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ABSTRACT 

 

Monitoring Forest Cover and Land Use Change in Forest Reserves — 

Connecting Satellite Imagery to Anthropogenic Impacts 

 

by 

Yu Hsin Tsai 

 

Despite their protected status, forest reserves can be influenced by anthropogenic 

activities within and adjacent to reserve boundaries, resulting in environmental degradation 

and changes in forest cover. Long-term monitoring of environmental change within 

protected areas in a reliable and extensive manner is important given widespread, human-

induced land-cover and land-use change. This study demonstrates the utility of optical 

satellite remotely sensed imagery and multi-temporal image analysis procedures for 

mapping and monitoring land cover and land use within cloud-prone and mountainous forest 

reserves and their environs in China and Ghana for the period of mid-1980s to 2018. The 

novel mapping and monitoring procedures yield extensive land-use dynamic information in 

a reliable manner by minimizing terrain-related illumination and cloud cover effects. Forest 

types and land-use are mapped in selected cloud-prone and mountainous forest reserves in 

China and Ghana to test the reliability of the optimized methods. By applying logical land-

use transition rules and interpreting high spatial resolution satellite imagery, land-use 

changes and the anthropogenic activities associated with them are identified.  
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Vegetation and land-use types are mapped with moderate to high classification 

accuracies (64 to 94%) for study areas in China and Ghana. For Fanjingshan National 

Nature Reserve in China, 12 km2 in land area is mapped as afforested bamboo and conifer 

lands associated with payment for ecosystem services programs, and over 25 km2 is mapped 

as new development during 1995-2016. Forest area decreased by 9% for the 76 study 

reserves and environs in southern Ghana between 2000 and 2018. Substantial land changes 

associated with built development and agricultural expansion are observed in reserve 

environs within both study areas. Other anthropogenic activities including mining and 

plantation activities are identified in southern Ghana reserves, while afforestation activities 

associated with payment for ecosystem programs were predominant adjacent to Fanjingshan 

in China.  

This study contributes to the land-cover and land-use mapping literature by developing 

and optimizing methods for extremely cloud prevalent and mountainous regions. A semi-

automated mapping approach implemented on an open-access, user-friendly platform, 

similar to the workflow demonstrated in this study, increases the usability and transferability 

of such mapping techniques. Improved monitoring of other forested, mountainous, and 

cloud prevalent regions can benefit and inform protected area management and policy, long-

term environmental change monitoring, and conservation effort assessment.  
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Chapter 1. Introduction 

Globally, forests are being depleted at an annual rate of 130,000 km2 (FAO, 2010)—

roughly the size of Greece. Tropical forests in developing countries, such as those in Africa 

and South America are experiencing forest loss at a higher rate than developed countries. 

Reports show that the worldwide deforestation rate decreased from over 160,000 km2 forest 

loss annually in the 1990s to 130,000 km2 lost per year in the last decade (FAO, 2010), but 

estimates of this trend should be treated with caution. Few countries can provide reliable and 

comparable forest cover change data, thus creating high uncertainty in quantifying the global 

deforestation rate. In addition, human threats are still prevalent in protected areas (Liu et al., 

2001), even when 12% of the world’s forest is designated for conservation purposes (FAO, 

2010). Forest cover is associated with ecosystem services that are vital to human health and 

livelihood. As the world becomes more populated, industrialized, and urbanized, more 

people rely on forest ecosystems for aesthetic value, food, and medicine sources. In order to 

improve management effectiveness and restore forest resources, mapping and monitoring 

forest reliably and extensively is key.  

Forest reserves are designated forest areas that are protected under the legal systems of 

many countries. Reserves have different management goals and conservation targets, such as 

preserving biodiversity and separating threats from the protected areas. To maximize 

conservation targets, reserves need to be planned systematically, and include distinctive 

goals and conservation actions to achieve these goals (Margules & Pressey, 2000). 

Conventional management strategies often involve restricting access of local people to 

protected areas and traditionally-used resources (Masozera, Alavalapati, Jacobson, & 

Shrestha, 2006; Hough, 1988), and even displacing people from their lands. These 



 

 2 

restrictions can lead to conflicts between reserve management and local people. Potential 

solutions include gaining trust and communication from the local people, involving residents 

in decision-making processes, and utilizing community-based management. 

To derive information on the spatial distribution and temporal change of surface 

materials and human usage of the land, vegetation cover and land-use data can be acquired 

through conventional methods such as field surveys. However, such approaches are not 

efficient because of time and costs (Cheong, Brown, Kok, & López-Carr, 2012). Remote 

sensing offers a cost-effective and practical means to map land-cover and land-use, 

especially over extensive areas. Moderate spatial resolution satellite systems such as Landsat 

can provide multispectral imagery dating back to the early 1970s, supporting long-term 

monitoring of forest cover. Much research has focused on mapping vegetation and land-use 

(Hansen et al., 2013; Xie, Sha, & Yu, 2008), although many of these studies suffered from 

requiring intense processing requirements, or extensive training data collection prior to 

mapping. Refined and novel approaches are needed for monitoring forest cover in a simpler 

way, particularly in developing countries. 

This dissertation study builds upon and is part of two funded research projects1 

conducted for portions of China and Ghana, with the focus of this study on land change in 

and surrounding forest reserves. Historically, both China and Ghana had abundant pristine 

natural forest resources. During the 1960s and 70s, the majority of forest resources in both 

countries were consumed by agricultural and urban expansion, and over-exploitation 

(Harkness, 1998; Appiah et al., 2009). Even though the amount of natural reserves started to 

                                                
1 Dynamics of Coupled Natural and Human System program of National Science 

Foundation (Award DEB-1212183); Interdisciplinary Research in Earth Science program of 
National Aeronautics and Space Administration (G00009708). 
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grow in the 80s and 90s, human activities commonly occur in forest reserves and almost all 

reserves have been selectively logged at some point of time in both countries. In Ghana, 

logging was so widespread that vegetation outside of reserves is mostly secondary 

vegetation regeneration on abandoned farms (Hall & Swaine, 1976). As a result of 

anthropogenic activities, reserves are usually isolated islands of ecosystem in both countries. 

In China, human activities within and near forest reserves are common, such as tourism, 

farming, and reforestation. Financial support for these activities typically comes from state 

government and local fiscal resources. Tourism is commonly developed in order to generate 

revenue. Unfortunately, there are few guidelines for sustainable or eco-friendly tourism. 

Afforestation is another human activity that is relevant to forest resources. China has two of 

the world’s largest payment for ecosystem services (PES) programs, and both aim to 

increase forest cover and reduce soil erosion. They are often referred to as Grain to Green 

program (GTGP) and national forest conservation program (NFCP). Both programs 

originated after a devastating flood causing soil erosion and landslides in 1998, to which 

deforestation and farming on steep sloped land were major contributors. GTGP encourages 

afforestation through farmers converting sloped farmland to ecological and timber-

producing trees, economic trees, or grassland (Wang et al., 2007). GTGP participants 

receive crop and cash compensation, free seedlings, and technical support.  

In Ghana, rural communities rely especially heavily on forest resources, leading to land 

degradation and encroachment. Forest related income can take up to 38% of total household 

income in rural regions (Appiah et al., 2009). Landowners have no incentives to preserve 

forest resources, especially in off-reserve forests that are owned and managed by individuals 

or tribal communities. Owubah, Le Master, Bowker, and Lee (2001) estimated that one-third 
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to two-thirds of the timber harvests come from off-reserve forests in Ghana annually. 

Reserves in Ghana are designed to yield sustainable production of wildlife, timber and non-

timber forest products, and for environment and resource protection. While timber 

harvesting and mining require permits from the government, they are common activities 

within reserves. Illegal logging and mining also occur. 

The goals of this research are to (1) develop and test novel approaches to map forest 

cover and monitor its changes, and (2) examine human practices on land-cover and land-use 

changes in selected forest reserves and their environs in China and Ghana. Reserves in 

developing countries such as China and Ghana often experience heavy anthropogenic 

pressure, due to the proximity between growing population and protected areas. Simple and 

reliable methods are developed to utilize dense time series Landsat imagery for vegetation 

and land-use change mapping. Furthermore, higher spatial resolution satellite imagery is 

visually interpreted in conjunction with the Landsat-derived maps to identify possible 

anthropogenic causes of forest and land-use change. Image processing workflows are 

implemented on an open-access, web-based geospatial analysis platform to increase the 

utility of the mapping approach. 

The first objective of optimizing methods for monitoring forest cover is described in 

Chapter 2 and is titled “Mapping vegetation and land-use types in Fanjingshan National 

Nature Reserve Using Google Earth Engine.” Several image processing techniques, such as 

multi-seasonal Landsat image composites, ancillary data, spectral vegetation index products, 

and shade/illumination normalization approaches are explored to map forest and land-use in 

a reliable manner for a mountainous forest reserve in China. Advanced machine learning 

image classification routines are implemented to map complex vegetation compositions. The 
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second objective of examining human practice and land-cover and land-use change in 

selected reserves in China and Ghana is addressed in Chapters 3 and 4, respectively. 

Utilizing logical land-use transition rules and building upon the established mapping 

methods, forest cover and land-use changes are quantified for the reserve in China in 

Chapter 3—“Monitoring land-cover and land-use dynamics in Fanjingshan National Nature 

Reserve.” The spatial distribution and areal information of new built development and 

afforestation land are analyzed for the reserve and its environs for a 28-year period. Over 30 

years of land-cover and land-use changes are mapped with high accuracy for multiple forest 

reserves in the extremely cloud prevalent southern Ghana in Chapter 4, which is titled 

“Monitoring forest cover change with different reserve types in southern Ghana.” Dense 

Landsat image composites and a novel vegetation index are utilized to map forest loss and 

land-cover transitions. Associated anthropogenic activities are identified for different types 

of protected area. Lastly, Chapter 5 includes a summary and synthesis of results, important 

findings, general conclusions, and recommendations for future research.  
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Chapter 2. Mapping Vegetation and Land-Use Types in Fanjingshan 

National Nature Reserve Using Google Earth Engine2 

2.1. Introduction 

Despite their protected status, nature reserves can be strongly influenced by adjacent or 

overlapping anthropogenic activities (Liu et al., 2001). Given this sensitivity, accurately 

mapping vegetation community and land-use types is important to maintain the integrity of 

reserve habitat and biodiversity. Fanjingshan National Nature Reserve (FNNR), a national 

forest reserve in Guizhou province, China, has been identified as one of the 25 global 

biodiversity hotspots (Myers et al., 2000) with over 100 endemic species. However, human 

activities such as farming, grazing, tourism, and related development frequently occur from 

the 21,000 people living within or near the reserve (Wandersee, An, López-Carr, & Yang, 

2012).  

To protect ecosystem services (limiting soil erosion and runoff) and FNNR biodiversity, 

Chinese government agencies have implemented payment for ecosystem services (PES) 

policies to promote afforestation, reduce logging, and limit farming on high sloping lands 

surrounding the reserve (Uchida, Xu, & Roselle, 2005; Liu et al., 2008; Liu & Yang, 2013). 

Such PES programs include the National Forest Conservation Program (NFCP) in 1998, 

seeking to ban logging and promote afforestation to restore forests through incentives paid 

to forest enterprises or users. One year later, China started another large PES program, the 

                                                
2 This chapter was previously published in Remote Sensing: Tsai Y.H., Stow D.A., Chen 

H.L., Lewison R., An L., Shi L., 2018. Mapping Vegetation and Land Use Types in 
Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 10(6), 
927.  https://doi.org/10.3390/rs10060927 
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Grain-To-Green Program (GTGP). This program aims to reduce soil erosion and increase 

vegetation cover through tree planting in steep farmland areas (>15° slope in northwestern 

China, and 25° in southwestern China; Bennett, 2008; Liu & Diamond, 2005; Chen, Marter-

Kenyon, López-Carr, & Liang, 2015). This context makes monitoring and mapping forest 

vegetation and land-use types an essential element of such programs. At FNNR, these two 

programs have been implemented for over 16 years, yet quantitative, large scale data about 

PES effectiveness remains scarce. The reserve management would benefit from mapping 

and monitoring forest composition and cover in a reliable and extensive manner. While the 

most feasible and efficient means for such mapping and monitoring is through satellite 

remote sensing, the persistent cloud cover and steep terrain associated with the FNNR 

region pose a great challenge to forest mapping with optical or microwave remote sensing 

approaches.  

Landsat satellite imagery has several characteristics that can support long-term mapping 

and monitoring of vegetation and land-cover changes. Landsat systems provide regular 

image collection at 30 m spatial resolution with a potential frequency of every 16 days and a 

freely available image archive dating to the early- to mid-1980s (Xie, Sha, & Yu, 2008). 

More stable and reliable land change analyses with multi-temporal Landsat data are enabled 

when digital numbers are converted to surface reflectance values. The conversion to surface 

reflectance accounts for some atmospheric and solar illumination effects and ensures multi-

date images are more comparable (Hall, Strebel, Nickeson, & Goetz, 1991; Moran, Jackson, 

Slater, & Teillet, 1992). Landsat surface reflectance products are processed through 

algorithms of the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS; 
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Masek et al., 2006) for Landsat 4, 5 and 7, and Landsat Surface Reflectance Code (LaSRC; 

Vermote, Justice, Claverie, & Franch, 2016) for Landsat 8 imagery.  

Spectral vegetation indices (SVIs) are commonly derived from multispectral images to 

characterize vegetation. Normalized indices such as simple ratio, normalized difference 

vegetation index (NDVI), and enhanced vegetation index (EVI) can partially suppress 

illumination, terrain, and soil reflectance influences in the image data to more reliably 

monitor vegetation (Qi et al., 1994). For example, EVI was found to be resilient to residual 

atmospheric effects in a recent study (Davies, Murphy, & Bruce, 2016). Modified soil 

adjusted vegetation index (MSAVI) and EVI contain a soil adjustment factor that minimizes 

the soil background while increasing the range of vegetation signal (Qi et al., 1994). MSAVI 

demonstrated the most linear relationship when regressed with biomass in the Amazonian 

region among the commonly utilized SVIs (Wang, Qi, & Cochrane, 2005). However, in 

mountainous regions, the soil adjustment factor was found to cause EVI to be more sensitive 

to topographic effects when comparing to NDVI (Matsushita et al., 2007). The effectiveness 

of utilizing various SVIs as input to image classification routines is tested in the 

mountainous FNNR area in this study.  

Compositing or exploiting dense layer stacks of multi-temporal images have been 

demonstrated to improve forest and land-use type mapping accuracy (Lu & Weng, 2007), 

though such techniques require managing large quantities of imagery data and exhausting 

processing resources. Images can be composited to form a multi-layer time series stack to 

map forest cover, whether they are from the same or different seasons. By compositing 

multiple images, clouds and other missing data that occur in single images can be ignored, 

and seasonal phenology signals may be exploited (Franco-Lopez, Ek, & Bauer, 2001). 
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Potapov, Turubanova, and Hansen (2011) found that Landsat composites of growing season 

ensured anomaly-free pixels, and was effective in mapping boreal forest cover and change. 

Forest types were successfully mapped with multi-date Landsat images in New Hampshire 

(Schriever & Congalton, 1995) and Wisconsin (Wolter, Mladenoff, Host, & Crow, 1995), 

with accuracies of 74% and 83% respectively. Including ancillary data during the 

classification has also been found to improve classification accuracy (Xie, Sha, & Yu, 2008; 

Sluiter & Pebesma, 2010; Domaç & Süzen, 2006). In a steep mountainous study area, 

Dorren et al. mapped forest types using Landsat Thematic Mapper data and a DEM layer to 

account for variable illumination effects, with a 73% overall accuracy (Dorren, Maier, & 

Seijmonsbergen, 2003). A more efficient image processing approach is needed for 

incorporating different data sources and dense image composites.  

