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Preface

At the request of the U.S. Department of Energy’s 
(DOE) Advanced Scientific Computing Research 
(ASCR) program, a workshop was held January 7–9, 
2015, in Rockville, Md., to examine computer security 
research gaps and approaches for assuring scientific 
computing integrity specific to the mission of the DOE 
Office of Science. Issues included research computation 
and simulation that takes place on ASCR computing 
facilities and networks, as well as network-connected 
scientific instruments, such as those run by other DOE 
Office of Science programs. Workshop participants 
included researchers and operational staff from DOE 
national laboratories, as well as academic researchers 
and industry experts. Participants were selected based 
on the prior submission of abstracts relating to the 
topic. Additional input came from previous DOE 
workshop reports [DOE08,BB09] relating to security. 
Several observers from DOE and the National Science 
Foundation also attended.

The workshop was divided into four topic areas: 
1 Extreme Scale Power Grid Simulation, 2 Trustworthy 

Supercomputing, 3 Trust within High-end Networking and Data 

Centers, and 4 Extreme-Scale Data, Knowledge, and Analytics 

for Understanding and Improving Cybersecurity. Participants 
were divided into four corresponding teams based on 
the category of their abstracts. The workshop began 
with a series of talks from the program manager and 
workshop chairs, followed by the leaders for each of 
the four topics. The rest of the workshop consisted 
of topical breakout discussions and focused writing 
periods that produced most of this report. Although 
the workshop was organized around four topics, this 
report is structured around the latter three because 
they focus more clearly on the primary issue of security 
of scientific computing integrity, rather than computer 
security more broadly. However, some of the text about 
Extreme Scale Power Grid Simulation remains in this 
report as a motivating example of the need for ensuring 
scientific computing integrity.
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Executive Summary

The Department of Energy (DOE) has the responsibility 
to address the energy, environmental, and nuclear 
security challenges that face our nation. Much of DOE’s 
enterprise involves distributed, collaborative teams; 
a significant fraction involves “open science,” which 
depends on multi-institutional, often international 
collaborations that must access or share significant 
amounts of information between institutions and over 
networks around the world. The mission of the Office 
of Science is the delivery of scientific discoveries and 
major scientific tools to transform our understanding 
of nature and to advance the energy, economic, and 
national security of the United States. The ability of 
DOE to execute its responsibilities depends critically 
on its ability to assure the integrity and availability of 
scientific facilities and computer systems, and of the 
scientific, engineering, and operational software and 
data that support its mission. 

The large-scale science and energy research funded by 
DOE increasingly relies on large-scale computational 
modeling and simulations, as well as on capturing 
data from scientific instruments, and then analyzing, 
transmitting, storing, and sharing that data all within 
computational environments. Much of that research 
has results that are purely scientific, while some of the 
research findings, including those from computational 
results, can also inform national policy decisions. 
Moreover, the areas for which DOE is uniquely 
responsible, including energy, environment, and nuclear 
weapons, all directly affect our nation’s future security 
and prosperity. And in each case, scientific computing 
integrity assurance is extremely important. Even for 
the basic science, since U.S. taxpayer dollars fund a 
large cadre of the nation’s top scientists to do research, 
it is vital that the results can ultimately be trusted. 
For applied science, the integrity of the computations 
and the data used to achieve these results is critical to 
provide confidence in any resulting policy decisions, 
as well as ensuring the safety of DOE’s own scientific 
instrumentation infrastructure. However, even when 
simply considering investments within the DOE itself, 
it should be noted that computational simulations 
are increasingly used in the design and operation 
of advanced DOE user facilities, representing a 
considerable investment of public funds. Thus, even 
at this level, it is imperative that computational 
simulation results be trustworthy to avoid waste and 
misuse as a result of the policy decisions to invest in 
such facilities.

We define scientific computing integrity as the ability 
to have high confidence that the scientific data that 
is generated, processed, stored, or transmitted by 
computers and computer-connected devices has a 
process, provenance, and correctness that is understood. 
Vital components of scientific computing integrity 
are also metrics and measures of both integrity and 
uncertainty in order to evaluate how much confidence 
can be placed in that data. Thus the development 
of advanced scientific computing methodologies for 
the design and evaluation of security of large-scale 
computational systems in the interests of assuring 
scientific computing integrity is of vital importance. 
DOE science relies on both commodity and exotic 
technologies, including software, data, and hardware 
computing assets that have risk profiles that are poorly 
understood by the research and computer security 
communities. Even when DOE science uses commercial 
off-the-shelf (COTS) computing infrastructure, the 
science being supported has workflows often not seen 
elsewhere in the computing community, meaning 
that the consequences of security risks to scientific 
computing integrity are not well understood.

Research is needed into security techniques appropriate 
for open scientific environments. “Classical” computer 
security techniques work primarily by restricting 
access and limiting information flow. This is because 
many of the original techniques were developed  
to protect military systems, where high-assurance 
confidentiality and integrity are paramount.  
And this is still often true of modern security research  
results developed for the purposes of other U.S. 
government agencies such as the Department  
of Defense, the Department of Homeland Security, 
and the intelligence community. However, security 
strategies centered around highly restrictive access 
controls are often inappropriate in open scientific 
environments. (Indeed, as exemplified by the numerous 
security breaches involving large-scale data thefts  
in 2014, these techniques may be ineffective even 
in non-scientific environments.) Regardless, in 
open scientific environments where computational 
throughput is a primary goal, there is clearly a critical 
tradeoff between openness and classical computer 
security techniques that emphasize greater isolation. 
Thus, new research is needed to explore technologies 
in order to preserve and maximize the scientific 
openness necessary to DOE’s scientific infrastructure 
while ensuring integrity of the science conducted using 
that infrastructure. Moreover, successful research in 
this area may well have applicability beyond DOE’s 
mission space.
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Vision and Goal. The vision and goal of this report is to 
identify fundamental research challenges to enable 
scientific computing integrity and computer security 
by achieving repeatable, reproducible workflows that 
produce computing results whose process, origin, and 
data provenance is understood, whose correctness 
is understood, and for which uncertainty estimates 
are provided. Accordingly, these capabilities must 
be enhanced by systems with autonomous decision-
making capabilities responding at light speeds, giving 
scientists the ability to make informed decisions about 
the integrity of their data.

Measures of Success. Success in scientific computing 
integrity would ideally be to have provably secure 
extreme-scale computing systems and workflows. 
In the absence of provably secure systems, success 
would entail having extreme-scale systems with some 
provably secure components and reliable, useful data 
describing the events taking place in those systems, 
that, with the proper analytics, can accurately 
characterize security-related events that affect 
scientific computing integrity.

Research Recommendations

As we discuss later in the report, several key research 
strategies to achieve this success include:

Enhance the “trustworthiness” of DOE 
supercomputers by developing:
• means to build solutions for assuring scientific 

computing into the design of supercomputers;

• robust means for evaluating ways in which a system 
composed of interconnected, networked elements 
can affect scientific computing integrity;

• precise and robust means of capturing the right 
data to provide concrete evidence of scientific 
computing integrity such that reproducibility is 
possible and also so that integrity can be verified 
when it is maintained or diagnosed when it cannot; 

• metrics for quantifying the trustworthiness 
of scientific data, capturing the likelihood 
and potential magnitude of errors due to 
uncertain inputs, incomplete models, incorrect 
implementations, silent hardware errors, and 
malicious tampering; and

• significantly improved means for balancing the 
assurance of scientific computing integrity between 
hardware and software to best monitor and 
maintain integrity while also minimally impacting 
the throughput of scientific research. 

Develop means to assure trust within 
open, high-end networking and data 
centers by performing research to:
• understand the resilience of DOE scientific 

computing to integrity failures in order to 
understand how to best create data centers to 
support increasing computing integrity;

• explore how the evolution of virtualization, 
containerization, and modular runtime 
environments impact scientific computing integrity, 
and where control, layering, and modularity 
enhance integrity assurance, and where it adds 
complexity and scaling problems;

• understand how to create new, scalable techniques 
that enable the secure tagging of data and 
network packets in real-time for subsequent policy 
management and forensic analysis; and

• create means for developing coherent authorization 
and access controls particular to the open science 
mission, which can maximize integrity and 
computing efficiency.

Research and develop means to collect 
extreme-scale data and knowledge, and 
develop and apply analytics in order 
to understand and improve scientific 
computing integrity and computer 
security by:
• developing an analysis framework capable of 

collecting scientific computing integrity data at 
an unprecedented scale from multiple sources that 
collectively represent the system under study to 
enable adaptive, streaming analysis for monitoring 
and maintaining scientific computing integrity;

• developing means to learning and maintaining 
interdependent causal models of the scientific 
computation, exascale system, and computer 
security in real-time to enable better, faster 
recovery to reduce disruptions to scientists’ efforts;

• developing capabilities to model, quantify, and 
manage exascale performance to allow exascale 
computing users and system operators to effectively 
manage the tradeoffs between scientific throughput 
and scientific computing integrity performance; and

• develop new methods for meaningful risk measures 
and threat measures of HPC integrity.
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No research program currently exists within DOE 
or elsewhere whose mission is to produce research 
results that will allow these objectives to be achieved. 
A new program in this area must leverage the current 
strengths within ASCR’s Applied Mathematics program 
in predictive modeling and simulation and data 
analysis, as well as strengths within the Computer 
Science and Next Generation Networking for Science 
programs for developing trustworthy supercomputing 
and high-end, trustworthy networking systems. 
Additionally, this research effort should have strong 
ties to exascale efforts. Notably this should include 
the aspect of the resilience effort focused on fault 
detection—a program in scientific computing integrity 
could extend that work such that when a fault is 
detected, research results may help to correlate with 
parts of the system to ensure that the fault is not 
caused due to malicious intent. This research effort 
should also have ties to the X-stack effort, which is also 
focused on co-design of hardware and software suitable 
for exascale systems. Building security into that 
stack from the outset is vital to scientific computing 
integrity. Finally, this effort should have close ties to 
Office of Science facilities, including both traditional 
computational and networking facilities such as ESnet, 
NERSC, and the Leadership Computing Facilities, but 
also “cyber-physical” scientific instruments such as the 
light sources and particle accelerators. 
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1 Introduction: A Research Path for 
Assuring Scientific Computing 
Integrity

DOE has the responsibility to address the energy, 
environmental, and nuclear security challenges that 
face our nation. Much of the department’s enterprise 
involves distributed, collaborative teams; a significant 
fraction involves “open science,” which depends on 
multi-institutional, often international collaborations 
that must access or share significant amounts of 
information between institutions and over networks 
around the world. The mission of the Office of Science 
is the delivery of scientific discoveries and major 
scientific tools to transform our understanding of 
nature and to advance the energy, economic, and 
national security of the United States. The ability 
of the department to execute its responsibilities 
depends critically on its ability to assure the integrity 
and availability of scientific facilities and computer 
systems, and of the scientific, engineering, and 
operational software and data that support its mission. 

