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ABSTRACT OF THE THESIS

Semi-Supervised Tracking of Multiple Identical Objects With Occlusions

by

Colin J Lee

Master of Science, Graduate Program in Computer Science
University of California, Riverside, September 2021

Professor Christian R. Shelton, Co-Chairperson
Professor Amit K. Roy-Chowdhury, Co-Chairperson

Recent advances in multiple object tracking (MOT) rely primarily on visual ap-

pearance features to reconnect tracks lost due to occlusions. However, appearance features

cannot be relied on to discriminate between objects that are visually similar or identical,

such as animals, people in uniform, or mass-produced items. We propose a new model that

relies on spatio-temporal motion features rather than appearance features for such videos.

Furthermore, training an MOT method often relies on expensive hand labeling of bound-

ing boxes or segmentation masks with ground truth tracks. By contrast, our videos are

labeled only with fixed bounding boxes (effectively only positional information). We train

our model in a semi-supervised manner using iterative pseudo-labeling (IPL), a technique

often used in natural language processing, but not common to computer vision tasks. We

show that appearance features are insufficient for reconnecting tracklets in videos of bee

foraging, and that our motion-based IPL method offers an improvement over appearance

feature methods.
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Chapter 1

Introduction

In modern multi-object tracking (MOT), visual appearance features are the main

method of distinguishing between different objects whose tracks must be reconnected due

to occlusion. Such appearance features rely on objects being visually distinct in the first

place, but this is not always the case. There are many scenarios in which one might

desire to track objects that are visually similar, sometimes to the point of being completely

indistinguishable from one another. For instance, many animals, such as bees and ants, are

visually identical in appearance and are difficult to distinguish between even for humans

(see Figure 1.1). In the common MOT task of pedestrian tracking, these appearance cues

often rely on the clothes that people are wearing. However, there are many situations

where people dress in uniforms, such as in the military or sports. In such cases, only less

ostentatious details could be used differentiate appearances, such as faces or player numbers,

but these could often be out of view due to the human’s orientation towards the camera.

Inanimate objects are perhaps even more likely to suffer from this problem, as many of
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Figure 1.1: Two bees: Visually similar objects, nearly identical in appearance and difficult
for even humans to differentiate.

them are mass-produced. While this is not usually an extreme problem in the usual task of

tracking cars in everyday traffic, certain situations, such as tracking military or government

agency vehicles would fall into this category, as they are often of singular make, model, and

color.

In ideal conditions with quality video and no occlusions, tracking multiple identical

objects is not in of itself a difficult task. Modern object detectors are certainly capable of

accurately detecting most objects, and multiple objects having identical appearances would

only serve to make the task simpler by reducing the variations and complexity needed to

create a reliable detector. Following the detection step, MOT methods generally perform a

data association step to link the per-frame detections into sequences of detections(tracks).

With no occlusions between objects or the background, tracking is hardly more complex

than stitching together reliable detections and thus the data association step is very simple.

With the addition of long-term occlusion, this task becomes significantly more difficult due
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Figure 1.2: Long term occlusions: Bees can often disappear under occluding parts of the
experimental apparatus for long periods and reappear elsewhere.

to the need to reconnect lost tracks, but the usual method of reconnecting them via models

trained for the visual re-identification (reID) is no longer applicable.

In this work, we will investigate the intersection of visually similar objects and

occlusion using videos of bees in an experimental apparatus which often occludes them,

using only positional information as ground-truth for training our object detector. First,

we will establish the need for new motion features by investigating the effectiveness of visual

features on these videos. Then, using sequences of detections provided by an object detector,

we will reconstruct full object trajectories (tracks) without the use of visual features, instead

relying on motion features provided by a novel spatio-temporal model.
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Chapter 2

Related Work

2.1 Appearance-based Tracking-by-Detection

The object detection step in MOT has advanced to a point where it is possible

to adequately track objects when there are little or no missing detections due to occlu-

sions or low frame rates. Recent tracking methods, such as SORT[3], IOUTracker[4], and

Tracktor[1], almost forgo the data association step entirely, relying solely on the bounding

box information from the detection step to string detections into tracks. Despite their very

simple nature they are able to achieve state of the art performance.

