
UC Irvine
ICS Technical Reports

Title
Logic, parallelism and semantic networks : the binary predicate execution model

Permalink
https://escholarship.org/uc/item/5zr3q3f8

Author
Lee, Craig Alexander

Publication Date
1988
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zr3q3f8
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Irvine 

_b_ogic, Parallelism and Semantic Networks: 

the Binary Predicate Execution Model 

Technical Report #88-30 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Information and Computer Science 

by 

Craig Alexander Lee 

Committee in charge: 

Professor Lubomir Bic, Chair 

Professor Tatsuya Suda 

Professor Daniel Gajski 

1988 

Notice: This Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

// I 



The dissertation of Craig Alexander Lee is approved, 

and is acceptable in quality and form for 

publication on microfilm: 

Committee Chair 

University of California, Irvine 

1988 



Dedication 

This work is dedicated to 

Drs. M.B. Meikle and J .A. Vernon 

who set my feet on this path. 

'/,'/,'/, 



List of Tables . 

List of Figures 

Acknowledgements. 

Curriculum Vitae 

Abstract ..... . 

Contents 

Chapter 1: Why Logic, Parallelism and Semantic Net works? .. 

Introduction . . . . . . . . . ..... 

Organization of the Dissertation . 

Chapter 2: Logic, Parallelism and Semantic Networks. 

Logic and Logic Programming . 

Parallelism ....... . 

vi 

x 

xi 

xii 

1 

1 

3 

5 

5 

12 

Logic and Parallelism. . 25 

Semantic Networks . . . 37 

Combining All Three: Logic, Parallelism and Semantic Networks 43 

Chapter 3: The Binary Predicate Execution Model. . 49 

Basic Concepts. . . 49 

Clause Invocation . 56 

Spanning Tree Cost . 64 

Functional Terms and Variables in the Assertion Graph 67 

Non-Logical Extensions . . . 72 

Chapter 4: Example Applications 77 

Introduction. . . . . . . . . 77 

A Geographical Database . 77 

RMS.KNOMES . . . . . . 82 

Chapter 5: Implementation and Architectural Issues. 93 



Introduction . . . . . . ....... . 

Computation via Message-Passing. 

Scheduling 

Allocation. 

Supporting Architectures 

Other Issues . . . . . . . . . 

Chapter 6: Simulations Results . 

Introduction .. 

The Simulator .. 

OR-Parallelism .. 

Introducing AND-Parallelism. 

Clause Invocation ....... . 

A Spectrum of Problem Sizes. 

Independent Routers .. 

Conclusions ...... . 

Chapter 7: Conclusions and Future Research Directions .. 

Contribution . 

Discussion. . . 

Related Work 

Future ·work . 

Ref~rences ..... . 

v 

93 

94 

109 

110 

116 

120 

123 

123 

124 

128 

134 

136 

142 

148 

150 

152 

152 

152 

154 

160 

162 



List of Tables 

Table Page 

1. World Geography Database . . . . . . . . . 78 

2. Simulation Results under OR-parallelism . 130 

3. Simulation Results under AND-parallelism . 136 

4. Simulation Results under Clause Invocation 138 

5. Simulation Results for a Spectrum of Sizes . . 145 

6. Simulation Results for a Spectrum with Independent Routers 149 

vi 



Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

List of Figures 

Resolution's Rule of Inference 

A Resolution Example .... 

Resolvents of Four Clauses ..... 

A Simple Vehicular Semantic Network . 

Network Fragment .... . .... 

Representing Predicates . ..... 

An Assertion Graph and Query Template . 

A Query Template and One Possible Spanning Tree. 

A Clause Invocation . . . . . . . . . . . . . . . . . 

Clause Invocation with Binding Order Conflict . 

Invoking Literal as One Vertex. 

General Query Tree . . . . . . . . . 

Domain Element Fan-in/Fan-out 

Simple Assertion Graph with Functional Terms 

Simple Query with Functional Terms ...... 

Head Unification with Functions from the AG 

An Attribute ........... 

World Geography Database. . . . . . . .... 

Three Queries in RB L 

Three Clauses in RBL . . .... 

The Generic KN 0 MES Shell . . . 

Form of Semantic Network for RMS_KNOMES. 

Context Clauses Initiated at Cxt Vertices . . .... 

Event Clauses Initiated at Ser Vertices ... 

vii 

Page 

6 

7 

8 

38 

39 

44 

51 

52 

57 

59 

60 

64 

66 

68 

69 

71 

73 

79 

80 

81 

82 

85 

87 

88 

I 
r I 

I 
I 
I 

I 
I 



25. Md l Clauses for Expected Anomalies . . . 90 

26. Mdl Clauses for Unexpected Anomalies 91 

27. A General Layer of the Activation and Environment Trees 95 

28. An Example of the Activation and Environment Trees . 96 

29. Activation Stack Example ..... 99 

30. Activation Stack Path Example 100 

31. Example of Binding Scope 102 

32. Message Grammar . . . . . 106 

33. Query Message Procedure .. 108 

34. Success, Failure and Cut Message Procedures .. 109 

35. A PE with Separate Router. 117 

36. Multiple Message-servers 118 

37. Variable Service ..... 119 

38. Simulator Flow Graph . 124 

39. The Binary Tree Search Problem 129 

40. Activity Curves for 4x Proportion. 130 

41. Activity Curves for 8x Proportion. 131 

42. Activity Curves for 16x Proportion . 131 

43. Relative Execution Times for each Proportion . 132 

44. K-lips for each Proportion ............. 132 

45. Replacing OR-parallelism with AND-parallelism. 134 

46. Activity Curves for Different Amounts of AND-parallelism 135 

47. Activity Curves under Simple Invocation ............ 138 

48. Activity Curves under Simple Invocation with OR-parallelism 139 

49. Activity Curves under Nested Invocation . ........... 139 

50. Relative Execution Times under Invocation for all Cases ... 140 

51. K-lips under Invocation for all Cases . . . . . . . . . . . . . . 140 

viii 



52. Activity Curves for 2 :::; h :::; 6 . .... 143 

53. Activity Curves for 7 :::; h :::; 11 .. 143 

54. Relative Execution Times Approaching Saturation 144 

55. K-lips Approaching Saturation ........... 144 

56. Average Message Queuing for h = 9, 10 and 11. 146 

57. Maximum Message Queuing for h = 9, 10 and 11 146 

58. Average and Maximum Message Queuing for h = 11 . .... 147 

59. Execution Times with and without Independent Routers. 149 

ix 



Acknowledgements 

First and foremost, I would like to thank my advisor, Professor Lubomir Bic, 
for his friendship and support of this research. From its initial suggestion to its 
conclusion, he has always been interested. I also want to thank the other members 
of my committee, Professors Tatsuya Suda and Daniel Gajski, for their advice and 
efforts on my behalf. 

The "Dataflow" Group, consisting of Jon Gilbert, Mark Nagel, John Roy, 
Elke Rundensteiner, Wang-Chan Wong and Monika Yin, also deserves recognition. 
They always provided a good environment for numerous talks, formal and informal, 
that improved this work. . 

The entire department arid staff of Information and Computer Science at 
UCI deserve acknowledgement. It was home for many years and the computing 
environment has continued to grow in impressive ways. 

·Finally, I want to thank Kathryn Kramer for her patience and companionship 
throughout this process. 

x 



Nov. 19, 1952 
June 1975 

Sept. 1975 - Aug. 1980 

May 1978 - Aug. 1980 
June 1982 

Summer 1983 

Sept. 1983 - June 1985 

Summer 1985 

Sept. 1985 - Dec. 1988 

Dec. 1988 

Curriculum Vitae 
Craig Alexander Lee 

Born ·Chicago, Illinois 
B.A. in Psychology, Reed College, Portland, 

Oregon 
Programmer and Research Assistant, Dept. of 

Medical Psychology and later the Kresge 
Hearing Research Laboratory, University of 
Oregon Health Sciences Center, Portland, 
Oregon 

Consultant, Portland, Oregon 
M.S. in Computer Science, Syracuse University, 

Syracuse, New York 
Visiting Internship, Jet Propulsion Laboratory, 

Pasadena, California 
Teaching Assistant, Dept. of Information and 

Computer Science, University of California, 
Irvine 

Visiting Lecturer, Dept. of Information and 
Computer Science, University of California, 
Irvine 

Research Assistant, Dept. of Information and 
Computer Science, University of California, 
Irvine 

Ph.D. in Computer Science, University of 
California, Irvine 

Publications 

L. Bic and C.A. Lee, "A Data-Driven Model for a Subset of Logic 
Programming", A CM Trans. on Program·ming Languages and Systems, V9n4 
(October 1987) pp. 618-645. 