The ability to assure that integrity and availability 
of scientific facilities, computer systems, and data is 
a monumental and very difficult challenge. However, 
given the critical impact of the scientific results of DOE 
research on the nation’s well-being, developing new 
means to assure scientific computing integrity is vital. 

High-Consequence Examples. Computing increasingly 
plays a critical role in many areas of modern science. 
However, that science often also plays a role in public 
policy, economics, and infrastructure development. As 
such, were some silent failure of scientific computing 
integrity to occur, the effects could have far-reaching 
consequences. For example, scientific computing 
related to energy and climate research could lead 
to the insertion of flaws in the design of our energy 
infrastructure, or the generation of incorrect data on 
which public policy relating to climate and energy 
policy is made. In both of these cases, the DOE relies 
on extreme-scale computing in order to perform 
much of the research analysis. And, were the scientific 
computing integrity of power grid or climate research 
to fail in a silent way, policy changes relating to energy 
infrastructure design and energy consumption in 
the United States might be put into effect that could 
make the power grid less stable, or lead to improper 
responses to current grid stability issues. To illustrate 
the potential cost of grid instability, consider the 2003 
blackout which began with a single-line failure in 
Ohio and spread to the Eastern seaboard, ultimately 
affecting 50 million people and inflicting costs 
estimated at up to $10 billion.

And the risk of such a failure is real—the power grid 
has been described as the “most complex machine ever 
built [Ami02],”and it is this complexity that can enable 
integrity failures to be either accidentally masked or 
intentionally hidden. Indeed, the size and complexity of 
power grid modeling and simulation is an HPC grand-
challenge problem in its own right [MMCS11]. That 
said, while extreme-scale computing is an important 
component of power grid research, it does not, however, 
stand on its own. The power grid comprises a massive 
number of control systems. To include actual control 
systems in any computational power grid analysis, 
extreme-scale, trustworthy cyber-physical network 
testbeds must also be in place. 

Figure 1: Illustration showing grid disturbances, including the scale 

and speed of the effect of the disturbances. These two maps show the 

propagating frequency disturbance at time points separated by less 

than two seconds.
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In addition to energy grid and climate modeling, there 
are numerous other areas of scientific computing that 
have significant practical and policy impact. Other 
examples of potentially dangerous results due to loss of 
scientific computing integrity include:

• flawed genomic research and protein analysis of 
biological energy sources could lead to overstating 
or understating the impact of renewable energy 
sources

• erroneous results in computational seismic research 
and simulation, affecting building designs and 
undermining protection for people and property

• erroneous computational results for material 
property analysis, leading to flawed material 
production and use in products ranging from 
computers to automobiles to aircraft.

Then there is the wider issue of overall protection of 
systems and information. Recent news stories have 
illustrated the breadth of the challenge facing the 
nation and world:

• The world’s largest personal computer maker had 
installed software on its computers that monitored 
users’ activity without their knowledge and could 
have been used by third parties to breach security 
systems.

• Major firms’ databases are routinely hacked, 
resulting in the personal medical and financial 
information for tens of millions of individuals 
falling into the wrong hands.

• A leading entertainment company’s systems were 
hacked, leading to the release of information 
embarrassing to the company, employees’ personal 
data, and the threat of further action unless the 
company altered its business plan.

• In several regional conflicts in Eastern Europe, the 
network infrastructure was an early target of the 
aggressors.

Finally, activity by employees inside institutions can 
also pose a threat, whether by releasing sensitive 
information about political activities and intelligence 
strategies, or using restricted systems to design  
military systems for a foreign nation, as has happened 
in the past.

1.1 Ensuring Scientific Computing 
Integrity is Different from Traditional 
Computer Security

The “C-I-A” triad of goals for computer security—
confidentiality, integrity, and availability, has guided 
most system development for the past several decades. 
Confidentiality in particular has had a major role, 
given that much of the original computer security 
work derived from U.S. Department of Defense needs 
and funding. For example, early efforts in computer 
security focused on modeling access controls and 
limiting information flow [Bib77, BL73, Den76, GM82, 
HRU76]. However, the goals of the Office of Science are 
largely distinct from the Department of Defense (DoD), 
Department of Homeland Security (DHS), and even 
National Nuclear Security Administration (NNSA) foci, 
which are subject to different constraints and their own 
unique challenges, often centered around the notion 
that confidentiality needs are paramount. Indeed, 
solutions appropriate to such facilities might hurt open 
and international science where availability and data 
sharing are often of greatest importance.

Moreover, DOE Office of Science solutions are also 
very different from general purpose computing as well. 
For example, DOE’s high-performance computing 
and large-scale science instrument workflows differ 
from those in general-purpose computing in that each 
individual workflow can require extremely high-
performance and also highly distributed networking 
and computing infrastructure. This stands in contrast 
to general-purpose computing that might collectively 
require high-performance, distributed infrastructure 
(e.g., commercial video streaming services such as 
Netflix or YouTube) but for which the individual 
processes have comparatively miniscule resource 
requirements. Additionally, those scientific workflows 
are often much more well-defined and have use cases 
that vary less often than general-purpose computing. 
For example, DOE supercomputers might run one 
program that runs for days or weeks on tens of 
thousands of processors, and can often run a very 
small handful of scientific applications over and over 
again for months in a predictable way, depending on 
when a scientist submits a computation to the job 
queue. Consider this in contrast to someone working 
in an office environment who switches back and forth 
between their word processor, email program, calendar, 
contact manager, and web browser (with perhaps 
dozens of different sites visited) perhaps many times 
within a few minutes at intervals that are not easily 
predictable or consistent from one person to the next. 
In the latter situation, anomaly detection systems that 
label behavior that statistically deviates significantly 
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from normal behavior as “malicious” frequently cannot 
be effective because the variability of programs and 
users is so high that malicious behavior is lost in the 
noise [SP10]. In contrast, the regularity of the workloads 
in high-performance computing environments provides 
an opportunity to implement stronger anomaly detection 
with a much lower error rate.

Regularity of behavior patterns on supercomputers 
versus conventional platforms is unique to DOE 
because of the development of HPC software within 
DOE and the requirements that it be performance 
portable and uniformly robust (debugged) between 
large- and small-scale computing architectures. One 
expects a set of CPU cores that process a given HPC 
workload to show a largely similar behavioral pattern, 
as has been successfully demonstrated in past efforts, 
to “fingerprint” what is running on supercomputers 
and verify that it is within policy for what a user is 
supposed to be running on DOE resources [Pei10, SP10, 
WEPB12, WPB13]. This natural homogeneity is the 
friend of the defender as benign deviations of behavior 
are less likely to occur.

Specifically, the Office of Science must provide 
assurance for availability and integrity of facilities 
and data for open scientific research, including 
international collaborations and extremely data-
intensive applications. The Office of Science labs 
and user facilities function in completely open 
environments and are often accessed by authorized 
users around the world. Thus, the primary goals of 
the Office of Science are to enable collaborations and 
open data sharing, unlike many other U.S. government 
agencies, for which the primary goals are often 
to strictly restrict access to all data on machines. 
Moreover, the security controls that are used must be 
minimally intrusive both for the scientific users and the 
computational environment that the scientific analysis 
is performed in. For example, on an Office of Science 
system, multiple research projects from multiple 
countries run on the same machine but some side 
channel attacks to determine other user actions may be 
tolerable. Additionally, discretionary (not mandatory) 
access control paradigms are used. They allow external 
network connections and do not use traditional 
“stateful” and or “deep-packet inspecting” firewalls due 
to the extreme, negative impact on network throughput. 
Thus, while compute facilities make reasonable efforts 
to protect data confidentiality, in comparison to many 
other environments they must accept more risk in the 
interest of their primary mission of advancing science 
goals. However, scientific computing integrity and 
availability still remain paramount goals.

Assuring the integrity of DOE open scientific processes 
requires an ability to look at heterogeneous sources of 
information, such as the network, computing nodes, 
scientific instruments, storage systems, operating 
systems, runtime and applications, and detect patterns 
that represent faults of various kinds, including 
incidental and intentional corruptions. Understanding 
the source of the faults, and in particular determining 
if these result from malicious attacks (including 
insider attacks), accidental failures, or natural faults 
(e.g., cosmic rays causing bit flips, drive failures, etc.), 
requires the ability to classify the faults. Presenting the 
results of such a failure analysis in a useful way to an 
end user is also essential, as is determining appropriate 
mitigation, remediation, and recovery strategies. 

It is important to note that although on one level,  
it does not necessarily matter whether a fault is 
intentional or not—a failure to scientific computing 
integrity has occurred and must be corrected, 
regardless of whether a user accidentally or 
intentionally caused that fault—there are key 
distinctions that should be considered. For example,  
a benign or natural fault is more likely to be caught  
by existing fault-tolerance techniques, be they  
fault tolerance built into the computer system, or  
the “fault tolerance” of science itself in which 
multiple experiments are run repeatedly by multiple, 
independent teams to see if the same results are 
achieved. A natural fault or accidental failure may 
well show up as an inconsistency in such a case. In 
contrast, a motivated attacker could theoretically alter 
the results in a consistent way, thus potentially evading 
detection entirely despite the redundancy already  
built into computer systems and scientific processes.  
An insider threat—someone with increased levels  
of access to or knowledge of a system and/or trust by 
an organization [BEF+10]—would be particularly  
well-suited to creating such a consistent attack. The  
fact that motivated, malicious attacks are harder 
to detect does not necessarily make them greater 
risks, however. For example, the amount of scientific 
computing integrity failures today due to user error or 
natural fault is likely to be high, given the increasing 
complexity and scale of the computing systems being 
used. Thus, we believe that at present, non-malicious 
failures are at least as significant a problem to be 
addressed through additional research as malicious 
attacks. Exascale computing will increase this 
challenge even more as system architectures scale to 
many millions of processor cores.

