: The choice of risk tolerance affects the inferred safe region from coverage data.

Panels (a) and (b) show the same coverage (in blue) but different safe regions (outlined in

yellow). In (a), we show a more risk-tolerant, larger safe region. In (b), we show a less

risk-tolerant, smaller safe region.

near any c ∈ C. The region outlined in yellow of Figure 5.6 depicts what we may infer to be

a ‘safe’ region. That is, we may suspect configurations in this region to be manufacturable

with some sufficiently high probability.

Depending on the risk tolerance, one may infer different safe regions (see Figure 5.7). It

is desirable to use a ‘multiscale’ approach that can convert coverage data into safe regions

efficiently without a pre-specified risk tolerance. Further, for patterns with three or more

critical dimensions, it is difficult for humans to visualize scatter plots of the coverage. Two-

dimensional projections may reveal ‘holes’ in a safe region as in Figure 5.8, but they cannot

reveal higher-dimensional ‘voids’. Consequently, we need an approach that also works in

three or more dimensions.

In this chapter, we use a data set that was generated by Motivo, Inc. from a manufac-
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Figure 5.8: A pattern with three critical dimensions (X1, Y1, Y2). We show three projected

scatter plots of its coverage data. For the Y1 versus X1 scatter plot, we outline a potential

safe region in yellow; it appears to have two ‘holes’.
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turable IC layout that consists of multiple metal layers (see Figure 5.1b). We focus on layers

‘metal3’, ‘metal4’, and ‘metal5’.3

5.1.2 A Potential Solution from Topological Data Analysis

Homology provides a framework to study ‘shapes’ — in particular, the structure of their

holes [Hat05, Ghr14]. However, a shape is an idealized mathematical entity, whereas the

coverage data from IC layouts are finite multisets of points in a k-dimensional space. To

study the homology of these multisets, we turn to persistent homology [EH08], which is a

method from topological data analysis that allows one to study the homological structures,

such as connected components and holes, of a point cloud at a range of spatial resolutions.

In our analysis, rather than use the full power of persistent homology, we focus solely on the

existence (but not persistence) of homological structures as we vary the spatial resolution.

That is, we study how the number of i-dimensional holes, known as the ith Betti number βi,

changes as we change a spatial resolution parameter ε. In Section 5.3, we show that plotting

the Betti numbers of coverage data against ε, in what are called Betti plots [CHY15], provides

a useful summary of coverage data for an IC layout. We also show that Betti plots allow

one to quantitatively compare coverage data between multiple patterns within a single IC

layout, as well as to compare coverage data of a single pattern between multiple IC layouts.

Applications of this topological approach include physical design optimization and com-

parative yield-risk analysis. In Section 5.2, we give a brief introduction to topological data

analysis and persistent homology. This approach enables the efficient discovery of homologi-

cal features in high-dimensional data. In Section 5.3, we describe an application of persistent

homology to coverage data from IC layouts. In Section 5.4, we discuss results and future

work.

3For more details on the metal layers, see Ref. [LS20].
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5.2 Topological Data Analysis And Persistent Homology

The goal of topological data analysis (TDA) is to examine the structure (i.e., ‘shape’) of data

using techniques from topology in a computationally efficient way [ZC05]. An important tool

in TDA is persistent homology (PH) [OPT17]. Loosely speaking, homology is concerned with

coarse-grained classification of spaces based on their ‘holes’. One aspect of this classification

involves identifying and counting certain homological features of a space. One may ask how

many pieces (i.e., connected components) does a space consist of? One may also ask how

many holes or cavities are in a space? The answers to these homological questions are given

by the Betti numbers of the space. The ith Betti number βi(S) of a space S is the number

of i-dimensional holes in that space, except for the 0th Betti number β0(S), which counts

the number of connected components. For example, a torus T consists of one connected

component, two one-dimensional holes, a single (two-dimensional) cavity that is enclosed

by the surface, and no higher-dimensional holes. Thus, the Betti numbers for a torus are

β0(T ) = 1, β1(T ) = 2, β2(T ) = 1, and βj(T ) = 0 for j ≥ 3. One computes the ith Betti

number βi of a space S by finding the rank of the ith homology group [Hat05].

It is not obvious what one can gain by studying the Betti numbers of data sets that consist

of finitely many individual observation points that are recorded in a high-dimensional space,

especially ones in which we do not know an appropriate scale of resolution. The problem is

even more challenging if there are multiple scales or if the data are corrupted by noise. The

pipeline of PH provides a way of transforming finite data sets into a sequence of spaces that

one can then study using homology at all resolution scales simultaneously and in a way that

is robust with respect to small perturbations in input data [OPT17].

5.2.1 Mathematics of Persistent Homology

We present a mathematical formulation of PH in a way that is geared to the analysis of

coverage data of IC layouts. We begin with a set S of points in some d-dimensional Euclidean

space. We refer to S as point-cloud data”. The set has a rather uninteresting topological

structure; the homology of S reveals that S consists of |S| connected components, with
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each point in its own component, and has no higher-dimensional homological features such

as holes or cavities. Therefore, rather than examining the homology of S, we study the

homology of a filtered simplicial complex of S. A filtered simplicial complex of S is a sequence

Sε1 ⊆ Sε2 ⊆ . . . ⊆ SεN of nested spaces, where each space is a ‘thickening’ of S [OPT17]; we

explain this process of thickening in detail in Section 5.2.2. This sequence of spaces allows

one to examine point-cloud data at different resolutions.

We construct each Sε by connecting nearby points in the point cloud according to some

rule parameterized by the resolution parameter ε. Specifically, we form simplices — such

as edges, triangles, tetrahedra, and their higher-dimensional generalizations — between the

points in the point cloud in a way that depends on the proximity of points and rules that we

specify in a filtered simplicial complex. There are many filtered simplicial complex [OPT17],

each with their own rules for forming simplices.