C.A. Lee and L. Bic, "On the Mapping Problem Using Simulated Annealing", 
1989 IEEE Int'l. Phoenix Conference on Computers and Communication, 
(March 1989) (to appear). 

C.A. Lee and L. Bic, "A Parallel Logic Model for Real-Time Knowledge-Base 
Systems", First Australian Knowledge Engineering Congress, (Sept. 1989) (to 
appear). 

xi 

I 
I 
I 
I 
I 
I 



Abstract of the Dissertation 

logic, Parallelism and Semantic Networks: 

the Binary Predicate Execution Model 

by 

Craig Alexander Lee 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1988 

Professor Lubomir Bic, Chair 

This thesis develops the Binary Predicate Execution Model1 a distributed, 
massively-parallel system for semantic networks and knowledge bases that is built 
on a subset of first-order predicate logic. The use of logic gives the model an easily­
understood programming paradigm and a well-defined semantics of execution. 
When expressed in binary predicates, a simple graphicalinterpretation can be used. 
All pr<;>gram facts are represented in an assertion graph. Each vertex is associated 
with a term appearing in a fact and the edges are labeled with the predicate names. 
Similar graphs are also associated with each rule body and the query. Finding all 
possible solutions corresponds to finding all possible match~s between the query 
graph and the assertion graph. Invoking a rule corresponds to substituting the 
graph of its body constrained by the dependencies between its arguments. This .can 
be implemented in a parallel, message-passing fashion where the assertion graph 
vertices are active processing elements which asynchronously exchange messages 
identifying different parts of the query that remain to be matched and containing 
any binding information from previous matching required to accomplish this. The 
model is data-driven since every. message can be immediately processed without 
the need for any centralized control or centralized memory. By restricting how 
functional terms can occur, distributed data structures and remote data look-ups 
for unification are eliminated. Thus, the model's performance on increasingly larger 
problems .scales-up given increasingly larger machines in most cases. Architectural 
support for the model is investigated and simulation. results of a relatively simple 
software implementation are reported. This suggests performance on the order 
of 105 logical inferences per second for 256 processing elements in an n-cube 
configuration. Further research directions, including that of increasing efficiency, 
are discussed. 
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CHAPTER 1 

Why logic, Parallelism and Semantic Networks? 

1. Introduction 

As the various fields of computer science continue to expand, so do the sizes 

of the computing problems that need to be solved. Since these problems concern 

massive amounts of data and since hardware fabrication technology is advancing, 

parallelis~ is becoming widely recognized as a viable method for solving these 

problems in a reasonable amount of time. 

Parallelism offers a host of fundamental problems that must be dealt with in 

any implementation. All computation consists of the application of functions to 

data. (Whether these functions are history-sensitive or not makes the difference 

between imperative and applicative languages.) Parallelism must decide when and .. 
where each application takes place. Since we want machines that are programmable, 

we must decide on a primitive set of functions and allow programs to be data. 

Under parallel execution in general, both functions and data can be thought 

of as entities that move through some physical space with a relative frame of 

reference. In a von Neumann machine, data (including the program) flows through 

the von Neumann bottleneck to complete a function application in one, unique 

processing element (PE). A parallel machine has many PEs. A program can be 

a chain of instructions or a lattice. A chain of instructions can be sequentially 

broadcast to multiple PEs handling different data (SIMD). This form of execution 

is synchronous since only a single chain of instructions is being used and the results 

of each application must be synchronously communicated with the PE that will 

need it for the next instruction. A lattice can be handled by multiple PEs handling 
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different instructions and different data (MIMD). Of. course, the instruction and 

data that need each other must be close together and both must be close to some 

available PE. This can be done by distributing the program and data over the PEs 

and allowing them to execute· and communicate asynchronously, thus attaining 

greater parallelism. 

The efficient extraction and organization of parallelism from a problem such 

that this can be done is, of course, the focus of much research. While the hand­

coding of parallelism using various language constructs may be appropriate in some 

cases, the automatic extraction of parallelism that is inherent in the expression of 

the probiem promises greater. benefit. Such inherent expressions of parallelism 

can be found in logic languages. These languages basically express a problem as 

disjunctions and conjunctions of literals. Each disjunct represents an independent, 

alternative solution; doing these in parallel is OR-parallelism. Each conjunct rep­

resents a partial solution; doing these in parallel is AND-parallelism. Many efforts 

for the realization of OR-parallelism and AND-parallelism have been published. 

While classifications may vary, work has also been reported for unification, search 

and stream-parallelism. One motivating factor for all this activity is· the wide 

popularity that logic languages are currently enjoying in Artificial Intelligence; a 

field with no dearth of computationally intense problems amenable to expression 

in logic·. 

One of the major tasks of AI is the representation of knowledge. This can 

be as diverse as representing natural language or a set of logical· constraints. The 

semantic network is one of the most widely-used knowledge representation tools 

and has been applied to fields as diverse as natural language and logic. It is basically 

a graphical entity-relationship hierarchy with the verti~es representing concepts and 

the edges representing relationships between them. By itself, a semantic network is 
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really only a semantic memory; a set of interpretive procedures need to be defined 

to determine how the network is used and how new information is inferred from it. 

From the preceding discussion, we see an intersection of these three fields. 

Semantic networks, including the interpretive procedures, can be expressed in logic 

which has clear opportunities for parallelism. Any such semantic network based on 

large amounts of facts offers the potential of massive parallelism. This dissertation 

is an attempt to realize that potential in the form of the Binary Predicate Execution 

Model (BPEM). This is a massively-parallel model of computation for a subset of 

first-order predicate logic that supports the important knowledge representation 

tool of semantic networks. 

2. Organization of the Dissertation 

The remainder of this dissertation is organized as follows. 

Chapter 2 provides background material and a survey for each of the three 

areas and their intersections. Logic and logic languages are introduced first, in­

cluding the definition of unification and resolution. The niajor issues governing 

parallelism are then discussed followed by a discussion of the parallelism available 

in logic. Semantic networks are introduced next. Finally, the intersection of all 

three defines the area for BPEM. 

· Chapter 3 introduces the Binary Predicate Execution Model. The transfor­

mation of the clausal form of logic into the Assertion Graph and Query Graphs 

is defined and resolution as a form of graph matching is investigated. Problems 

concerning functional terms and invoking n-ary clause heads are investigated. Non­

logical extensions are also defined. 

Chapter 4 gives two larger application examples to illustrate how BPEM can 

be used. The first is geographical database and the second is a real-time monitoring 

expert system for the NASA space station remote manipulator. 

I 
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Chapter 5 investigates the implementation and architectural issues surround­

ing the realization of BPEM. This develops BPEM's asynchronous, message-passing 

model of execution, including the binding scope and environment concepts which 

determine message content. Static allocation is accomplished by simulated anneal­

mg. However, a hybrid architecture is proposed to alleviate potential hot-spots. 

Chapter 6 presents simulation results that demonstrate BPEM's performance 

under 0 R-parallelism, AND-parallelism and several cases of clause invocation. 

They also demonstrate the property that BPEM's performance on larger prob­

lems scales-up given a larger machine in most cases and that simulated annealing 

works quite well in evenly distributing the problem over the network such that 

communication costs are low. 

Chapter 7 discusses the contribution of the dissertation, related work and 

future research directions. 

I 



CHAPTER 2 

Logic, Parallelism and Semantic Networks 

1. Logic and Logic Programming 

First-order predicate logic is one of the most• fundamental fields of mathemat­

ics and is involved in all theorem proving. The idea of automating the process of 

proving theorems is simple and straightforward: given a set of axioms and a rule of 

inference, it should be possible to mechanically derive all theorem's based on those 

axioms, and conversely, given a theorem it should be possible to determine if it 

is derivable from those axioms. Logic languages are based on modern automatic 

theorem proving which began with Herbrand in the 1930s. His basic result was 

that a set S of clauses is unsatisfiable if and only if a finite set S' of ground 

instances of clauses in S is unsatisfiable. Hence, to test a set of clauses S for 

unsatisfiability, it is sufficient to mechanically generate and test a sequence of finite 

sets Si, ... , s;, ... , S~ of ground instances of clauses in S, such that for some finite 

n, s~ is unsatisfiable. unfortunately, successive s~ generally grow exponential.ly in 

size. (A more thorough treatment of all the ideas in this section can be found in 

Chang and Lee [CL73].) 