Machine learning type classifiers may require larger amounts of training data 

(Kotsiantis, Zaharakis, & Pintelas, 2007), but higher mapping accuracy can also be achieved 

than conventional classifiers (Rodriguez-Galiano et al., 2012). A variety of machine learning 

image classification methods have been used to map vegetation type and land-use, such as 

artificial neural networks (NN), support vector machine (SVM), decision tree (i.e., CART), 

and random forest classifiers. SVM classifiers assign pixels to classes by maximizing class 

separability from the training data, and labels pixels according to their nearest class in 

feature space (Boser, Guyon, & Vapnik, 1992; Mountrakis, Im, & Ogole, 2011). Decision 

tree classifiers (Breiman, Friedman, Stone, & Olshen, 1984) apply a multi-stage binary 

decision making system to classify images. At each stage, pixels are divided according to 

the binary classification rule. Groups of pixels can be further divided based on tree growing 

and pruning parameters, until optimal classification is achieved. Decision tree models can be 
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sensitive to small changes to the training data and parameters (Bishop, 2006). Random forest 

classifiers construct a multitude of decision trees that are sampled independently during 

training, typically improving classification results over a single decision tree model 

(Breiman, 2001; Shelestov et al., 2017). These machine learning classifiers require various 

input parameters, which can be optimized through cross-validation. In a previous study on 

classification of natural vegetation in the Mediterranean region, Sluiter and Pebesma (2010) 

utilized HyMap, ASTER optical bands, and Landsat 7 images and found that machine 

learning classifiers yielded up to 75% accuracy and outperformed conventional statistical-

based classifiers. Johansen, Phinn, and Taylor (2015) mapped woody vegetation in Australia 

using Landsat 5 and 7 images and concluded that CART and random forest classifiers 

produced highly accurate vegetation change maps. A study on crop and land-cover mapping 

in Ukraine compared different machine learning image classifiers, with the highest map 

accuracy (~75%) achieved with CART (Shelestov et al., 2017). With a random forest 

classifier and MODIS data, Parente and Ferreira (2018) achieved almost 80% accuracy 

when mapping pastureland in Brazil. Other studies conclude that random forest classifiers 

yield higher classification accuracies, require less model training time, and are less sensitive 

to training sample qualities compared to SVM and NN classifiers (Pal, 2005; Belgiu & 

Drăguţ, 2016). However, it is not common for remote sensing mapping applications to 

implement model optimization when utilizing machine learning type image classifiers, a 

step to ensure better model fitting (Shih, Stow, & Tsai, accepted).  

Cloud-computing resources enable efficient image processing on otherwise 

computational intensive tasks, such as with classification of large volumes of image data, 

and particularly when using advanced machine learning algorithms. Google Earth Engine 
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(https://earthengine.google.com/) is a cloud-based platform for geospatial analysis (Gorelick 

et al., 2017) that is open-access and free of charge for research, education and non-profit 

purposes. The platform requires a simple online application and a Google user account to 

access. With a JavaScript code editor platform, Earth Engine provides a massive imagery 

data collection (including almost the entire Landsat archive and associated surface 

reflectance products) that can be retrieved directly, allowing users to interactively test and 

develop algorithms, and preview results in real time. Earth Engine also provides various 

pixel-based supervised and unsupervised classifiers, including machine learning type 

algorithms, for mapping implementation. Google Earth Engine was utilized by Hansen et al. 

(Hansen et al., 2013) to generate global forest cover change products. Over 650 thousand 

Landsat 7 scenes were incorporated, and the processes took just a few days. Other studies 

have also demonstrated the ease of incorporating various sources of imagery data and 

automating image classification routines for crop and vegetation mapping using Earth 

Engine (Shelestov et al., 2017; Johansen, Phinn, & Taylor, 2015; Parente & Ferreira, 2018).  

The objective of this study is to develop and test advanced image classification 

techniques on the cloud-based platform Google Earth Engine for mapping vegetation and 

land-use types in the FNNR region and analyze their spatial distributions. A secondary 

objective is to determine if multi-temporal composites, SVIs, and digital elevation data 

enable more accurate forest and land-cover mapping results in this cloud-prone and complex 

terrain study area.  Tree-based machine learning image classifiers—decision tree and 

random forest classifiers are applied to multi-temporal Landsat data to generate vegetation 

and land-cover maps. Cloud-free multi-seasonal image composites consisting of SVIs and 

ancillary data are tested for effectiveness in vegetation type mapping. Terrain shading 
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normalization approaches are implemented to improve the mapping results in the 

mountainous study area. Vegetation type maps are assessed for accuracy by comparison 

with reference data collected through field assessment with sampling plots. The vegetation 

and land-use mapping workflow, which includes cloud-based image processing approaches, 

provides a reliable method to remotely map forest and land-use composition in FNNR. 

2.2. Study Area and Materials 

Fanjingshan National Nature Reserve (FNNR, 27.92° N, 108.70° E), as shown in Figure 

1, is roughly 419 km2 in size. FNNR was established in 1978 as a protected area, and 

included in the UNESCO Man and Biosphere Protection network in 1986. The mountainous 

terrain displays a vertical elevation difference of over 2000 m and is located in the humid 

subtropical climate zone. FNNR is also referred to as “ecosystem kingdom”, because of its 

diverse microclimate creates habitat for over 6,000 different types of plants and animals, and 

over 100 endemic species. The vegetation communities of the FNNR region are complex 

and normally mixed, and almost no single-species cover type exists (Zhou, 1990). Based on 

the dominant species, the vegetation communities were generalized into five common types 

for this study: deciduous, evergreen broadleaf, mixed deciduous and evergreen, bamboo, and 

conifer. Non-reserve land-use types, namely built and terraced agriculture, tend to be located 

along the periphery of the forest reserve.  

Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land imager (OLI) surface 

reflectance images of FNNR (located within Worldwide Reference System 2 path 126, row 

41) on the USGS Earth Explorer website (EarthExplorer, http://earthexplorer.usgs.gov) were 

reviewed, and selected dates were retrieved from the Google Earth Engine image library for 

image processing and analysis. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images 
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were not utilized for this study due to the Scan Line Corrector failure since 2003. Based on 

cloud cover and image availability for coverage throughout a vegetation growing season, 

two study years were selected for this study, 2011 and 2016. Images were also visually  

inspected to ensure the quality of the analysis. Table 1 provides information on specific 

image dates, sensors, and number of images used. 

Figure 1. Study area map. Fanjingshan National Nature Reserve boundary is outlined in red; a 6 km buffer 
based on the reserve boundary shown in orange defines the mapping area for this study. Base imagery source: 
Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and 
the GIS User Community. 
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The FNNR study area is extremely mountainous and cloud-prone. The cloud cover 

statistics were evaluated with the C version of Function of Mask products (CFmask; Foga et 

al., 2017) provided with the Landsat LEDAPS/LaSRC processed data sets. Landsat imagery 

for both study periods contains persistent cloud cover. For the circa 2011 period, portions of 

the study area have up to ten out of 13 available images that were covered by clouds. A 

minimum of eight image dates out of 17 images for the circa 2016 period have high amounts 

of cloud cover. For areas such as the highest ridge and peak located at above 2560 m 

elevation, there was only one image during the latter study period that provided cloud-free 

coverage. As Table 1 shows, two mostly cloud-free August images were selected to analyze 

single-date classification accuracies for 2011 and 2016. Two types of multi-temporal image 

stacks were also generated for the study periods: cloud-free layerstacks and seasonal 

composites.  

 

Ground reference data on vegetation composition within the portions of the FNNR were 

collected during Fall 2012, Spring 2013, Spring 2015, Fall 2015, and Spring 2016. 

Relatively homogeneous 20 × 20 m2 and 30 × 30 m2 areas were chosen as survey plots, on 

the ground, based on accessibility and visual inspection. Survey plot locations were selected 

to ensure sampling within the five common vegetation types in FNNR—deciduous, 

Table 1. Image dates and number of images associated with the study periods for this study. 
 

Study Period & 
Sensor 

Image Dates 
Single Summer Date Cloud-Free Layerstack Seasonal Composite 

Circa 2011 
Landsat 5 August 16, 2011 

November 1, 2010 
May 28, 2011 

August 16, 2011 

2010-2011 
13 images 

Circa 2016 
Landsat 8 August 29, 2016 

October 14, 2015 
August 29, 2016 

May 28, 2017 

2015-2016 
17 images 



 

 15 

evergreen broadleaf, mixed deciduous and evergreen, bamboo, and conifer. At every plot, 

the dominant vegetation community type was determined based on species cover through a 

rapid assessment process similar to the California Native Plant Society’s Rapid Assessment 

Protocol (CNPS, 2016). Digital photographs and vegetation structure information was also 

collected. All the survey plot locations were recorded with a global navigation satellite 

system receiver.  

The survey locations were recorded often under the dense vegetation cover in 

mountainous terrain in the study area. These factors led to difficulty in collecting more 

reference data and led to higher degree of uncertainty in positional accuracy. Prior to 

utilizing the survey data points, the reliability of the reference dataset was improved by cross 

validating with an unpublished vegetation community map. The vegetation community map 

was created through a collaborative project between Global Environmental Facility (GEF) 

and the FNNR management office in 2007. This map was generated through the 

combination of forest inventory field surveys and visual interpretation of a Landsat image. 

The map depicted 37 dominant overstory species for the reserve and was rendered to the five 

common FNNR vegetation community types (i.e., deciduous, evergreen, mixed deciduous 

and evergreen, bamboo, and conifer). While the map was used as additional reference data, 

the accuracy of the map has not been determined and differences were observed when 

comparing the map to high spatial resolution satellite imagery. The locations and vegetation 

types of the survey data samples were cross-validated and co-located with the GEF 2007 

vegetation map. When field assessment and map data did not agree, vegetation type classes 

were determined using other reference sources, such as PES locations derived from 

household surveys, high spatial resolution Google Earth images (namely 2013 and 2017 
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Pleiades), and ArcGIS Basemap imagery (pan-sharpened QuickBird, GeoEye, and 

WorldView-2 images from 2004 to 2012).  

2.3. Methods 

The majority of the image processing and analysis for this study was implemented 

through Google Earth Engine. The methods include image normalization for illumination 

effects (i.e., shade), generating multi-seasonal image stacks, tuning machine learning 

classifier parameters, generating classification maps, and assessing accuracies of 

vegetation/land-use products. 

2.3.1. Multi-Temporal Image Stacks 

Two types of multi-temporal image stacks were generated: cloud-free layerstacks, and 

seasonal composites. The cloud-free layerstack image input was formed by stacking the 

most cloud-free Spring and Fall images available within two consecutive years of the 

selected Summer image. Images were combined to form a three-date stack. To minimize 

cloud pixels, seasonal image composites were also generated. For the seasonal composites, 

all Landsat images that were captured during the years of 2010-2011, and 2015-2016 were 

utilized. In order for the composites to preserve seasonal vegetation signals, images were 

split into Spring, Summer, and Fall season groups. For each seasonal group, the mean value 

between all available images was calculated. Lastly, the three season layers were combined 

(i.e., layerstacked) to form the seasonal composites. 

2.3.2. Classification Feature Input 

Due to the extreme elevation range and steep slopes in the FNNR region, a reflectance 

normalization process was applied to Landsat images by dividing each reflectance band by 
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the reflectance sum of all bands (Wu, 2004). Spectral band derivatives were utilized to 

further minimize terrain illumination effects and maximize vegetation signature differences. 

Six SVIs derived from the reflectance normalized Landsat spectral bands, along with 

elevation, slope, and aspect layers derived from a SRTM DEM were used as feature inputs 

for vegetation and land-use classification. The slope layer was calculated in degrees, ranging 

from 0 to 90°. The aspect layer had a value range from 0 to 360°, and was transformed by 

taking the trigonometric sine values of aspect to avoid circular data values (Xu et al., 2006). 

Sine values of aspect represents the degree of east-facing slopes, as the values range from 1 

(i.e., east-facing) to -1 (west-facing). Clouds, cloud shadow, and water bodies were masked 

using the CFmask products.  

NDVI, normalized difference blue and red (NDBR), normalized difference green and red 

(NDGR), normalized difference shortwave infrared and near infrared (NDII), MSAVI, and 

spectral variability vegetation index (SVVI) were derived from the Landsat data as defined 

below. MSAVI is calculated as Equation 1 (Qi et al., 1994): 

MSAVI = 	
2𝜌*+, + 1 −	 2𝜌*+, + 1 0 − 8(𝜌*+, − 	𝜌345)

2
						 (1) 

NDVI is calculated as Equation 2 (Carlson & Ripley, 1997): 

NDVI = 	
𝜌*+, 	− 	𝜌345
𝜌*+, 	+ 	𝜌345

 
(2) 

where ρNIR and ρred in Equations 1 and 2 represent the near infrared and red reflectance 

values for a given pixel. The other three normalized difference indices: NDBR, NDGR, and 

NDII, were calculated as the form of NDVI in Equation 2, only with blue and red bands for 

NDBR, green and red bands for NDGR, and infrared bands (NIR and SWIR) for NDII. 

SVVI is calculated as the difference between standard deviation (SD) of all Landsat bands 
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(excluding thermal) and SD of all three infrared bands, as displayed in Equation 3 (Coulter 

et al., 2016): 

SVVI = 	𝑆𝐷 𝜌;<<	=;>5? 	– 	𝑆𝐷 𝜌*+,	;>5	AB+,	=;>5?  (3) 

2.3.3. Classifiers 

Two pixel-based, supervised machine learning type image classifiers were implemented 

and tested: decision tree (DT) and random forest (RF). To train and test the image 

classifiers, forest composition survey data were utilized while agriculture and built sample 

areas were manually digitized based on high spatial resolution satellite imagery. A total of 

109 samples were derived for image classifier training and testing purposes. Of the 109 

samples, 34 represented mixed, 12 broadleaf, and eight deciduous vegetation, 16 conifer, 10 

bamboo, six bare land, 11 agriculture, and 12 built land uses. These samples were stratified 

by image illumination to account for the drastic spectral difference between illuminated and 

shaded slopes (Tsai et al., 2016). The samples were organized in a Google Fusion Table and 

retrieved in Google Earth Engine. The corresponding input image values for the 109 

samples were extracted at the Landsat image pixel level.  

Cross-validation and grid search techniques were implemented to optimize classifier 

parameters and ensure model fitting. The 109 samples were randomly selected and split into 

two parts (i.e., cross-validation): 2/3 for training and 1/3 for testing. Samples were selected 

by each class to maintain the class proportion. Different combinations of classifier 

parameters were systematically tested (i.e., grid search) with the training samples. The 

trained models were then evaluated using the reserved 1/3 testing samples for the estimated 

model performance. The parameter combination that yielded the highest testing accuracy 

was used as the optimal classifier parameter. Final vegetation and land-use maps were 
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produced based on the optimal classifier parameters utilizing the entire set of data samples. 

The derived maps portray the five vegetation types (bamboo, conifer, deciduous, evergreen 

broadleaf, and mixed deciduous and evergreen) and three land-use types: agriculture, bare 

soil, and built. 

2.3.4. Accuracy Assessment 

The classification products were evaluated for mapping accuracy using an independent 

set of accuracy data points. There were difficulties discerning certain forest community 

types. Thus, the seven-class mapping scheme was generalized into four classes—built, 

agriculture, forest, and bamboo/conifer vegetation to create a second, more generalized map 

as part of the accuracy assessment. Conifer and bamboo were grouped into a single class, 

while the forest class contained deciduous, evergreen, and mixed deciduous and evergreen. 

A total of 128 points (32 points per class) for the study area were generated using a distance-

restricted random method (i.e., points to be at least five Landsat pixels apart) and manual 

editing. Points were overlaid on the Planet imagery captured on July 2017 (Planet Team, 

2018) and manually labeled as forest, bamboo/conifer, agriculture, or built class. The 

labeled reference points were compared to the corresponding classified pixels, and the 

percent of agreement was recorded in an accuracy table. 

To examine the forest community type classification accuracy, the Landsat-derived 

classification products for 2011 were compared to the 2007 GEF vegetation map. A spatial 

correspondence matrix was generated for each product to quantify the site-specific and areal 

coverage similarities and differences between the classification maps and the GEF map. 

Only the 2011 classification maps were evaluated for they correspond in time better with the 

GEF map.  
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Classification products from the same time period that were derived using different 

inputs and classifiers were also compared to each other to evaluate differences in classifiers 

and how they represented the vegetation and land-use of the study area. The most reliable 

classification approach was determined based on mapping accuracies, and the map 

comparison and evaluation results between the GEF map and the circa 2011 classification 

products. 

2.4. Results 

Figure 2 shows the circa 2016 classification map using RF classifier with the seasonal 

composite image inputs. The reserve is mostly classified as mixed evergreen and deciduous 

type (displayed in light green color in Figure 2). Evergreen broadleaf cover (displayed in 

yellow) has a distinct distribution along the river and stream channels that originate from the 

reserve, in addition to the concentration on the eastern and southern side of the study area. 