Throughout this chapter, we use a filtered Vietoris–Rips complex. In such a complex,

the space Sε is composed of the points of S, edges between each pair of points in S that

are a distance at most ε apart, triangles that connects any triple of points in S that have a

pairwise distance of at most ε, and, in general, an (n − 1)-simplex between any n-tuple of

points whose points are a distance of at most ε apart pairwise. An equivalent interpretation

for a filtered Vietoris–Rips complex is that we thicken the point cloud by placing balls of

radius ε/2 around each point and add a (n − 1)-simplex for each subset of n balls that

intersect pairwise; see Figure 5.10 for an example. As we increase the resolution parameter

ε from ε1 to ε2, where ε1 ≤ ε2, the space grows monotonically, such that Sε1 is contained in

Sε2 . Additionally, note that S0 = S. In PH, one seeks to compute and analyze the homology

of Sε for a range of ε values, without a priori choosing a specific resolution ε to examine.

Persistent homology involves converting the filtered simplicial complex into a finite persis-

tence module, which records the ‘birth’ and ‘death’ of homological features such as connected

components, holes, and cavities as one increases the resolution parameter ε [OPT17, ELZ02,

ZC05]. The original algorithm to compute PH relies on Gaussian elimination and has a worst-

case time complexity that is cubic in the number of simplices [MMS11, MN13]. The problem

of combinatorial explosion in the number of simplices is an active area of research [SC04].
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For example, if we set ε equal to the diameter of a point cloud, then constructing a filtered

Vietoris–Rips complex entails generating 2n − 1 simplices, where n is the number of data

points.4 Some approaches for reducing the computational complexity of such complexes are

to perform preprocessing or to construct exponentially smaller filtered simplicial complexes

that produce equivalent results [MN13].

5.2.2 PH Pipeline

We briefly summarize the pipeline of PH. Beginning with a set S of data points, the first

step is to convert S into a filtered simplicial complex (Sεj)
N
j=1. In our analysis of IC layouts,

we use a filtered Vietoris–Rips complex with Euclidean distance. We then convert the

filtered simplicial complex Sε into a persistence module, which yields the births and deaths

of homological features. Finally, we visualize the feature lifetimes. There are many software

packages for computing PH. See Ref. [OPT17] for a comprehensive review and comparison of

PH packages. We use Dionysus 2 [Mor] by Dmitriy Morozov of Lawrence Berkeley National

Laboratory.

Two prominent ways of visualizing feature lifetimes are persistence diagrams [CEH07]

and barcodes [Ghr08]. In a barcode, one represents the lifetimes of features as intervals.

Each left endpoint is the birth time of a feature, and the associated right endpoint is the

death time of that feature.5 In Figure 5.9a, we show an example of a barcode for a point

cloud that we generate by sampling 50 points uniformly on the unit circle. The blue intervals

represent the lifetimes of 0-dimensional homological features (i.e., connected components).

The orange interval represents the lifetime of a 1-dimensional homological feature (i.e., a

hole). In barcodes, the intervals are stacked on top of each other with different types of

features (such as connected components, holes, and cavities) separated by color or into

different plots. Barcodes are unique up to reordering of the intervals within each feature

4The diameter of a point clouds equals the maximum distance over all pairs of its points.

5Because one typically computes a filtered simplicial complex on a finite range [0, εmax), features that
persist past εmax are recorded as having no death time. In a barcode, one usually records features that have
no death time by marking the right endpoint of its interval with an arrow.
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Figure 5.9: Barcode and Betti plot for a point cloud that we generate by sampling 50 points

uniformly on the unit circle. (a) The intervals in the barcode represent lifetimes of connected

components (blue) and a hole (orange). (b) The Betti plot of the same point cloud. See

Figure 5.10 for a detailed explanation of how to read Betti plots.

type.

Barcodes are a convenient way of visualizing the lifetime of all features. However, they

can be difficult to interpret and to compare, especially when the number of features is

large.6 Instead, we visualize the output of the PH computation using a Betti plot. Recall

that the ith Betti number βi(S) of a space S is the number of i-dimensional holes in S.

For a filtered simplicial complex, we have a sequence (βi(Sεj))
N
j=1, which records the number

of i-dimensional holes for each space in the sequence. Equivalently, for a fixed S and for

each i, we can construe βi(Sε) as a piecewise-constant function βi(ε) from [ε1, εN ] ⊂ R≥0

to N0 = {0, 1, 2, . . .}. These functions are constant on the subintervals (i.e., subdomains)

induced by partitioning [ε1, εN ] at the points εj. That is, the subdomains of our functions are

the half-open intervals ([εj, εj+1))N−1
j=1 . A Betti plot is the graph of these piecewise-constant

functions. Because of computational limitations, we compute only the first two functions in

6Comparison of barcodes (and persistence diagrams) is an active area of research in the PH litera-
ture [KMN17, MGL18].
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the sequence; they correspond, respectively, to counts of the number of components and the

number of holes. For comparison, in Figure 5.9b, we show the Betti plot corresponding to

the barcode in Figure 5.9a. We give a detailed explanation of how to construct a Betti plot

in Figure 5.10.

Using a point cloud of six points, we illustrate the process of thickening points using a

filtered Vietoris–Rips complex and the resulting Betti plot in Figure 5.10. In Figure 5.10a,

the resolution parameter is ε = 0. Without any thickening, the six points are separated,

and each constitutes its own connected component. There are no holes at this resolution. In

Figure 5.10b, we set ε = 2. We convey the thickening of the space by placing balls around

the points (see the shaded purple areas). When two balls intersect, the points to which they

correspond become connected by an edge. With ε = 2, the six points are connected in such

a way that there are two connected components and one hole. In Figure 5.10c, we further

thicken the points by setting ε = 4. At this resolution, the four topmost thickened points

intersect pairwise (i.e., their purple shaded regions intersect pairwise), so the hole is filled in.

Finally, in Figure 5.10d, we thicken the points to a resolution of ε = 6. At this resolution,

there is only one component and one hole.