1.1. Resolution and Unification 

An important step in making unsatisfiability testing practical was Robinson's 

Resolution Principle [RoB65]. To understand resolution, we must introduce the 

empty clause, denoted by o, which has no conditions and no conclusions. Since 

the empty clause is unsatisfiable under all interpretations, S is unsatisfiable if it 

contains or can derive o. Resolution is used to make this determination. It does so 
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Figure 1 

Resolution's Rule of Inference 

not by generating and testing sets of ground instances Si but by selectively building 

specific ground instances that derive o. 

Resolution uses a rule of inference that is illustrated by the solid lines in 

Figure 1 and is, for the moment, based in propositional logic. Any two clauses, 

one with literal P and the other with the complement of this literal, •P, can be 

combined to deduce a resolvent, after eliminatingP and •P. In this example, the 

resolvent is Q. The reader may recognize this as: modus ponens from classical logic. 

If •Q appears in the original set of clauses, then o can be derived as shown by the 

dashed lines. in Figure 1. 

Now consider the literals P( a) and •P( X) from predicate logic with the 

convention that lower-case identifiers are constants and upper-case identifiers are 

variables. To resolve o from these two literals, they must be unified with. the 

substitution O' = {a/ X}. To be precise, 

Definition: A substitution O' is a set of term/variable pairs and is written 
{ti/Vi, ... , tn/Vn}· The application of a substitution O' to a literal L, 
written LO', is the replacement of every occurrence of Vi in L with ti for 
1 < i ~ n. The empty substitution is denoted by €. 

Definition: The composition of two substitutions O' and A is defined by 

O' o A - {ti/xi, ... , tn/xn} o {uify1, ... ,um/Ym} 
- {ti.A/xi, ... , tnA/xn, uif yi, ... , Um/Ym} 

where any element ti A/ X'i where ti A = Xi is deleted and any element 
uif Yi where Yi E { x1, ... , Xn} is deleted. 
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+- Fa/lib/e(X) /\ Greek(X) Fa/lib/e(Y) +- Human(Y) 

+- Human(Y) /\ Greek(Y) Human(socrates) 

+- Greek( socrates) Greek( socrates) 

0 

Figure 2 

A Resolution Example 

Definition: A substitution a is a unifier ofliterals L1 and L2 iff L1 a = L2a. 

Definition: A substitution e is the mo3t general unifier iff any other unifier 
a can be derived from it, i.e., a = e o .A for some other substitution .A. 

Hence, we can write P(X){a/X} = P(X)a = P(a). Furthermore, since a term 

can be a variable, we can have unifications such as P(X){Y/ X} = P(Y). An 

arbitrary number of literals with an arbitrary number of terms can be resolved given 

that there exists a unifying substitution for all terms involved. While many unifying 

substitutions may exist, only the most general unifier e need be considered. 

Since unification is pivotal in all resolution-based theorem provers, it has 

received much study and as a result, more than one linear algorithm for deriving 

8 exists [RoB65, RoB71, PW78, MM82]. Now let us look at unification in a more 

general way. Consider the unification of 

P( f(X), g(Y, V)) and P( V, g(a,f(Y)) ) . 

First, the algorithm must match the recursive structure of the literals but more im­

portantly, it must deal with 3hared variable3 such as Y and V in this example. This 

can be handled by iteratively building-up e by finding the required substitution 

for each sub-expression. 

I 
I 
I 
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Resolvents of Four Clauses 
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To illustrate resolution and unification together, we have the little problem 

below (borrowed from Kowalski (Kow79]): 

Greek( socrates) . 

Human( socrates} . 

Fallible(Y) f- Human(Y) . 

f- Fallible(X) /\ Greek(X) . 

The first two lines are facts, the third line is a rule, and the theorem in the last line 

asks: "Are there any fallible Greeks?" The answer to this is shown in Figure 2. 

Each pair of edges is a step of resolution where the unifying substitution is shown 

on the right edge. Not only is the hypothesis shown to be true, the proof is 

constructive; a fallible greek is given by the ~omposite substitution { socrates / X}. 

1.2. From Theorem Prover to Programming· Language 

General resolution is fine as a theorem prover but suffers from tremendous 

inefficiency because there is no specified order of application for the rule of infer­

ence. In the search for o, it is possible to generate irrelevant and redundant proofs, 

whereby, any set of clauses may have more than one way of deriving o. Consider 

Figure 3. The solid lines show four different derivations of D. The dashed lines 

indicate one possible beginning of an infinite number :of resolutions. By resolving 

one of the initial clauses with one of the resolvents, it is possible to produce an 
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infinite sequence of redundant clauses. This subsection shows how resolution can 

be made the heart of a programming language, such as Prolog, by enabling it to 

efficiently prove a user theorem or query. 

First we note that resolution is refutation 3ound and complete. This means 

that if we wish to prove a specific clause C, we add -,Q to the initial set of clauses 

and if C is indeed true, we are assured of deriving o, which denotes falsehood . 

. Second, variants of general resolution that specify order of application have been 

widely studied (and surveyed) to reduce the number of irrelevant and redundant 

resolvents [CL73, TC76, Kow79]. The only variant we will present in more detail 

is that .used by conventional Prolog implementations [CM81]. 

We begin by noting that an arbitrary set of clauses S has a corresponding set 

of clauses SH such that S is satisfiabl~ iff SH is satisfiable. The set SH consists of 

Horn clauses; clauses with at mo.st one uncomplemented literal: 

The conclusion of the implication is called the head. The conditions of the im­

plication is called the body. A clause without a body is called a fact or assertion 

because it is logically equivalent to A +-- T which has the same truth value as A. 

A clause without a head is called a goal or quer:y because it iS logically equivalent 

to F +-- (Bi, ... , Bm) whose truth value is the negation of the conditions~ (This is 

how a clause is negated to be proven.) A clause with both is also called a rule. A 

set of rules and facts is called a program or knowledge base against which a query 

is satisfied. 

Conventional Prolog interpreters use a form of linear input or SL-resolution 

to satisfy a query, i.e., to find the most general unifier producing a ground instance 

that deduces o [EMKo76]. These can be defined as follows: 

I 
I 
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Definition: Linear input resolution is a sequence Ro, ... , Ri, ... of resol­
vents where Ro is the initial query to be solved and Ri is resolved from 
Ri-1 and an input clause, i.e., a fact or rule in the program. 

The initial query is a clause body containing only negative literals. Resolution 

starts by unifying one of these literals with a positive literal which can only be a 

clause head. The substitutions resulting from this unification are then applied to 

the query and the associated clause body, if any. If the clause head is part of a 

rule, then the associated clause body (which a fact does not have) becomes part of 

the query to be solved. Thus, the number of literals in the query stays the same or 

increases if the head of a rule is matched and the number of literals decreases· if a 

fact is .matched. Resolution continues by unifying query literals with clause heads 

until, hopefully, o is derived. 

Any resolvent, in general, contains many literals. One literal must be chosen 

by a computation rule [BRUY82] for the next step of resolution but eventually all 

literals must be satisfied to find a solution. The following specifies the computation 

rule used in conventional: Prolog. 

Definition: SL-resolution is based on linear input resolution where, for 
any resolvent Ri = B1 /\ .... /\ Bm, the literal B1 is selected for possible 
unification with a program clause B1 +-- D1 /\ ... A Dk and, as a result, 

This clearly suggests the.stack implementation of conventional Prolog interpreters. 

Any time a literal is chosen from the goal, there may be many facts or heads 

it could unify with. In this case, the literal is called a choice point. One of the 

candidate facts or clauses must be chosen by a search rule [BRUY82] but eventually 

all must be tried in order to find all ,possible solutions. In conventional Prolog, 

these candidates are searched linearly from the. first .occurrence -to the last, i.e., 

from top to bottom in the program. If the first occurrence unifies and the body is 

successful, then the original literal is resolved away. If at any later time, the Prolog 
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interpreter fails to unify a literal (has no chance to derive o), it will backtrack to the 

most recent choice point, i.e., where there is another occurrence of a literal on which 

to attempt unification. As a straight-forward extension of this idea, even when a 

solution has been found, the typical Prolog interpreter can be told to backtrack to 

the most recent choice point and to continue searching for another solution until 

all solutions have been found. Hence, the selection of literals and rules forms a 

.tree called the search space that the interpreter traverses in the search for solutions 

where the computations and search rule define the order in which the branches of 

the search space are investigated which in turn defines the order in which solutions 

are found. 

With SL-resolution, we are always working on the left-most "deepest" literal 

encountered. This is clearly a depth-first search of the search space. It can also be 

said to be working on one solution at a time. If, however, new clause bodies were 

added at the end of the current goal list, i.e., 

Ri+ 1 = B 2 /\ ... /\ Bm /\ Di /\ ... /\ Dk, 

then a queue implementation would be appropriate. This would be a breadth-first 

search. Many solutions would be underway at once requiring that bindings for 

distinct solutions be maintained separately. 