Deciduous cover type (displayed in brown) is concentrated along the high elevation ridge in 

the middle of the reserve, as well as the two clusters found on the south end. As for the 

bamboo and conifer vegetation types, more bamboo cover (displayed in red) is mapped on 

the eastern side of the reserve, and conifer (displayed in dark green) were found more 

concentrated to the west and north. The road network that surrounds the reserve is depicted 

as part of the built class. Mapped in close proximity to built areas are agriculture land, 

bamboo, and conifer cover types. They are found distributed towards the periphery and 

outside of the reserve boundary.  

Key image classifier parameters were tuned for optimizing the classification accuracies. 

Optimal parameters were identified for each study period and image input type, and they can 

be found in Table 2. For the DT classifier, the minimum number of training points required 
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to create a terminal node was the parameter tuned. Parameters tuned for the RF classifier 

were number of trees to create, and the number of variables per split.  

The generalized four-class (i.e., forest, agriculture, built, and bamboo/conifer vegetation) 

classification map products yielded moderate overall accuracies, particularly with RF 

classifier with multi-date image inputs. Table 3 shows the generalized map classification 

accuracies for different study periods and image inputs. Of the classifiers tested, RF 

classifier consistently yielded higher accuracies compared to the DT classifier (as shown in 

Figure 2. Vegetation type and land-use classification map for circa 2016. The map was derived from the 
seasonal composite image input with the random forest classifier. 
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Table 3) regardless of study periods or input types. The RF classifier with the circa 2011 

cloud-free layerstack image input yielded the highest accuracy value at 77%. Table 3 also 

shows the multi-image stack approaches yielded higher classification accuracies compared 

to the single-date input except one instance. On average, the multi-image stack accuracies 

were 2 to 11% higher. The RF classifier yielded 72 and 74% average accuracies with the 

multi-image input, while the single date input produced an average accuracy of 65%.  

 

Table 2. The optimal image classifier parameters derived through the grid search tuning. The parameters 
listed here yielded the highest testing accuracies and were utilized for the final map classifications. 
Parameters were tuned for decision tree (DT) and random forest (RF) classifiers. 
 

Study 
Period Classifier & Parameters 

Classification Parameters 
Single Summer 

Date 
Cloud-Free 
Layerstack 

Seasonal 
Composite 

Circa 2011 DT 
RF 

# of leaf 
# of trees; features 

7 
80; 8 

1 
133; 2 

2 
109; 9 

Circa 2016 DT 
RF 

# of leaf 
# of trees; features 

2 
17; 3 

1 
11; 5 

1 
85; 14 

 

 

Table 4 shows the accuracy assessment results for the circa 2016 period using RF 

classifier on various methods. Based on classification accuracies and visual inspection, 

Table 3. The classification accuracy on the generalized, four-class land-cover maps for different study 
periods and image input types. The average accuracy values are calculated for each input type and image 
classifier.  
 

Study Period & 
Classifiers 

Generalized Map Classification Accuracy 

Single Summer Date Cloud-Free Layerstack Seasonal 
Composite 

Circa 2011 DT 
RF 

0.61 
0.62 

0.66 
0.77 

0.67 
0.70 

Circa 2016 DT 
RF 

0.64 
0.67 

0.63 
0.70 

0.66 
0.73 

Average DT 
RF 

0.63 
0.65 

0.65 
0.74 

0.67 
0.72 
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classification products generated using RF classifier with seasonal composite image inputs 

yielded the most stable and consistent high accuracy maps. Specifically, the most reliable 

method (in terms of accuracy and consistency) as seen in Table 4 is utilizing SVIs derived 

from shade and illumination normalized data in conjunction with a DEM layer as the 

classification input. This most reliable method yielded 73% mapping accuracy, and is 

significantly higher compared to using spectral bands (accuracy = 55%). Incorporating 

elevation information from SRTM DEM as part of the classification input also substantially 

improved the classification accuracy. RF classification without the DEM layer yielded 66% 

accuracy, seven percent lower compared to the optimal method. Classification accuracy was 

slightly lower when using image inputs normalized for shade and illumination, compared to 

using the non-normalized input products (the excluding normalization method in Table 4). 

However, without the normalization procedure, the classification result portrayed a 

substantial amount of conifer misclassification due to the extreme terrain shading in the 

study area.  

Table 5 shows the accuracy assessment and confusion matrix for the circa 2016 

classification product that was generated with RF classifier using the seasonal composite 

image input. The forest class is likely overclassified, suggested by 97% producer’s accuracy 

with a lower, 58% user’s accuracy as Table 5 shows. Agriculture land and bamboo/conifer 

vegetation were the sources of confusion with the forest class. On the other hand, the built 

class yielded 100% user’s accuracy with a lower producer’s accuracy (69%), which indicate 

under-classification. Most of the confusion for the built class is with agriculture land, as 

small villages and fallow or emergent croplands exhibit similar image signatures. 

Agriculture activities in the study area are mostly sparse and low stature plantations, which 
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exposes a lot of bare soil. The high reflectance spectral signature of exposed soil and fallow 

fields could be the source of misclassification between agriculture and built.  

 

 

The spatial correspondence products generated comparing the circa 2011 classification 

map (generated using RF classifier with the seasonal composite image inputs) to the GEF 

reference map indicated 53% of the reserve area was classified as the same vegetation 

community types as the reference map. Mixed deciduous and evergreen, evergreen 

Table 4. Mapping accuracies for circa 2016 using random forest classifier on various seasonal composite 
image inputs. The x symbols mark the techniques applied, and the mapping accuracy is listed for each 
method. 
 

Method 
Technique Map 

Accuracy SVIs SRTM DEM Shade 
Stratification 

Illumination 
Normalization 

Most Reliable 
Method x x x x 73% 

Spectral Input  x x x 55% 

Excluding DEM x  x x 66% 

Excluding 
Normalization x x   79% 

Table 5. Accuracy assessment results for the c. 2016 classification product generated with the seasonal 
composite image input and random forest classifier. These values were derived using the final accuracy 
assessment data on the four-class generalized map. Gray cells indicate agreement. 
 

c. 2016 Classified Class 
2016 Reference Class User’s 

Accuracy Forest Agriculture Built Bamboo/ 
Conifer 

Forest 31 9 2 11 58% 

Agriculture 0 19 8 0 70% 

Built 0 0 22 0 100% 

Bamboo/Conifer 1 4 0 21 81% 

Producer’s Accuracy 97% 59% 69% 66% Overall 
Accuracy 73% 
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broadleaf, and conifer types were the three classes that showed highest mapping agreement. 

Most of the reserve core and eastern side of the reserve indicated high agreement, mostly 

consisting of mixed deciduous and evergreen, evergreen broadleaf, and bamboo types. The 

north-western portion of FNNR also showed high mapping agreement, and consisting 

mostly of conifer cover. The Landsat classification maps portrayed the south-western side of 

the reserve mostly as mixed deciduous and evergreen community types, which made up 

30% of the reserve. The same area on the reference map is identified as more heterogeneous, 

distinguished communities of dominant evergreen broadleaf, deciduous, and conifer. Two 

ridges to the south of the reserve are mapped as deciduous type cover surrounded by mixed 

vegetation. The deciduous community makes up roughly 2% of the reserve area. This area is 

correctly mapped with the Landsat-derived classification products, while the GEF map 

portrays it as mixed deciduous and evergreen type.  

2.5. Discussion 

The cloud-based, multi-temporal composite classification approach of satellite-based 

land-cover data described in this study overcame challenges associated with persistent cloud 

cover and terrain shading effects in the FNNR region. The results suggest Google Earth 

Engine is efficient and effective in accessing pre-processed satellite imagery, implementing 

machine learning type image classifiers, and generating classification products for FNNR. 

The entire workflow described in this study on average takes less than 30 minutes to 

complete. The open-access platform and the procedures described in this study enable 

reserve managers to monitor protected areas in an effective manner without having to 

purchase or download data and software. The scripting also allows users to streamline 

complex image processing workflow, and execute processes with minimum intervention. 
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Collaborating and sharing scripts is also efficient with the online platform. Like most 

commercial image processing software, Google Earth Engine provides online 

documentation and tutorials as user support. It also has a discussion forum where users can 

post questions and share their knowledge. Earth Engine requires no specific hardware setup 

like most commercial image processing software. However, it does require stable internet 

connection which might not always be available.  

Based on the classification accuracies and visual inspection, classification products 

generated with RF classifier using seasonal composite image input yielded the most stable, 

consistent, and accurate maps for the study area. The accuracy assessment results were 

comparable with many studies mapping mixed forest types in mountainous terrain 

(Schriever & Congalton, 1995; Sluiter & Pebesma, 2010; Dorren, Maier, & Seijmonsbergen, 

2003). Higher mapping accuracy would likely be achieved with larger and more certain 

training datasets (Kotsiantis, Zaharakis, & Pintelas, 2007; Johansen, Phinn, & Taylor, 2015). 

Shade and illumination normalization techniques were helpful in minimizing the terrain 

shading effects and greatly decreased the misclassification of conifer cover. Incorporating 

elevation and its derived products in addition to SVI layers were also found to improve the 

classification accuracy and mapping quality significantly. The scaled sine values of the 

aspect data, which measures east-ness, was found to increase the map accuracy. Likely due 

to most of the mountain ridges in FNNR being north-south oriented and slopes are facing 

east-west, the scaled aspect layer using sine function produced higher accuracy than aspect 

layer scaled by cosine values (which measures north-ness).  

The cloud cover issue for FNNR is effectively minimized with the multi-temporal 

seasonal composite approach, and the RF image classifiers. Cloud cover is prevalent in most 
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of the Landsat images utilized in this study. The CFmask products were used to exclude 

cloud pixels prior to image classification, and the pixels were treated as no data values. 

Utilizing all available data within each season maximizes the amount of cloud-free 

observations, thus reducing misclassification of no data pixels. Both the single summer date 

and cloud-free layerstack classification approaches yielded map products with apparent and 

substantial misclassification due to no data pixels originated from cloud cover. The DT 

classifier also produced map products with mislabeled no data pixels. In those instances, 

pixels were commonly mislabeled as bare, agriculture, or built classes. The RF image 

classifier tested in this study were able to consistently minimize the effects of clouds and the 

derived no data pixels.   

The Landsat-based vegetation type classifications for the core and eastern portion of the 

FNNR reserve were generally similar to those portrayed in the GEF reference map. The 

majority of the disagreement occurred at the forest community type level, particularly mixed 

deciduous and evergreen class. With relatively heavy anthropogenic activities in the western 

portion of the reserve, it was documented that the pristine, primary forest cover has 

degraded to mixed primary and secondary forest type, particularly in the lower elevations 

(Zhou, 1990). This could explain the mapping differences between the classification 

products and the GEF reference map. A combination of subjective survey work and limited 

training samples are also likely why the mixed type was not further discerned into evergreen 

broadleaf or deciduous as in the GEF map. The GEF mapping incorporated forest inventory 

survey knowledge and was susceptible to labeling biases.  The field survey efforts were 

constrained by the steep terrain and access restrictions from the Reserve Administration 

Office. There were only a dozen training samples collected in this portion of the reserve, 
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nine of which were labeled as mixed through fieldwork, and only two were recorded as 

broadleaf type. Also, the field-based vegetation rapid assessment procedures are subjective 

and uncertain due to differences in seasonality and surveyors.  

A few challenges were encountered in this study, mostly pertaining to uncertainties 

between the Landsat-derived maps and the reference data. The reference data samples which 

were utilized during classifier training and testing phases were limited in quantity, and 

involved positional uncertainty. The bagging method as part of the RF classifier (Breiman, 

Friedman, Stone, & Olshen. 1984) likely improved the small training data limitation in this 

study. Another major challenge was the mismatch in time between the available cloud-free 

Landsat images and the reference data. The GEF reference map was produced four years 

earlier than the 2011 study period. The field survey (conducted between 2012 and 2015) and 

the high spatial resolution reference images retrieved from Google Earth and Planet 

(captured in 2013, 2016, and 2017) are minimally a year apart from the two study periods. 

This posts difficulty in analyzing the classification products in conjunction with the 

available reference dataset. 

2.6. Conclusions 

Frequent anthropogenic disturbances at biodiversity hotspots can degrade ecosystems 

and ecosystem function. This study demonstrated an effective approach to mapping 

vegetation cover and land-use utilizing cloud-based image processing tools, even with 

persistent cloud cover and extreme terrain and illumination effects. A semi-automated 

mapping approach implemented on an open-access, user-friendly platform, similar to the 

workflow demonstrated in this study, increases the usability and transferability of such 

mapping techniques. The use of freely available Landsat imagery and the Earth Engine 



 

 29 

image analysis tools ensure that FNNR managers have the resources needed to continue to 

monitor forest cover and land-use changes. Although future studies will need to continue to 

improve classification accuracy, particularly for the bamboo/conifer and agriculture classes 

where mapping errors were higher, this method can be used to evaluate impacts of 

afforestation policy and identify areas of ongoing human disturbance. With the generalized, 

four-class maps from multiple dates, land transitions of interest could be identified. For 

example, areas that were mapped as agriculture before 2001 (prior to PES implementation) 

and transitioned to bamboo/conifer at a more recent image date could be mapped as 

locations of PES implementation. These image classification techniques will generate 

reliable information with regard to forest dynamics (especially in cloud prevalent forested 

areas like FNNR), which is of great importance not only for assessment of PES efficacy, but 

also for long-term monitoring and assessment of generic environmental changes or 

conservation efforts.  
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Chapter 3. Monitoring Land-Cover and Land-Use Dynamics in 

Fanjingshan National Nature Reserve 

3.1. Introduction 

Fanjingshan National Nature Reserve (FNNR) is on the UNESCO World Heritage List 

because of its high fauna and flora biodiversity, with over 100 endemic species found in the 

reserve. Roughly 13,000 people live a subsistence life style within the protected area, with a 

total of 21,000 population within or near the region surrounding FNNR (Global 

Environmental Facility Project Team, 2004). Human land-use activities such as farming, 

grazing, and resource gathering take place within or near the reserve (Wandersee, 2013). 

Frequent anthropogenic disturbances can lead to land-cover and land-use change (LCLUC) 

and cause ecosystems to degrade quickly, even within designated protected areas (Liu et al., 

2001). FNNR has experienced rapid and complex land-use changes in recent years, due to 

changing demographic patterns, economic and tourism growth, and related development. In 

2008, a gondola lift system was built to transport tourists from the east reserve entrance to 

the FNNR peak. An expanded road network that surrounds the reserve was completed in 

2010 (Aitken, An, & Yang, accepted). The last two decades have witnessed increasing 

outmigration from FNNR to cities as well as rapid initiation and expansion of local off-farm 

businesses, imposing substantial impacts on FNNR’s land use and land cover. Given the 

wide-spread human activities and the resultant rapid land changes in this pristine, 

mountainous, and cloud-prone reserve, a closer examination of how to monitor LCLUC in 

an efficient and reliable manner is important for reserve management.  

China has two of the largest payment for ecosystem services (PES) programs in the 

world (Liu et al., 2008), which aim to increase forest cover and reduce soil erosion and 
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flooding following the long history of deforestation since the 1960s (Harkness, 1998) and 

major flooding in 1998 (Uchida, Xu, & Rozelle, 2005). The two main PES programs in 

China are commonly known as the National Forest Conservation Program (NFCP) and 

Grain to Green Program (GTGP). The NFCP was implemented in 1998, and the GTGP went 

into effect in 1999. Under the NFCP regulations, timber harvest would be reduced or even 

eliminated from natural forests (Liu et al., 2008). The goals are for plantation forests to 

become the main source of timber harvesting, while natural forests are restored by banning 

firewood and resource collection. The GTGP policy has a stronger focus on reducing soil 

erosion by afforestation on sloped land (Uchida, Xu, & Rozelle, 2005; Chen, Marter-

Kenyon, López-Carr, & Liang, 2015). Afforestation strategies include planting trees or grass 

on barren land, converting farmland located on steep slopes (i.e., steeper than 25° in 

southern China; Xu, Tao, Xu, & Bennett, 2010) to plantation forests. The Chinese 

government provides payment incentives for both programs. Farmers who enroll in GTGP 

receive financial and crop compensations, as well as seedlings and technical support for 

afforestation. The participants of NFCP receive financial support in exchange for forest 

protection (e.g. patrol and fire watch) and not utilizing forest resources. Both PES programs 

have been implemented for over 17 years in the FNNR region.  