In Figure 5.10e, we show the corresponding Betti plot for this filtered simplicial complex.

The 0th Betti number β0 (blue), which is the rank of the 0th homology group and corresponds

to the number of components, is 6 at ε = 0. The 1st Betti number β1 (orange), which is

the rank of the 1st homology group and corresponds to the number of holes, is 0 at ε = 0.

We observe that as ε increases (i.e., as points thicken, causing components to merge), β0

decreases. We also observe that β1 (orange curve) increases from 0 to 1 at ε ≈ 1.9 when a

hole is born and decreases to 0 when that hole dies at ε ≈ 3.7. We observe a similar increase

and decrease for the hole that is born at ε ≈ 5.8 and dies at ε ≈ 6.2.

The information in a Betti plot is a subset of the information in a barcode. For 0-

dimensional homological features, the two types of visualization contain equivalent infor-

mation. However, for higher-dimensional homological features, the information from a PH

computation may not be present in a Betti plot. A simple example involves one i-dimensional

feature dying at exactly the same resolution at which another i-dimensional feature is born.
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(a) ε = 0 (b) ε = 2 (c) ε = 4 (d) ε = 6

(e) Betti Plot

Figure 5.10: An illustration of thickening a point cloud S that consists of six points (blue)

and the resulting Betti plot. Panels (a)–(d) show different stages of the thickening process,

corresponding to different resolution-parameter values: (a) ε = 0, (b) ε = 2, (c) ε = 4, and

(d) ε = 6. We show the radius-(ε/2) balls as purple shaded disks, the 1-simplices as black

lines, and the 2-simplices as red shaded areas. In panel (e), we show the Betti plot that

corresponds to S. The blue and orange curves correspond to 0th and 1st Betti numbers,

respectively. As a shorthand for the legends of all of our Betti plots, we use ‘hom0’ and

‘hom1’ to indicate 0-dimensional and 1-dimensional homological features.
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A Betti plot does not distinguish between (1) this co-occurrence of birth and death of i-

dimensional features and (2) no change in the homological structure of the space. This is

unlike a barcode, which does distinguish between these.

In our analysis of IC layout data, we find Betti plots to be useful for multiple reasons.

As we demonstrate in Section 5.3.2, Betti plots are robust to a certain type of subsampling,

in the sense that as one takes progressively smaller samples, the general shapes of the curves

are preserved but the curves becomes progressively lower-resolution approximations of the

original curves. As we demonstrate in Section 5.3.3, we can use Betti plots to determine

which pairs of patterns are similar and dissimilar based on their respective coverage data.

Moreover, we are able to quantify the similarity of patterns by defining a distance function

on Betti plots.

Betti plots are the graphs of a sequence of piecewise-constant functions βi(ε), each corre-

sponding to the number of i-dimensional homological features. Therefore, defining a distance

between two Betti plots is equivalent to defining a distance between two sequences of func-

tions. There are many choices for how to define a distance between functions. Through trial

and error, we found the following distance function d to be suitable for our purposes. The

only requirement is that the domain for both Betti plots must be the same. Let B1 = (β1
0 , β

1
1)

be the two functions in the first Betti plot, let B2 = (β2
0 , β

2
1) be the two functions in the

second, and let [ε, εN ] be the domain for all four functions. First, we convert each function f

into a vector [f(x1), f(x2), . . . , f(xM)] of real values, where the xi are equispaced in [ε1, εN ].

In essence, we are taking M uniformly-spaced samples from our function. Ideally, we want

to be reasonably confident that we sample from each subdomain of our piecewise-constant

functions. Accordingly, we set M = 1000, which is an order-of-magnitude larger than the

number of subdomains that we observe in Betti plots of coverage data. This results in

two pairs of M -dimensional vectors, ( ~β1
0 ,
~β1
1) and ( ~β2

0 ,
~β2
1). We then take the discrete cosine

transform (specifically, the orthogonal DCT-II) of each vector and then normalize them. If

a vector is the 0 vector, we leave it as the 0 vector. We denote the transformed pairs of

M -dimensional unit vectors by (~b1
0,
~b1
1) and (~b2

0,
~b2
1), respectively. We compute the distance
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Figure 5.11: Betti plots of uniformly random point clouds on (a) a ‘continuous’ grid and (b)

a ‘discretized’ grid in the region [0, 400]× [0, 400]. We show scatter plots of the point clouds

in the insets. The difference between the two point clouds is difficult to notice in the scatter

plot, but it is discernible in the Betti plots.

between the two Betti plots as

d(B1, B2) =
1

2
√
M

(∣∣b2
0 − b1

0

∣∣
2

+
∣∣b2

1 − b1
1

∣∣
2

)
. (5.1)

We use this Betti-plot distance function d for all of our subsequent comparisons of Betti

plots.

5.2.3 Tests on Synthetic Data

We now examine and compare the Betti plots of synthetically generated data to calibrate

our understanding of how a Betti plot reflects the characteristics of a point cloud.

In Figure 5.11, we show the Betti plots and corresponding scatter plots in the inset of two

synthetically generated point clouds. For Figure 5.11a, we generate a point cloud by sampling

2000 points uniformly at random with replacement in the region [0, 400] × [0, 400] using a

‘continuous’ floating-point grid. There are approximately 1018 points in this ‘continuous’
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grid, but the grid points are not uniformly spaced [Smi97]. This implies that the grid

points are not equiprobable, even though we are sampling uniformly. The probability that

we draw 2000 unique points is greater than 1 − 2 × 10−8. For Figure 5.11b, we generate

a point cloud by sampling 2000 points uniformly at random with repetition in the same

region [0, 400] × [0, 400], but now we use a ‘discretized’ grid by rounding to the nearest

integer multiple of two. In other words, we sample from the lattice (2Z/400Z)2, which has

2002 = 40000 equiprobable points. With this many available points to sample from, we

expect approximately 1950 unique points in our sample.