Accurate object detectors then, in conjunction with high quality video, would

have almost obviated the data association step were it not for the simple fact that most

real-world video is not ideal and includes occlusions. The principle purpose of the modern

data association step then, is in dealing with the missing detections. This is often referred

to as the re-identification or reID task. Recent work utilizes the discriminitive abilities of

modern deep networks to learn appearance features that can be used to identify when the
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same object is detected after reappearing from behind an occlusion (or on another camera in

a multi-camera setup). While some form of motion prediction is often used in conjunction

with these appearance features, the main focus of recent scholarship has been on using

appearance features for the reID task. This is evident in extensions of the aforementioned

tracking methods: DeepSORT[25], VIOUTracker[5], and Tracktor++[1]. The DeepSORT

and Tracktor++ extensions rely primarily on appearance features generated from separately

trained reID networks in order to reconnect long range tracklets. VIOUTracker does not

use an a reID network, but still uses visual single object trackers(SOT) to reconnect over

occlusions. This reliance on appearance features poses a problem for different objects with

similar appearances.

A popular method of training these reID networks is to train Siamese CNNs [11,

23, 27, 6] and these are often optimized with a triplet loss function [26]. Originally used for

the person re-identification task by [21] in 2015, it has become one of the de facto methods

to train Siamese networks for reID tasks in general. Triplet loss training is performed by

forming triplets from three images: an anchor image, a positive image, and a negative

image. The anchor and the positive images come from the same object, which are usually

from the same tracklet in this context, and help learn similarities between two modalities

of the same object. The negative image, on the other hand, helps distinguish between the

target object and the rest of the targets in the image.

As we will show, these appearance features will prove insufficient when working

with visually near-identical objects such as bees.
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2.2 Motion Features

In the absence of effective appearance features to distinguish between objects,

the most obvious substitute would be spatio-temporal information of the tracklets. The

usage of motion features is not a new idea, having been focus of many methods before the

introduction of CNNs and the advantages they provided in visually distinguishing between

objects. Previous work on tracking multiple identical objects has not been the subject of

much study in recent years. Kalman filters [9] and particle filters [8] are a natural choice

for creating a motion model from the positional information provided by object detectors.

A simple affinity can then be calculated based on the distance from the predicted position

to any nearby tracklets or detections. However, these methods require the user to assume a

motion model a priori, and thus objects with complex or unpredictable dynamics can cause

these to fail.

[7] in 2013 specifically addressed the problem of multiple similar objects with

occlusions in 2013. To circumvent the problems with a priori models they used the order

of linear regressors to represent the dynamics of a tracklet. Even so, an assumption must

be made that the trajectory underlying the tracklets can be approximated by a similar

regressor throughout. Whether using an a priori motion model or not, assumptions about

the motion of objects typically only work well when object motion is somewhat predictable,

such as with cars or pedestrians walking across a limited field of view.

While motion features are not currently as prominent, they are still used in con-

junction with appearance features to further refine and improve results. The most visible

example of this is the Kalman filter in the SORT [3] and DeepSORT [25] algorithms. How-
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ever, modern work featuring motion features usually involves using in conjunction with

appearance features and not in the absence of useful appearance features. [16, 20, 26, 24]

This work will investigate the importance of appearance features for long-range tracklet

reconnection, in addition to investigating how effective motion features can be for discrim-

ination in lieu of useful appearance features.

In spite of the recent focus on appearance features, there still is some research

focusing prominently on the usage of motion features. However, none of these papers are

written with a particular focus on visually identical objects and ineffective appearance

features, or they require extra ground truth labeling. For instance, [22] utilizes sequences

of bounding boxes that they call “anchor tubes”, but these rely on properly ground-truthed

bounding boxes for the object detector to learn. We will used fixed bounding box sizes

in this work, effectively meaning that we will rely solely on a sequence of positional data

instead of bounding boxes, object segmentations, or labeled object angles.

While motion features are often acknowledged in many works as useful in the cases

of objects with similar appearances, these acknowledgements tend to be made in passing

and do not formally treat the problem of reconnecting identical objects over occlusions. To

our knowledge, such work is very sparse.

2.2.1 Unsupervised and Semi-supervised MOT

Currently, one of the biggest weaknesses of the modern use of deep learning meth-

ods is its high reliance on accurate and well-labeled data. Improving upon this weakness

continues to be a very active area of research and the MOT field has been no exception.
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Well-labeled datasets are expensive to create due to the need for time-consuming human

labeling and are vulnerable to any biases introduced into the dataset by the human labelers.