The most feasible and efficient means for monitoring widespread and accelerated 

afforestation efforts and other LCLUC is through satellite remote sensing. Landsat satellite 

systems provide a long-term and freely-available image archive which is ideal for land-

cover and land-use change monitoring applications. Landsat imagery has the potential 

temporal frequency of every 16 days and a moderate (30 m) spatial resolution. Reliable 

change analyses can be achieved with surface reflectance products (Hall, Strebel, Nickson, 
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& Goetz, 1991; Moran, Jackson, Slater, & Teillet, 1992). Surface reflectance products for 

Landsat 4 to 7 and Landsat 8 data are processed through automatic algorithms of the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS; Masek, 2006) and Landsat 

Surface Reflectance Code (LaSRC; Vermote, Justice, Claverie, & Franch, 2016) 

respectively. By converting digital numbers to surface reflectance values, most atmospheric 

and solar illumination effects are corrected. These corrections enable multi-temporal 

Landsat images to be more comparable over time.  

Different image classification and change identification techniques have been 

implemented for semi-automated land change studies. A conventional maximum likelihood 

classifier combined with stable training sites was used to classify nine Landsat image dates 

for a cloud-prone study area (Stow, Shih, & Coulter, 2014). The technique was deemed 

effective for long-term LCLUC monitoring. Machine learning type image classifiers were 

tested by Schneider (2012) with dense Landsat image stacks and training sites of stable and 

changed features. Among the tested image classifiers, random forest (RF) and support vector 

machine (SVM) classifiers yielded high accuracies; the RF classifier was found to handle 

missing image data best. Although machine learning type image classifiers may require 

larger training samples (Kotsiantis, Zaharakis, & Pintelas, 2007), the RF image classifier 

was determined by Rodriguez-Galiano et al. (2012) to be less sensitive to small training 

sample sizes. To quantify land-use changes and retain the transition classes, a post-

classification map comparison step was demonstrated by Yuan, Sawaya, Loeffelholz, and 

Bauer (2005) to be effective.   

Several studies have demonstrated the utility of remote sensing to monitoring 

afforestation in China, though most of them focused on the drier, northern portion of the 
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country. Zhou and Van Rompaey (2009) utilized SPOT satellite time series images and 

derived vegetation indices to monitor GTGP in Shaanxi. Significant vegetation cover 

increase was mapped for the drier portion of their study area, while no vegetation change 

was detected in the humid and irrigated region. Using Landsat images, Zhou, Zhao, and Zhu 

(2012) quantified land transitions from agriculture and grassland to afforested land in the 

semi-arid Loess Plateau area. Their results showed rapid afforestation activity occurred after 

GTGP implementation and a more fragmented landscape was observed. Landsat time-series 

images were used to map deforestation and afforestation by Liu et al. (2013) for a 38-year 

period south of Mongolia. Their highly accurate (89%) results indicated large-scale 

afforestation activity could be monitored using remote sensing techniques. Spatially 

extensive and quantitative data about PES distribution and effectiveness in the more humid, 

southern portion of China remain minimal. 

Located in southeastern China, FNNR is a temperate, cloud-prone region with steep 

terrain and mixed forest cover types, which are great challenges when mapping and 

monitoring land surfaces using optical remote sensing approaches. Seasonal image 

composites have been shown to increase the separability of vegetation types and to minimize 

missing data due to cloud cover (Rodriguez-Galiano et al, 2012; Franco-Lopez, Ek, & 

Bauer, 2001). Shade and illumination normalization techniques (Wu, 2004; Tsai, Stow, Shi, 

Lewison, & An, 2016) and spectral vegetation index (SVI) products (Qi, et al., 1994) have 

been demonstrated to suppress illumination, terrain, and soil reflectance influences. 

Ancillary data, such as elevation models, were found to improve vegetation classification 

accuracy (Dorren, Maier, & Seijmonsbergen, 2003; Domaç & Süzen, 2006; Xie, Sha, & Yu, 

2008; Belgiu & Drăguţ, 2016). The combined usage of seasonal image composites, 
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illumination normalization, SVIs, and ancillary data in a previous study mapping vegetation 

and land-use in FNNR yielded consistent mapping results with moderate accuracy (Tsai et 

al., 2018). 

A software platform that has been instrumental in efficient open-access image 

processing is Google Earth Engine. Earth Engine (https://earthengine.google.com) is a 

cloud-based and open-access geospatial data analysis platform (Gorelick, 2017). It provides 

an image library that can be directly accessed through the JavaScript coding environment. 

The image library contains data from various sensors and satellite platforms, including 

almost the entire Landsat image archive and its surface reflectance products. The coding 

environment allows users to test and implement algorithms and interactively view results. 

Earth Engine also provides many machine learning type image classifiers for mapping 

applications. The efficiency of this platform has been demonstrated by Hansen et al. (2013) 

who generated global forest cover change products from over 650 thousand Landsat 7 

scenes in just days. Johansen, Phinn, and Taylor (2015) achieved high mapping accuracies 

using machine learning image classifiers with Landsat images on Google Earth Engine in a 

study mapping woody vegetation change. With the readily-available imagery data combined 

with the open-access image processing capability as Earth Engine provides, forest reserve 

managers such as those in FNNR, could monitor land change in an extensive manner.  

The primary objective of this study is to map, monitor, and quantify land-use transitions 

pertaining to afforestation and anthropogenic development for the FNNR and its environs. A 

secondary objective is to assess the utility of monitoring such land-use dynamics in such a 

challenging cloud-prone and steep terrain study area through Landsat satellite images and 

Google Earth Engine deploying a workflow previously developed by Tsai et al. (2018). 
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Vegetation and land-use types are mapped with images captured before and after the PES 

program implementation in the FNNR region. Techniques such as shade and illumination 

normalization, and multi-seasonal Landsat image stacks are employed to account for terrain-

illumination effects and persistent cloud cover in the study area. Stable training sites are 

utilized to train a random forest machine learning image classifier to generate vegetation and 

land-use maps for four periods from 1989 to 2017. Land-use transitions focusing on 

afforestation and new developments are subsequently mapped. Land-transition maps are 

examined in conjunction with high spatial resolution satellite imagery to identify 

corresponding land-use changes.  

3.2. Study Area and Data 

FNNR in Guizhou province (27.92 N, 108.70 E) was listed as one of the 25 global 

biodiversity hotspots (Myers et al., 2000). Established in 1978, there are over 5,000 species 

of plants and animals identified in the reserve. The reserve can be divided into core and 

buffer zones, totaling about 419 km2 in size (Yang, Lei, & Yang, 2002). Figure 3 shows the 

study/mapping area, which includes the reserve core area, the buffer zone, and an area that 

extends outward by 6 km from the buffer zone to incorporate nearby villages. Forest cover 

in the reserve core is mostly undisturbed primary forests. The forest composition is complex 

and mixed. For mapping purposes, the forest community types were generalized based on 

dominant species into five types: deciduous, evergreen broadleaf, mixed deciduous and 

evergreen, bamboo, and conifer. Villages and agriculture are found in the surrounding 

hinterlands of the reserve. These surrounding areas also contain mixed and secondary 

forests, as well as afforested vegetation from PES programs. Both NFCP and GTGP PES 

programs are implemented in the FNNR region. The implementation started around year 
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2001. An estimated 9000 mu (6 km2) of farmland was enrolled in GTGP for afforestation 

during 2001-2008 (Wandersee, 2013). About 3 km2 of land in the reserve were designated as 

GTGP lands based on a hand-digitized layer created by the reserve staff. In most cases, 

participants plant pine or fir trees in a mono-crop style. In some occasions, bamboo and 

economical plants such as tea and fruit trees are also planted.  

 

Figure 3. Fanjingshan National Nature Reserve in southeastern China. The reserve boundary is outlined in 
green, while the reserve core zone in dotted red is slightly smaller. The mapping area (including a 6 km buffer 
from the reserve boundary) for this study is outlined in white. The backdrop image is a true-color satellite 
image mosaic collected by Planet Team in July 2017. The mosaicked Planet image exhibits bidirectional 
reflectance effects but is suitable for visual interpretation. 
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Available Landsat surface reflectance images that cover the FNNR region (World 

Reference System 2 path 126, row 41) were identified for the following study periods: Time 

1 circa 1989, Time 2 circa 1995, Time 3 circa 2010, and Time 4 circa 2016. Table 6 

provides information on specific image dates and number of images used. The four study 

periods were selected to coincide with and based on (1) the earliest available Landsat data 

after reserve establishment, (2) prior to and after the GTGP implementation in the region in 

2001, and (3) the most up-to-date land-use and land-cover. A four- and six-year image cycle 

was found to be appropriate to monitor anthropogenic-related vegetation changes (Coppin & 

Bauer, 1995), and a ten-year interval was found sufficient to transition from successional 

vegetation to forest (Park, Houghton, Hicks, & Peterson, 1983).  

Table 6. Image dates and number of images associated with the study periods for this study. 
 

Study Period Sensor Seasonal Composite Images Number of Images 
Circa 1989 Landsat 5 1989-1990 12 images 
Circa 1995 Landsat 5 1995-1996 12 images 
Circa 2010 Landsat 5 2010-2011 11 images 
Circa 2016 Landsat 8 2016-2017 17 images 

 

A digital elevation layer from the Shuttle Radar Topography Mission (SRTM) was 

incorporated in the classification workflow. C-band and X-band data were collected with 

different antenna panels for SRTM in the year 2000 (Farr, 2007). The C-band derived digital 

elevation model (DEM) has near-global coverage and was processed by NASA JPL. The 

one arc-second (roughly 30 m) spatial resolution topographic data were released for public 

use in 2015. 

Some high spatial resolution satellite imagery data were available for viewing, and were 

utilized during the analysis. Imagery data include true-color Pleiades images from 2013 and 

2017 on Google Earth, and pan-sharpened QuickBird/GeoEye/WorldView-2 mosaic images 
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from 2004 to 2012 available as Basemap in the ArcGIS software. Four-band Planet images 

(red, green, blue, and near-infrared bands) were made available through its Education and 

Research Program (Planet Team, 2017). Two cloud-free mosaicked products were generated 

from Summer 2016 and Summer 2017 for the FNNR study area. The mosaicked image set 

exhibits bidirectional effects, however it is suitable for the visual interpretation purposes. 

3.3. Methods 

Vegetation and land-use types were mapped for each of four study periods and the 

resultant maps were assessed for accuracy. Then land-transition maps were generated 

through post-classification map comparison to emphasize lands that underwent afforestation 

and development of new built land cover.  

3.3.1. Classification Feature Input 

Landsat surface reflectance images for each study period were first compiled into 

seasonal composites (Refer to Table 6 for the number of images used to create the seasonal 

composite for each study period.) A mean value composite image was generated for each 

season group before they were layerstacked for each study period. Several types of SVI 

image sets were derived for each season group and image date, for subsequent input to 

image classifiers. Several types of SVI image sets were derived for each image date, for 

subsequent input to image classifiers. The indices were meant to enhance vegetation and soil 

moisture signature, and suppress terrain illumination differences. These included normalized 

difference vegetation index (NDVI; Carlson & Ripley, 1997), modified soil adjusted 

vegetation index (MSAVI; Qi et al., 1994), normalized difference blue and red (NDBR), 

normalized difference green and red (NDGR), normalized difference shortwave infrared and 
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near infrared (NDII), and spectral variability vegetation index (SVVI; Coulter et al., 2016). 

MSAVI and NDVI are calculated as defined in Equations 1 and 2 of Chapter 2. NDBR, 

NDGR, and NDII are calculated as the form of NDVI using blue and red bands for NDBR, 

green and red bands for NDGR, and infrared bands (NIR and SWIR) for NDII. SVVI is 

calculated as the pixel-wise difference between standard deviation (SD) of all Landsat bands 

(excluding thermal) and SD of all three infrared bands, as defined in Equation 3 of Chapter 

2. Elevation, slope, and aspect were generated from the SRTM DEM layer, and layerstacked 

with the seasonal SVIs as the classification feature input for vegetation and land-use 

mapping.  

3.3.2. Image Classifier Training Data 

The classification scheme consists of five common forest types in the area, including 

deciduous, evergreen broadleaf, mixed deciduous and evergreen, conifer, and bamboo, plus 

three land-use classes: built, agriculture, and bare. A total of 120 single-pixel training 

samples were extracted and compiled through vegetation type survey and manual image 

digitization. When available, stable training pixels (Gray & Song, 2013; Shih, Stow, Weeks, 

& Coulter, 2016) representing a known vegetation or land-use type for the duration of the 

study period were utilized to classify all four study periods. Through vegetation type survey 

during Spring 2015, Fall 2015, and Spring 2016 in FNNR, a total of 84 plots that are 20-by-

20 m or 30-by-30 m in size were recorded for the five dominant forest types based on 

accessibility on the ground. These plot locations were cross-referenced with cloud-free 

Spring Landsat imagery to ensure the forest cover were present in all study periods. Eight 

out of the 84 forest point samples were found to transition from agriculture to conifer forest 

between c. 1989 and c. 2016 due to PES implementation. These eight samples were recorded 
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as agriculture class for the first two image dates, and conifer class for the latter two image 

dates. The remaining 76 samples manifested as stable forest type from the first image date to 

the last.  

For the built, agriculture, and bare land-use classes, a total of 36 stable training pixels 

were manually selected using the approach similar to what Stow, Shih, and Coulter (2014) 

have used. The first image date was used as the basis for selecting built training samples. 

The latter Landsat image dates were used to generate initial agriculture training samples, 

based on the rationale that agriculture lands were persistent during the study period if 

afforestation was not observed. The sample pixels were cross-referenced with the 1989 

Landsat image date to ensure stability. Training sample pixels were ensured to locate within 

a homogeneous portion of the image (i.e. within a single vegetation or land-cover type). The 

training dataset included 33 samples of mixed forest, 12 broadleaf forest, 9 deciduous forest, 

10 conifer (18 for 2010 and 2016), 12 bamboo, 15 agriculture (23 for 1989 and 1995), 15 

built, and 6 for bare ground. 

3.3.3. Classification, Post-Processing, and Post-Classification Change Analysis 

A pixel-based, supervised RF machine learning image classifier was used to generate 

vegetation and land-use maps for each of the four time periods. The 120 training samples 

were randomly selected and split into two-thirds and one-third portions respectively for 

training and testing the image classifier (i.e., cross-validation). A grid search was performed 

by exhaustively testing combinations of parameters to identify the optimal RF classification 

parameters—number of trees and number of variables per split. The vegetation and land-use 

maps were generated with the parameters that yielded the highest testing accuracy. The 

maps were smoothed with a 3-by-3 pixel majority moving window to minimize mixed-pixel 
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and boundary effects on misclassification, and to generalize to a more realistic minimum 

mapping unit.  

Land-use transition maps were generated through a post-classification comparison 

approach (Jensen, 1996) to depict afforestation and new built development based on the 

Landsat-derived vegetation and land-use maps. Logical land change rules were applied such 

that afforestation activity and new built developments could be mapped with pixels that 

transitioned from-to classes of interest. To map afforestation activity, pixels that were 

mapped as agriculture in the earlier study periods and as conifer in the third or fourth study 

periods were labeled as afforested land. New built development was identified for pixels that 

were mapped in an earlier image date as any non-built classes (forest, bamboo/conifer, and 

agriculture) and then as built in a later image date. 

3.3.4. Map Accuracy Assessment 

Map accuracy was assessed for the four dates of vegetation and land-use maps, as well 

as the land-use transition maps. The vegetation and land-use maps were assessed for 

mapping accuracy using an independent set of 128 accuracy assessment point samples. The 

samples were created in a random sampling manner with a distance restriction (points to be 

minimally five Landsat pixels apart) and are dispersed within the entire mapping area. 

Samples were labelled manually using the 3 m spatial resolution Planet imagery captured in 

July 2017 (Planet Team, 2017). These samples represent four vegetation and land-use 

classes, 32 points per class: forest, agriculture, built, and bamboo/conifer. To keep the 

analysis consistent, the vegetation and land-use maps were also categorically aggregated or 

generalized. The deciduous, evergreen broadleaf, and mixed deciduous and evergreen 

classes were grouped and recoded as forest; bamboo and conifer classes were merged as a 
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single bamboo/conifer class representing PES afforested lands; agriculture and built 

remained separate. The accuracy assessment samples were compared to the corresponding 

image pixels on the generalized maps. Mapping agreement, producer's, user's, and overall 

accuracies were recorded.  