One can see that the Betti curves in Figure 5.11b resemble those of Figure 5.11a quali-

tatively. However, one can also see that the subdomains of the piecewise-constant curves in

Figure 5.11b are generally much larger than those in Figure 5.11a. To understand why this is

the case, we must consider the possible pairwise distances that arise in our ‘continuous’ and

‘discretized’ grids. In our discretized grid, points cannot connect to form edges until ε ≥ 2.

One can observe this phenomenon in the Betti plot of Figure 5.11b, in which, at a resolution

of ε = 2, the β0 curve (blue) has its first ‘step’. Contrast this to the continuous grid, in which

points can connect to form an edge as early as ε ≈ 10−35 [Smi97]. In general, the discretized

grid has fewer distinct distances available than the continuous grid; this manifests as larger

subdomains in Figure 5.11b than in Figure 5.11a.

We next compare two point clouds that we generate using different mechanisms. For the

first point cloud, we sample points from one of three bivariate Gaussian distributions. We

sample from the three distributions with equal probability. All three of the distributions

have the same covariance, but we generate the centers of the three distributions uniformly

at random. For the second point cloud, we simulate the paths of four Lévy-flight random

walkers in the plane [SK86]. All four walkers start a point in the plane that we choose

uniformly at random, and all of the walkers use the same transition probabilities that we

bias in favor of horizontal movement by a factor of 5. We then ‘discretize’ the two point

clouds as in Figure 5.11b so that the coordinates are in (2Z/400Z)2 with periodic boundary

conditions. We denote the first point cloud by G for Gaussian and the second point cloud

by W for walker.
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Figure 5.12: Betti plots of (a) multivariate Gaussian random points and (b) multiple random-

walk paths. Both (a) and (b) are projected onto a discretized grid in the region [0, 400] ×

[0, 400]. We show scatter plots of the point clouds in the insets.

In Figure 5.12, we show the Betti plots of the point clouds G and W ; we show the

corresponding scatter plots in the inset. In both Betti plots, we observe that using the

discretized grid leads to large subdomains for the curves that are similar to those of 5.11b.

Let us examine the relative sizes of the drop in the first ‘step’ of β0 function. That is,

consider the quantity

(β0(0)− β0(2))/β0(0) . (5.2)

For the Gaussian-generated point cloud G, the first drop is approximately 0.63; for the

random-walker point cloud W , the first drop is approximately 0.93. These drops are larger

than the first drop in 5.11b, which is approximately 0.10. We can interpret this quantity in

Equation (5.2) as measuring a type of ‘clustering’ in the point clouds, according to which the

point cloud W is more clustered than G, which in turn is more clustered than the uniform

point cloud of 5.11b.
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Figure 5.13: Coverage data of the ‘line ends’ pattern in the ‘metal5’ layer from an IC layout.

In (a), we show this data as a scatter plot; in (b), we show the corresponding Betti plot of

this data.

5.3 Applications To Coverage Data from IC Layouts

We now examine coverage data from IC layouts using PH. In Section 5.3.1, we examine

the Betti plot of the ‘line ends’ pattern, which has two critical dimensions, as a simple

case study. In Section 5.3.2, we study the effect that subsampling has on Betti plots. In

Section 5.3.3, we compare coverage data between several patterns that each have two critical

dimensions, so that we can also visualize the coverage data using scatter plots to help build

our understanding. In Section 5.3.4, we apply our approach to a large variety of patterns,

including patterns with 3–14 critical dimensions.

5.3.1 Betti Plot of the ‘Line Ends’ Pattern

In Figure 5.13, we consider the coverage data for the ‘line ends’ pattern in the ‘metal5’

layer from an IC layout. In Figure 5.13a, we show the scatter plot of the point cloud; in

Figure 5.13b, we show the corresponding Betti plot. Comparing the Betti plot in Figure 5.13b
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to the Betti plot in Figure 5.11b and the two Betti plots in Figure 5.12, we observe that the

curves have similar subdomains. This suggests that the coverage data also conforms to a

discretized grid with similar spacing, as points do not connect until ε = 2. We also observe

that the relative size of the drop in the first step is 0.59 for this coverage data, which suggests

that it has a similar level of ‘clustering’ to that of synthetic Gaussian data in Figure 5.12a.

This similarity is not apparent when comparing the corresponding scatter plots of the point

clouds.

Recall from Section 5.1.1 that coverage data is a multiset in general, because the same

configuration can appear multiple times in an IC layout. We have not yet made use of the

multiplicity of points in our Betti plots. In the example of Figure 5.13, we effectively ignored

multiplicities because coincident points (i.e., points with multiplicity greater than 1) form a

single connected component at a resolution of ε = 0.

5.3.2 Subsampling Sensitivity

In the testing phase of IC layouts, a common practice to acquire a representative sample of

the configurations that occur in an entire chip is clipping. Clipping is a form of subsampling

that involves extracting a contiguous sublayout from an IC layout, analogous to how one

can extract a patch from an image [Ma09, WDC12, LS20]. This produces a representative

sample under the assumption that configurations are not spatially correlated within an IC

layout. Working under this same assumption, we use a form of subsampling coverage that we

call ‘clip’ subsampling to produce samples that are statistically similar to clipping. In clip

subsampling, one samples configurations from the coverage data without replacement ac-

cording to a probability distribution that weights points in proportion to their multiplicities.

Consequently, we test the sensitivity of Betti plots to clip subsampling using the coverage

data of the ‘line ends’ pattern of the ‘metal5’ layer in an IC layout. In Figure 5.14, we show

the Betti plots and scatter plots (inset) of coverage data that we clip subsample at rates

of 100%, 80%, 50%, and 20%. We observe that the qualitative shape of the β0 (blue) and

β1 (orange) curves in the Betti plots are well-preserved under this clip subsampling. This
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suggests that Betti plots may be robust to the type of sampling that occurs in clipping when

testing chips.