The depth-first nature of SL-resolution gives logic programs two different 

"readings". The first is a declarative reading: a logic program is a set of clauses 

in first-order predicate logic that merely declares the relations between program 

terms and leaves it up to the interpreter to decide how to satisfy them. The second 

is a procedural reading: a literal is a procedure call, whose terms are the actual 

parameters, and a clause is a procedure, whose head defines the formal parameters 

and whose body is the procedure body. Furthermore, the literals in a procedure 

body are read (considered for unification) from left to right, top to bottom, just 

like statements in an imperative language. The procedural reading suggests that 

I 
I 
I 
I 
I 
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a programmer writes literals as a sequence of activities to be done. It is· doubtful 

that logic languages, like Prolog, would be considered languages at all and would 

enjoy the acceptance they do today without this feature strongly reminiscent of 

traditional imperative languages. 

To further improve their usefulness, logic languages can diverge from their 

m~thematical basis with a host of extra-logical predicates that allows the pro­

grammer to control the interpreter and the search space during execution. For 

example, if the program contains a recursively-defined predicate then the search 

space contains an infinite branch. When the interpreter reaches this branch, it 

would continue processing this branch forever and all solutions beyond it would 

never be found. The cut predicate is used to avoid this situation. When en­

countered, cut instructs the interpreter to remove any choice points, i.e., remove 

sub-trees in the search space, prior to the cut and including the clause head in 

which it occurred. Thus, after part of an infinite branch has been processed, a 

clause containing a cut can succeed, thus telling the interpreter that the recursi<?n 

is done. As another example, the assert and retract predicates are used to insert 

and remove clauses, thereby changing the search space dynamically. Predicat~s 

for I/O and 'evaluable' predicates, such as integer additibn, also exists. An un­

fortunate side-effect of this extra control is that the correctness, termination and 

efficiency of Prolog programs can depend on the order of clauses and the proper 

use of predicates like cut. 

2. Parallelism 

The idea of parallelism is that a computational problem can be divided into 

sub-problems and conquered by many communicating processing elements working 

simultaneously. The maximum possible benefit to be gained from parallelism is 



neatly summed up by Amdahl's Law [AMo67]: 

1 
S=-­

s + .e. n 

where S = relative speed-up 
s = percentage of problem that is inherently serial, 
p = percentage of problem that can be parallel, and 
n = number of PEs. 
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Clearly, the idea here is that the benefits of parallelism are limited by the parts 

of a problem that are inherently serial: for 0 < s and p < 1, limn-oo S = 1/ s. 

The clear (and fairly obvious) implication is that parallelism is best for problems 

that contain massive parallelism. An interesting argument was made recently by 

Gustafson [Gus88] that for many problems, the problem size and the parallelism 

can be scaled-up with the number of PEs such that p can be made arbitrarily close 

to 1. 

Amdahl's Law is, of course, a simplification of the issues governing parallelism. 

Synthesizing from Treleaven, et al. (TBH82], Vegdahl (VEG84], Gajski and Peir 

(GP85] and Cvetanovic [CVET86], a much more complete set·of criteria for judging 

parallel systems include: 

1) Model of Computation, how the computation is organized. 

2) Decomposability of a problem into sub-problems. 

3) Granularity or size of the sub-problems. 

4) Scheduling/ Allocation of the sub-problems to processing elements. 

5) Communication/Synchronization between the processing elements. 

6) Network architecture that the processing elements are built into. 

7) Amount of parallelism in the application problem. 

The following subsections look at each of these ideas in more detail. 

I 
I 
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2.1. Model of Computation 

The traditional model of computation is the von Neumann model: a processor 

uses a program counter to define a sequential flow of control between instructions 

that are fetched from memory. This fetching of instructions one at a time from a 

memory is called the von Neumann bottleneck and is a fundamental limit to the 

processing speed of this model. Parallelism seeks to avoid this. 

Several variations can be done to achieve parallel forms of control flow 

[TBH82]. The same sequential thread of instructions can be applied to different sets 

of data, such as vectors, in SIMD computation. This still suffers, however, from the 

centralized control of one program counter. If we allow multiple program counters 

exist and follow different threads of execution, we have MIMD computation. 

The concept of a program counter, however, can be done away with com­

pletely. Instead of one instruction firing another (by "jumping" to it or allowing 

the program counter to increment), an instruction can execute (fire) when all of 

its input operands are available. This is called data-driven computation and is t~e 

basis for datafiow computers. Dataflow programs are represented as graphs whose 

vertices represent operations to be done on data token3 that are propagated along 

the graph edges. When all tokens. (operands) are present on the input edges, they 

are "consumed" and new output tokens are computed and placed on the output 

edges. Data-driven computation can be called eager evaluation because of its fire­

when-ready rule. 

Instructions can also be fired when there is a specific request for their results. 

This is called demand-driven computation and is the basis for reduction computers. 

Reduction programs are nested expressions and execution. can be called string 

reduction or graph reduction, depending on whether arguments are copied or 

shared, respectively. When there is a demand for the program's results, a demand is 

created for each part of the nested expression. These demands propagate from the 
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outermost to the innermost expressions which then return their values. Demand­

driven computation can be called lazy evaluation because expressions are evaluated 

only when there is a demand for them. 

2.2. Decomposability - Expressing Parallelism 

The decomposition of a problem into grains for parallel execution involves not 

· only the partitioning of the problem but also the partitioning of communication 

to support each sub-problem. While it is common to think about problems "con­

taining" a certain amount of a priori parallelism that is decomposable, we must 

understand that the way a problem is expressed affects the possible decomposition 

and realization ~f the parallelism that we think it contains. Hence, this subsection 

examines the sources and expressions of parallelism that affect decomposability in 

the major language classes. 

Imperative languages, such as Fortran and Pascal, can include explicit con­

structs for denoting parallelism. These include parbegin/parend [DIJK65] (la~er 

called cobegin/ coend) and fork/join [DvH66]. Of course, the explicit hand-coding 

of parallelism with language constructs such as these is limited to the parallelism 

that the programmer can conceive of. Implicit parallelism in imperative languages, 

. such as parallelism in loops and arrays and also between sections of code that have 

been serialized due to the nature of these languages, can be extracted by compilers 

such as Parafrase and Bulldog. Parafrase builds a graph expressing the data depen­

dencies in a program and then restructures the graph with specific transformations 

such that the most parallelism can be utilized when mapped onto an appropriate 

architecture [PKL80]. Bulldog examines the basic blocks of a program and does 

microcode compaction over a large trace or execution path through the blocks 

[FISHER81]. One may conclude from these tactics that imperative languages do not 

naturally express inherent parallelism. 

I 
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Functional languages, however, have implicit parallelism that is readily iden­

tifiable and explicit parallelism can be an integral part of the language. These 

languages are based on Church's -\-calculus [CF58] and Curry and Fey's combina­

tory logic [CF58] and include such classic languages as Lisp [McC60], FP [BAc78] 

and SASL [TuRN79] and also dataflow languages such as Id [AGP78] and Val 

[McG82]. These languages are based on function application such that the mean­

ing or value of a functional expression only depends on its textual occurrence; 

this is called referential transparency. Functional computation is ahistoric in that 

side-effects and multiple assignment to variables do not exist. The Church-Rosser 

property [CF58] ensures that the evaluation of a function is the same regardless of 

the order in which its parts are evalue:tted. This is to implicitly say that they could 

be done in parallel. 

The sources of parallelism in functional languages are no more difficult to 

find than parsing the program. In contrast, the instruction-at-a-time operational 

semantics of imperative languages appears to make the expression and extraction 

of parallelism more difficult. Logic languages also have parallelism that is easily 

identified with the syntactic structure of their programs. Since this is a central 

concept in this thesis, a detailed discussion will be postponed until a later section. 

2.3. Granularity: Partitioning Work 

Once a program has been decomposed into sub.-problems for the purposes 

of parallel execution, the term granularity is used to refer to the "size" of the 

sub-problems. The adjectives fine and coarse are often used to denote relative the 

granularities of smaller and larger sub-problems. For example, a system that breaks 

an arithmetic problem into separate additive and multiplicative operations can be 

said to have fine granularity. A system whose smallest operation is a complex 

process can be said to have coarse granularity. The granularity at which a system 

operates may be related to (1) the programming paradigm, (2) the size of the 
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application problem, or (3) the size of the system itself. In FP, for example, 

the finest possible grain naturally suggested by the language would be function 

application. Multiple applications, however, could be lumped into one grain. 