From a DOE open science perspective, the complex 
systems that must be understood from a computing 
integrity and computer security perspective include 
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Office of Science scientific user facilities, including 
high performance computing environments such as 
NERSC and the Leadership Computing Facilities; 
extreme scale network facilities, notably ESnet; as well 
as numerous networked scientific instruments, such as 
light sources and particle accelerators. 

Open DOE science represents a federated community of 
data sources (including data repositories and scientific 
instruments of varying scale), high performance 
computing and networking, computational resources, 
and an international community of researchers  
who generate vast quantities of research output from 
them. Additionally, data centers and networks combine 
to provide the mechanism by which data is stored, 
discovered, and transported. Additionally data centers 
support a number of the underlying mechanisms 
for computational science, including managing the 
authentication and authorization of scientists  
and providing interfaces used by scientists and others 
in the community for computation, visualization, data 
management, and other computational  
scientific analyses.

1.2 Challenges and Opportunities in 
Ensuring Scientific Computing 
Integrity

Computing system integrity—due to attacks against 
and vulnerabilities in public, private, academic, 
and commercial facilities—has come to the public 
forefront. Today, computer security is largely dependent 
on known threat models developed from within 
application domains where they have been particular 
foci, such as national security, financial security, 
or health privacy. Risks can then be modeled or 
categorized according to the “confidentiality, integrity, 
and availability (C-I-A)” methodology. However, 
DOE high-performance computing requirements are 
different than many of these traditional environments. 
In contrast to a DoD weapons system or financial 
transactions in a large banking form, potential 
scientific risk examples may include:

• numerical uncertainty or computational variance 
for experiments and simulations

• vulnerabilities of politically sensitive scientific data 
(e.g., climate data) to deliberate deception from 
political or financial actors

• vulnerability of networked-equipped DOE 
instruments and facilities (e.g., remotely controlled 
experiments) for misuse.

The DOE has a well-defined mission of encouraging 
and supporting the security of the open science 
institutions that it supports. This requires deep 
understanding of that mission and the dependencies 
that open science has on network-connected computer 
systems. For instance, attacks that might otherwise 
be considered mundane or uninteresting might 
collectively result in an erosion of trust in scientific 
results. Addressing this requires a study of important 
factors that might degrade the effectiveness or impact 
of open science, e.g., threats to the integrity of result 
reproducibility, experimental accuracy, etc. Moreover, 
it has become clear that detection and response are 
equally as important as a priori prevention of scientific 
computing integrity manipulation. 

The increase in the sophistication of computational 
scientific workflows makes for a complex ecosystem, as 
authentication needs for multi-site activity strains the 
traditional notion of authentication and authorization. 
In addition to workflow complexity, data volumes 
are growing extraordinarily fast, as are the ongoing 
site and system architecture growth in global file 
systems, the integration of software defined networking 
(SDN), Internet Protocol version 6 (IPv6), and the 
march toward exascale computing and the looming 
computational challenges that go with it. To be clear, 
these changes bring both security challenges as well 
as opportunities for improved security [Mon13]. To 
address these challenges, it has become clear that a 
re-examination of foundational issues surrounding how 
we enable scientific computing integrity and computer 
security in large user-base open scientific instruments 
and their environments is needed.

Open DOE scientific facilities such as light sources 
and particle accelerators, and international scientific 
facilities used by DOE researchers, such as the 

The Advanced Light Source provides 39 beamlines for studying a wide 

range of scientific problems.
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Large Hadron Collider (LHC) and the Large Synoptic 
Survey Telescope (LSST) are reliant on fast, secure 
network connections. These connections primarily 
support the transfer of sensor measurement datasets. 
Some of these network connections must carry 
extremely large 

The Large Synoptic Survey Telescope, being built on a remote 

mountaintop in Chile, is expected to start gathering data in 2019.  

Artist rendering by Michael Mullen.

volumes of data to and from remote sites not co-
located with storage and computing equipment, such 
as the LSST which sits at 2,682m above sea level on 
a mountain in Chile. This creates challenges both 
with regard to security and policy issues that arise on 
international networks, but also technical challenges 
relating to maintaining throughput of the data transfer, 
and consequently, integrity of the science. At the same 
time, network interfaces are being integrated directly 
into these instruments and associated devices, thereby 
making them potentially reachable from outside 
networks, thereby increasing their vulnerability. And, 
unlike many enterprise computing environments, 
computing infrastructure supporting large-scale 
scientific instruments is often “frozen” for very long 
science runs (weeks, months or years), creating a 
tension with typical computer security patching 
techniques.

HPC is an integral part of DOE’s mission and the DOE 
labs have some of the most advanced supercomputers 
in the world. The DOE ASCR computing environment is 
unique in many ways:

• Sheer size of data: A full-
configuration run on NERSC’s 
“Edison” supercomputer can 
use almost 400 TB of RAM.

• Short lifetime of DRAM data: 
DOE applications update 
memory frequently.

• Number of processors in use: 
10,000+ processor node runs 
are commonplace.

• Frequent tightly coupled 
communication: DOE 
applications communicate 
data between processors at 
high rates, requiring both 
short (microsecond) latencies 
and high bandwidth (10–100 
Gbps) communication 
between nodes. 

The Cray XC30 supercomputer Edison at NERSC. 

Even small computing jobs (e.g., 1 percent of an 
HPC system’s full configuration or a few hundred 
nodes) on a DOE supercomputer are large compared 
to typical server or database workloads. DOE 
applications use unique communications patterns 
such as collective MPI and parallel global address 
space to perform parallel processing (not client-
server, and no notions of upstream or downstream 
network). The DOE supercomputing workload consists 
of scientific applications highly tuned for these 
specialized hardware environments. DOE has decades 
of experience running these applications addressing 
large problems at scale on these platforms. In a sense, 
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DOE’s computational needs have been met by vertically 
integrated hardware and software platforms, consisting 
of high-end processors, fast interconnects, optimized 
parallel runtimes, and tuned scientific applications.

Despite the challenges posed by the complexity of 
this environment, there is also opportunity. DOE’s 
HPC systems run very special software stacks. DOE 
develops many of its own applications. DOE has a 
large investment in systems and numerical libraries 
that form the foundation of those applications. In 
procuring and deploying HPC systems for many years, 
DOE has already confronted severe performance 
imbalances and obstacles to scalability. Going forward, 
it should seek programming models that better adapt 
to both the performance and reliability of available 
resources to achieve correct process completion. No 
institutions are better positioned to understand this 
software, and be able to assure its integrity using well-
defined automated processes, than the DOE national 
laboratories already developing the software and 
hardware stacks.

1.3 Toward a Path of Assuring Scientific 
Computing Integrity

Success in scientific computing integrity 
would ideally be to have provably secure 
extreme-scale computing systems and 
workflows. In the absence of provably 
secure systems, success would entail 
having extreme-scale systems with 
some provably secure components and 
reliable, useful audit log data that, with 
the proper analytics, can accurately 
characterize security-related events that 
relate to verification and validation of 
scientific computing integrity.

In an ideal world, it would be possible to construct a 
system by bootstrapping only from components whose 
behavior and trustworthiness can be can be proven 
or characterized from first principles [PTB12]. But 
even for specialized supercomputers, this is likely out 
of reach due to cost and scaling reasons. That said, 
formal verification is still an essential component of 
assuring scientific integrity, and indeed, several areas 
in computer science have already shown substantial 
success in formal verification. However, substantial 
research must still be undertaken to determine how 

to develop means for verifying supercomputing 
applications and environments, and to determine how 
the resulting techniques can be integrated into the 
development cycle. Therefore, Section 2 of this report 
focuses on Trusted Supercomputing, largely centered 
around research into the co-design of hardware and 
software systems that can be assured in this manner as 
much as possible.

Section 3, Trust within Open, High-End Networking 
and Data Centers, is closely related to Trustworthy 
Supercomputing. In particular, this section broadens 
the focus beyond just supercomputers, as key 
components of the scientific computing workflow 
involve storage, networking, and, notably, scientific 
instruments. These instruments produce large amounts 
of data at high rates, and analysis of this data is 
computationally intensive. Large-scale, highly tuned 
computing and workflows are required due to the need 
for near real-time responsiveness. Other workflows 
may be “wide area” and require access to outside data 
and databases, as in the case of a significant amount 
of DOE materials research. How can we develop the 
methods and mechanisms to validate such large and 
heterogeneous processes?

Section 4 focuses on Extreme-Scale Data, Knowledge, 
and Analytics for Understanding and Improving 
Scientific Computing Integrity and Cybersecurity. As 
mentioned earlier, verification is an essential part of 
assurance, because, as Dijkstra already pointed out 
decades ago [Dij70], testing shows the presence, not 
the absence of errors. However, due to simplifying 
assumptions or practical realities of verification, 
verification alone is insufficient as well. This section, 
focusing on extreme-scale analytics, emphasizes both 
large-scale modeling and simulation of extreme-
scale scientific computing workflows as well as the 
analysis of static and runtime data that can provide 
insight into integrity failures and/or provide evidence 
of sound integrity. For example, such a system might 
enable scientists to differentiate between software 
and hardware errors (specifically random failures 
of memory access, arithmetic operations, condition 
tests, etc. on future exascale architectures), which will 
become increasingly important to ensure a reasonable 
level of productivity in the future. 
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2 Trusted Supercomputing

Develop means to build solutions for 
assuring the integrity of scientific 
computing in to the design of 
supercomputers.