We next use the distance function that we defined in Equation (5.1) to compute the

distance between the Betti plot of the complete coverage data and the Betti plots of the clip-

subsampled coverage data. The distances of the 80%, 50%, and 20% clip-subsampled data

to the full data are approximately 0.001464, 0.00335, and 0.005143, respectively. The small

yet monotonic increases in distance as we clip subsample progressively smaller fractions of

the data are consistent with our observation that the clip subsampled Betti plots have lower

resolution but retain the general shape of the Betti plot of the full point cloud.

5.3.3 Comparing Coverage Data of Different Patterns

Understanding the relationship between the coverage data of different patterns can reveal

insights into the IC design-manufacturing process [DTX17]. In Figure 5.15, we compare the

coverage data of two patterns in the ‘metal5’ layer: the ‘left line ends’ pattern and the ‘right

line ends’ pattern. These patterns are X-mirrors of each other, so one may expect their

dimensional coverage data to be similar. The inset scatter plots show that they are similar,

but this visual comparison of scatter plots is already cumbersome, even in this setting with

only two critical dimensions. By contrast, one can readily observe in the Betti plots that the

coverage data are similar. A Betti plot summarizes essential features of the coverage data

at multiple scales without requiring additional inputs from domain knowledge of the data.

Using Equation (5.1), we find that the distance between the Betti plots is approximately

0.000143.

In Figure 5.16, we compare the coverage data of two dissimilar patterns in the ‘metal5’

layer. The two patterns are the ‘left line ends’ pattern and the ‘line ends’ pattern, which

are related by diagonal-transposition (or, equivalently, by a 90-degree rotation). These pat-

terns have different characteristics because of asymmetries in the design-manufacturing pro-

cess [Lev05, LS20]. Consequently, we expect their coverage to be dissimilar, which we observe

in both the Betti plots and the inset scatter plots. Using Equation (5.1), we measure the
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(a) 100% (b) 80%

(c) 50% (d) 20%

Figure 5.14: Betti plots and scatter plots (inset) of coverage data for the ‘line ends’ pattern

in the ‘metal5’ layer of an IC layout at various clip subsampling rates: (a) 100%, (b) 80%,

(c) 50%, and (d) 20%. The Betti plots of the clip-subsampled data have similar shape, but

with progressively lower resolution as we include progressively less data.
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Figure 5.15: Betti plots with inset scatter plots of coverage data for (a) the ‘left line ends’

pattern and (b) the ‘right line ends’ pattern in the ‘metal5’ layer.

Figure 5.16: Betti plots with inset scatter plots of coverage data for (a) the ‘left line ends’

pattern and (b) the ‘line ends’ pattern in the ‘metal5’ layer.
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distance between the Betti plots to be approximately .01, which is two orders-of-magnitude

greater than the distance between the Betti plots in Figure 5.15.

The examples in this subsection suggest that the Betti-plot distance in Equation (5.1)

is successfully capturing similarities and differences in coverage data that are relevant to IC

design rules. Indeed, by doing a comprehensive comparison of each pattern and its X-mirror

pattern in the ‘metal5’ layer, we consistently observe small distances between Betti plots.

We thereby learn that the IC layout, and by inference the underlying design-manufacturing

process, has some level of X-mirror symmetry in the ‘metal5’ layer [YK82, RSS85, CGC94].

Similarly, by comparing each pattern to its 90-degree rotation pattern in the ‘metal5’ layer,

we consistently observe large distances between Betti plots. This suggests that the underlying

design-manufacturing process is not symmetric with respect to 90-degree rotations [YK82,

HSV90, KC95].

5.3.4 Systematic Comparisons

One of the benefits of PH is that it allows one to directly compare data sets that are embedded

in spaces of different dimensions. In the context of IC layouts, this allows us to compare

the coverage data of patterns that have a different number of critical dimensions. In this

vein, we now perform a systematic comparison of a focal point cloud to an assortment of

point clouds. For our example, we use the coverage data of the ‘left line ends’ pattern in the

‘metal5’ layer as the focal point cloud. In Figure 5.17, we show distance (see Equation (5.1))

between the Betti plot of the focal point cloud to the Betti plots of point clouds that come

from clip subsampling, coverage data from related patterns in the same layer and in other

layers, coverage data of randomly chosen patterns, and synthetically generated data.

We divide our comparisons into groups that are separated by red lines in Figure 5.17, with

each group’s label in green text. In the ‘Clip Subsample’ group, we compare the focal point

cloud to its clip subsampling. As we saw in Section 5.3.2 when we studied clip subsampling

for the ‘line ends’ pattern, we again see that the distance increases as we take progressively

smaller samples. In the ‘Child Patterns’ group, we consider what we call ‘child’ patterns
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Figure 5.18: An example of parent and child patterns. In (a), we show a parent pattern with

two critical dimensions, X1 and Y1. In (b), we show one of its child patterns, which has the

additional critical dimension X2. Child patterns always have at least one additional critical

dimension than the associated parent pattern.

of the ‘left line ends’ pattern. By a child pattern, we mean a pattern that contains the

original pattern (i.e., the ‘parent’ pattern) as a subpattern (see Figure 5.18). We observe

that the Betti-plot distance between the parent pattern’s coverage data and the coverage

data of ‘Child1’ is approximately 40% smaller than the distance between the parent pattern

and ‘Child2’. Although we do not pursue this here, one can use this quantitative relationship

between parent and child patterns in design tools. For example, Dai et al. introduced a graph-

based approach to relate patterns that appear in designs [DTX17]. This approach involves

creating an unweighted graph in which the nodes are patterns that appear in a layout and

edges represent parent–child relationships. One can augment this graph by adding weights

to the edges that are inversely proportional to the Betti-plot distances of the coverage data

for each pattern. This may provide statistical insights or to improve search efficiency.