There are approaches to alleviate the need for strongly-labeled datasets, with the

most desirable being completely unsupervised MOT where no labeling at all is required.

In the past, this has been covered by methods such as background subtraction. Modern

attempts to tackle this task do exist. However, thus far they have been relegated to simpler

MOT tasks such as tracking a small number of MNIST numbers without external occlusions,

such as in [12] .

Weaker labeling has also been a significant area of interest in single object tracking

(SOT), often referred to as the video object tracking (VOT) task. In this field, it is common

to initialize the tracker with the first (or first several frames) frame of the video with the

single object marked[14]. After these first frames, no other frames of the video are labeled

and the tracker is expected to find the object in question [2]. Some MOT approaches

attempt to make use of multiple SOT trackers, such as the aforementioned VIOU Tracker,

and can perform adequately on simpler high quality videos [5].

In this work, we will attempt to use high confidence tracklets as weak labels. Our

approach to this problem is to use iterative psudeo-labeling (IPL), which we use to produce

iteratively more confident inter-tracklet strong labels. IPL is currently used primarily in

the field of natural language processing, and to our knowledege, has not yet been used in

this context. In one of our baseline experiments, we investigate the effects of strongly-

labeled object trajectories on a modern reID method versus weakly-labeled tracklets. Semi-
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supervised learning has been used in MOT before, such as in [19], but not for tracklet

linking in the manner presented here.
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Chapter 3

Problem

3.1 Formulation

We modify the general problem formulation provided in [17]. We formulate the

MOT problem as a multi-variable estimation problem and as follows:

Given a video as a sequence of T frames with M objects, each with its own ground

truth trajectory, we denote the state of the mth object at time t by its state smt , which can be

represented by things such as its coordinates, bounding box, appearance, or segmentation

mask, e.g. smt = (x, y, appearance). Then the entire ground truth trajectory of the mth

object can be written as Sm
1:T = (sm1 , s

m
2 , ..., s

m
T ).

To represent the detections from our object detection step, we denote an observa-

tion of the mth object at time t in the same manner as its state, omt = (x, y, appearance).

Correspondingly, Om
1:T = (om1 ,o

m
2 , ...,o

m
T ) represents the observed trajectory of the mth

object through the video sequence.
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Our objective in the data association step of MOT task then, is to find the set of

most probable trajectory from the given observations:

Ŝ
m
1:T = argmaxSm

1:T
P (Sm

1:T |Om
1:T ) (3.1)

The question from this step is how to determine which of the observations provided

belong to the mth object. That is, we must estimate the probability that each observation

belongs to the same object:

P (ma = mb|oma
ta ,o

mb
tb

) (3.2)

This value will be approximated by our detection affinity and based on the results

of the simpler MOT methods such as IOUTracker and Tracktor, we can safely make the

follow assumption:

If oma
ta ≈ omb

tb
, ta ≈ tb and oma

ta 6≈ omc
tc , omb

tb
6≈ omc

tc ∀ other observations omc
tc , then

P (ma = mb|oma
ta ,o

mb
tb

) ≈ 1

That is, if there are two detections very close in both space and time, with no other

detections to confuse the situation, then accurate modern object detectors combined with

high quality video allow us to assume that the two detections belong to the same object.

This allows us to form a high confidence tracklet Ŝ
m
t1:t2 .

We can then continue by estimating the probability that two high confidence track-

lets belong to the same object:

P (ma = mb|Ŝ
ma

t1:t2 , Ŝ
mb

t3:t4) (3.3)
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Which we can approximate with a tracklet affinity. Such an affinity scoring can

then be learned using an affinity model as presented below. Once we have affinity scores

for each possible pair of tracklets, we must note that one tracklet can only paired with one

other tracklet before and after it. This leads to a bipartite matching problem which we can

solve using methods such as the Hungarian algorithm, giving us an optimal assignment of

the most likely tracklet linkages.

3.2 Method

We build our affinity model by starting similarly to the reID networks used to

determine appearance based affinity. Given two tracklets, we determine an embedding for

each of them to factor into an affinity scoring. However, given that appearance features

between identical objects cannot be relied upon, we instead start by learning an embedding

from motion features.