Compared to general-purpose and enterprise 
computing, DOE supercomputing, along with other 
high-consequence computer network infrastructure 
of interest to DOE, already has numerous and very 
specific requirements that often require significant 
investment in research and development of specialized 
components, even as supercomputers contain more 
and more commodity parts. However, given the ways 
in which the DOE supercomputing culture and 
ecosystem already has created a culture of customized 
machinery optimized to meet its needs, DOE is well 
placed to motivate potentially substantial investment 
in design for integrity, correctness, and trust. For 
example, DOE and the broader scientific community 
have historically used and developed highly customized 
memory/processor architectures (e.g., the Tera MTA, 
the ASCI machines), interconnects, operating systems 
(e.g., the Livermore Time Sharing System, or LTSS, the 
Cray Time Sharing System, or CTSS), programming 
languages (e.g., Fortran, Unified Parallel C), compilers, 
and runtimes (e.g., Berkeley Lab Checkpoint/Restart) 
closely tied to both the hardware that computation is 
run on, as well as the mathematics and the algorithms 
used to implement that math as computation. Hence, 
DOE computer security R&D can take advantage of the 
ability to impose design constraints that would not 

Sequoia, an IBM BlueGene/Q system, was the first supercomputer  

with more than 1 million cores. It comprises 1,572,864 cores and  

1.6 petabytes of memory.

be feasible in all systems. DOE is already pursuing co-
design for exascale-capable computer systems because 
the useful functioning of HPC depends on optimizing 
complex dynamic interactions between hardware and 
software, especially at extreme scale. The new features 
added to support these HPC architectures should be 
evaluated for security as part of the co-design process 
to enable scientific computing integrity. 

They should also be part of the process to make it 
easier for users to avoid errors that could lead to 
integrity loss, for example, by using programming 
languages or scientific workflow systems that reduce 
the likelihood of error leading to integrity loss. This is 
a unique opportunity, since DOE is engaged at the very 
early level stages of the system design, to introduce 
computer security requirements for hardware and 
software early in the process, especially for exascale 
systems. An emphasis on a co-design methodology 
in the development of HPC systems provides an 
opportunity to include integrity and security elements 
in the systems design.

With our drive toward exascale HPC platforms where 
natural faults will be increasingly commonplace, 
DOE is confronting the need to maintain integrity 
and correctness when hardware can no longer be 
assumed totally reliable. Such concerns differ from 
the commodity computing market. R&D investments 
are underway to address this problem, and could be 
uniquely leveraged to design future computing systems 
with intrinsic robustness that improves integrity 
and computer security as well. Conversely, broader 
advances in computer security research can suggest 
 new resilient HPC architectures. However, 

detecting accidental and natural system 
or application errors is very different to 
identifying and detecting malicious users and 
their intent. For example, checksums (e.g., 
cyclic redundancy checks) or error correcting 
codes can detect and repair some coding errors. 
However, an attacker can always craft input 
in a way that an un-keyed checksum succeeds 
and the scientific computing integrity would 
be easily compromised. Stronger methods (e.g., 
keyed hashes) exist that detect both malicious 
use and errors, but their performance overhead 
is significant. Research may be directed towards 
investigating high performance lightweight 
approaches.
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2.1 Robust and Reliable Scientific 
Reproducibility

Develop precise and robust means of 
capturing the right data to provide 
concrete evidence of scientific computing 
integrity such that reproducibility is 
possible and also so that integrity can 
be verified when it is maintained or 
diagnosed when it cannot.

A critical component in ensuring scientific computing 
integrity is the availability of high quality data about 
network and system behavior and performance that 
can be used either for near-term operational analyses 
or for long-term research on system integrity. Indeed, 
audit trails are necessary not just for ordinary security 
monitoring but for ongoing post hoc assurance and 
scientific repeatability, thus providing evidence of 
scientific integrity both to others in the current and 
future scientific community but also the interested 
public. Thus, audit trails for scientific computing 
integrity play much the same role as scientific 
notebooks in laboratory environments, verifiable paper 
ballots in public elections, and trading data in financial 
environments. 

However, just as in these other domains, we need 
an understanding of what metrics these audit trails 
provide with regard to integrity. For example, just as 
risk-limiting audits of ballots cast in public elections 
can validate and provide statistical confidence in 
the results of that election [SW12], audit trails in 
scientific computing need to provide evidence of 
whatever measures of scientific computing integrity 
have been degraded as well. Such metrics were not 
conclusively defined in the workshop discussions and 
remain an open question. But it is clear that estimating 
uncertainty that could result from accidental error as 
well as intentional tampering would be a significant 
benefit to understanding scientific computing integrity. 

To better clarify what constitutes useful audit data, 
there needs to be a dialogue with the data consumers 
to clearly articulate what exactly is needed, as well 
as what form the data should be in. Examples of 
this would be data about logins, process auditing, 
job scheduling, network traffic flow, etc. By having 
this dialogue with data consumers, data centers and 
network operators can better accommodate those 
consumers with the appropriate instrumentation 
to collect audit data, as well as storage and other 
resources. An additional issue regarding this would 

be the “sanitization” or anonymization requirements 
[BCP+10,NF14] for any sort of (non-internal) data 
sharing: how could we achieve this within an  
open environment?

There is also a balancing act—scientific computing 
integrity is one aspect of a multi-objective optimization 
just like currently less obscure design constraints 
such as speed, energy consumption, programmability, 
etc. And, to that end, integrity solutions may impose 
costs, so may be enabled or disabled depending on 
whether a security concern is perceived. In such a case, 
automated measures to improve scientific computing 
integrity probably require being informed by potential 
threat scenarios that can capture and take into account 
the likelihood and potential magnitude of errors due 
to uncertain inputs, incomplete models, incorrect 
implementations, silent hardware errors, and malicious 
tampering.

As with many operational security log systems, audit 
trails currently captured and used to analyze the 
security of DOE systems and network devices tend to 
be designed for human interpretation and consumption 
rather than automated computer analysis. This leads 
to the problem that either the data extraction needs 
to be reworked to be immediately understandable, or 
mechanisms need to be created which can do high-
quality interpretation of systems logs at volume and 
velocities which are expected in large-scale networks 
and systems. An additional challenge is that much of 
the data currently gathered is not useful for answering 
questions about scientific computing integrity, or 
even security more broadly. Indeed, most security 
logs collected on HPC machines today, as with their 
general-purpose counterparts, were designed  
for internal debugging purposes by their own 
developers [PBKM05]. 

Finally, current approaches to scientific computing 
policy management rely on metadata that is easily 
spoofed and does not take into account the provenance 
of network packets. For instance, firewall and router 
policies may be expressed over IP addresses and ports 
in network packets. This information can be spoofed by 
an adversary and is not bound to user identities or host 
processes. Operational computer security staff must 
perform significant validation and correlation during 
post-exploit forensic activities in order to analyze how 
an adversary moved through a network. In many cases, 
the lack of such metadata prevents accurate forensic 
analysis.

The problem of audit trails is exacerbated by the 
increasing use of multi-component applications and 
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more components being used in these applications, and 
a greater need for communication between different 
applications, as well as communication with services 
running outside of the immediate supercomputer 
environment (e.g., consider a database storing highly 
structured data). How will we create reproducible audit 
trails as workloads move toward greater integration 
with applications and services that run outside of the 
immediate supercomputing environment? Additional 
research is necessary to determine effective ways to 
support the auditing capabilities in HPC workloads of 
this type. 

Audit data gathering and generation is a core 
issue and should be considered a fundamental 
challenge for verification and validation of scientific 
computing integrity. Such research would lead to 
a degree of provenance that can completely re-
create the environment (including software versions, 
compilers, compiler flags, hardware). This would 
ensure reproducible science regardless of the original 
algorithm used to compute a mathematical function, 
or the round-off errors due to compiler optimization, 
software library version, or hardware characteristics. 
Additionally, new approaches are needed to tag 
network packets with metadata about user identities 
and host processes that originated the packets. The 
metadata should be non-spoofable and persistent, 
thus enabling both real-time policy enforcement as 
well as robust off-line forensic analysis even months 
after the packet captures were created. Similarly, 
new approaches are needed to tag data objects with 
metadata about user identities, application processes, 
data flows, etc. Challenges include issues of tagging 
at scale, ensuring the integrity of the metadata, and 
sensitivity-related challenges associated with the 
sharing of metadata for security purposes. 

Can we protect data against malicious tampering 
from a storage service using secure hashes? What 
about signing the communication channels for source/
destination authorization? How do we introduce 
audit trails for the passing of data between different 
applications, different machines, and different 
research groups? How do we introduce audit trails 
that validate the work that is being done on HPC 
systems is what is intended and authorized? In situ 
data processing will permit metadata to support data 
integrity to be computed at minimal cost to support 
data integrity as part of large-scale computations. 
Technologies for automating the introduction of in 
situ data analysis (generation of metadata for use 
in authentication of data integrity) and verification 
of inputs and outputs from large-scale scientific 
applications should be developed. 

Though provenance tools have been created, such 
as Harvard’s PASS system [MRBH+09], and though 
provenance standards are beginning to be created, 
such as via W3C [PROV], these tools and standards 
need to be embedded within data centers in a way 
that is clearly cognizant of the use environments, 
particularly including performance issues, and 
be expressly examined for their applicability to 
the unique challenges of extreme scale scientific 
computing integrity. Therefore, the nuanced 
provenance information must be captured to 
enable reproduction and perhaps even replay via 
an executable scientific workflow such as the DOE-
funded Tigres project [RPH+14].

2.2 Verification and Validation for 
Scientific Computing Integrity

Develop techniques and tools for 
verifying the correctness of scientific 
software under performance-optimizing 
transformations and when executed at 
massive levels of parallelism.

Scientific data integrity and computer security more 
broadly both rest on numerous assumptions and 
available specifications. Improving the integrity of HPC 
software applications requires clear specifications of 
assumptions about trusted components. Specifically, 
with improved verification steps, the trusted 
components can be replaced by verified components, 
thus reducing the number of assumptions. This 
approach defines a path for verification to define 
improved integrity of software generally and HPC 
applications specifically.