Consider that two vectors could be arbitrarily partitioned over a set of PEs for 

element-wise addition. If the vector length was increased beyond the number of 

PEs, coarser granularity would be necessary. If the number of PEs was increased, 

· finer granularity would be possible. 

While finer granularity may allow more parallel activity, it may not necessarily 

decrease a program's overall execution time. Decomposing a problem into finer 

grains usually has a higher cost and then each grain incurs the cost of allocation 

onto a PE, communicating any initial data to the PE, getting the grain started, 

and communicating any results which can require synchronization. On the positive 

side, however, a finer granularity can make load balanc.ing easier since it is easier to 

evenly distribute the total amount of work is the tasks are small [BS81]. Thus, it is 

a matter of some debate (GP85] whether the allocation, scheduling, communicati~n 

and synchronization costs of fine-grained datafiow systems [DENSO, AG82, WG82] 

can be kept from outweighing the benefits of parallelism. 

Efforts have been made to adjust granularity to the best level. In the datafiow 

graphs of Ercegovac, et al., functional primitives are combined together and ex­

ecuted sequentially based on the processing and communication times (ECR84]. 

Hudak and Goldberg introduce 8erial combinator8 that, in any given program, are 

the largest possible combinators that have no concurrent substructure, i.e., can 

be executed sequentially as one grain, thereby keeping the overhead down while 

not losing any parallelism (HG85]. Even with these. adjustments to granularity, 

however, it is possible for any finite machine to become swamped with parallelism. 

I 
I 
I 
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2.4. Scheduling and Allocation 

Regardless of how a program is decomposed into grains of parallelism, these 

grains eventually have to be assigned to PEs for execution. This has been called 

scheduling or allocation. While both of these terms have been used to mean 

the matching of grains to computing resources, we make the following distinction 

between them. Given a pool of not necessarily independent tasks, scheduling (or 

a scheduling policy) decides in which order they will execute. Allocation, on the 

other hand, decides which PEs will execute which grains. 

Scheduling was first studied in the 60's and 70's with the advent of time­

sharing systems. Many scheduling policies were investigated including first-come­

first-serve, round-robin, shortest-job-next, etc. These policies, however, concern 

pools of unrelated jobs on a single processor. Our concern is related jobs (grains) 

of the same problem that have definite communication and synchronization con­

straints on a multi-processor. These constraints can be expressed in a task prece-

dence graph or a task interaction graph [SE87]. The first is a directed, possibly 
.. 

cyclic graph that defines the partial order in which operations must occur. Dataflow 

graphs fall into this category. The second is an undirected graph that defines pos-

sible process interaction but contains no information about if or when interaction 

will occur. 

Scheduling and allocation m a multi-processor system also addresses the 

problem of load-balancing; the· even distribution of work among all PEs. In a 

multi-processor system, however, this is also constrained by the communication 

costs between PEs. Tasks that communicate more frequently should be closer 

to one another. How this problem is approached depends on whether static or 

dynamic allocation is used. Static allocation is done at compile-time based on 

the task graph. While static allocation does not incur any run-time costs, it has 

the drawback that it cannot adapt to changing conditions over the course of a 
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computation. Idle PEs cannot be utilized and hot-spots (overloaded PEs) cannot 

be alleviated. Dynamic allocation addresses this problem but pays the price of 

run-time costs. It is also usually difficult to implement, especially in a distributed 

environment, since changing the allocation can mean moving a process with active 

sub-processes between PEs. 

Machine architecture also affects how scheduling and allocation must be done. 

·On a shared-memory or dataflow machine, scheduling and allocation are generally 

' easy: any ready task can be assigned to any idle PE because the communication 

distances are all the same. Any kind of global scheduler for these architectures, 

howeve;l', is a potential bottleneck when the number of ready tasks becomes large. 

For a loosely-coupled system, a global scheduler is not practical since the commu­

nication costs would certainly be prohibitive. It is these same communication costs 

that allocation must deal with. 

Since optimal scheduling and allocation is NP-Complete [GJ79], most sched­

uling ~nd allocation techniques are heuristics based on the task graph. Many 

scheduling techniques use the critical path heuristic [PB87, GKS87]. A criti~al 

path is found through a graph (by some criteria) and priority is given to the tasks 

that lay on it. A similar thing is done by trace-scheduling compilers [FISHER81]. 

These identify a trace or path through the task graph and then reorganize the 

computation based on those traces. 

Specific graph properties can also be exploited. Lee and Aggarwal [LA87], 

for example, assume prior information about the pattern of communication in the 

problem graph. Problem edges are then partitioned into phases which do not 

overlap in time. Two edges from different phases can be mapped onto the same 

network edge since they do not demand bandwidth simultaneously. Hong, Payne 

and Ferguson [HPF86], however, use information about the structure of the graph. 

They assume that every graph vertex has either (1) one incoming edge and many 
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outgoing edges, or (2) many incoming edges and one outgoing edge. Tree-shaped 

partitions of the graph can then be mapped onto the faces of an n-cube. 

Even less information is available, however, when the problem is described by 

a task interaction graph. Given that the task interaction graph is a very regular , 

finite element graph, allocation can be done by 1-D and 2-D strip partitioning 

that reflects the network topology [SE87]. A similar method assumes that the 

work load at each vertex is known and recursively bisects the graph such that 

each resulting mesh represents the same amount of work even though they may 

not be the same size [BB87]. More importantly, the communication demands 

across .the mesh boundaries are not necessarily the same either. The graph can 

also be partitioned by using an ite.rative improvement technique. Bokhari [BoK81] 

assumes that the problem graph is smalle! than the network and represents them 

as adjacency matrices. The rows and columns of the matrices are then randomly 

permuted to find a good match of the edges. Simulated annealing [KGV83] can 

also be used. 

Dynamic allocation has been done in certain situations. l'he Zero Assignment 

Parallel Processor [BS81] grows processes in a tree structure and allows idle proces­

sors to take tasks from neighbors. The Rediflow system [KLT84] uses a "pressure" 

model to spread tasks over a network. In both cases, child processes are never 

allowed to be far away from the parent processor to keep communication costs 

from b.ecoming prohibitive. 

2.5. Communication and Synchronization 

Communication and synchronization are two :closely-related operations in 

any parallel system. How they ·are accomplished depends on whether the system 

is tightly-coupled with a shared-memory or loosely-coupled via message-passing 

[AS83]. 
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In a shared-memory system, communication is accomplished simply by shar­

ing variables. Once variables are shared, however, they become a resource whose 

access must be controlled since random reads and writes can corrupt the shared 

data (CHP71]. This is done by solving the critical 3ection problem using various 

synchronization primitives. One of the most primitive pairs of synchronization 

primitives are Dijkstra's P and V [DIJK65], also called 3ignal and wait, which 

operate on 3emaphore variables. A more structured approach is the use of con­

ditional critical region3 (HoARE71]. Monitor3 are a further improvement in that 

related critical regions can be handled in a unified manner (DIJK71, HOARE74]. All 

of the constraints on the execution of such related regions can be collected into one 

place by using path expre33ions (CH74]. 

In a loosely-coupled system, communication is accomplished by sending mes­

sages between PEs. This is implemented by 3end/receive primitives with a named 

destination or source (HoARE78]. This type ,of communication implies synchro­

nization since a message cannot be received before it is sent. This is affected by 

whether the send/receive primitives are blocking or non-blocking. Synchronous 

message-passing occurs when a send or receive blocks until its matching operation 

is executed. This usually the case when there is no buffer of data between the 

PEs. Buffering allows the send to be asynchronous; at least until the buffer is 

full. Receives are usually blocking since a PE may have nothing to do otherwise 

but a non-blocking receive can be useful for testing the presence of a message. 

Blocking send/receives can accomplish the same task as non-blocking ones by using 

Dijkstra's guarded command3 [DIJK75]. 

Aside from the mechanics of communication and synchronization, message­

passing systems must minimize the amount of data that must be communicated 

between parts of the system. That is to say, we have to determine which data 

must travel between PEs and memories and which can be kept in one place. An 
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important observation is that static data - data that does not change during a 

computation - should be initially allocated once, while dynamic data must, by its 

nature, be communicated after it is generated during a computation. 

Once data has been generated, there must be a decision how it is to be com­

municated among those PEs that need it. Depending on the system configuration, 

the data could be copied or shared. It is not difficult to make n copies of data that 

are sent to n different PEs. This, however, incurs the cost of copying the data, 

the cost of communication, and increases the system-wide. memory requirements. 

While sharing data avoids these costs, the shared access must be managed such 

that data.. does not become corrupted by competing writers. 