Accuracy of the land-use transition map was assessed in a more qualitative manner due 

to a lack of available high spatial resolution reference imagery that corresponds to the earlier 

study periods. Centroids of 24 PES afforested lands were recorded through field visits in 

FNNR during Spring 2018 and then verified on high spatial resolution satellite imagery on 

Google Earth. The Landsat-derived afforestation maps were compared to the 24 PES 

reference points to evaluate the afforestation mapping results. The new built maps were 

visually inspected in conjunction with high spatial resolution satellite imagery from ArcGIS 

Basemap, Planet imagery, and Landsat images to identify and label the specific type of land-

use changes. 

3.4. Results 

3.4.1. Vegetation and Land-Use Map Accuracy 

The four-class vegetation and land-use maps have overall accuracies ranging from 64 to 

79% for the four study periods. Table 7 and Table 8 show the accuracy assessment results 

for before and after PES implementation respectively for the four study periods. The earlier 

two study periods have moderate mapping accuracies at 64 and 69% for 1988 and 1995 

respectively, as shown in Table 7. As seen in Table 8, maps for the latter two (more recent) 

study periods have higher overall accuracies of 77 and 79% for 2010 and 2016 respectively. 

Of the four classes, forest and built were consistently classified with high accuracies. 

Greater mapping confusion occurred for agriculture and bamboo/conifer classes. These land-
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cover and land-use types are likely under-classified, as indicated by the lower producer's 

accuracies and higher user's accuracies. The aggregated bamboo/conifer class is often 

confused with forest, while agriculture is confused with built.  

 

 

Table 7. Accuracy assessment results for the c. 1989 and c. 1995 (i.e., prior to PES implementation) 
classification products generated with the seasonal composite image input and random forest classifier. 
These values were derived using the final accuracy assessment data on the four-class generalized map. Gray 
cells indicate agreement. 
 

  Reference Class User’s 
Accuracy 

Image-derived 
Class 

Forest Agriculture Built Bamboo & 
Conifer 

1989 1995 1989 1995 1989 1995 1989 1995 1989 1995 

Forest 28 27 7 6 8 3 10 10 53% 59% 

Agriculture 1 1 15 18 3 3 3 3 68% 72% 

Built 0 0 10 6 21 25 1 1 66% 78% 

Bamboo & 
Conifer 3 4 0 2 0 1 18 18 86% 72% 

Producer’s 
Accuracy 88% 84% 47% 56% 66% 78% 56% 56% 

Overall 
Accuracy 

64% 69% 

Table 8. Accuracy assessment results for the c. 2010 and c. 2016 (i.e., post-PES implementation) 
classification products generated with the seasonal composite image input and random forest classifier. 
These values were derived using the final accuracy assessment data on the four-class generalized map. Gray 
cells indicate agreement. 
 

  Reference Class User’s 
Accuracy 

Image-derived 
Class 

Forest Agriculture Built Bamboo & 
Conifer 

2010 2016 2010 2016 2010 2016 2010 2016 2010 2016 

Forest 30 29 3 0 0 0 9 10 71% 74% 

Agriculture 0 0 17 24 2 0 0 3 89% 89% 

Built 0 0 11 4 30 31 2 2 70% 84% 

Bamboo & 
Conifer 2 3 1 4 0 1 21 17 88% 68% 

Producer’s 
Accuracy 94% 91% 53% 75% 94% 97% 66% 53% 

Overall 
Accuracy 

77% 79% 
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3.4.2. Land Change Maps and Distributions 

Afforestation and new built developments were mapped between 1995-2010, and 1995-

2016. Distributions of afforestation and new built developments were also examined for 

these two periods. The 1989 date was excluded because of its relatively low agriculture 

mapping accuracy. Figure 4 shows afforestation land mapped for 1995-2010. Mapped 

afforested lands are located mostly near the reserve boundary, particularly alongside river  

 

Figure 4. Map of afforested lands in Fanjingshan National Nature Reserve from 1995-2010 overlaid on a 
Planet gray-scale NIR image mosaic. Afforestation is mapped from pixels transitioned from agriculture to 
conifer/bamboo class. The mosaicked Planet image displayed bidirectional effects but remains suitable for 
visual interpretation. 
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channels, roads, and valleys and creeks that originated from the reserve core. Similar 

distribution patterns were observed in both 1995-2010 and 1995-2016 afforestation maps. 

However, the 1995-2016 afforestation map portrays substantial errors in the area to the east 

of the reserve. This region, approximately 2 km2 in size, remained mostly agriculture from 

1995 to 2016, while the 2016 map portrayed it as conifer. This was likely a result of the 

lower mapping accuracy of bamboo/conifer class, and the under-classification of agriculture 

from the 2016 image date. In 15 out of the total 24 recorded PES reference locations, 

afforestation areas are mapped within a three Landsat pixel radius (90 m). 

Figure 5 shows the new developments mapped between 1995-2016. Many new built 

developments are mapped along the reserve boundary and river channels in a linear pattern. 

In the adjacent reserve environs, new built developments are mostly clustered in nearby 

towns and villages. While the road networks were mapped more contiguous in 2010 than in 

2016, the 2010 map misclassified agriculture land as built in many instances. Indicated by 

the accuracy assessment result shown in Table 8, the 2010 map likely had an over-classified 

built class and an under-classified agriculture class that led to more area being mapped as 

new development in the transition maps.  

The new built maps reveal that development in the study area corresponds to widening, 

paving, and building of roads and freeways, building of tourism and recreational 

infrastructure, and developing of villages and other infrastructure. Figure 6 shows examples 

of the mapped new built developments in detail. Some of the recreational developments that 

were mapped correspond to the construction of a golf facility and the station for the gondola 

lift as seen in Figure 6a and 6b respectively, both located on the east side of the reserve. The  
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gondola lift station is slightly larger than one Landsat pixel (30-by-40 m) in size, while the 

golf course is roughly .4 km2 in size. Other mapped infrastructure development primarily 

corresponds to the following types of construction activities and features: (1) building of 

freeways south and west of reserve as Figure 6c shows; (2) completion of the road network 

surrounding the reserve; (3) constructing of new roads to connect villages, mostly north and 

northwest; (4) constructing two dams to the west (Figure 6d illustrates one of them); (5)  

 

Figure 5. New development map from 1995-2016 overlaid on gray-scale NIR Planet image mosaic in 
Fanjingshan National Nature Reserve. New development was identified by pixels transitioned from forest, 
agriculture, or conifer/bamboo (represented by different colors) to the built class. The mosaicked Planet image 
displayed bidirectional effects but remains suitable for visual interpretation. 
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Figure 6. Examples of mapped new built development (shown in red) in Fanjingshan National Nature Reserve 
between 1995 and 2016 overlaid on Planet true-color mosaic image and a Pleiades image from Google Earth: 
(a) a golf course located to the east of the reserve; (b) a gondola station within the reserve; (c) part of a freeway 
network to the west of reserve; and (d) a newly-constructed dam also to the west. 
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developing tourism infrastructures such as reserve entrances on both east and west side of 

the reserve; and (6) building a sports field at a nearby town to the east.  

To improve the reliability of the land transition maps, manual editing was performed to 

remove the apparent transition errors. Pixel groupings incorrectly classified as new built 

development due to the misclassified agriculture and built classes were recoded for the new 

built development maps. Falsely mapped afforested pixels due to misclassified agriculture 

and bamboo/conifer classes were also recoded for the afforestation maps. The areas of 

afforestation and new developments are summarized based on the mapped and edited land 

transition maps. Table 9 shows the quantified area of afforestation and new development for 

1995-2010 and 1995-2016. Approximately 10 and 12 km2 of the study area was mapped as 

afforestation based on the 1995-2010 and 1995-2016 land transition maps, respectively. 

Most of the afforestation activity occurred outside of the reserve, as only 1.33 and 1.45 km2 

of afforestation were mapped within the reserve boundary (i.e., core and buffer zones).  

 

A substantial amount of development occurred during the study period based on the new 

development maps. A total of 25.06 km2 is mapped as new development from 1995 to 2016. 

Over 37 km2 of the study area was portrayed as new development between 1995 and 2010. 

Table 9. Mapped new built development and afforestation area for 1995-2010 and 1995-2016 periods. Areas 
are measured for the FNNR core zone, the entire reserve, and the reserve plus the 6 km surrounding 
environs. Areas are measured in km2. 
 
Mapped Area (km2) Reserve Core Reserve Reserve & Environs 
2010 New Built 0.47 3.89 37.72 
     From Forest 0.30 2.08 14.18 
     From Agriculture 0.05 0.94 16.11 
     From Bamboo/Conifer 0.12 0.87 7.43 
2010 Afforestation 0.49 1.33 10.09 
2016 New Built 0.25 1.90 25.06 
     From Forest 0.09 0.92 8.33 
     From Agriculture 0.04 0.55 13.55 
     From Bamboo/Conifer 0.12 0.42 3.18 
2016 Afforestation 0.16 1.45 12.46 
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Relatively little development occurred within the protected area, as seen in Table 9 and 

depicted in Figure 5. Less than 4 km2 are mapped as new built development within the 

reserve boundary, and less than 0.5 km2 within the core area. Among the observed new built 

developments within the reserve are small-scale land transitions corresponding to road 

construction along the valleys on the east and west side, and the recreational/tourism 

developments (namely reserve entrances, the gondola lift station, and the tourism 

infrastructure at the reserve peak). The majority of the new development is found outside, 

but adjacent or leading towards the reserve. The golf facility and a tourism attraction of a 

local indigenous tribe were both established within 1 km of the reserve boundary. Over 33 

and 23 km2 new development were mapped in the reserve environs for 1995-2010 and 1995-

2016 respectively. Table 9 also reveals that forest was the most common type to transition to 

built within the reserve area, while agriculture land experienced the most land conversion to 

built outside of the reserve.  

3.5. Discussion and Conclusions 

Long-term monitoring of LCLUC in nature reserves is important worldwide given 

human induced, widespread degradation of ecosystems (Vitousek, 1994) and the 

corresponding ecosystem services vital to human being (Daily & Matson, 2008). Such 

monitoring is also pivotal to assess the efficacy of PES programs in China, which has 

experienced wide-spread, PES-related afforestation while subject to relatively rapid 

infrastructure development at the same time. In this study, sporadic development and land-

use changes were found in the core FNNR area, and more extensive land-use changes in the 

buffer zone and its adjacent environs between 1995 and 2017 that coincided with the 

implementation of PES programs.  
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The quality of the Landsat-derived vegetation and land-use maps and their associated 

mapping accuracies are generally consistent and suitable for land change monitoring. No 

terrain effects or cloud artifacts are apparent in any of the Landsat-derived maps. The 

vegetation type distribution was mapped in a mostly consistent manner throughout the study 

periods. The c. 2010 and c. 2016 study periods yielded higher classification accuracies 

compared to the two earlier dates. This could be attributed to the higher quality Landsat 

images and reference data used for training and accuracy assessment. Seventeen images with 

acceptable cloud cover were available and incorporated in the seasonal composite for the c. 

2016 period, yielding the highest classification accuracy of all four dates. The composites 

for 2010 and 2016 (later) years are comprised of more summer images that capture the fully 

leaf-on vegetation signature. For c. 2016, 11 summer images were utilized compared to five 

for each of the first two dates. The classification training data were derived based on field 

surveys and images that corresponded more closely with the latter image dates in time. 

Although training pixels were examined on c. 1989 and c. 1995 Landsat images and 

evaluated for stability, greater uncertainty exists with over 20 years of temporal difference in 

the reference data. Available training data are limited for training the RF machine learning 

image classifier due to limited access posed by dense vegetation and steep terrain in the 

study area. These samples are not well-distributed and likely do not encompass the full 

spectral signature variability of the mapping classes.  

Most newly developed and many afforestation areas were correctly identified and 

mapped. However, mapping errors from the earlier two study periods due to the 

misclassification of agriculture land and conifer/bamboo vegetation are manifested in the 

afforestation and new built development products. Accurate vegetation and land-use 
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mapping was challenging because of the complex and mixed forest composition and 

agriculture planting style in the study area. The composition of mixed vegetation cover in 

the reserve consists of various degrees of conifer, bamboo, evergreen broadleaf, and 

deciduous forest due to the humid, temperate climate and the steep terrain and elevation 

gradient. This likely led to the under-classification of conifer and bamboo, and their 

confusion with the mapped forest class. Bamboo and conifer naturally grow in the region 

and are often found on the edge of disturbed agriculture land. Agriculture in the FNNR 

region occurs mostly as small-scale subsistence farming on steep slopes and terraces. Crop 

types were mostly leafy greens that are small and low in stature, planted sparsely with 

secondary vegetation mixed in and a lot of soil exposed. The agriculture planting style likely 

led to a similar spectral signature of high reflective bare or impervious surface especially on 

the moderate spatial resolution Landsat pixels, and caused the classification confusion with 

the built class. The farming cycle followed the seasons closely. During winter, agriculture 

land was mostly bare. This planting pattern is likely why agriculture is sometimes confused 

with deciduous forest cover. Improving the mapping accuracy, particularly for the 

subsistence agriculture, can increase the reliability of the derived land transition products 

and the applicability to other regions of similar land-use types.  

Open-access and web-based Google Earth Engine software offers a powerful image 

processing platform. The cloud-computing capability of the Google Earth Engine platform 

makes it simple and efficient from compositing multi-temporal imagery to implementing 

machine learning image classification routines to generating results. The coding 

environment allows users to streamline image processing workflow. Its inclusive raster 

processing functions can be easily implemented using JavaScript, with guidance from 
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documentation and tutorial resources. The platform requires a valid Google user account and 

a simple online application to access. Compared to many commercial image processing 

software packages, there is no license or maintenance fees attached to Earth Engine (for 

education, research, and non-profit users), and it does not require downloading or installing 

software packages. However, access and performance of Earth Engine is limited when an 

internet connection is not available or unstable. Viewing and evaluating results with 

commercial image processing software (e.g., ERDAS IMAGINE or ArcGIS) was more 

efficient. Manipulating displays of images and maps is simpler and more efficient when the 

data are stored locally on the computers. The platform also lacks manual editing capabilities. 

Regardless, implementing and executing the workflow on Google Earth Engine after the 

methods were finalized is beneficial for reserve managers in many ways. The streamlined 

workflow minimized personnel training and the open-access platform eliminated the costly 

hardware and software.  

The original attempt to monitor forest cover change as a means of evaluating 

conservation efforts in FNNR was through Landsat-derived canopy fractional cover 

mapping (CFC; Tsai, Stow, Shi, Lewison, & An, 2016). Canopy fraction represents the 

amount of canopy closure as a percentage of each image pixel area occupied by tree canopy 

(Wang, Qi, & Cochrane, 2005). Continuous CFC data can more precisely represent forest 

cover variations in complex landscapes (Hansen, 2003), and its magnitude change can 

reflect the degrees of forest cover change related to degradation, thinning, and clearing. 

While results suggested that the modeled CFC changes were likely due to anthropogenic 

activities, the accuracy of the CFC estimates was uncertain. Ground-based estimation of 

canopy closure was derived through a commonly used digital hemispherical photography 



 

 53 

technique (DHP; Pueschel, Buddenbaum, & Hill, 2012), and substantial variability in 

correspondence was found between the ground-based and Landsat-derived CFC values, 

though range and median CFC were similar throughout the areas for which ground-based 

estimates were made. This could be attributed to the positional uncertainty of ground-based 

DHP data, and differences in view perspective. The dense canopy in steep terrain likely 

limited the positional accuracy of the satellite positioning device used to record the DHP 

data locations. The understory of dense green vegetation provides a low contrasting 

background, unlike using the up-looking ground-based technique where tree cover contrasts 

well against a blue sky or cloudy background. The majority of land change in FNNR is 

observed to associate with land use conversion, such as agriculture abandonment, 

afforestation, and new built expansion, rather than forest thinning and cutting. Mapping 

multi-temporal vegetation and land-use types was determined suitable for the purpose of 

environmental monitoring.  