Several areas in computer science have already shown 
substantial success in verification, such as micro-kernel 
verification [KEH+09], automatic theorem proving 
supporting the verification of parts of the Linux  
kernel [HJMS03], scalable verification of protocols 
[KNP11], and recently work on verification polyhedral 
codes [SLQP14]. However, there are two major aspects 
to be addressed for verification of scientific computing 
integrity for high-performance computing systems. 
First, verifiers must be developed that can verify given 
specifications of HPC application properties. To date, 
there has been only limited research in this area so 
far. Second, developers must be able to write such 
specifications in a certain specification language and 
integrate it into the development cycle. Much as with 
the process of developing high-assurance software 
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systems, the workflow of developing scientific software 
must incorporate a cycle of specification, verification, 
and testing at as many layers of the software stack and 
for as many components as possible [PTB12]. 

Interestingly, domain-specific languages may even 
define succinct ways of incorporating or embedding 
necessary specifications into the applications. However, 
without verification we have no guarantees at all. 
Differentiating between software and hardware 
errors (specifically random failures of memory access, 
arithmetic operations, condition tests, etc. on future 
exascale architectures) will become increasingly 
important to ensure an acceptable level of scientific 
computing throughput in the future. Using a 
combination of automated formal verification of 
software and hardware, while also leveraging runtime 
testing will be crucial to maintaining acceptable 
throughput in future exascale architectures. Verification 
techniques for software, compilers, and data can be 
used to measure and assure integrity:

Software Integrity: The integrity of the software 
applications implementation is an essential piece 
and falls under the general category of software 
assurance. Numerous automated analyses are practical 
to verify low-level properties of software independent 
of explicit specifications. Mechanisms for users to 
encode further specifications of behavior and/or 
semantics significantly add to the sophistication of the 
verification and directly relate to the integrity of the 
application’s implementation and its corresponding 
relationship to physics modeled by the HPC 
application. Examples of low-level program properties 
to verify would be the absence of undefined behavior 
specific to the programming language. Examples of 
useful higher-level program properties to verify would 
be those that can be ensured across different HPC 
architectures. 

HPC Compiler Integrity: In order to formally prove some 
property of any piece of code, the correctness of a 
compiler must be ensured, so that one can be sure 
that all the properties that are proved for the source 
code still hold true for the binary generated from this 
source code. But even if the correctness of the code 
generation is assumed, the correctness of HPC-specific 
optimizations, which are essential to achieve the 
desired level of performance, need to verified. Since 
this topic is mathematically well understood, theorem 
proving and procedural fully automated approaches  
to proving can be combined to ensure the correctness of 
HPC specific optimizers.

Data Integrity: But supercomputers are not the only 
components of scientific computing. Also key is the 
workflow process involving scientific instruments. 
These instruments produce large amounts of data at 
high rates, and analysis of this data is computationally 
intensive. For example, the PDSF system at NERSC 
is part of the high-energy physics, astrophysics, and 
nuclear science workflows closely coupled with the 
simulation and data analysis requirements of those 
specific domains. Similarly, the grazing-incidence 
small-angle scattering (GISAXS) computation has 
data streaming into NERSC computing facilities from 
the Advanced Light Source (ALS) and requires rapid 
(on the order of seconds) analysis and visualization 
for researchers at the accelerator. Large-scale, highly 
tuned computing and workflows are required to do 
this due to the need for near real-time responsiveness. 
Other workflows may be “wide area” and require access 
to outside data and databases, as in the case of a 
significant amount of DOE materials research. How can 
we develop the methods and mechanisms to validate 
such large and heterogeneous processes?

Tamper-Evident Integrity Checks: To ensure scientific 
computing integrity, certain different kinds of checks 
need to be performed on stored and computed data to 
ensure that no data corruption has occurred, to ensure 
the correctness of repository contents, signatures, 
etc. The code that performs such an integrity check 
needs to be verified. In the ideal case we can verify 
the correctness of the code that performs the check at 
compile time, but perform the data-correctness check 
at runtime. This turns the problem into a combination 
of compile time and runtime verification. Certain 
properties of data consistency can only be checked 
once the data has been computed, making runtime 
verification an important ingredient of ensuring 
scientific computing integrity.

The availability of automated systems for specific 
forms of analysis of large-scale software (specifically 
binary analysis, but also source code) will be critical 
to an operational mechanism to verify parts of HPC 
systems and address essential supply chain threats. By 
controlling the entire stack we can implement systems 
that leverage the available information in source code 
to ease the burden on binary analysis (e.g., resolving 
indirect jumps is notoriously hard in a static binary 
analysis setting, compiler support can help here).

HPC applications have important properties in terms of 
precision and accuracy. Since verification can consume 
a vast amount of computing resources, focusing 
first on scientific kernels appears to be a reasonable 
approach. Before rushing to attempt to verify entire 
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HPC applications, certain properties of scientific 
kernels should first be specified and verified. Once 
these properties have been successfully verified, based 
on these results the verification of entire applications 
can be tackled. A competitive verification of scientific 
benchmark kernels could lead the way for the next  
10 years. Then, applying the same rigor, we can proceed 
to verify entire applications in 20 years.

Indeed, the ability to automate the analysis of security 
in large-scale software and firmware at HPC scale 
will enable low-level certification processes to be 
approached—that is, automated means for determining 
how to carry out designs that maintain high-integrity 
scientific computing. Low-level certification of key 
elements to demonstrate the absence of security issues 
will be key to the mitigation of risks and mechanisms 
for the insurance for software. Indeed, decomposition 
of applications into many, possibly redundant tasks 
that communicate as little as possible can enhance all 
three by saturating the processing cores with relatively 
inexpensive operations that also help cross-check the 
computation against corruption.

2.3 Assurance of Scientific Computing 
Integrity Leveraging Hardware/
Software Stack Co-Design

Develop significantly improved means 
for balancing the assurance of scientific 
computing integrity between hardware 
and software to best monitor and 
maintain integrity while also minimally 
impacting the throughput of scientific 
research.

Hardware/software co-design for trustworthy 
supercomputing must begin to take into account 
computer security requirements. In some sense this is 
not entirely new—virtualization and containerization 
technologies are a noteworthy effort to demonstrate 
effective co-design. For example, early VMware versions 
(and Virtualbox and QEMU for that matter) ran “user 
space“ guest code directly on bare hardware and 
relied on a kernel module to trap sensitive operations 
and emulate them accordingly. This process was slow 
and error-prone. Today, we have proper virtualization 
support designed directly into the hardware of 
our CPUs and a variety of hypervisors to leverage 
that support. Furthermore, para-virtualization has 
always been a cross-layer design approach where 

the guest system is aware that it is a virtual machine 
and can communicate with the hypervisor in a more 
efficient way. Intentionally breaking the virtual 
machine abstraction allows for higher performance. 
Virtualization can also strengthen the links between 
HPC and more general computer systems, since  
designs for both can mutually inform and validate  
each other. 

Despite these past successes in general purpose 
computing, the co-design process needs to more 
broadly and deeply encompass HPC software and 
hardware systems to determine how the design of 
next-generation technologies better support integrity. 
There are open questions as to how best do this in 
HPC hardware/software co-design, given the unique 
architectures and constraints, but there are also 
opportunities. For example, as core counts increase, 
some cores will likely be idle during portions of 
an application’s execution. The processing load 
(pressure) on individual cores will vary over time. 
Could supercomputing be better protected if a certain 
level of supercomputing resources were dedicated to 
analysis on an ongoing basis? Approaches for security 
can exploit underutilized resources. Adaptive security 
mechanisms that can scale to the availability of 
computational resources can make use of spare cycles. 

Co-design would also allow us to expose security 
services (such as signed executable memory pages) 
that require kernel support to cooperating user-level 
applications (gradual or opt-in approach to security 
services, for example). This method allows users 
with security-sensitive workloads to leverage these 
capabilities based on a trade-off between scientific 
computing integrity and performance. What integrity 
features should be usefully implemented in HPC 
hardware? What should be done in software? How 
would software interact with and benefit from  
such hardware features? How can computer security 
and integrity evaluation be incorporated into modeling 
and analysis approaches for HPC co-design? Again, 
although general-purpose computing has had success 
with these techniques as well, there are unique 
challenges and opportunities in HPC environments  
that require substantial additional research.
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3 Trust within Open, High-End 
Networking and Data Centers

As important as supercomputers are to DOE science, 
and thus assuring trustworthy supercomputing is an 
important part of assuring DOE scientific computing 
integrity, so too are high-end networking and open 
data centers and the integrity, management, and 
access to data they provide. As science and scientific 
communities have become larger and more distributed, 
the role of high-speed networks and data centers that 
serve diverse, international communities has increased 
within DOE. Furthermore, the workflows that tightly 
couple scientific instruments and computing facilities 
using networks and data storage systems are becoming 
increasingly important. As a result, the consequence 
of some aspect of the system failing and leading to a 
loss of scientific computing integrity in some fashion 
has also increased in both magnitude and likelihood. 
Thus, the primary aims of these high-end computing 
environments are to provide open, shared environments 
suitable for data and computationally intensive 
science while providing integrity during computation, 
experimentation, communication, and while data  
is at rest. At the same time, it is also vital to minimize 
overhead needed to maintain scientific computing.  
A prime example is the LHC Tier 1 laboratories in the 
U.S. support a large, global grid of computing and data 
analysis of LHC data and hundreds of DOE-supported 
scientists accessing, analyzing and sharing that data. 
Numerous other large-scale scientific experiments,  
both domestic and international, share similar 
requirements.

Contributing to the challenge of balancing throughput 
and scientific computing integrity, network bandwidth 
continues to increase exponentially and outpaces the 
ability of traditional computer security tools, such as 
deep-packet inspecting, stateful firewalls, and network 
intrusion detection systems, to keep pace. In particular, 
the space of data-compromise vulnerabilities at  
the instruments and storage systems seems to have 
been studied much less than traditional networks and 
computing systems. Additionally, new networking 
technologies such as software-defined networking 
(SDN) and IPv6 bring the potential to change 
computing and networking in ways that present both 
computer security challenges and opportunities for 
many years to come [Mon13, DOE14].