2.6. Network Architectures 

Multiprocessor architectures can be broadly categorized into tightly-coupled, 

shared-memory systems and loosely-coupled, message-passing systems. In the first, 

processors and memories are connected by an interconnection network. In the 

second, processing elements are connected in a certain network topology. In bo~h 

cases, the network properties can determine the overall machine performance. We 

now review the important parameters of these architectures that are unique to each 

and those that are common to both such as cost and scalability, i.e., the ease .with 

which a given network can be made larger. While these architectures are of most 

interest to us, we will also briefly review broadcast networks. 

Interconnection networks connect elements from different types of resources 

regardless. of their function. If there is only one type, then the interconnection 

network is said to be one-sided; only elements of the same type are connected. An 

example of this is the public telephone system. We will clearly have at least two 

types: processors and memories. The parameters that characterize their behavior 

include: 

1) Delay between the input and output, and 
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2) Blocking when two inputs compete for a path through the network. 

For example, the crossbar switch is used to build crossbar networks that provide 

non-blocking communication with constant delay. Since n 2 switches are required for 

n inputs and n outputs, crossbars are generally considered prohibitively expensive 

[BH83]. The shuffie-exchange concept uses cascaded stages of 2x2 crossbar switches 

to build Omega networks. These are blocking and have a delay· of 0( log2n) but 

require only Ilog2n exchange or switch units. Another general class of networks 

is called the banyan networks. They are defined as partially ordered graphs that 

provide a unique path between every pair of vertices partitioned into two disjoint 

subsets [CM82, PAT81]. 

If PEs are limited to "neighbor" connections instead of being able to com­

municate with any other PE through an interconnection network, we have what 

are called here message-passing networks. These have a different set of parameters 

that characterize their behavior that includes 

1) degree, the number of edges incident on a vertex, 

2) diameter, the maximum distance in edges between any two vertices, 

3) vertex and edge symmetry, whether the network has no boundaries and 
"looks" the same from any vertex or edge. 

An ideal network would have a low diameter, such that no two vertices are far 

apart, and a low degree, such that there is not an excessive number of communi­

cati~n channels. Unfortunately, the diameter and degree are, in general, inversely 

proportional. For example, a 3quare grid or torus of n vertices with end-round 

connections has a constant degree of 4 regardless of n and a diameter of fo. An 

n-cube of 2n vertices, on the other hand, has a degree and a diameter of n. A 

binary tree network of n vertices with a height of h, however, has degrees 2, 3, or 

1 depending on whether the vertex is the root, internal or a leaf, respectively, and 

has a diameter of 2h = 2 log2( n + 1) - 2. The symmetry of a graph affects how a 

problem should be mapped on to it. Both the grid and then-cube are symmetric 
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and many mappings on to these graphs would be isomorphic. The tree, however, 

is not symmetric. Any mapping must minimize the communication required across 

the root since this is a communication bottleneck. Scalability is concerned with 

building larger networks. The grid and tree can be scaled-up using the same vertex 

building block but scaling-up an n-cube requires increasing the number of connec­

tions at each vertex. Many different variations of these basic network topologies 

have appeared in the literature that attempt to combine the best traits of all of 

them [AL82, GS81, PV81, HG87, AK86, AHK87]. 

We can generalize message-passing networks to broadcast networks by allow­

ing PEs to transmit data to more than one other PE at a time. This is easily 

accomplished by the use of bus architectures. Broadcast networks potentially re­

duce the communication time between PEs by reducing the "path" length. A 

disadvantage is that each PE must constantly listen to the bus to detect data 

intended for it. Furthermore, each bus is a resource for which there will be con­

tention. The ability of one PE to talk to many is useful in systems designed around 

a central controller [TLMS84] or that have a master-slave relationship between the 

PEs [TK84]. The central controller idea is the basis of SIMD machines which in­

clude vector machines. While useful, this is not an inherent property of broadcast 

networks .. Warren, et al., use a simple bus with PEs of the same class to achieve a 

practical, realizable system [WADK84]. Borgwardt considers the use of the CM* 

bus network for his parallel Prolog implementation [BoRG84L 

2.7. Domains with Massive Parallelism 

Clearly we wish to apply parallelism to problems in· domains with ample 

opportunity for it. Here we look at some domains suitable for parallelism; two of 

which are suitable for BPEM. 

Numerical computation over an n-dimensional space of data contains obvious, 

regularly-structured parallelism. This is the domain of vector machines and array 
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processors that can efficiently process regularly-structured data. These problems 

include engineering structural analysis, weather predication and statistics. One 

interesting example is that of three-dimensional Fourier transforms needed for 

fusion research. Since BPEM is based on logic and symbolic reasoning, it is not 

suitable for this type of computation. 

Databases are also prime candidates for parallelism since they typically in­

volve massive amounts of data. They can also include rules for reasoning about 

the data. Most importantly, logic provides an excellent formalism for dealing with 

databases [GAMr78, WARR81]. Every query that is put to it defines a search space 

over the facts and the rules of deduction in which the query could have many 

solutions. Hence, definite databases with deductive laws in Horn clause form are a 

natural application for BPEM. 

In the quest to model more and more complex models of intelligence, the field 

of Artificial Intelligence poses larger and larger computing problems. While the 

nature of these problems is varied, Fahlman, et al. [FHS83], give a partial list of 

basic recurrent computational problems in AI that would benefit from parallelism: 

Set Intersection, Transitive Closure, Contexts/Partitions, and Pattern Recognition. 

Solutions to these problems depend on the underlying knowledge representation. 

One important knowledge representation in AI is the semantic network. Semantic 

networks can be defined such that they are a syntactic variant of the clausal 

form of logic [DK79] and can consists of large amounts of data and rules. Thus, 

semantic networks can be very similar to the definite deductive databases discussed 

previously and are also a natural application for BPEM. · 

3. Logic and Parallelism 

Having introduced logic and parallelism separately, we now wish to discuss 

their intersection. We will first introduce the sources of parallelism in logic and 

I 
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then survey some of the approaches that have been used to harness it in terms of 

language constructs and models of execution. 

3.1. Sources of Parallelism 

3.1.1. AND/OR-Parallelism 

As already mentioned, logic languages also have parallelism that is easily 

identified with their syntactic structure. This is the case for AND-parallelism and 

OR-parallelism which are best explained together. As discussed previously, the 

solution to any Horn clause logic program can be described as a tree called the 

search. space. The root is a conjunction of literals that corresponds to an initial 

query and has a child for each literal. Each child, however, corresponds to the 

disjunction of the facts and rules that it (the literal) may unify with. In turn, each 

rule body is a conjunction of literals and so on. This is, of course, the AND/OR 

tree description of Horn clause programs that has been widely used [Kow79, CK81, 

FNM82,_ CoN83, LP84, NAKA84, KM85, LG85]. AND-vertices and OR-vertices 

occupy alternate tree levels much like a normal form for propositional formulae:· 

As noted, a literal succeeds if any of its matching facts or rules succeed. A 

fact always succeeds (when unified) but a rule succeeds only if the entire body 

does. Each matching rule, howe~er, can be processed in parallel because each is 

an independent sub-problem. This is called O!l-parallelism: the parallel search for 

alternative solutions. The original literal is solvable if any of the rules are solvable. 

As we shall see in the literature, this is the easiest kind of parallelism to realize. 

Also as noted, a rule succeeds only if all literals in the body succeed. This 

is complicated by the possibility of shared variables appearing in more than one 

literal. This introduces a dependency or consistency requirement that the satisfying 

substitutions for two different literals must not specify contradictory substitutions 

for a variable that appears in both. Any parallelism that exists in the derivation 

I 
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of rule body solutions is called AND-paralleli3m: the parallel search for partial 

solutions. There are at least two methods of realizing AND-parallelism. 

The first method solves all literals in parallel as if they were truly independent 

[TLMS84]. Then a relational equi-join operation is done on the results to extract 

the consistent substitutions. A similar method involves keeping track of goal­

lists that are "AND-branching" where each goal-list has a possibly different set of 

substitutions [NAKA84]. The AND-branching goal-lists can be joined to form one 

new list if the substitutions for shared variables do not conflict. This technique 

involves wasted work (substitutions that are not used) and extra work (determining 

which s~bstitutions are usable). 

The second method defines a producer-con3umer relation between all literals 

that share a variable. One literal produces or generates a substitution for a 

variable and passes this-information to all other literals that need it [CG81, CoN83, 

BoRG84, IM84]. A similar technique is to assign a priority to each literal whereby 

the literal with the highest priority gets to specify the substitution for a shared 

variable prior to any other literal with a lower priority [NAKAG84]. In both cases,"a 

partial-order is defined that restricts parallelism but does not waste work making 

inconsistent substitutions. This could be called restricted AND-parallelism but one 

could also argue that this method does not restrict parallelism but rather identifies 

the parallelism that exists in a problem. Of course, work must be done to define 

this partial-order. 