In the ‘Other Layers’ group, we perform inter-layer comparisons. We observe that the ‘left

line ends’ pattern in the ‘metal3’ layer is more similar to the ‘metal5’ layer than is the same

pattern in the ‘metal4’ layer, as expected based on the design-manufacturing process [YK82,

RSS85, CGC94]. In the ‘Rotations and Flips’ group, we examine coverage data of patterns

related to the ‘left line ends’ pattern by a rotation or flip. As we observed in Figure 5.15,

in the ‘metal5’ layer, the ‘left line ends’ pattern is similar to its X-mirror-symmetry pattern
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(labeled in the plot as ‘Flip LR in m5’), the ‘right line ends’ pattern. The ‘left line ends’

pattern is equivalent to its Y -mirror-symmetry pattern (labeled in the plot as ‘Flip UD

in m5’), so the distance between the two is necessarily 0. The ‘left line ends’ pattern is

dissimilar to its diagonal-transpose-symmetric pattern (labeled in the plot as ‘Rot90 in m5’),

as we observed in Figure 5.16. We also see that the coverage data from the ‘metal4’ layer of

the diagonal-transpose pattern (labeled in the plot as ‘Rot90 in m4’) is similar to that of our

focal point cloud. This is consistent with expectations based on the design-manufacturing

process [YK82, HSV90, KC95]. In the ‘Randomly Chosen Patterns’ group, we give some

baseline comparisons to the coverage data from the ‘metal5’ layer of patterns that we choose

uniformly at random among all patterns in the IC layout.

In the ‘Synthetic Data’ group, we compare the focal point cloud to synthetic point clouds.

In order from left to right, we use the continuous uniformly random point cloud from Fig-

ure 5.11a (labeled in the plot as ‘Uniform Box’), the discretized uniformly random point

cloud from Figure 5.11b (labeled in the plot as ‘Lattice’), the Gaussian random point cloud

from Figure 5.12a (labeled in the plot as ‘Gaussian’), the random-walk-path point cloud

from Figure 5.12b (labeled in the plot as ‘Walkers’), and a point cloud that we generate

by sampling points uniformly at random from three lines and then discretizing (labeled in

the plot as ‘Lin. Manifolds’). As we noted in Section 5.2.3, synthetic Gaussian data can

closely resemble coverage data from IC layouts. This observation may give insight into how

to generate realistic synthetic test data [DTX17].

Finally, we perform a systematic comparison of the coverage data of the ‘left line ends’

pattern in the ‘metal5’ layer to the coverage data of all other patterns in that layer. We

compare coverage data of approximately 2000 patterns, some of which have 14 critical di-

mensions. In Figure 5.19, we extract the twenty most-similar patterns according to the

Betti-plot distance of Equation (5.1). We call attention to a few of these patterns. We note

that the nearest match is the ‘right line ends’ pattern that that we studied in Figure 5.15.

Additionally, a child pattern (see Figure 5.18) appears as the 6th-most similar pattern.7 We

7The patterns that ranked 2–5th in terms of similarity are also of interest. However, the reasons why
they are interesting are not within the scope of this thesis.
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obtained these quantitative relationships between patterns by comparing point clouds that

are embedded in spaces of different dimensions (i.e., patterns with different numbers of crit-

ical dimensions) without providing additional input or domain knowledge. Specifically, we

do not identify which two of the five critical dimensions for the child pattern correspond to

the critical dimensions of the parent pattern.

5.4 Conclusions and Future Work

Analyzing IC layouts for manufacturability is very challenging. However, tools from topo-

logical data analysis — specifically, persistent homology — provide helpful ways to examine

high-dimensional coverage data at multiple scales. In particular, Betti plots allow one to

compute useful summaries of coverage data sets. We demonstrated that Betti plots are ro-

bust to a certain type of subsampling that is similar to clipping in chip testing. We then

discussed how Betti plots enable quantitative comparisons between coverage data sets, and

we used these comparisons to determine pattern symmetries and inter-layer relations that

arise in the photolithography process. We were also able to find similar and dissimilar

patterns using only coverage data, without the need to incorporate domain knowledge.

We propose two possible directions for future work. First, it would be interesting to use

recent advances in persistent homology that allow one to extract the locations of homological

features [Oba18] to detect boundaries in the coverage data. For example, we anticipate that

one can use boundary information in probabilistic classification of yield-limiting configura-

tions. Second, it seems worthwhile to perform a broader exploration of coverage data from

thousands of IC layouts using persistent homology. One could then incorporate commonali-

ties into the design rules of computer-aided design systems.
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CHAPTER 6

Applications of Network Dictionary Learning

In this chapter, I present an ongoing project that entails the analysis of networks. This

project is a collaboration with Hanbaek Lyu (UCLA), Mason A. Porter (UCLA), and Josh

Vendrow (UCLA) on applications of a recently developed method called ‘network dictionary

learning’ (NDL). We discuss problems of network reconstruction and denoising using NDL

on both synthetic and real-world networks.

6.1 Background

Lyu et al. [LMS19, LNB19] recently introduced an algorithm for the analysis of networks

that combines Markov chain Monte Carlo (MCMC) motif sampling and non-negative dictio-

nary learning. We begin by discussing their motif-sampling method to generate data from

networks and then discuss how to use such data to learn dictionaries of ‘parts’ of networks.

MCMC motif sampling of a simple graph G = (V1, E1) for some motif K = (V2, E2)

involves exploring the space of subgraphs of G that are induced by homomorphic copies

of K in a way that converges to some target distribution, which we take to be the uni-

form distribution. One does this by finding a random sequence (xt : K → G)t∈N0
of graph

homomorphisms1 whose stationary distribution is the uniform distribution.