Data centers are the interfaces by which many DOE 
scientists interact with the data and HPC elements 
needed for their research. Networks are the mechanism 
by which these interfaces and those to critical science 
instruments are accessed, and by which data is 

transported between data centers and computing and 
instrument sites. As such, data centers and networks 
also have responsibility for scientific computing 
integrity, which includes limiting data modification and 
manipulation to authorized individuals, protecting the 
integrity of data at rest or in transit from malicious, 
accidental, and natural faults, providing confidentiality 
where applicable (e.g., due to scientific embargoes), 
and maintaining availability and ease of use so that 
scientific productivity is maximized. 

This tension between maintaining integrity and 
maximizing science productivity is non-trivial as 
noted in the “2014 DOE High Performance Operational 
Review report,” which makes numerous citations 
regarding the need for ease-of-use of computer security. 
However compromise of data centers can cause  
those data centers to be unavailable. For example, the 
report states: 

Current network security and data access policies 
pose significant challenges to data-intensive 
workflows. Data needs to flow seamlessly and at 
high performance from remote instruments to, and 
among, HPC centers and back to collaborators 
worldwide [DOEHPO]. 

Additionally, scientific computing integrity challenges 
of this research topic include:

• providing for the integrity and confidentiality of 
unique scientific instruments

• protecting DOE’s valuable reputation to the 
scientific community and the public as a provider of 
advanced scientific facilities

• providing assurances of integrity in addition to the 
integrity itself.

3.1 Increasing Size and Complexity of 
Scientific Workflow Infrastructure

Research must be undertaken to 
understand the resilience of DOE 
scientific computing to integrity failures 
in order to understand how to best 
construct supercomputers, networks, 
and data centers to support increasing 
computing integrity.

Overall, the scale, heterogeneity, complexity, and high 
stakes of DOE HPC have increasingly sharpened the 
need for achieving computing integrity solutions 
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applicable to supercomputing itself. At the same time, 
the benefits of addressing scientific computing integrity 
concerns for HPC can be leveraged more broadly 
given the continued growth of other large-scale, high-
consequence systems (e.g., smart power grids) that are 
closely linked to HPC in their modeling, architectural 
design, and simulation/emulation. In both its intrinsic 
design and its applications, HPC is increasingly 
pertinent to the broader scope of computer security 
for high-consequence systems. There is a greater 
willingness on a national scale to make decisions and 
reach consensus on globally significant actions that 
may have significant economic costs and consequences 
not only for the U.S., but for many other nations. 
As a result, the data that supports these decisions 
is a significantly larger target for corruption and/or 
compromise. In addition, multi-domain workflows are 
now emerging where jobs need to communicate  
with each other. Many applications are also emerging, 
such as new databases to communicate results for 
structured data, rather than a traditional parallel file 
system. These databases and other services may  
not be running entirely inside the supercomputer. As 
a result, applications need to interact with services 
provided by the larger data centers in which the 
supercomputer resides, which expands the layers that 
need to be protected.

Moreover, networks are becoming increasingly 
powerful and complex, and so-called “Internet of 
Things” now connect a wide variety of devices. Within 
the context of DOE science, these advances in complex 
networks enable us to connect scientific facilities 
to supercomputers to remote storage systems to 
visualization sites. This complexity leads to multiple 
entry points to compromise the scientific data, as 
it is generated, transported and stored. In addition, 
networks may expose the science instruments to 
potential compromises of their data and operations 
in unprecedented ways. While the data integrity can 
be compromised at the source before it reaches data 
centers by certain attacks, these world-class, expensive 
instruments can be operationally damaged through 
novel attacks, such as Stuxnet [Sym11] variants.

For DOE’s Energy Sciences Network, or ESnet, network 
traffic doubles roughly every 18 months, reflecting 
nearly exponential growth over the past 25 years 
(See Figure 2). The ESnet backbone is now 100Gbps, 
and nine of the large DOE labs now have 100Gbps 
connections. ESnet peers with several other networks 
at 100Gbps, and several universities now have 100Gbps 
connections as well. In December 2014, ESnet extended 
its backbone across the Atlantic Ocean by deploying 
three 100Gbps and one 40Gbps connections to Europe. 

ESnet will deploy a 400Gbps link in the San Francisco 
Bay Area this year, and will be adding additional 
100Gbps segments as well.
 

Figure 2. Exponential ESnet traffic growth over the years

Our ability to fill a 100Gbps pipe has dramatically 
increased as well. A single fast host with a 40Gbps NIC 
(network interface card) can generate a single TCP flow 
at 39Gbps, and a host with three of these NICS can 
easily fill a 100G link. Many labs and universities have 
started deploying 40Gbps Data Transfer Nodes (DTNs) 
to speed up end-to-end data transfers. 100Gbps NICs 
are starting to enter the market as well. The biggest 
vendor, Mellanox, is taking orders now and will start 
shipping 100Gbps NICs in Q2 2015. Security devices 
typically lag behind in performance by 2–3 years. While 
some 100Gbps firewalls exist, they tend to be very 
expensive, or drop packets—or both. Most firewalls are 
designed to handle thousands of extremely small flows, 
not tens of extremely large scientific flows. A 100Gbps 
intrusion detection system (IDS) can be built by 
forwarding subsets of the traffic to enough hosts, but 
this is also expensive and complex.

Over the past few years, the “Science DMZ” 
architecture has been adopted by many research 
institutions to take advantage of these new, faster 
networks [DRT+13,SDMZ]. Data-intensive science 
requires computers and networks that are minimally 
impeded by components that will slow down the 
scientific process, including data computation, data 
generation, and data storage. The Science DMZ is a 
framework that optimizes the network transfer aspects 
of data-intensive science. However this presents 
two key problems. First, many traditional real-time 
network security approaches are no longer appropriate 
for this architecture. For example, the devices sold 
commercially as firewalls often dramatically reduce 
network throughput due to the way that stateful 
firewalls doing deep packet ingestion affect TCP 
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traffic. As a result, it is absolutely vital to research 
new methods that can provide appropriate security 
without incurring the performance impact of current 
firewall and other network security technologies. 
Second, network performance itself can contribute 
to loss of scientific computing integrity. Consider the 
large-scale scientific instruments that generate massive 
volumes of data and need to have data processed and 
down-sampled in near-real time because the original 
volume is too large to store on disk. In this case the 
real-time transmission and processing requirements of 
the scientific data—availability of the C-I-A triad—are 
vital to integrity of the scientific data because lack 
of availability can potentially lead to irreproducible 
scientific data simply being dropped from the network.

It should be noted that availability is also a risk 
factor. For example, as discussed earlier but worth 
reiterating, cybersecurity controls must be developed 
that do not interfere with or degrade the availability 
of unique-in-world capabilities, including openness 
and ease of access. Moreover, denial of availability on 
a DOE HPC facility would be unfortunate and costly. 
That said, a denial-of-service attack on ESnet would 
be disruptive to the entire $30B DOE enterprise, 
including both Office of Science and NNSA labs. 
Moreover, a compromise of ESnet could turn ESnet’s 
network connections into “packet cannons” that could 
significantly adversely affect other parts of the Internet, 
thereby undermining ESnet’s integrity.

3.2 Emerging New Network and Data 
Center Technologies

Research must be undertaken to explore 
how the evolution of virtualization, 
containerization, and modular runtime 
environments impact scientific 
computing integrity—where does control, 
layering, and modularity enhance 
integrity assurance and where does it add 
complexity and scaling problems?

A significant development in network technology in 
recent years is software defined networking, or  
SDN [DOE14]. This is an approach to computer 
networking that allows network administrators 
to manage network services through a software 
abstraction of lower-level functionality. This is done 
by decoupling the system that makes decisions about 
where traffic is sent (the control plane) from the 

underlying systems that forward traffic to the selected 
destination (the data plane), enabling software to 
compute an optimal flow routing decision on demand. 
SDN is commonly used at data centers in combination 
with network functions virtualization, or NFV, for 
load balancing. For example, if a virtual firewall gets 
overloaded, one can bring up a second instance of the 
firewall and send half the traffic to it instead.

From a network security perspective, the OpenFlow 
(OF) protocol offers researchers an unprecedented 
singular point of control over the network flow routing 
decisions across the data planes of all OF-enabled 
network components. Using OpenFlow, a security 
application can implement much more complex 
logic than simply halting or forwarding a flow. Such 
applications can incorporate stateful flow rule 
production logic to implement complex quarantine 
procedures or malicious connection migration 
functions that can redirect malicious network flows 
in ways not easily perceived by the flow participants. 
Flow-based security detection algorithms can 
also be redesigned as OpenFlow security apps, but 
implemented much more concisely and deployed more 
efficiently. While a few research efforts have explored 
the potential for using SDN for security applications 
[SPV+13, MKK11, BMP10, HTK13, ZRMB14], most of 
the work is preliminary, and much more work is needed 
to validate this approach. Separate from using SDN 
to enhance computer security, the actual integrity and 
security aspects of SDN itself are highly unexplored 
with several unknowns. For example, malicious 
users having access to controllers can be potentially 
damaging and recovery can be extremely difficult 
since device access may be cut off. Other interesting 
uses of SDN for integrity and computer security 
include findings from Mehdi et. al. [MKK11], which 
demonstrate one promising research direction for both 
endpoint shunting as well as wide area integration, 
and initial implementations of active security [HTK13] 
using SDN. 

In addition to tremendous changes in the networking 
sphere, structural changes in the way that users, 
labs, and facilities interact with one another have 
occurred. Examples include the tremendous growth in 
virtualization and containerized services, huge changes 
in the effective use of multi-core and GPU offloading, 
and the emergence of exascale systems as an  
immediate reality.