3.1.2. Unification Parallelism 

This is a blanket term for sources of parallelism that some authors treat 

separately. Chu and Itano [ CI84] identify at least four parallel operations in this 

classification: 

1) Parallel searching for rules in the knowledge base. 

2) Parallel matching of more than one term in a predicate. 

I 
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3) Parallel instantiation of more than one variable. 

4) Parallel uninstantiation of all the related variables. 

Since Bearch-paralleli.sm, (un)inBtantiation-paralleliBm and another special case of 

unification-parallelism called Jtream-paralleliBm are relatively implementation de­

pendent, they will be discussed later. For now, we will concentrate on a narrower 

definition of unification-parallelism, i.e.' finding the most general unifier e between 

two literals· in parallel. 

Un'ifi9ation means finding a substitution that makes all terms in two literals 

identical. Since a literal can have many terms and unification is at the heart of a 

logic language, there is clear motivation to find some parallelism. As previously 

shown, variables can be shared between terms such that unification has a consis­

tency requirement much like AND-parallelism. Ito and Masuda deal with this in 

their unification data fl.ow graphs by having the "unify" operators feed results into 

''cons~stency check" operators (IM84]. The technique used by Yamaguchi, et aL 

[YTK85], however, partitions the set of terms such that no variables: are shared 

between partitions. Each partition is then conventionally unified. These two ap­

proaches to unification parallelism are quite similar to those for AND-parall~lism. 

Unfortunately, these efforts at unification-parallelism may have limited suc­

cess. Dwork,. et al. (DKM84], have shown that unification is log-space complete for 

P, the class of languages recognizable in deterministic polynomial time. In terms 

of.parallel complexity theory [CooK83], this is analogous to showing a problem to 

be NP-complete, i.e., no parallel algorithm may significantly improve on the best 

sequential algorithm. On a positive note, Dwork, et al., show that a useful special 

case of unification can benefit from parallelism. This special case is term matching 

where a term x matches term y if y is a direct substitution instance of x. 
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3.1.3. Search Parallelism 

It can be argued that searching a knowledge base for facts and rule heads that 

potentially match a query literal is part of unification. Most authors, however, treat 

search-parallelism separately [CK81, BoRG84, TK84, TLMS84]. The parallelism 

available here, of course, depends on the implementation: if the knowledge base is 

distributed over the PEs of a multi-processor system, then many could be searching 

for matches to a query literal. This requires informing the PEs of the search literal 

and organizing the results unless each PE could continue independently with the 

goal list. 

3.1.4. Stream Parallelism 

There are at least two senses in which the phrase stream-parallelism is used. 

The most often-cited definition is the one given by Conery and Kibler [CK81] and 

refers to the processing of structured (recursive functional) terms. If two literals, in 

a producer-consumer relationship, share a structured term, the consumer can begin 

processing the term before the producer has completely instantiated it. It can be 

said that stream-parallelism is the pipelining of structured data [BoRG84]. For 

example, the consumer can start processing the head of a list before the producer 

has completely instantiated the tail. The second sense of the phrase considers logic 

pr0grams to be collections of "stream transducers" [LP84] or assertion groups, 

each with its own unification processor [NAKAG84]. Here, "goal objects" or literals 

"stream" between transducers or processors and pick-up instantiations for terms 

that are not necessarily structured. This in effect establishes a partial-order on 

the instantiations much like that suggested for AND-parallelism. The difference is 

that while two conjuncted literals may be simultaneously active, they are active 

on different branches of the search space [ G REG86]. Hence, only the first definition 

identifies a different source of parallelism related to the operation of unification. 
I 
I 
I 
I 
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3.1.5. Instantiation Parallelism 

This refers to the process of substituting terms for variables and is clearly 

dependent on the representation of literals. One variable could have many oc-

currences in a string representation. In a pointer-linked structure, however, each 

variable could have just one pointer defining its current instantiation. How either 

of these representations is distributed over a multiprocessor affects the available 

parallelism. Chu and Hano [CI84] discuss instantiation-parallelism in conjunction 

with uninstantiation-parallelism during backtracking. 

3.2. Parallel Logic Languages 

3.2.1. Parallel ExtensiOns 

Given the inherent parallelism in logic languages, it should not be surprising 

that many explicit notations are intended to control rather than facilitate it. 

Wise describes a language Epilog [WisE82] that assumes uncontrolled AND/ 0 R­

parallelism in the search space. He then introduces the CAND and COR operators 

that specify sequential execution of literals and together can implement cut that 

depends on pruning branches in a left-to-right traversal of the search space. To 

limit the amount of useless computation, a type of mode declarations are defined. 

The first is a threshold which simply states how many of a literal's variables must 

be ?ound before its parallel execution can be initiated. In a more general scheme, 

each variable can be tagged with '!', '?' or nothing to signify whether it must be 

free, bound or either (respectively) before execution can be initiated. 

While these annotations help control parallelism, they don't really help with 

the kind of parallelism that is involved in systems programming, i.e., where paral­

lelism is actually part of the problem domain. One way to approach this kind of 
I 

parallelism is simply adding to a sequential logic language the same kind of commu­

nication and synchronization primitives that were added to imperative languages. 
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This is the case of Delta-Prolog [PMCA86]. Synchronous sending and receiving 

are denoted by '!' and '?', respectively, e.g., two literals L and L' are unified at 

event E, when one process executes L!E and another process executes L'? E. The 

first process to execute suspends until the second process synchronizes much like in 

Hoare's CSP. While each process is assumed to be sequential and free to backtrack, 

in the absence of di.'Jtributed backtracking, communication between them must be 

committed. Hence, communication primitives have event condition.'J, e.g., C and C' 

as in L!E : C and L'? E : C', which must be satisfied before the event can actually 

take place; much like a guard in CSP. 

3.2.2. Guarded Clause Languages 

Delta-Prolog, however, has the drawbacks that the natures of the communi­

cating processes are fixed and there is no facility for operating system functions like 

process creation. A class of logic languages based on stream-parallelism through 

shared variables is intended to fill this niche. These languages are based on the 

Relational Language of Clark and Gregory [CG81] that defines a clause as: 

where P and each Gi are atoms and each Si is a 3equential component that is a 

conjunction Ai /\ ... /\Am of atoms. Clauses are- selected for execution much like 

Dijkstra's guarded commands [DIJK75]. The guard 3equence3 G1 /\ ... /\Gk of all 

matching P are tested in parallel and the first to succeed is selected, eliminating 

all others. It is said that the commit operator ':I' improves on the sequential cut 

since it is symmetric: all alternative computations are excluded rather than just 

those 'below' the cut. Hence, search parallelism is allowed but not OR-parallelism. 

Once a guard is satisfied, the corresponding goal set S111 ... I/ Sp is executed where 

'11' is logically a conjunction but denotes parallelism and can be thought of as 

a fork between the sequential components which are then concurrent processes 



32 

communicating via streams through their shared variables. Synchronization is 

accomplished by restricting how unification of the shared variables is done. There 

are several methods of doing this. 

The Relational Language (CG81] and its successor PARLOG (CG86] both 

have static mode declarations for each predicate such that each variable is declared 

input or output by'?' or'" ',respectively. When a process (the stream consumer) 

tries to unify one of its input variables with another variable, it is suspended 

until another process (the stream producer) instantiates its corresponding output 

variable with a non-variable term. Rather than having static mode declarations, 

Concurrent Prolog (SHAP83] allows any occurrence of a variable to· be declared read­

only by'?'. Thus, a shared variable is declared read-only for the ·stream consumer 

but not for the stream producer. This is more flexible but increases the complexity 

of the unification algorithm which can now encounter the read-only declaration on 

any term. In Guard_ed Horn Clauses (GHC) (UEDA85], there are no declarations. 

If, during evaluation, a guard tries to bind a variable in the invoking call, the guard 

is suspended. 

While guarded-clause languages have received a great deal of interest, they 

are difficult to implement in their full generality. Parallel execution generates a tree 

of bindings which are difficult to maintain, especially: in a distributed environment 

and especially for those bindings involved in guards. Hence, versions of some of 

these languages have been developed which are either safe or fiat. A clause is safe 

if unification of a guard never instantiates a goal variable to a non-variable term. 

This makes the tree of bindings easy to maintain. A clause· is fiat. if the guard is 

restricted to system predicates that are easy to evaluate. This prevents the tree of 

bindings from being generated "in the first place. A language with either property 

is more feasible to implement .. Further comparison of these languages is given by 

Takeuchi an.cl Furukawa (TF86]. 
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3.3. Parallel Execution Models 

Aside from the explicit expression of parallelism in logic languages, a tremen­

dous amount of work has been reported on implementing systems that actually use 

the implicit parallelism. We now survey some of this work. 