3.2.1 Input Motion Features

In order to assign affinity scores to a pair of tracklets without using appearance

features, we begin with the following inputs: the tracklets themselves (as two sequences

of positional detection coordinates), the time gap between the two tracklets (in number of

frames), and any other tracklets that co-occur with either tracklet in the pair. Production

of these high confidence tracklets is illustrated in Figure 3.1.
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Figure 3.1: High confidence tracklet production

3.2.2 Model

To produce an affinity score from our input features, we utilize a Siamese gated

recurrent unit (GRU) network to produce an embedding between the pair of tracklets.

The co-occurring tracklets are then zero padded and summed together to collapse them

into a single sequence in order to account for varying numbers of co-occurring tracklets

between pairs. The summed co-occurring tracklet sequence is then fed into separate GRU

network to learn an embedding for the co-occurring tracklets. The two embeddings are

then concatenated along with the time gap and fed into a pair of fully connected layers,

producing an affinity score.

Siamese networks have long been used to produce affinity scores, so we continue

to use them here. We additionally combine them with the GRU networks commonly used

13



Figure 3.2: Motion affinity model with inputs

on sequential data such as these tracklets. Since we are not using visual appearance data

as input, CNNs offer comparatively little advantage. The model is illustrated in Figure 3.2.

3.2.3 Training with Iterative Pseudo-Labeling

In order to train our affinity model for long-range reconnection of tracklets with-

out the inter-tracklet ground-truth, we us iterative pseudo-labeling (IPL). In the semi-

supervised IPL setting, training begins with a small set of labeled data, and another set of

unlabeled data. In this context, the high confidence linkages between detections in the same

tracklet will serve as our labeled data, while the unknown linkages between the tracklets

will serve as the unlabeled data.
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Figure 3.3: Motion IPL methodology

To begin, we must first train our initial affinity model on the “labeled” dataset.

To do this we, simply simulate track losses within each tracklet, randomly splitting each

tracklet into a random number of smaller sub-tracklets. Sub-tracklets from within the same

tracklet are then randomly paired together to form positive examples, while sub-tracklets

from different tracklets are paired to form negative examples. Once the initial affinity model

has been trained to convergence, the iterative pseudo-labeling can begin.

First a small sample of the “unlabeled” tracklet pairs are chosen the for next

round of pseudo-labeling, based on predetermined sample rate hyperparameter. Next, a

forward pass is performed on the chosen tracklet pairs, calculating an affinity score for each

of them. A score close to 0 or 1 indicates a higher confidence affinity, so these are marked

with negative and positive pseudo-labels respectively. However, any affinity scores that are

above a predetermined lower threshold or below an upper threshold are deemed to have too

little confidence to be pseudo-labeled, and are thus returned to the unlabeled set.

15



The model is then trained again for a few iterations on both the “labeled” sub-

tracklet dataset and the newly pseudo-labeled dataset using a combined loss between the

two datasets, with a weight hyperparameter on the pseudo-label loss.

The process then repeats until all of the unlabeled dataset has received pseudo-

labels and the model has converged. After the IPL training of the model has been completed,

it is then used to produce affinity scores as normal for the tracking-by-detection paradigm,

and the tracklet linkages can be then optimally solved using a bipartite graph matching

method such as the Hungarian algorithm.
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Chapter 4

Experiments

Our experimental goals are as follows: (i) establish and assess the limitations of

appearance based features for tracking identical objects with challenging occlusions, and

(ii) investigate the efficacy of using motion features in lieu of appearance features.

4.1 Data

To test our method, we utilize videos of bees foraging for pollen and nectar in

a pair of plastic arenas, provided by the Woodard Lab at UC Riverside’s Department of

Entomology. Bees are extremely similar in visual appearance, and are difficult even for

humans to differentiate between. The foraging arena environment complicates the MOT

task in these videos further by occluding the bees at various points throughout the on-

camera trajectories of the bees. Occlusions include the opaque edges of the arena, as well

as the objects inside the arenas, such as the pollen tray. Additionally, a wire mesh over

the tops of the arenas adds some noise to visual signal of the bees. Ground truth labeling

17



for these videos consists of points centered on the locations of the bees while they are on

camera and at least partially unoccluded. These labels were obtained by hand through a

human labeler following bees through the video using a mouse pointer.