It is worth noting that cash crops like tea and fruit trees are also planted as part of the 

GTGP implementation in FNNR, though they are limited to several selected villages. Tea 

bushes planted under the guise of PES were observed in a small village to the northwest of 

the reserve, on terraces surrounded by conifer stands. Small plots of yellow peaches and 

pears planted in the southern region were observed, both planted sparsely on terraces and 

mixed in with secondary regeneration after year 2016. The areas where tea and fruit trees are 

grown are mapped mostly as agriculture in all four image dates, with some bamboo/conifer 

cover or mixed forest within. Tea or fruit tree orchards were not incorporate into the 

classification scheme, as they are not common nor well distributed within the study area.  
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Despite the recognized importance of mapping and monitoring vegetation and land-use 

changes in an era of many global changes arising from or related to rapid population growth, 

over exploitation of natural resources, and the related environmental degradation (Ripple et 

al., 2014), this task remains challenging for cloud-prone and mountainous areas, such as 

FNNR. The combined techniques of utilizing seasonal image composites, applying 

illumination normalization, and incorporating ancillary data facilitated reliable mapping of 

land cover and land use for forest reserves characterized by steep terrain and high cloud 

cover. The implementation of stable training samples and logical land-use transition rules 

generated reasonably accurate land-use maps for a period of over 26 years. Future studies 

could focus on improving the mapping accuracy by increasing the training sample size and 

increasing the usability of the image processing workflow by integrating the Earth Engine 

code into a web application with a graphical user interface. Yeh (2009) and Feng et al. 

(2005) indicate that farmers show intentions to return to farming once the PES compensation 

ends. PES land was also associated with lower wildlife species richness (Chen et al., in 

review). The mapping approach and land-use transition maps demonstrated in this study 

could provide extensive insight into locations of afforestation and build development lands. 

More extensive monitoring of land-use conversion is also important for evaluating mid- to 

long-term ecological impacts of PES and other conservation programs, such as afforestation 

outcomes, reduced soil erosion, slope stability, and runoff. 
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Chapter 4. Monitoring Forest Cover Change Within Different Reserve 

Types in Southern Ghana 

4.1. Introduction 

Forest cover is associated with ecosystem services that are vital to human health and 

livelihoods, including watershed protection, climate change mitigation, and soil erosion 

prevention. However, tropical forests globally were depleted at an annual rate of 6 million 

hectares in recent years, while agriculture land increased by almost the same amount, based 

on a report by the Food and Agriculture Organization of the United Nations (FAO, 2016). 

Other studies indicate that most of the deforestation in tropical forests is related to 

agricultural practice (Barraclough & Ghimire, 2000; Appiah et al., 2009; UNEP GEO-5 

report, 2012). Population dynamics have also been commonly associated as an underlying 

and indirect cause for deforestation, particularly in rural regions (Carr, 2004; Carr, Suter, & 

Barbieri, 2005). Ghana, as a developing country in sub-Saharan Africa, has experienced 

steady economic, population, and urban growth, and in turns, land-cover and land-use 

change. The country’s total population increased from 19 million to 25 million between 

2000 and 2010 (Ghana Statistical Service, 2012). Ghana’s GDP had an annual gain of 6.6% 

from 2010 to 2014 (FAO, 2016). Despite net rural-to-urban migration and over half of the 

population resides in urban areas since 2010, rural population continues to grow, suggesting 

that fertility rates remain high (FAO, 2016).  

4.1.1. Forest Resources and Deforestation in Ghana 

Most of the pristine forest resources, including tropical evergreen seasonal forest and 

tropical semi-deciduous forest (UNESCO, 1973), are located in the high forest zone in the 
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southern part of Ghana. These primary forests in Ghana are mostly depleted due to 

agricultural expansion and over-exploitation of forest resources (Appiah et al., 2009). 

Timber, surface mining, and export-oriented agriculture are among the main economic 

activities in Ghana (Hens & Boon, 1999), and these activities are destructive to forest cover 

(Osafo, 2005). Heavy logging activity took place during the 1960s and 70s in Ghana. 

Almost all forests, even within protected areas, have been selectively logged at some point 

of time, and many of them since 1990. Vegetation outside of the reserves is mostly 

secondary regeneration on abandoned farms (Hall & Swaine, 1976; Dickson, Benneh, & 

Essah, 1988), with small agricultural plots mixed in. Expansions of plantations of trees, oil 

palm, and cocoa also contribute to deforestation or forest degradation. The commonly 

practiced taungya system, in which plantation workers are given rights to grow agriculture 

crops among forest plantations, can cause forest disturbances (Kalame et al., 2011; 

Hawthorne & Abu-Juam, 1995). Unsuccessful taungya systems can lead to forest cover 

conversion to agriculture; this “slash-and-burn” agriculture practice can also lead to higher 

fire risk within plantations and forests. Ghana is a major producer of gold, bauxite, and 

manganese among African countries. In 2016, its total gold output was over 113400 kg. 

Twenty-three large-scale mines were located in the country in 2016 and most of them 

operate as open pit mines. This surface mining style and mine expansions cause both large- 

and small-scale forest cover removal.  

It is estimated by the FAO that the livelihood of 2.5 million people in Ghana depends on 

forests. Appiah et al. (2009) documented that almost 40% of rural household income in 

Ghana consists of forest-related activities. More revenue is generated and more forest is 

cleared when the household is larger or resides closer to forests. With a lack of off-farm 
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work opportunities, rural residents rely on poverty-driven agriculture (compared to 

economical, longer-cycle planting). Short cycle crops are planted and shifted between 

agriculture plots while long cycle crops are also cultivated. This practice generates higher 

crop yields, but is also destructive to forest cover (Barraclough & Ghimire, 2000). Firewood 

collection from fields and forest near villages is also common in rural regions (Calvo, 1994). 

Firewood is the preferred and main fuel source for cooking, and few households use 

charcoal or crop residue according to the Ghana 2010 population and household census 

(Ghana Statistical service, 2012). Due to deforestation, the travel time and distance to collect 

firewood have increased in recent years according to an UN report (2010). 

Individuals and local communities/tribes own roughly 80% of the lands in Ghana. Most 

of these customary lands are managed based on tribal customary laws and not bound by 

specific national management laws (Ubink & Quan, 2008). The remaining 20% of lands in 

Ghana are state owned, which the Ghanaian government owns and manages. Over 200 forest 

reserves and protected areas (i.e., on-reserves) are set aside to be managed by the Ghanaian 

government (Osafo, 2005) and they are located on both customary land and state land. 

However, reserves are further classified with different protection status and human 

disturbances are still present. Protected areas are classified as conversion, production, and 

protected reserves (Hilson & Nyame, 2006). Conversion reserves are degraded regions that 

are being targeted for replanting. Production reserves are resource reserves that can be used 

to sustainably produce wildlife products, timber and non-timber products, used for cultural 

practices (e.g., tribal sacred lands), tourism, and trophy hunting (Hawthorne & Abu-Juam, 

1995). Protected reserves, including national parks, allow no exploitation. However, based 

on a management evaluation report published by the International Union for Conservation of 
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Nature (Hawthorne & Abu-Juam, 1995), even protected reserves and national parks can 

experience land conversion, bush fire, and encroachment.  

4.1.2. Remote Sensing Solutions to Monitoring Land Change in Cloud Prone Areas 

Remote sensing offers a cost-effective and practical means to map vegetation, other land 

cover and land use over large areas, compared to field survey. Moderate spatial resolution 

satellite systems such as Landsat provide near-global coverage of multispectral imagery 

dating back to the mid-1980s that can be used to monitor long-term and extensive forest 

cover. Landsat surface reflectance products offer more comparable and reliable land change 

analysis than spectral radiance or digital number products (Hall, Strebel, Nickeson, & Goetz 

1991; Moran, Jackson, Slater, & Teillet, 1992). These surface reflectance products are 

generated by algorithms implemented by the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS; Masek et al., 2006) for Landsat 4 to 7 imagery, and Landsat 

Surface Reflectance Code (LaSRC; Vermote, Justice, Claverie, & Franch, 2016) for Landsat 

8 images.  

Optical satellite imagery can be susceptible to cloud cover, particularly in humid and 

tropical regions where cloud cover and optically thick atmospheres are predominant. Much 

research has demonstrated the potential of dense image composites, formed by combining 

multi-temporal cloud-free observations, to resolve cloud cover and cloud shadow issues 

(Broich et al., 2011; Huang et al., 2009; Hansen et al., 2008). Lindquist, Hansen, Roy, and 

Justice (2008) evaluated pixel quality for humid tropics in central Africa and found that 

ideally, all available image data would be utilized to achieve the highest image composite 

quality. Coulter et al. (2016) utilized dense Landsat images to derive maximum value image 

composites as a means to resolve the frequent cloud cover and cloud shadow issue in 
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southern Ghana. Their derived land cover and land use change map detected changes with 

over 70% accuracy, although some image anomalies from maximum-value compositing 

were present. Ruefenacht (2016) tested the utility of median value image composites to 

estimating tree canopy percent cover. Median value composites were found to retain 

comparable image information and yielded less image anomalies from cloud and shadow 

pixels compared to the maximum value composite products, as median value is more 

resistant to data outliers. The utility of median value image composites is tested in this study 

of southern Ghana. 

Unsupervised image classification or clustering followed by manual labelling is 

commonly adopted for large area land-cover mapping, particularly when the mapping 

classes are uncomplicated (Franklin & Wulder, 2002) or when training data are not readily 

available for supervised image classifiers, such as the machine learning type implemented in 

Chapters 2 and 3. Muller, Racoviteanu, and Walker (1999) mapped tundra and shrublands in 

northern Alaska with multiple scenes of Landsat images using K-means clustering. The 

derived map yielded 87% mapping accuracy. Forest and meadow were discriminated using 

Landsat imagery and ISODATA clustering in Yellowstone by Debinski, Kindscher, and 

Jakubauskas (1999). Unsupervised image classification techniques have also been applied to 

map land-cover and land-use in Ghana. Pabi (2007) utilized Landsat TM images and 

ISODATA clustering to map land-cover and land-use for eight sites within two census 

districts in central Ghana. With a post-classification map comparison between 1991 and 

2001, Pabi found that dense woodland area decreased significantly in all eight sites while 

cultivated land increased. The effectiveness of unsupervised image classification has not yet 



 

 60 

been tested in mapping the extensive tropical southern Ghana region where cloud cover is 

prevalent. 

Land-cover and land-use change in Ghana has been examined in previous studies based 

on remote sensing data and techniques, mostly for localized areas. Forest cover decrease and 

concomitant increase in other land uses (e.g., built, agriculture, and mining area) are 

common findings in these studies. Kusimi (2008) mapped land-cover and land-use change of 

1986-2002 within a single census district in southwestern Ghana, using Landsat TM images 

and a combination of unsupervised and supervised image classification routines. He found 

that forest reserves in the district experienced significant forest cover loss of over 400 km2, 

while areas of mining, farming, built, and population in the district increased. Yorke and 

Margai (2007) mapped land-cover and land-use for 1990 and 2000 Landsat images using a 

supervised, Maximum Likelihood image classification routine for a watershed in 

southeastern Ghana. They found forest cover decreased by over 32%, while agriculture land 

and built expanded substantially. Coulter et al. (2016) mapped land-cover changes between 

circa 2000 and circa 2010 using four Landsat scenes covering much of southern Ghana, and 

found that 62% of the land changes were related to agriculture land increase. An up-to-date 

and more extensive examination on forest cover change in southern Ghana is needed and 

can aide in land-use decisions and conservation efforts.  

The objectives of this study are twofold. First, land-cover and land-use changes with an 

emphasis on forest cover change for protected areas and their environs in southern Ghana 

are mapped and quantified based on Landsat multi-temporal composite data. Second, the 

magnitude of forest loss in relation to population growth between 2000 and 2010 is 

examined. Closed forest cover and other land-cover and land-use types are mapped for three 



 

 61 

study periods from 1986 to 2018. Changes in forest cover are quantified and examined in 

conjunction with high spatial resolution satellite images to identify the corresponding causes 

of land change. A regression analysis is utilized to evaluate the potential anthropogenic 

pressure on forest cover by examining the statistical relationship between forest loss and 

population growth.  

4.2. Study Area and Data 

Figure 7 shows the protected areas and forest reserves in the Western, Ashanti, Eastern, 

and Central regions of Ghana that are selected for this study. The selected 76 reserves are 

located in the tropical evergreen forest zone and within a single Landsat image scene. 

Among the selected reserves is a fully protected reserve, Kakum National Park. Kakum 

National Park is located in the Central region in Ghana. Established in 1931, Kakum 

National Park is currently being considered listed as one of the UNESCO World Heritage 

Sites for its high biodiversity and aesthetic values. Kakum National Park covers a total of 

212 km2. Poaching has been identified as one of the main wildlife threats in this area 

(Hawthorne & Abu-Juam, 1995). Farming activities surrounding the park are key 

deforestation drivers. Subri River, the largest reserve in Ghana (588 km2) is a production 

reserve in the study area. Other production reserves are included as well, such as Opon 

Mansi and Bowiye Range. Reserves that are near some of the largest open pit mines in 

Ghana are also included (e.g., Bonsa Ben, Oda River, Anwhiaso, and Wassaw Conservation 

Areas). Many potential anthropogenic disturbances exist in these protected areas besides 

mining, including villages located at the reserve boundaries, large-scale commercial 

agriculture, and logging exploitation. Based on the average one-way walking time for 

firewood collection in rural Ghana (Calvo, 1994; United Nations, 2010), a 1.5 km 
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surrounding area of each reserve is incorporated in addition to the reserve lands as the 

mapping area for this study, as seen in Figure 7. Based on a polygon shapefile of protected 

areas provided by the Forestry Commission of Ghana, a subset and buffer of the reserves 

was created to delineate the mapping area. The total designated reserve area in this study is 

about 5370 km2, and the total mapping area (i.e., reserves and environs) is about 9800 km2.  

 

Surface reflectance image products located at Worldwide Reference System 2 path 194 

and row 56 collected from Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced 

Figure 7. Study area map showing forest reserves (outlined in red) and the mapping area (blue) in southern 
Ghana. Reserves are located in Western, Central, Eastern, and Ashanti regions. The gray-scale base image is 
the NIR band of a Landsat 8 OLI image captured in December 2015. 
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Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) platforms 

were reviewed interactively on the Google Earth Engine platform 

(https://earthengine.google.com) and USGS Earth Explorer (https://earthexplorer.usgs.gov). 

The imagery data were limited to only Landsat Tier-1 surface reflectance products for they 

meet certain radiometric and geometric standards during processing to ensure a consistent 

data quality that supports multi-temporal image analysis (Hall, Strebel, Nickson, & Goetz, 

1991; Moran, Jackson, Slater, & Teillet, 1992; USGS https://landsat.usgs.gov/landsat-level-

1-standard-data-products). Few Landsat 4 and 5 TM images are available for the study area 

due to a lack of a data recording station prior to the  

launch of Landsat 7 in 1999. Landsat 7 images collected after mid-May 2003 were not 

considered due to the Scan Line Corrector issue for the ETM+ sensor. Based on image and 

reference data availability, three study periods were selected for this study—circa 1986, 

circa 2000, and circa 2018. The circa 1986 composite image is composed of six Landsat 4 

and 5 TM images collected between 1986 and 1991, including one mostly cloud-free image. 

The circa 2000 composite image is generated from 39 Landsat 7 ETM+ image scenes 

captured from January 1999 to mid-May of 2003. The circa 2018 composite image consists 

of multispectral data from 41 Landsat 8 OLI images collected between 2013 and 2018.  

Some high spatial resolution satellite imagery collected in recent years for southern 

Ghana were available as reference data. QuickBird and IKONOS images were available for 

viewing on Google Earth. WorldView-2 and a Digital Globe high spatial resolution 

commercial satellite image mosaic (collected between 2012-2014) is available for viewing 

as the BaseMap Imagery product in ArcGIS software. Three-meter spatial resolution Planet 

imagery collected in Fall 2017 and Spring 2018 are also available through the Planet 
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Education and Research program (Planet Team, 2017). Four relatively cloud-free Landsat 

images were identified and downloaded from Earth Explorer for visual interpretation. The 

images corresponding to the study periods were collected in December 1986 (Landsat 5), 

October 1991 (Landsat 4), May 2002 (Landsat 7), December 2015, and January 2018 (both 

Landsat 8). 

4.3. Methods 

Landsat surface reflectance products were retrieved and processed using Google Earth 

Engine code editor platform. Images were masked for clouds, cloud shadow, and water 

bodies using the pixel quality assessment band (i.e., pixel_qa) that was derived by the C 

version of Function of Mask algorithm (CFMask; Foga et al., 2017) and provided as part of 

the Landsat surface reflectance products. A reflectance normalization process developed by 

Wu (2004) was applied to the Landsat surface reflectance images to correct for terrain 

effects. Each spectral band was divided by the sum of all spectral bands for each image date 

to minimize the illumination differences. The illumination normalized data were used for the 

subsequent image analysis.  