In addition to complexity due to scale, there has been 
a significant increase in the complexity of the systems 
deployed, marked by increasing virtualization and 
abstraction, including such technologies as Science 
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DMZ, Docker, Linux Containers, and SDN. Together 
these yield a landscape typified by more complex 
workflows over distributed high-capacity networks 
with deep layering of indirection and authentication. 
While increasing efficiency, capacity, and flexibility, and 
in some ways improving security, these also introduce 
the potential for new vulnerabilities, either individually 
or collectively due to composition and complexity.

For example, the use of Docker [Dock] containers, 
which allow a systems administrator to easily create a 
secure sandbox for a particular network service,  
have been widely adopted. While this makes the service  
more secure by reducing the attack service, the 
additional abstraction layers can make it even harder 
to do forensics after an attack. More work is needed  
on how to model attacks in a containerized world.  
Thus containerization strategies bring both new 
challenges and opportunities with regard to scientific 
computing integrity.

Site architectural changes have become more 
significant as well, with the continuing development 
of virtual entities such as the DOE Systems 
Biology Knowledgebase [kbase] which sit (from a 
computational perspective) somewhere between 
totally outside and inside the traditional perimeter. 
Discussions regarding inter-lab and facility 
collaboration are beginning to push the traditional 
boundaries with data storage, file system, and job 
submission. All of these things have begun to wear 
away at the traditional notion of a network border 
where all activity happens within a well-defined 
address space. User interaction with facilities have  
also undergone tremendous change, moving from  
a command line-only schema to web services such 
as the NERSC Web Toolkit (NEWT)[NEWT] which 
provides browser access to System Status, File  
Upload/Download, Directory Listings, Command 
Execution, Batch Queue Jobs, Accounting Information 
and Persistent object storage. The nature and scale of 
collaboration is also changing, as exemplified  
by the near real-time analysis from the experiment 
at the Linac Coherent Light Source (LCLS) at SLAC 
using NERSC resources to make more effective use 
of valuable LCLS beam time, thereby enhancing the 
scientific value of the facilities’ resources [ESWork].

We advocate the creation of a scalable system that 
enables and demonstrates concurrent, dynamic, and 
time-constrained multilevel security for exascale 
computing that minimizes impact to performance and  
usability while meeting information protection 
requirements.

3.3 Identity and Access Management to 
Support Scientific Collaboration

Means for developing coherent means 
for authorization and access controls 
particular to the open science mission 
can maximize integrity and computing 
efficiency

Identity and access management is critical to 
expressing the organization of scientific collaborations 
regarding who can access data, who can control 
instruments, who has priority to resources, etc. It is also 
faces a number of challenges, including:

• Passwords continue to be a primary authentication 
mechanism but are increasingly susceptible to 
attack, leading to the impersonation of legitimate 
users as one of, if not the, most common computer 
security failures seen. Two-factor or multi-factor 
authentication and biometrics are becoming  
more common, but are not a silver bullet to this 
problem [BHvOS12].

• As scientists, similar to most users of the Internet 
and World Wide Web, obtain more and more 
accounts, the number of passwords increasingly 
stretches the ability of human memory, leading to 
organizational deployment of federated identity 
(e.g., InCommon), and users’ personal use of social 
identities (e.g., Google, Facebook) and password 
managers.

• Users are increasingly using multiple devices 
(desktops, laptops, smart phones, tablets, etc.) with 
each authenticating as the user. 

• As DOE scientific collaborations have grown, roles 
and the privileges granted those roles within those 
communities have become more complex.

• Scientific collaborations are playing a large and 
increasing role fulfilling key aspects of identity and 
access management [CJWC14].

To support scientific integrity, identity and access 
management also needs to keep pace with the evolution 
of computer security generally, which has evolved over 
the past two decades from being based on prevention 
to being increasingly based on managing risks to the 
business mission of organizations. Today, the process 
of managing risks is done relatively statically at the 
programmatic level. The organization evaluates its 
computational assets based on their importance to its 
mission, the threats based on a best understanding of 
the landscape, and then allocates computer security 
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assets statically to provide the best protection, 
detection, and response capabilities to manage risk at 
an acceptable level.

A more complete benefit of a risk-based approach 
can be achieved by implementing an understanding 
of risk and the ability to react to increased risk into 
the operational context. For example, risk-based 
authentication [JR04, PTK13] ties the required strength 
of authentication to the level of risk of the requested 
access. This has been implemented in at least one 
supercomputing facility by examining the geolocation 
of the client and the history of where they have 
connected from in the past. To continue to adapt to  
the rapidly changing technology landscape as well  
as our threats, a future computer security architecture 
will need to take into account an understanding  
of organizational risk in the operational context and 
allow for dynamic application of computer  
security controls.

4 Extreme-Scale Data, Knowledge, 
and Analytics for Understanding 
and Improving Scientific Computing 
Integrity and Cybersecurity

The size and importance of future DOE HPC systems 
require that computational resilience be designed and 
built into those systems. By this we mean building in 
the ability for systems to quickly and automatically 
recover from component failures and malicious attacks, 
specifically protecting the integrity of the computations 
and data resident on DOE HPC systems.

Large-scale heterogeneous systems, such as 
exascale-generation HPC, distributed smart grid 
deployments, and current and future DOE high-end 
scientific user facilities, clearly involve increasing 
degrees of complexity, introducing significantly 
greater opportunity for component failures, as well 
as compounding statistical error rates between 
components. This increase in error and uncertainty 
complicates modeling and analysis. In particular, this 
additional noise provides “cover” for malicious activity 
over computer networks, making classification of 
errors as operational failures or deliberate malicious 
activity challenging for traditional approaches. New 
approaches to provide accurate and useful HPC system 
monitoring, analysis and recovery are needed.

Specifically, advances in automated model generation, 
causal inference, and metrics for HPC security  
are all necessary to provide useful decision-making in  
exascale security. This decision-making will need 
to be informed by new approaches to the analysis, 
characterization, and risk assessment of possible 
attacks against HPC systems. 

The current state of the art, future possibilities, and 
potential impact of investment in these areas of 
modeling and simulation of HPC systems for scientific 
computing resilience are presented in the following 
sections. Of particular interest is the use of large-scale 
analytics for detecting integrity loss in current and 
future HPC systems.
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4.1 Modeling HPC Systems and their 
Operating Environments

Develop a framework for collecting 
data from multiple sources at an 
unprecedented scale that collectively 
represent the system under study to 
enable adaptive, streaming analysis for 
monitoring and maintaining large-scale 
scientific computing integrity.

Building a model of a complex engineered system 
is a standard method to predict, verify and test the 
features of the system in many different domains 
such as nuclear reactors, aircraft, and communication 
networks,. To date, however, a system-level science 
[FK06] approach has not been applied to computing 
infrastructures and systems, their behaviors, or their 
vulnerabilities. Comprehensive, holistic, system-wide 
models are necessary to predict, verify, and test  
the security features of a complex engineered system, 
such as an HPC cluster or the power grid. Such a 
model should ideally quantify in real-time the general 
security state of the system.

Taking the example of an HPC cluster, we envision 
models of supercomputers that can be used to:  
1 predict runtime performance of an application code 
portfolio; 2 detect potentially malicious deviations 
from detailed specifications within hardware, 
middleware, and software in early deployment phases 
of a new platform; and; 3 help flag anomalous user 
or code behavior during regular use in the lifecycle 
of a supercomputer platform. With the transition to 
exascale computing, the scale of the system will require 
an integrated, automatic analytic environment that 
provides a whole-system view. Such a whole-system 
model approach requires integrated models of all 
relevant subcomponents as well as model elements that 
integrate the subcomponent models. In the case of  
supercomputers, this would include models of the 
compute nodes, the interconnection communication 
network, the software stacks including application 
software, the filesystem, the access nodes, and the 
behavior of the users (both normal and malicious), and 
even the physical security, HVAC and power systems 
that are part of the cluster environment. 

One particular area worth further investigation is the 
development of large-system models with surrogate 
components. Exascale HPC, smart grid technologies, 
and other large-scale heterogeneous systems all include 
components that interact in complex ways at multiple 

levels of granularity (e.g., processor, node, blade, 
system). Additionally, these systems are composed of  
components that are qualitatively different from  
each other, e.g., physical, computer-based, and human. 
Surrogate components are estimators used to model  
the behavior of such components, which are then 
combined to model the behavior of the entire system. 

This approach has been applied successfully to real-
world problems [ZCZ+13]. However, progress is needed  
to expand this approach to heterogeneous/hierarchical 
systems at multiple levels of granularity. Expanding  
on work in adaptive models [WDY+14] could provide  
a “plug and play” modeling capability, allowing the 
modeling framework to adapt in real time to changes 
to the actual system. Finally, we need to fully utilize 
the background knowledge available about the science 
behind these large-scale systems, ensuring that, where 
possible, physical laws and established principles are 
incorporated to improve estimator accuracy and inform 
the combination of model components.

Advances in computing and the availability of big 
data should allow us to efficiently build models and 
algorithms applied to big, dynamic, noisy, uncertain 
domains such as the Internet. Preliminary hints at the 
potential of this approach are IBM’s Watson machine 
[Cho01] and extreme-scale discrete event simulation 
efforts [NBB+13, SYF10, MJV+14]. The most detailed of 
such holistic system models will present a scalability 
challenge by themselves, thus requiring significant 
supercomputing resources for execution. This calls for 
a fortunate symbiosis in the modeling relationship: 
in addition to modeling complex systems such as 
supercomputers, we use will use supercomputers to 
model other complex systems including themselves.

It should be noted that aspects of this have been 
done previously to detect misuse on supercomputers. 
As noted earlier, regularity of behavior patterns 
on supercomputers versus conventional computing 
platforms is unique to DOE. This has previously led to 
success in past efforts to “fingerprint” what is running 
on supercomputers and verify that it is within policy 
for what a user is supposed to be running on DOE 
resources [Pei10, SP10, WEPB12, WPB13], for example 
whether a process is “mining bitcoins” or performing 
some other cryptographic operations, or processing 
data that is not permitted on an open, unclassified 
scientific computing platform. 