Our tracklets are produced from detections provided by a Faster-RCNN detector

trained on bee foraging videos with fixed-size bounding boxes added to the coordinate

ground truth labeling (i.e. only positional information). Detections are attributed to new

or existing tracks based on per-track Kalman filters. The tracks from the Kalman filters

are then split whenever there exists a gap of more than 1 frame, i.e. anytime the track was

lost and picked back up. These tracklets are recorded as a sequence of positions, images

associated with those positions, and the starting and ending frames of these sequences (since

they are consecutive).

4.2 Metric

Results are measured by identity switches, the number of times that a predicted

identity changes in a ground truth trajectory. However, this alone is not sufficient as a the

data association method can easily stitch together an arbitrary number of tracklets, so we

additionally report the total number of predict trajectories as well.

Ideally, ID switches should be as close to zero as possible, where as the number of

predicted trajectories should be as close to the number of ground truth trajectories.

18



4.3 Baseline

We begin our experiments by conducting a series of baseline tests using different

models of tracklet affinity. As these methods were generally quicker to run, we have per-

formed a fine grid search on many of the hyperparameters for them as in 4.1. We then select

the best of these runs using based on the lowest number of ID switches while not exceeding

more than 5 too few or too many predicted trajectories. These best results are reported in

each of the tables below.

4.3.1 Simple Baseline

In order to mark baseline performance on our dataset, we first apply the tracking-

by-detection paradigm with a very simple affinity score based on distance between tracklets,

d, and the time gap between them, ∆t. Time gaps are naturally measured in terms of frames

between tracklets and the distances are measured as the Euclidean distance between the

ending position of the pre-occurring tracklet and the starting position of the post-occurring

tracklet. The time gap is divided by the frames per second and the distances are divided

by the length of the camera diagonal, which is the longest possible Euclidean distance for

the video. Values are then normalized according to the mean and variance.

Affinity = d+ w1∆t

19



Figure 4.1: Simple baseline: Best ID switches marked in red

Simple

ID Switches 39
Predicted Tracks 56

Table 4.1: Simple baseline: Best ID switches

These affinities are stored in an affinity matrix representing a bipartite graph, for

which an optimal solution is then found using the Hungarian algorithm. The results for

this simple baseline are presented in Table 4.1.

4.3.2 Simple Visual Features

Next, we assess the effect of adding simple visual features to the affinity measure.

We try both histogram of gradient (HOG) and color histogram features. For both, the

features are calculated for each image in each tracklet, then averaged across the tracklet.

The color histogram feature consists of three (RGB) histogram vectors, each averaged across

the tracklet. Distances are calculated between the two tracklets’ features and than averaged

across the three channels, α. For the HOG features, distances are simply the distance

between the two tracklets’ feature vectors.

20



HOG Color hist

ID Switches 34 40
Predicted Tracks 54 57

Table 4.2: Simple appearance baselines: Best ID switches

Affinity = d+ w1∆t+ w2α

As before, optimal trajectories are then found from the affinity matrix using the

Hungarian algorithm. The results are displayed in Table 4.2.

The HOG features failed to perform well, as a bee is captured at many different

rotations which blurs the values of the different angle bins. The color histograms did not

seem to perform much better either, likely due to the visual similtarity of the bees.

4.3.3 Triplet Loss

Here we test a more modern deep learning approach, training a Siamese CNN to

produce a 256-dimensional embedding from the previously mentioned tracklet information

using triplet loss. Triplets are produced by taking an anchor image from one position in a

tracklet (chosen randomly), a positive image from another point in the same tracklet, and

a negative image either from a co-occurring tracklet (which by default, means it cannot be

the same object), or an image of empty background.

In order to stick with the semi-supervised setting, we form our triplets without

using our knowledge of ground-truth inter-tracklet linkages. This is accomplished by finding

all pairs of tracklets that co-occur in time. These two tracklets cannot be linked, as an object
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Triplet Triplet w/ GT

ID Switches 38 39
Predicted Tracks 57 56

Table 4.3: Siamese reID appearance baselines: Best ID switches

cannot occupy more than one position at the same time. The anchor and positive images

are randomly selected from one of the tracklets, and the negative image is selected from the

other. From these we form 3027 triplets and train our a Siamese network for 100 epochs.