Median value image composites were formed using the available cloud-free pixels for 

the study periods. Besides the Landsat spectral bands, spectral variability vegetation index 

(SVVI) and a SVVI texture image were also generated. SVVI was developed through 

exploratory analysis in a previous study mapping land-cover and land-use in southern Ghana 

(Coulter et al., 2016). It is calculated as the difference between standard deviation (SD) of 

all Landsat spectral bands and standard deviation of infrared bands for a given pixel, as 

defined in Equation 3 of Chapter 2. The SVVI metric was found to effectively minimize 
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image compositing artifacts and enhance the spectral and textural difference between natural 

vegetation and subsistence agriculture land in the southern Ghana study area.  

SVVI was calculated for each image date captured within the study periods, and 

composited using the median value for each pixel within the dense time stack. Forest and 

moist natural vegetation exhibits a low and more homogeneous SVVI value compared to 

non-vegetated areas. Thus, texture images were generated based on the SVVI products, 

calculated with a 3-by-3 focal standard deviation function to further differentiate forest and 

other non-forested land-cover types. A SVVI texture composite image was subsequently 

created using the median pixel values of the entire time series.  

The median value composite layers of red and near infrared spectral bands, SVVI, and 

SVVI texture were layerstacked and utilized as the land-cover classification input. An 

unsupervised image classifier using K-means clustering was utilized to classify the images. 

Five hundred image pixels within the mapping area were randomly selected as the image 

classifier training data. Spectral clusters were generated by the K-means image classifier 

while the number of clusters was experimented iteratively. The cluster images were 

examined in conjunction with high spatial resolution reference imagery and relatively cloud-

free single-date Landsat imagery for the corresponding study period. Image clusters were 

merged and labeled manually into three classes: forest, agriculture/open canopy, and 

built/bare/surface mining. The forest class represents the undisturbed dense forest, mostly 

seen as closed canopy forest cover. The agriculture and open canopy class includes sparse 

secondary forest regeneration, oil palm/cocoa plantations, low-intensity subsistence 

agriculture, and fallow land. The built, bare, and mining class includes built-up, roads, 

cleared land with exposed soil, and surface mining. After the image classification, a 3-by-3 
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focal majority smoothing function was applied to the Landsat-derived maps to yield a more 

generalized map at a more appropriate minimum mapping unit (closer to 1 ha) and reduce 

per-pixel classification noise.  

Classification accuracies were assessed using a total of 120 reference image pixels. The 

reference pixels were generated in a random sampling manner, and interpreted in 

conjunction with available high spatial resolution reference imagery and relatively cloud-

free Landsat images to identify the corresponding land-cover and land-use types. Forty 

samples for the three mapping classes—forest, agriculture/open canopy, and built/mining 

were created and reviewed to ensure the reference pixels represented stable land-cover and 

land-use types during c. 1986 to 2018. The resulting reference pixels were used to measure 

mapping accuracy of each study period. The mapping agreement, user’s, producer’s, and 

overall accuracies were summarized in an accuracy assessment table.  

Land-cover and land-use change maps were generated based on the multi-temporal 

Landsat-derived map products through post-classification map comparison. Spatial patterns 

of forest loss (e.g. locations where closed forest transitioned to non-forest classes) were 

examined in both quantitative and qualitative manners. Areal data of forest loss was 

summarized at the reserve and census district levels. Districts are relatively large census 

units composing multiple enumeration areas (similar to census blocks in the US) and each 

district encompasses multiple forest reserves. Areal summaries of reserves were aggregated 

to the district level prior to analysis. Only districts that contain 15% or greater amounts of 

reserved land were selected for analysis. There are 14 districts within the study area that 

meet the 15% areal threshold.  
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Regression analyses were carried out to examine the amount of forest loss in relation to 

population density and population density change. Forest cover change was summarized for 

c. 2000-2018. Population data were derived from the decadal Ghana Population and 

Housing Census (PHC) from years 2000 and 2010. The PHC data are georeferenced to the 

Enumeration Area (EA) level. Population density of EAs that are within a 1.5 km distance 

from the reserve boundary was aggregated for each reserve. Population density was also 

summarized to the census district level, and compared to the forest cover change amounts 

within each district. Two other independent variables (i.e., cooking fuel types and 

occupations) were also examined but the data variance was too limited to enable statistical 

analyses. 

4.4. Results 

Land-cover and land-use maps for c. 2000 and 2018 are shown in Figure 8. The c. 1986 

and 2018 images generated using K-means clustering were based on 25 spectral clusters 

while the c. 2000 image was created with 16 spectral clusters. Mapping accuracies for the 

Landsat-derived maps are shown in Table 10. High overall mapping accuracies were  

achieved for all three study periods, with the overall classification accuracies at 87, 94, and 

90% for c. 1986, 2000, and 2018, respectively. As Table 10 shows, some confusion occurred 

between the forest and open canopy vegetation classes, with slight confusion between built 

and open canopy vegetation for all three image dates. The forest class appears to be over-

classified, particularly for the c. 2000 and 2018 dates, as the user’s accuracies are slightly 

lower than the producer’s accuracies. The open canopy/agriculture class on the other hand is 

under-classified, with higher user’s accuracies compared to producer’s accuracies. The  
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Figure 8. Land-cover and land-use maps for circa 2000 (top) and circa 2018 (bottom). The mapping area 
includes forest reserves and a 1.5 km outward buffer region from reserve boundaries. The background is 
a gray-scale NIR Landsat 8 image from December 2015. 
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built/mining class is mapped with high accuracy, with nearly 100% producer’s and user’s 

accuracies for all three dates. The overall forest mapping accuracies of the c. 1986 map are 

the lowest of all products. The northern portion of the map is particularly problematic, as 

forest was commonly classified as open canopy/agriculture. This is likely a result of the 

limited number of images in the composite and lower image quality. 

Table 10. Mapping accuracies of the Landsat-derived classification products for circa 1986, 2000, and 2018, 
respectively. The accuracies were evaluated using 40 reference pixels per class, 120 pixels total for each 
study period. 
 

 Reference Class 
User’s Accuracy % Image-

derived 
Class 

Forest Agriculture &  
Open Canopy Built & Mining 

1986 2000 2018 1986 2000 2018 1986 2000 2018 1986 2000 2018 

Forest 33 39 37 7 5 8    83 89 82 

Open 
Canopy 7 1 3 33 35 32 2 1 1 79 95 89 

Built       38 39 39 100 100 100 

Producer’s 
Accuracy 

% 
83 98 93 83 88 80 95 98 98 

Overall Accuracy % 

87 94 90 

 

As seen in Figure 8, the dense evergreen forest cover is generally constrained within 

reserve boundaries. Open canopy and agriculture are mostly found outside of reserves. Some 

small patches of forest were mapped beyond reserve boundaries, while mixed in with 

agriculture and open canopy. Unpaved roads inside reserves, forest clearing and 

regeneration were also classified as open canopy. Built and surface mining are found near 

and within reserves. Some changes in forest cover and non-forest vegetation are apparent 

from the Landsat-derived classification products. About 80 km2 of forest clearing is 

identified in Subri River forest reserve in the south of the mapping area between 2000 and 

2018. Anwhiaso East reserve located in the northeastern portion of the mapping area, also 

shows forest loss during this period. Expansion in built and mining land use is also 
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observed, particularly on the western side of the study area. Roads within reserve lands 

increased, or at least became more definable in Landsat images captured during the 2000 to 

2018 period.  

Table 11 summarizes areal land cover and land use and change between the three image 

periods for the entire mapping area (i.e., almost 9800 km2), which varies slightly between 

image dates and data coverage. The percent areal change is calculated as relative change, 

which is the difference between two mapping dates relative to the earlier date. A total of 

6655 km2, or 68% of the mapping area was mapped as forest cover in c. 2000, the highest of 

the three study periods.  Forest cover increased by 1557 km2 (a 31% relative increase) from 

1986 to 2000, and decreased by -625 km2, or -9% between c. 2000-2018. Open canopy and 

agriculture land exhibit the opposite temporal dynamics, with a decrease of over 1500 km2 

in the earlier periods and an increase over 535 km2 (18% relative increase) since 2000. Built, 

bare, and surface mining showed a consistent increase in area, with a tripling of area 

coverage since 1986.   

 

Figure 9 shows the land-cover and land-use change map between c. 2000 and 2018 for 

the study area. Most of the reserve land remained dense forest canopy between c. 2000 and 

Table 11. Areal summary and change of forest, agriculture/open canopy, and built/bare/mining classes for 
the entire mapping area in southern Ghana. The areal summary shows the area mapped for each class and 
the percentage relative to the mapping area. The areal change is calculated as the difference between image 
dates and percent change compared to the earlier date. Units are in km2. 
 

Image Date 
Mapped Area (km2) 

Forest Agriculture &  
Open Canopy Built & Mining 

c. 1986 5098 (52%) 4593 (47%) 53 (0.5%) 
c. 2000 6655 (68%) 3051 (31%) 70 (0.7%) 
c. 2018 6030 (62%) 3586 (37%) 153 (1.6%) 

1986-2000 Change +1557 (31%) -1542 (-34%) 17 (32%) 
2000-2018 Change -625 (-9%) 535 (18%) 83 (119%) 
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2018, about 5142 km2 in area. Almost 1500 km2 of forest in c. 2000 transitioned to open 

canopy or agriculture land in c. 2018 (shown in blue in Figure 9), mostly found in the  

western portion of the study area. Over 2000 km2 of land remained open canopy or 

agriculture land during this period, most of which are outside the protected area boundaries. 

Besides road network expansion through forest reserves creating linear patterns of forest 

loss, logging, mining, and agriculture development contributed to most of the large-scale 

forest conversion. Over 110 km2 was mapped as built and mining expansion (from both 

forest and agriculture/open canopy as seen in pink and green respectively in Figure 9). Large 

groupings of new built and mining occur northwest, northeast, and south in the portions of 

Figure 9. Land-cover and land-use change map of southern Ghana between circa 2000 and 2018. The gray-
scale background image is the NIR band of a Landsat 8 December 2015 image. 
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the mapping area. Mining expansion is observed within reserves northwest of the study area 

in the c. 2000 to 2018 period.  

Forest cover within reserve boundaries is observed to be more fragmented and declined 

near reserve boundaries in Figures 8 and 9. Forest cover was quantified based on inward 

buffer zones from reserve boundaries to evaluate edge effects (Murcia, 1995), and an areal 

summary is shown in Table 12. Forest cover and forest cover change both exhibit substantial 

fragmentation and reduction near reserve boundaries. Forest cover increases from 88% to 

93% in c. 2000 moving from reserve boundaries to the interior of reserves. The proportion 

of forest for c. 2018 exhibits a similar pattern but lower portion compared to 2000. The 2018 

forest cover shows a gradual increase from 82 to 90% as the distance inward from reserve 

boundaries increases. Areas within 500 m of reserve boundaries show the greatest forest to 

non-forest transition between c. 2000 and 2018. A 13% relative forest loss from 2000 to 

2018 is observed within this 500-m buffer zone from reserve boundaries. Essentially no 

difference in forest cover or forest loss is observed for the buffers 500-1000, 1000-1500 and 

1500-3000 m from reserve boundaries.  

Table 12. Areal summary of forest cover in relation to distance from reserve boundary. Forest loss is 
measured as the area that transitioned from forest in 2000 to non-forest in 2018, with the percentage 
showing the relative forest loss compared to forest in 2000. 

 
Distance from 

edge (m) Total Area (km2) 2000 Forest (km2) 2018 Forest (km2) Forest Loss (km2) 

0-500 927 818 (88%) 762 (82%) 108 (13%) 
500-1000 816 756 (93%) 728 (89%) 65 (9%) 

1000-1500 680 634 (93%) 610 (90%) 53 (8%) 
1500-3000 1145 1068 (93%) 1030 (90%) 87 (8%) 

 

4.4.1. Reserve Level Analysis of Land-Use and Population Change 

Within the designated forest reserve areas, a total of 181 km2 of forest transitioned to 

non-forest cover (i.e., open canopy and built) between c. 2000 and 2018. This represents a -
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4% decrease relative to the forest area mapped in c. 2000. Most of the reserves have a slight 

forest cover decrease during this period. Three reserves show over -25% relative forest loss 

in c. 2018 when compared to the c. 2000 forest area, namely Anhwiaso North, Anhwiaso 

East, and Afoa Hills. These three reserves are located at the northwest end of the study area, 

and have large-scale open pit mines nearby. Open pit mines are mapped within Afao Hills 

for all three study periods, with mining expansion during c. 2000-2018. A few reserves in 

the northeast of the mapping area show slight forest increase between c. 2000 and 2018. 

These include Aiyaola, Nsuensa, Bediako, and Mamang River Reserves. Despite being near 

mining activity, these reserves are also near large-scale plantation and commercial 

agriculture lands. When including the 1.5 km buffer region as reserve environs, eight 

reserves (including the three mentioned previously) have over -25% forest loss in c. 2018 

compared to the forest area in c. 2000. All but one reserve is located in the western portion 

of the study area, and adjacent to mines. Kakum National Park shows a 0.6% increase in 

forest cover by c. 2018 compared to the c. 2000 forest area within the park boundary. The 

park and its environs combined exhibit a 2.98 km2 increase in forest area, or 1.3% during c. 

2000-2018. Subri River, where large-scale forest clearing was observed from the 

classification maps, reflects a -11% relative forest decrease within the protected area during 

c. 2000-2018. This is likely due to forest plantation activity between planting and clear-

cutting, as observed on the high spatial resolution reference images.  



 

 74 

Figure 10 shows scatterplots between population density change and forest cover 

change. The estimated population derived from the 2000 and 2010 census showed an 

increase in population for all the reserves (aggregated from EAs) and districts within the 

mapping area. As Figure 10a shows, no significant correlation (R2 of 0.05; p=0.1770) was 

found between population density change and forest cover loss at the reserve level. Due to 

the limited available EA boundary coverage, only the northern and eastern parts of the study 

area (a total of 38 reserves) were analyzed for the relationship between forest cover change 

and population gain. All the analyzed reserves show population increase and forest loss with 

varying degree. Annual population density change between 2000 and 2010 ranged from an 

increase of 1 to 14 people km-2 yr -1, with an average of 2 people km-2 yr -1 (rural Ghana 

average population increase is about 1 person km-2 yr -1). The average relative forest cover 

loss between c. 2000 and 2018 per year is -1.3% and ranged from -0.4 to -2.3%. Ochi 

Headwaters forest reserve had the greatest increase in population density among the 

analyzed reserves, and also had a high relative forest loss at -37%. The Landsat-derived 

Figure 10. Scatterplots of regression models for annual population density vs. forest cover change at the 
reserve level (a) and census district level (b). Annual population density was derived from the 2000 and 2010 
censuses, and the annual relative forest cover change was measured based on the c. 2000 and 2018 Landsat-
derived classification maps. 
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land-cover and land-use maps also indicated large-scale built expansion (from the town of 

Asin Foso) adjacent to both north and south ends of Ochi Headwaters. The reserve was 

established to protect the Ochi River water source (Hawthorne & Abu-Juam, 1995). Despite 

this goal, the Landsat-derived maps indicated drastic forest reduction from agriculture 

activity in the reserve. Anwiaso East reserve exhibited the greatest relative forest cover loss, 

with average population density increase of 2 people km-2 yr -1 (or 6% annual increase) 

between 2000 and 2010. Kakum National Park area had a low population density increase at 

1 person km-2 yr -1 (12% annual increase).  

4.4.2. District Level Analysis of Land-Use and Population Change 

Table 13 shows the forest area mapped for c. 2000 and 2018 aggregated to the census 

district level, along with the population density for 2000 and 2010. Four out of the 14 

districts showed forest cover increase, namely Ashanti Akim, Asikuma, Birim North, and 

Birim South. Birim North had the most forest increase of 29 km2 or 15% compared to the 

forested area in 2000. These four districts are located on the eastern side of the mapping 

area, as a vertical contiguous region. The remaining ten districts showed forest cover 

decrease, ranging from -13 km2 (Assin district) to -165 km2 (Wassa Amenefi). Percentage 

wise when comparing to the c. 2000 forest area, forest loss ranges from -3 (Assin) to -23% 

(Bibiani). Wassa Amenefi and Bibiani districts are adjacent to each other, located on the 

western edge of the study area. Assin district, where Kakum National Park is located, 

showed the least forest loss between 2000 and 2018.  