A comprehensive approach to decision-making  
on the Internet requires maintaining knowledge of  
heterogeneous components at multiple levels of 
granularity over multiple time scales, and performing 
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integrated analysis on the data produced from the 
interactions between all of them. When looking  
at systems at scale, this huge production of raw data 
requires unprecedented computational resources 
to ingest, analyze, incorporate into models, draw 
inferences from, and make decisions on. Often these 
decisions, in the context of computer security events, 
are extremely time sensitive. We envision a data 
collection and analysis framework that is capable of  
collecting data at an unprecedented scale from 
multiple sources that collectively represent the system 
under study. Such a framework should be extensible, 
adaptive, and streaming, updating its knowledge base 
of facts through generation and scoring of multiple 
hypotheses, “making decisions” by synthesizing across 
the various hypotheses, and acting by deploying 
the best approach determined by informed risk 
assessments. 

4.2 Automated Learning of and Reasoning 
on HPC Models

Develop means to learn and maintain 
interdependent causal models of the 
scientific computation, exascale system, 
and computer security in real-time to 
enable better, faster recovery to reduce 
disruptions to scientists’ efforts. 

As discussed above, aggregated, abstracted models 
of exascale scientific computations will be extremely 
important for computational and resiliency 
performance monitoring and correction. Because of 
continual software development and tuning, varying 
input dataset characteristics and runtime computation-
to-processor mapping variations, the computational 
and semantic modeling of exascale computations might 
most effectively be achievable through the automated 
machine learning of granular models. 

Recent progress in machine learning applied to 
patterns (such as deep learning)[HOT06], program 
invariants [GLMN13, ZMAA13], compressive sensing 
of spatio-temporal data (signal processing)[Bar07], 
network science (characterizing graph and network 
structures)[HKB+12] and behavior learning (scalable 
learning of automata from observations)[CC11]  
should be leveraged to automate such exascale 
program and system modeling. By the same token, 
many of these techniques are very compute-intensive 
and presently constrained by computational 
resources so that exascale computing will be needed 

itself to scale such techniques to apply to exascale 
computing.

Advancement in such real-time algorithms for 
automatically learning appropriate computational 
workflows and attacks against them from exascale data 
should be combined with risk models of attacks against 
those workflows. This would provide a capability  
for scientists to trust their computing infrastructure, 
data and, ultimately, the results of their most critical 
simulations. 

HPC system models need to be augmented with 
causation, reasoning, and explanation capabilities. 
Only then can we reason about the security of a 
complex, networked computer system at its various 
levels (social, human, roles, information, network,  
and the real world [BSW14]) and consequently manage 
the integrity of the scientific computation and data. 
Indeed, the lack of reasoning in previous analytics for 
computer security has made the computer security 
domain one of the few computing domains that still 
heavily relies on human reasoning and explanation. 

Advances in computing and the availability of big data 
have only recently allowed us to research causation 
on the Internet. An example of previous work on 
causation for computer security can be found in Mugan 
[Mug13], where he uses a dynamic Bayesian network 
to learn an attack tree. Another example is Xie et al.’s 
work [XLO+10] where they capture the uncertainty 
inherent in computer security of enterprise domains by 
using Bayesian networks. Other approaches for using 
Bayesian methods to leverage distributed security data 
have been constrained by the need for significantly 
more computing and networking resources to support 
the analysis [BWC02]. Such constraints may not be 
present in current and future HPC systems. As a result, 
running large-scale, accurate causal models and 
reasoning algorithms in real-time to produce system 
security state estimates and associated explanations 
is now becoming possible and lies squarely within the 
purview of ASCR.

Additionally, classification of scientific integrity 
failures is an important capability because correct 
classification enables identification of the appropriate 
recovery strategies. Since not all faults cause the 
same damage, fault classification methods are often 
accompanied by the risks associated with each fault. 
Ye et al. [YNF06] provide a classification taxonomy 
for computer attacks and associate risks. Current 
classification methods and recovery strategies do not 
take into account the dynamic aspects of the changing 
supercomputing environment involving human users 
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and possible physical instruments inputting data in 
real-time. These novel challenges are exacerbated by 
the complexity of the science being modeled and the 
complexity of exascale systems.

The identification of scientific integrity failures and 
recovery strategies should be placed close to the sensors 
on an exascale system. Specifically, the classification 
and recovery strategies should be integrated within the 
exascale system. In this way, the faults can be classified 
faster because the analytics will be closer to the 
sensors (alleviating latency issues). Moreover, recovery 
strategies can be automatically triggered close to the 
fault and not affect other parts of the system. Research 
is needed to develop better, faster classification  
that will lead to better, faster recovery and reduce the 
disruptions of scientists’ efforts. Such research will 
involve efforts in both exascale hardware, placement  
of sensors and analytics (for minimizing latency),  
and modularized recovery strategies.

Some research questions under this area are:

• What are the appropriate semantics (i.e., language) 
for explanation in the computer security domain? 
Examples of explanations include reasoning about 
similar behavior in various parts of the computer 
system. Does each layer of computers and networks 
need its own specific language?

• Can the existing causal models and reasoning 
algorithms accurately and efficiently capture the 
volatile, adversarial, and interdependent nature  
of internetworked systems? If not, what should the 
new causal models look like?

• Are big causal models needed for computer 
security? Or can many small causal models be 
effective? 

• Are there projections into an interpretable lower-
dimensional space, where causal models can be 
learned more easily from big data?

• How should the causal models of scientific 
computation and their data interact with the casual 
models of the exascale system and its security?

4.3 Metrics for HPC integrity

Develop metrics to model, quantify, and 
manage exascale performance to allow 
exascale computing users and system 
operators to effectively manage the 
tradeoffs between scientific throughput 
and scientific computing integrity 
performance.

Exascale computing performance has multiple 
dimensions, including classical computing performance 
metrics (operations executed per second and data 
transfer rates, for example) and integrity levels of 
the actual scientific computation and data. Effective 
exascale computing ideally seeks high performance 
in all dimensions. But this may not be possible due to 
tradeoffs between observed computational performance 
and scientific computing integrity arising from the 
overhead required by extraneous code that enforces, 
monitors, and analyzes integrity. Defining, modeling, 
and measuring these performance dimensions is a major 
challenge for high-confidence exascale computing 
systems. Moreover, understanding and managing 
tradeoffs between such performance dimensions is 
necessary for operating effective exascale systems.

Quantifying, modeling and measuring classical 
computing performance are relatively mature areas 
that can be leveraged immediately [HP12]. The same 
cannot be said about the integrity and reliability 
properties of general computing systems, let alone 
large-scale open scientific computations [Jan11]  
such as envisioned for future exascale systems. While 
several memory and data transfer error detection and 
correction mechanisms already exist, those mechanisms 
assume small, independent failures appropriate in 
reliability analysis and recovery for natural, organic 
faults in the computing system [CT12]. 

However, such mechanisms are not appropriate for 
either detecting or recovering from large, correlated 
errors that can be introduced deliberately by human 
adversaries with the intent of subverting the integrity 
and/or efficiency of an important scientific computation. 
Quantifying and measuring the operational resiliency  
of an open, heterogeneous exascale computing system is 
an unexplored research area. Significant progress  
on the development of such capabilities would allow 
exascale computing users and system operators  
to effectively manage tradeoffs between integrity and 
overall computational performance.
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4.4  Risk Assessment and Management 
of HPC Integrity

Research is required to develop new 
methods for meaningful risk measures 
and threat measures of HPC integrity.

Quantifying scientific computing integrity will allow 
the management of processes on any DOE scientific 
instrument or facility. HPC behavioral models, 
together with methods to dynamically update these 
models in real-time as behaviors change, will feed into 
algorithms that generate predictive threat and risk 
assessments that will in turn feed into mitigation and 
recovery actions. User behavior models could include 
temporal (when or with what kinds of delays does the 
user perform certain actions?), probabilistic graphical 
models capturing the user’s normal behavior and  
may also include geospatial information (where does 
the user perform those actions?).
 
Threat models could include temporal probabilistic 
graph models with spatial attributes (such as stochastic 
temporal automata)[PSTM14], timed Petri nets [PC06] 
and Petri net models [CBK09]). Exascale algorithms 
that leverage HPC resources to automatically learn 
these types of models in real-time will be needed—
and they will need to operate not just on historical 
data, but live real-time streaming data. Algorithms to 
incrementally update these models in real-time are 
also critical. Some of the data that comes in may be 
inherently noisy and uncertain.

An additional approach is to leverage the notion of 
self-protecting data [DOE08], that is data objects 
capable of protecting themselves from various kinds 
of threats. However, most of the work done so far on 
self-protecting data has focused on protecting the 
confidentiality [CJL12, SGS+00], whereas the current 
DOE focus is on integrity. An even more promising 
direction is integrating the notion of self-protecting 
data with concepts such as chain of custody and digital 
rights management, and with anti-tamper technologies, 
as discussed earlier with regard to provenance and 
audit trails. Ultimately, we would like to think about 
data as “smart data objects” which, beyond merely 
storing some piece of information, have the capability 
of duplicating themselves, executing code on the data, 
detecting and responding to attempts to maliciously 
alter the data. 

5 Epilogue

This report has provided an analysis of the DOE’s needs 
for new applied, computational, and mathematical 
developments in order to support the science- and 
engineering-based solutions to the problems  
of computer security and scientific computing integrity 
that are of critical national importance now and  
in the future. Given the DOE’s energy, environmental, 
and national security missions, the DOE Advanced 
Scientific Computing Research (ASCR) Division has a  
vital need to assure scientific computing integrity 
in order to help assure the results of the scientific 
research itself. The importance is even greater when 
the scientific research can affect national policy 
decisions and commercial development, as DOE Office 
of Science research often can. At the same time, given 
the impending transition to exascale computing, there 
is also a significant opportunity for ASCR to build 
security and integrity assurance into exascale systems 
(and beyond) by starting now to research the means for 
doing so. By starting this research and development 
now, ASCR will provide the basis for assuring extreme-
scale scientific computing integrity as it moves well 
into the 21st century, continuing its heritage and legacy 
of large-scale scientific integrity, while also developing 
techniques that will undoubtedly have application 
beyond the DOE Office of Science as well. 
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