The Siamese network trained by triplet loss produces a 256-dimensional appearance vector

for each tracklet, which is then combined with the time gap and distance scores to produce

an affinity matrix which is optimally solved as above. The ID switches for this are presented

in Table 4.3.

The results indicate no significant improvement from the simple appearance fea-

tures tested above, indicating the ineffectiveness of appearance features on identical objects.

One possible reason was the relatively small amount of tracklet pairs used to form

these triplets, which perhaps excluded more useful appearance features in the tracklets that

did not occur alongside any other tracklets. To test this, we produced triplets using the

inter-tracklet ground truth, instead forming triplets from whole ground-truthed trajectories

rather than simple tracklets. The results are shown in Table 4.3 as well. Even with the

added benefit of the ground truth, the learned appearance features were still not useful in

reconnecting long range track losses.
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ID Switches Predicted Tracks

Simple 39 56
HOG 34 54

Color hist 40 57
Triplet 38 57

Triplet w/GT 39 56
Motion IPL 12 59

Table 4.4: Best ID Switches for each method

4.4 Motion IPL

Here we test our Motion IPL method. Our initial affinity model is trained by ran-

domly splitting our each of our high confidence tracklets into an random number of smaller

sub-tracklets, then training our Motion IPL network on these artificially disconnected sub-

tracklets. The initial affinity model is trained for 10k iterations.

After initial training of the affinity model on the high confidence linkages between

the sub-tracklets, we predict an affinity score on a sample of the original tracklet pairs (using

a 20% sampling rate), and assign pseudo labels based to pairs with scores high enough to

warrant a positive affinity pseudo-label or low enough for a negative pseudo-label. Here

we use a positive pseudo-label threshold of 0.8 and a negative pseudo-label threshold of

0.3. The model is than trained for another 5 iterations and the pseudo-labeling process is

repeated until all tracklet pairs have been assigned pseudo-labels. The network is then used

to produce affinity scores for each of the original tracklet pairs, and then the Hungarian

algorithm is used to assign tracklet linkages based on these affinities as in the previous

experiments. Our results are summarized in Table 4.4.
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ID switches were reduced to 12, indicating that the usage of more complex motion

features can help us effective link tracklets in the absence of useful appearance features.

We also note that we end up with 59 predicted trajectories versus the 55 ground-truth

trajectories, indicating that there were that there were still several track fragmentations

beyond the ID switches.
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Chapter 5

Conclusions

We have investigated the inefficacy of the appearance features widely used for

modern long-range tracklet reconnection in situations with visually identical objects. In

multiple experiments, we have shown that both classical and modern appearance features

have limited capability to perform this task semi-supervised. Even with the additional

benefit of ground-truth knowledge between tracklets, long-range reconnection ability of a

Siamese CNN trained with triplet loss seemed ineffective.

We then proposed a Motion IPL method for reconnecting lost tracks using no ap-

pearance features and instead focusing on motion features and the interactions between

tracklets relative to each other throughout time.

5.1 Limitations

The conclusions of this work are limited by the data it has been tested on. Thus

far it has only been tested on a single video of bee foraging. More work will need to be
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done to further test and verify these results on not only more videos of the same domain,

but hopefully also other challenging domains involving greater quantities of objects. It is

possible the success of our method on this video has been due to the minimal number of

objects and rather few pathways for movement available in the bee foraging arenas.

With that said, we do note that this domain has also provided some difficult chal-

lenges already with frequent occlusions of the objects by background objects, as well as the

comparatively erratic and unpredictable movements of bees compared to other commonly

examined objects such as cars or pedestrians.
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editors, Modeling Decisions for Artificial Intelligence, pages 166–178, Cham, 2020.
Springer International Publishing.

[25] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime track-
ing with a deep association metric. In 2017 IEEE international conference on image
processing (ICIP), pages 3645–3649. IEEE, 2017.

[26] Junbo Yin, Wenguan Wang, Qinghao Meng, Ruigang Yang, and Jianbing Shen. A
unified object motion and affinity model for online multi-object tracking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[27] Shun Zhang, Yihong Gong, Jia-Bin Huang, Jongwoo Lim, Jinjun Wang, Narendra
Ahuja, and Ming-Hsuan Yang. Tracking persons-of-interest via adaptive discriminative
features. In European conference on computer vision, pages 415–433. Springer, 2016.

[28] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points. In
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