Under certain constraints on G and K, one way to construct such a sequence is via

Glauber-chain sampling [LMS19]. We describe Glauber-chain sampling in the case that K

1A graph homomorphism f : H → H ′, where H = (V,E) and H ′ = (V ′, E′), is a map from the nodes of
H to the nodes of H ′ that preserves adjacency (i, j) ∈ E =⇒ (f(i), f(j)) ∈ E′.
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is a path graph2 of length κ (with nodes labeled from 0 to κ − 1), and we start with some

initial graph homomorphism x0 : K → G. To obtain xt+1 from xt, we perform the following

steps:

1. Select a node i of K uniformly at random.

2. For each node j 6= i, map it to the same node from the previous step: xt+1(j) = xt(j).

3. Map node i randomly to one of the nodes of G such that it makes xt+1 a graph

homomorphism. Specifically, when i ∈ {1, . . . , κ− 2}, set xt+1(i) ∈ V1 equal to a node

that we choose uniformly at random from the intersection of the neighborhoods of

xt+1(i− 1) and xt+1(i+ 1). When i = 0, we use the neighborhood of xt+1(i+ 1); when

i = κ− 1, we use the neighborhood of xt+1(i− 1).

Using the above Glauber-chain sampling, we record a sequence (At)t∈N0
of adjacency matrices

of dimension κ× κ that correspond to the subgraphs of G that are induced by (xt(K))t∈N0
.

The sequence (At)t∈N0
gives the data that we want to analyze using non-negative matrix

factorization (NMF). Because these data take the form of an infinite sequence, we desire an

NMF algorithm that is online, in the sense that one can stream the data incrementally to

produce progressively more accurate approximations.

Each adjacency matrix in the sequence (At)t∈N0
is an observation from the network G.

Our goal is to learn the ‘parts’ that combine to form these observations (and consequently

the network G), in the sense that we want to find a set {B1, . . . , Br} of matrices that

can approximate the observations using only conical combinations (i.e., sums of the form∑r
i=1 aiBi where each ai ≥ 0). Consider truncating the sequence at some t = T − 1.

Flattening the T adjacency matrices into κ2-dimensional column vectors and concatenating

these vectors, we obtain a data matrix D of dimension κ2 × T . We can express parts-based

2A path graph is a connected graph, with at least two nodes, in which exactly two nodes have degree 1
and the remaining nodes have degree 2. One can draw a path graph so that all of its nodes and edges lie on
a line.
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learning through NMF, which is the constrained minimization problem

arg min
W∈Rκ2×r≥0 , H∈Rr×T≥0

‖D −WH‖2
F . (6.1)

One typically chooses r so that (κ2 + T )r < κ2T and can thus regard the product WH

as a low-rank approximation of D [LS99]. The matrix W is often called the ‘dictionary’

matrix [MBP10, TD12]. This terminology arises from the interpretation that the r columns

of W are the parts (also called the ‘atoms’) that combine conically to approximate the data.

In settings where the data become available in a sequential order, under certain independence

assumptions, one can use an online non-negative matrix factorization (ONMF) algorithm

that solves Equation (6.1) iteratively [MBP10].

Lyu et al. introduced a new ONMF method that requires that data form a Markov

chain [LNB19], rather than the stronger assumption that the data are independent. That is,

their method works for sequential data in which each data point is independent, conditioned

on the previous data point. Combining their method with MCMC motif sampling, they

introduced network dictionary learning (NDL). See Algorithm 1 in Ref. [LNB19] for details.

6.2 NDL on Synthetic Networks

One particularly interesting application is reconstruction [ZLL18], in which we attempt to

rebuild a network using only (non-negative) linear combinations of the atoms from some

dictionary W . We refer to this process as self-reconstruction if we learn W from the network

that we are attempting to reconstruct and cross-reconstruction otherwise. When testing the

accuracy of reconstruction, we use the Jaccard distance

dJ(E1, E2) = 1− |E1 ∩ E2|
|E1 ∪ E2|

(6.2)

between the original network’s edge set E1 and the reconstructed network’s edge set E2. We

obtain the same qualitative results when we compute the Rand index [Ran71].

To gain a better understanding of reconstruction using NDL, we apply it to a variety

of synthetic networks. We are currently considering the ER G(N, p) random graph model,
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the Watts–Strogatz (WS) model [WS98], and the Barabási–Albert (BA) model [BA99]. To

construct a WS network, we begin with a regular ring lattice with N nodes, where each node

is connected to its k nearest neighbors (with k/2 on each side). For each node i and for each

of the k/2 edges to its right, with some probability, we rewire the edge from (i, u) to (i, v),

where we choose v uniformly at random from nodes j 6= i. To construct a BA network, we

begin with τ isolated nodes. In each step, we add a new node with τ edges that preferentially

connect to the existing nodes with a probability that is proportional to the existing nodes’

degrees.

In Figure 6.1(a)–(c), we show the r = 25 atoms (i.e., the columns of W that we reshape

into square matrices) that we learn from three synthetic networks: (a) an ER G(N, p) graph

with N = 1000 and p = 0.05; (b) a WS network with N = 1000 nodes, 50 nearest-neighbor

connections, and rewiring probability p = 0.05; and (c) a BA network with N = 1000 nodes

and parameter value τ = 10. We use Glauber-chain sampling in which K is a path graph of

length κ = 21.

In Figure 6.1(d)–(f), we show our attempts at reconstructing synthetic networks. We

indicate the reconstruction accuracy [using Equation (6.2)] on the vertical axis. Each curve

corresponds to reconstruction using a dictionary that we learn from some network; see the

legend in Figure 6.1(f). We vary the dictionary size r, which we indicate on the horizontal

axis. For each combination of (1) synthetic network to reconstruct, (2) synthetic network

from which we learn a dictionary, and (3) size r of the dictionary that we learn, we conduct

5 trials, each of which uses a different realization of the network models. Each marker in

Figure 6.1(d)–(f) indicates the mean accuracy over these 5 trials, and the error bars indicate

the standard deviations.

We observe that self-reconstruction accuracy is above 75% and that cross-reconstruction

using the same network model but with (slightly) different parameters also has an accuracy

above 75% in each experiment. We also observe that dictionaries that we learn from ER net-

works with p = 0.05 perform poorly at cross-reconstructing the WS networks. Additionally,

we observe that dictionaries that we learn from BA networks with τ = 10 tend to perform

well at cross-reconstructing the ER and WS networks. These experiments also illustrate the
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asymmetry in cross-reconstruction accuracy; one network’s dictionary may cross-reconstruct

another network well, but not vice versa.