At the district level, population density change between years 2000 and 2010 shows a 

modest (R2 of 0.35; p = 0.0264) inverse relationship with the amount of forest change 

between c. 2000-2018, as seen in Figure 10b. On average, a 2 people km-2 yr-1 increase was 
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observed at the district level. In districts where there was forest reduction, population 

density showed mild increase, ranging from a gain of 1 to 3 people km-2 yr-1. In districts 

where forest cover was mapped as increase between c. 2000-2018, population density also 

showed greater increase. In the Bibiani district where forest cover reduced the most, annual 

population density change was average, at a 2 people km-2 yr-1 increase. No correlation (R2 = 

0.008; p = 0.8006) was found between annual population density change and the amount of 

forest cover loss when excluding the four districts of forest cover increase. 

Table 13. Mapped forest areal summary of 14 census districts for c. 2000 and 2018, and population density 
for 2000 and 2010 derived from census data. The areal change is calculated as the difference between image 
dates and percent change compared to the earlier date. Units are in km2. Population density is measured as 
the number of people per km2 for a given district.   
 

District Forest Area (km2) Population Density (people km-2) 
2000 2018 Change 2000 2010 Change 

Birim N. 189 218 +29 (15%) 107 152 45 (42%) 
Asikuma 132 149 +17 (13%) 118 146 28 (24%) 
Birim S. 306 320 +14 (5%) 143 213 70 (49%) 

Ashanti Akim S. 183 189 +5 (3%) 83 101 18 (22%) 
Assin 507 494 -13 (-3%) 93 126 33 (35%) 
Twifu 386 359 -27 (-7%) 72 77 5 (7%) 

Amansie E. 369 335 -34 (-9%) 113 134 21 (19%) 
Nzema E. 366 330 -36 (-10%) 69 71 2 (3%) 

Mpohor Wassa 869 776 -93 (-11%) 57 58 1 (2%) 
Obuasi 608 537 -71 (-12%) 157 166 9 (6%) 

Wassa Amenefi 1129 964 -165 (-15%) 49 51 2 (4%) 
Amansie W. 211 173 -38 (-18%) 91 111 20 (22%) 
Wassa W. 631 494 -137 (-22%) 86 92 6 (7%) 

Bibiani 228 175 -53 (-23%) 124 148 24 (19%) 
 

4.5. Discussion and Conclusions 

Land-use dynamics of over 70 forest reserves of tropical forest and the reserve environs 

were examined in this study. Dense Landsat image time series and median value SVVI 

composites were found effective in minimizing affects of no-data pixels due to cloud cover, 

and yielded high classification accuracy in the cloud-prone southern Ghana area. The 

median value SVVI composites used in this study show no residual clouds or other 
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compositing artifacts, an improvement compared to the maximum value composites used 

previously by Coulter et al. (2016). The c. 1986 product exhibits lower mapping accuracy, 

most likely due to lower Landsat image quality, more limited and uncertain reference data, 

and because few images are available to generate multi-temporal composite images. Some 

mapping confusion is apparent, as open canopy was mapped as closed forest for all three 

image dates. Most misclassified pixels are associated with areas located outside of reserve 

boundaries, where secondary regeneration, plantation, and off-reserve forest could be 

confused with dense on-reserve forest cover. Available high spatial resolution imagery is 

limited for c. 1986 and c. 2000, creating a challenge for generating reliable reference data 

for accuracy assessment. This could also lead to mapping disagreement and uncertainty, 

particularly between open canopy and forest classes.  

Land-cover and land-use change is most commonly associated with anthropogenic 

processes (IGBP report, 1993; UNEP GEO-5 report, 2012). In this study, anthropogenic 

activities such as mining, plantation/logging, agriculture and built expansion are observed in 

southern Ghana from 1986 to 2018, resulting in declining forest cover and secondary 

regeneration/open canopy, even within protected areas. While subsistence farming and built 

expansion are the common and wide-spread threats to forest loss, other factors are more 

localized. Large-scale open pit mines expanded in a concentrated manner in the 

northwestern side of the study area (e.g., Anwhiaso) during 2000-2018. Although few mines 

are present within protected areas, drastic forest reduction is observed at both the reserve 

level and district level. While mining was also observed near reserves in the northeast of the 

study area, large-scale commercial agriculture/plantation is also present. Hawthorne and 

Abu-Juam (1995) documented logging activity and open canopy within these reserves, but 
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observed concomitant forest regeneration. This may explain why extensive forest cover loss 

was not observed in the northeast region. Large-scale plantation activities such as 

afforestation and forest clearing are observed in reserves within the southern part of the 

study region (e.g., Subri and Neung) as another source of land change. The commonly 

practiced taungya systems might increase human disturbances through additional 

subsistence agriculture activity within plantations in Ghana, leading to forest cover change.  

The livelihoods of rural households in Ghana heavily depend on forest-related income 

(Appiah et al., 2009; FAO, 2016). While a growing rural population could mean increasing 

reliance on forest resources, no correlation was found between the magnitude of forest and 

population change at the reserve level and a weak significant positive correlation at the 

district level in this study. The population density increase in the study area is relatively low 

with little variance, particularly at the reserve level (2 people km-2 yr -1). At the district level, 

the population data are summarized from a larger spatial extent (i.e., including areas located 

far from forest reserves) than the mapped forest cover. Although percentage and density 

were used to standardize areal estimates, differences in area between census and land use 

analytical units likely influence uncertainty in the regression analysis. More forest 

conservation efforts could also arise from scarce forest resources due to population increase 

(López-Carr & Burgdorfer, 2013), resulting in less forest loss or even forest recovery. 

Deforestation has been associated with population growth in varying ways in other studies. 

Mertens and Lambin (2000) examined deforestation in South Cameroon with various 

potential land-cover and land-use change causes. They found that at the village level, 

deforestation is positively related to population growth while the highest magnitude of 

deforestation was found in villages with small population. On the other hand, population 
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density has been found to have insignificant relationship with deforestation rate in the 

Brazilian Amazon (IGBP report, 1993). DeFries, Rudel, Uriarte, and Hansen (2010) also 

found that tropical forest loss is not associated with rural population growth at a global 

scale. These varying results suggest that deforestation can be a complex type of land-cover 

and land-use change, and population alone might not be a sufficient predictor of forest loss 

(Lambin et al., 2001). Other factors such as affluence, land management policies, macro-

economic, and political influences should also be considered in future studies.  

Different types and magnitudes of land-cover and land-use changes were observed 

between protected and production reserves in this study. Kakum National Park, a protected 

reserve, exhibited minimal land-cover and land-use change, and relatively stable forest cover 

during the study periods. In addition to Kakum National Park, a cluster of reserves included 

in the Greater Kakum working plans (including Assin and Pra Suhien) all showed stable 

forest cover between c. 2000 and 2018. Production reserves such as Subri River, Bowiye 

Range, and Opon Mansi each have a substantial plantation/productive area. These reserves 

all had over -16% relative forest loss during 2000-2018 as mapped in the classification 

products. The variation suggests that reserve regulations and policies could be an influential 

factor in forest protection. Land management of protected areas is often defined locally in 

Ghana, because of the mostly private land ownership. Reserve management goals can vary 

from protection of forests from logging and development, to protecting particular tree 

species, to protecting game and wildlife. Due to the variations in land ownership and 

management goals, a local or regional scale, such as the reserve and district levels used in 

this study, is appropriate for analyzing patterns of forest loss.  
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The data utilized in this study presented a few challenges. The limited availability of 

high spatial resolution imagery as reference data led to higher uncertainty for accuracy 

assessment of land-cover and land-use change products.  The mapped land-use changes were 

particularly difficult to verify, especially for earlier study periods of c. 1986 and 2000. Few 

Landsat 4 and 5 TM images were available for the early part of the study period, reducing 

the quality of the multi-temporal image composites. For the census data, EA boundaries 

were generated so that each delineated area contains similar populations. Following 

population increase, the EA boundaries were modified by Ghana Statistical Services 

between 2000 and 2010 census. Fortunately, because of the mostly rural mapping area, the 

discrepancies between the years were relatively minor. EA boundaries were ensured to share 

similar spatial extents. Because EA boundary files for 2010 are not completed for all of 

Ghana, the analysis of population and forest change relationship was limited to the eastern 

portion of the study area, where the boundary files had been completed.  

Google Earth Engine is open-access for education, research, and non-profit users. It 

provides an image library and a JavaScript coding platform for geospatial data analysis. 

Users can interactively implement and execute processes, and view results in an efficient 

manner utilizing its powerful cloud-based computing resources. The platform enabled dense 

time series of Landsat images to be processed, images to be composited, and unsupervised 

classification to be efficiently and effectively performed for this study, in just a few minutes. 

The image library eliminated the need for downloading a large quantity of imagery data. 

Compared to conventional image processing software, no license or installation is required 

for Earth Engine. Earth Engine platform could provide valuable resources for land-use and 

land-cover monitoring in a timely manner.  
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Monitoring forest resources for conservation and ecological purposes is critical, 

especially with the rapid population and economic growth of sub-Saharan Africa and Ghana. 

The mapping approach implemented on the cloud-based Google Earth Engine using median 

value SVVI composite images was effective and efficient for monitoring forest cover and 

other land-use changes in the extremely cloud-prone southern Ghana. Other forested and 

cloud-prone regions could also benefit from this mapping approach. Future research should 

focus on exploring other anthropogenic factors that are potentially associated with 

deforestation to target management efforts. More frequent and extensive land-use 

monitoring could provide valuable information for government agencies to regulate and 

enforce logging and mining permits. Improved and updated land change estimates, as 

demonstrated with the mapping methods in this study, could also be used to support 

conservation efforts.  
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Chapter 5. Conclusions 

5.1. Summary of Results 

The goals of this research were to (1) develop and test novel approaches to map forest 

cover and monitor its change, and (2) examine human influences on land-cover and land-use 

changes in forest reserves and their environs. The goals were achieved by developing 

reliable image processing workflows for satellite image-based vegetation and land-use 

change mapping, and examining anthropogenic causes of land change for protected areas in 

China and Ghana. These image processing workflows were implemented on the open-

access, web-based geospatial analysis platform Google Earth Engine to increase the utility 

of the mapping approach.  

The study presented in Chapter 2 evaluated different advanced image classification 

techniques for mapping complex vegetation compositions and land-use types in the cloud-

prone and extremely mountainous Fanjingshan National Nature Reserve (FNNR) in China. 

Mixed evergreen and deciduous vegetation types were found to be the dominant forest cover 

types in the reserve based on the Landsat-derived classification products. Evergreen 

broadleaf type shows a distinct distribution along river and stream channels. Deciduous 

cover is concentrated on the high elevation ridges and the southern end of the reserve. The 

eastern side of the reserve has more bamboo cover, while the western side has more conifer. 

A combination of image processing techniques was concluded to yield reliable and 

consistent forest and land-use maps with moderate, above 70% mapping accuracies. Multi-

seasonal Landsat image composites minimized the persistent cloud cover issue. Elevation 

ancillary data, spectral vegetation index products, and shade/illumination normalization 

approaches suppressed terrain effects and improved mapping accuracy. Important image 
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classifier parameters were tuned using cross-validation and grid search techniques for 

optimizing the performance and accuracy of a random forest machine learning image 

classifier.  

The utility of monitoring land-use dynamics using the mapping workflow developed in 

Chapter 2 was assessed in Chapter 3, through mapping and quantified vegetation and land-

use transitions in FNNR over a 28-year period, including afforestation related to payment 

for ecosystem services programs and anthropogenic development. Land-use transitions were 

reliably identified by implementing logical land-use transition rules with map pixels that 

changed from-to classes of interest. Approximately 10-12 km2 of land area was mapped as 

afforestation, mostly in the reserve environs along roads and river channels. Despite the 

protected status, anthropogenic activities within and adjacent to the reserve boundary are 

prevalent. A substantial amount of development was observed in the reserve environs, and 

the reserve core area also experienced sporadic land-use changes. Built development mainly 

corresponds to the expansion of roads and freeways, and construction of tourism and 

recreational infrastructure.  

In Chapter 4, forest and land-use types were mapped and changes were assessed for 

multiple reserves in southern Ghana over a 30-year period, utilizing dense Landsat images 

and the median value spectral vegetation variability index (SVVI) composites. The 

magnitude of forest loss in relation to population growth was also examined. The Landsat-

derived forest and land-use maps yielded high classification accuracies, ranging from 87 to 

94%. Dense evergreen forest was found mostly constrained within reserve boundaries. Most 

reserves exhibited forest loss during the mapping period, mostly due to mining, agriculture, 

and built expansion. Extensive mining expansion was observed in the western side of the 
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study area and likely led to substantial amounts of forest loss in the surrounding region. 

Large-scale plantations and their associated forest cover change were also observed.  

Collectively, this research provides a remotely sensed image processing workflow that 

can be utilized for land-cover and land-use change monitoring in cloud prevalent and 

mountainous areas, and an effective approach for long-term environmental monitoring. 

Land-use dynamics and the associated anthropogenic activities were also documented for 

selected forest reserves in two developing countries, China and Ghana. Such workflow 

implemented on open-access and cloud-based geospatial analysis platform Earth Engine 

increases the image processing efficiency and method accessibility.  

5.2. Key Contributions and Findings 

This dissertation study contributes to the land-cover and land-use mapping literature by 

developing and demonstrating utility of optical remotely sensed imagery and multi-temporal 

image analysis procedures for cloud-prone and mountainous regions. The mapping and 

monitoring products stemming from these novel approaches provide extensive land-use 

dynamic information for the study of forest reserves in two developing countries, which may 

be useful to their reserve managers. Dense time series and median value image composites 

minimized the cloud cover issue, while illumination normalization approaches suppressed 

terrain effects. Logical land transition rules during post-classification map comparison 

ensured that map classes of interest were preserved. Improved and updated land change 

estimates, as demonstrated in this study, can better inform conservation policy and support 

land change monitoring for other forested, cloud-prone, and mountainous regions.  

Both study areas in this research are in rural regions in developing countries, yet 

anthropogenic activities were found to be closely associated with land-use transitions within 
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and near protected areas. Built expansion and infrastructure construction were identified in 

both study areas. The afforestation effort through the payment for ecosystem services 

programs was observed in China, while surface mining and plantation were among the 

dominant land-change types in Ghana.  

Efficient image processing capabilities were enabled by the cloud-based Earth Engine 

platform, from accessing pre-processed Landsat imagery, implementing both machine 

learning type and unsupervised clustering image classifications, generating map products, to 

evaluating mapping accuracy. Machine learning type image classifier was utilized when 

training data were available and yielded reasonable accuracy mapping complex vegetation 

composition. Unsupervised clustering algorithms were applied to a larger mapping area 

when training data were not readily available, and yielded highly accurate maps.  

Reserve management policies and protection status seems to be an important factor in 

forest cover change. Sporadic and planned land transitions occurred in China where the 

central government has significant importance in land management and planning. 

Conversely, most lands are privately owned and managed regionally by tribes and chiefs in 

Ghana. It was observed that a fully protected national park in Ghana showed relatively 

stable forest cover, while other production reserves indicated varying degrees of forest cover 

loss. 

5.3. Future Research 

Several aspects of this research should be expanded and further explored. For example, 

the resultant land-transition maps and their applicability should be further examined. 

Ecological and conservation studies could benefit from the spatial distribution information 

provided by the land transition maps. The maps could serve as the basis or be used in 



 

 86 

conjunction with other survey data in evaluating ecological and conservation impacts of land 

change. The efficacy of the afforestation effort and the goals of payment for ecosystem 

services programs in China could be analyzed, in terms of soil erosion, forest coverage, and 

slope land stability. 

For land-cover and land-use mapping, the developed mapping workflow could be shared 

and applied to other regions, while its usability and applicability on Earth Engine can be 

improved. Mapping and monitoring forest and land-use changes with similar approaches 

could provide more comparable land change information on regional and even global scale. 

Reserve managers could benefit from the extensive reserve land-cover and land-use 

monitoring of the cloud-based mapping approach. A web application with graphical user 

interface that integrates the scripts for the developed method can further minimize the 

requirement for user training and the coding ability requirement.  

In terms of forest cover change in protected areas, factors other than population growth 

should be explored in order to target management efforts. Reserve management policies and 

regulation implementation could be surveyed and analyzed with the amount of forest cover 

loss. The funding and resources that reserves receive might indicate how well the reserves 

are protected. The knowledge and perception of local residents on forest resources could 

also shed light on human usage.  
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