6.3 NDL on Real-World Networks

We now apply NDL to real-world networks. We are currently studying the ‘Facebook100’

data set from Ref. [TMP12]. This data set consists of Facebook social networks at one hun-

dred American colleges and universities at a single point in time in Fall 2005. In Figure 6.2,

we show the self-reconstruction and cross-reconstruction accuracies of networks from four

universities: Caltech, Harvard, MIT, and UCLA. We use T = 108 observations to train each

dictionary. An unexpected result is that the cross-reconstruction of MIT’s network by Har-

vard’s or UCLA’s network outperforms MIT’s self-reconstruction. One possible explanation

for this is that the mixing time for motif sampling of the MIT network using a Glauber

chain may be significantly longer than 108 steps. Although there are bounds for the mix-

ing time of motif sampling of dense networks [LMS19], we are unaware of good bounds for

motif-sampling mixing time for sparse networks.

6.4 Current plans

We also are studying brain networks that encode connectivity between different locations of

human brains. Specifically, we are examining a data set that is based on functional mag-

netic resonance imaging (fMRI) studies on patients who were diagnosed with schizophre-

nia and controls who were deemed to be healthy from the Center for Biomedical Research

Excellence [ABB17]. By comparing the dictionary matrices that we learn from the brain

networks, we consider the following classification problem: Can we identify brain networks

of schizophrenic patients versus healthy controls based on atoms? Another problem that

we are studying is a network analog of ‘inpainting’ [MBP10]: we corrupt a network (by

removing and/or adding edges), learn a dictionary from the corrupted network, and then

self-reconstruct to remove the corruptions.
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(a) Atoms from ER Network (b) Atoms from WS Network (c) Atoms from BA Network
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Figure 6.1: Atoms and reconstruction accuracy using synthetic networks. In panels (a)–(c),

we show the r = 25 atoms that we learn from three synthetic networks. In panels (d)–(f), we

show self- and cross-reconstruction accuracies of the same three network models. Each curve

corresponds to reconstruction using a dictionary that we learn from some network; see the

legend in panel (f). The horizontal axis indicates the number r of atoms in the dictionary

that we use. The vertical axis indicates the accuracy based on the Jaccard distance between

the original and reconstructed networks’ edge sets. For each combination of (1) network

to reconstruct, (2) network from which we learn a dictionary, and (3) size of dictionary,

we conduct 5 trials, each of which uses a different realization of the network models. Each

marker indicates the mean accuracy over these 5 trials, and the error bars indicate the

standard deviations.
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Figure 6.2: Self- and cross-reconstruction accuracy of Facebook networks using NDL. Each

plot’s title indicates the university whose network we reconstruct. Each curve corresponds

to reconstruction using a dictionary that we learn from some university’s network; see the

top-right plot for the legend. The horizontal axis indicates the number r of atoms that we

use, and the vertical axis indicates the accuracy based on the Jaccard distance between the

original and reconstructed networks’ edge sets.
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CHAPTER 7

Conclusions

In this thesis, we explored tools to model and analyze complex systems. In the first half, we

discussed two classes of opinion models on networks, voter models and bounded confidence

models. In the second half, we explored applications of topological data analysis and network

dictionary learning.

We introduced a nonlinear version of coevolving voter models (CVM) in which the prob-

ability that a node rewires or adopts is a function of how well it “fits in” with the nodes in its

neighborhood. We compared the effects of various rewiring mechanisms and various network

structures in linear CVMs and our nonlinear version. We observed that our nonlinear CVM

exhibits qualitatively similar characteristics as the linear CVM of Ref. [DGL12] with respect

to terminal state densities when both models are initialized on ER networks with equal state

densities. For example, both types of models possess a regime with rapid fragmentation into

communities of different opinion states and a regime in which the system reaches a consensus.

However, when we seed the opinion models with more complicated network architectures,

such as ones with community structure or core–periphery structure, we observed striking

differences between our nonlinear CVM and the aforementioned linear CVM. In these sce-

narios, when the nodes have distorted views of local densities — such that they believe that

they are in the majority or minority when the opposite is true — the value of our CVM’s

nonlinearity parameter has a major effect on terminal state densities. For certain values of

the parameter and certain initial network topologies, the initially minority state consistently

became the consensus in our simulations. For other values of it, the initially majority state

consistently became the consensus.

We also discussed ongoing work that extends the Deffuant–Weisbach model for opinion
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dynamics to hypergraphs. We presented some preliminary analysis and numerical results on

the convergence dynamics of this model for complete hypergraphs.

We then explored applications of topological data analysis to integrated circuits (IC).

Current methods to analyze IC layouts for manufacturability are limited to low-dimensional

tolerance checks. However, using tools from topological data analysis — specifically, persis-

tent homology — we present ways to examine high-dimensional coverage data at multiple

scales. By computing Betti plots, we obtained helpful summaries of coverage data sets. We

also demonstrated that Betti plots are robust to a certain type of subsampling that is similar

to clipping in chip testing. We then discussed how Betti plots enable fast and quantitative

comparisons between coverage data sets, and we used these comparisons to determine pat-

tern symmetries and inter-layer relations that arise in the photolithography process. We

were also able to find similar and dissimilar patterns using only coverage data.

Finally, we discussed ongoing work that investigates applications of a recently developed

data analysis algorithm called network dictionary learning (NDL). We presented some pre-

liminary results on network reconstruction using NDL on both synthetic and real networks.

Networked systems are ubiquitous, from human interaction to physical devices. We

studied a few of the many ways in which one can use networks to model dynamics and

analyze data. Looking forward, there are many opportunities to unite these modeling and

statistical approaches. For example, there are interesting questions regarding model inference

in the space of opinion dynamics. Conversely, combining a model-based approach with

methods such as TDA may yield insights into many pertinent questions about the IC design-

manufacturing process.
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