3.3.1. Shared-Memory Parallel Binding Environments 

The fundamental problem for a shared-memory parallel execution model is 

how to maintain the multiple bindings for variables that are· shared between OR­

parallel and AND-parallel branches. A variety of methods have been proposed. 

Directory Tree8. Ciepielewski and Haridi (CH84, CIEP84] developed directory 

trees where a directory is a set of pointers to the stack frames that define a process' 

binding environment. When a new process is started, it copies its parent's directory 

and initializes a new frame for the called clause. A frame can be shared (pointed 

to from a directory) when it contains no free variables. Frames with free variables 

are copied on a demand basis. When a process wants to bind a free variable, it 

must look-up the frame containing the variable by following ancestor directories 

and then copy the frame. 

H a8h Window8. This technique developed by Borgwardt [BoR.G84] is similar 

to directory trees but the ancestor .environment is not entirely copied since, in 

general, a child only binds a few ancestor variables. When a variable is needed, 

its value is looked-up in the local frame. If it is not there, ancestor environments 

and hash windows are searched until it is found. If it is free, then the binding is 

recorded in the local hash window. 

Binding Array8. This is yet another similar technique :proposed by Warren 

[WAR.R.84]. When a sequential interpreter binds an ancestor variable, it makes an 

entry on the trail stack such that the binding can be undone on backtracking. This 

approach "turns the trail stack around". The binding is made on a forward list. 

I 
I 
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A set of forward lists comprises a process' binding array which is its non-sharable 

information. 

Variable Importation/Exportation. This approach by Lindstrom [LIND84] 

extends the current frame to include a slot for unbound variables in the parent 

frame. The unbound parent variable is imported by making an entry in an import 

vector that associates the current frame slot with the parent slot. When the clause 

is .finished, all imported variables must be exported to a new copy of the parent 

frame. 

3.3.2. Message-Passing Models 

Non-shared memory poses different problems. Since "remote memory ref­

erences" are prohibitively expensive, the problem becomes what should be com­

municated between PEs in a message. The kabu-wake method by Yasuhara and 

Nitadori gives each new process its own copy of the entire stack and has it back­

track to the branch it is to explore, unbinding any shared-variables- in the process. 

The cost of copying the stack is offset by the ease of variable look-up in a non­

shared environment. The closed environment approach by Conery [CoN87] closes 

the child environment relative to its parent which means that there are no pointers 

in a child frame that point outside the current environment, i.e., to another PEs 

memory. This is ensured by a closing algorithm that closes the child frame by 

possibly enlarging it for any free parent variables. Further comparison of:these and 

the shared-memory methods can be found in [CRAM85] and [CoN87]. 

A different message-passing approach is taken by Lindstrom and Panangaden 

[LP84]. They associate a 8tream transducer with each literal that are organized 

into an AND/ 0 R tree that follows the syntactic structure of the program. An 

0 R node is associated with the head of a clause and the clause body is composed of 

AND nodes chained together from left to right such that when-the OR node receives 

a goal, it is sent through the chain of AND nodes and returns with. a complete set 

I 
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of solutions. When an AND node receives a goal, it is sent to the OR node of every 

unifiable clause head which return all possible solutions. As sub-solutions progress 

through the chain of AND nodes, inconsistent ones are discarded. This approach 

only provides 0 R-parallelism and not AND-parallelism since the AND nodes are 

simply chained from left to right. The Sync Model by Li and Martin [LM86] 

also organizes computation in an AND /OR tree but achieves AND-parallelism by 

.allowing body literals to execute in parallel and using special Sync messages to 

form the proper Cartesian product of partial solutions. 

3.3.3. Dataflow Models 

Given the easily identified parallelism in logic languages, it is not surprising 

that the datafiow model of computation has been applied to it. U meyama and 

Tamura [UT83] report such a model th~t represents logic programs as datafiow 

graphs using five different operators: (1) unification, (2) copy, (3) merge, ( 4) entry 

and (5) return. A unification unit unifies literal data on two matching input 

mess~ges. A copy unit merely replicates a message onto many output edges while 

a merge unit serializes messages from many input edges onto one output edge. Of 

more interest are the entry and return units - they manage the entry and return 

from a clause as if it was a procedure. Entry and return units always occur as a 

pair and have a matching number of inputs and outputs that equals the number 

of terms in the clause head. The literals in the clause body (sub-procedures) are 

solved from left to right in keeping with the procedural reading. Thus, AND­

parallelism is not attempted. In fact, only OR-parallelism between procedures is 

done. To manage concurrent procedure activation (which could be due to recursion 

or OR-parallelism), each message is tagged with a context which is saved in a special 

message field when a new activation and context are entered. 

Halim and Watson [HW84, HALIM86] describe a very similar model using five 

operators and tagged messages in a procedural reading to provide OR-parallelism 

I 
I 
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but not AND-parallelism. The operators are (1) unify, (2) activate, (3) extract­

output, ( 4) call and (5) return. Unify is the same. Activate and extract-output are 

similar to copy and merge in that they replicate a message for distribution to all 

applicable clauses and then merge the results. In addition, activate must build the 

output message's goal literal and binding environment from its inputs. Call and 

return are similar to entry and return except the saved context is sent on a separate 

me_ssage from call to return instead of being stored in special field of the current 

query message. 

Ito and Masuda [IM84] describe a more ambitious model that includes AND­

parallelism and stream parallelism. It has a large set of operators that includes 

(1) unzfy, (2) substitute, (3) consistency check, ( 4) create stream and (5) append 

stream. Each unify operator unifies one pair of arguments from two literals and 

a consistency check operator examines the results from all arguments which in 

turn controls substitute operators. AND-parallelism must be explicitly indicated 

by annotation. After discussing several cases of such AND-parallelism, Ito and 

Masuda ~ay that some (unspecified) consistency check operator would be neede.d 

here also. 

3.3.4. Broadcast Models 

Broadcast models of execution have also been investigated. Taylor, et al. 

[TLMS84] use one, supervisory control proces.-:·or which contains all clause bodies 

and many PEs over which all clause heads and facts are partitioned. Execution 

proceeds by the control processor broadcasting commands to all PEs. The current 

goal list is expanded by an entire level at a time by initiating unification in the 

PEs. Since different PEs may produce inconsistent bindings, a join operation is 

done. Hence, AND/OR and search parallelism are accomplished in a SIMD style. 

Warren, et al. (WADK84), also have proposed a broadcast model where the 

program is partitioned over the PEs. All predicates are classified as universal or 
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di3tributed. Each PE 'has a complete definition of all universal predicates. These 

would include 'low-level' system predicates such as member or append. The clauses 

for a distributed predicate are distributed over all PEs such that each clause is 

defined in only one PE. These would include 'high-level' user predicates. Queries 

are organized into zero or more universal predicates followed by zero or more chunb 

which are processed from left to right. Each chunk is a distributed predicate 

followed by zero or more universal predicates. Clearly, each chunk can be processed 

by one PE. Computation proceeds by a PE broadcasting chunks over the network 

which are picked-up by PEs that have the requisite predicates. 

3.3.5. Language-Directed 

Some work has actually chosen Prolog as the machine language and exhibit 

fine-grained unification parallelism. Chu and Itano (CI84] detail a machine where 

searching, unification and instantiation occur in parallel. If backtracking occurs, 

parallel uninstantiation takes place. On another tack, Tick and Warren (TW84] 

convert Prolog programs into a sequence of instructions from five different classes: 

control, get, put, unify and index from the Warren Abstract Machine [WARR83]. 

These instructions are handled by parallel execution unifa, thus accomplishing 

unification parallelism [TICK84]. 

4. Semantic Networks 

We now discuss the third and last subject area that defines the boundaries 

of BPEM. 

4.1. A Knowledge Representation 

The Semantic Network is a method of repre3enting knowledge, of encoding 

what is known about a given subject, that is widely used in Artificial Intelligence 

I 
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isa 

Jon's Bike 

Figure 4 

A Simple Vehicular Semantic Network 

[Frn79; BF81, COM83, CM87]. The basis of semantic networks is that of an entity­

relationship hierarchy, that is, a graphical representation consisting of vertices and 

edges. Broadly stated, vertices or nodes represent concepts and the edges or links 

represent the semantic relationships between them. 

One of the most common uses of semantic networks is that of a taxonomic 

hierarchy. Concepts, possibly denoting objects, can be arranged in a hierarchy 

from most specific to most general and connected by isa edges (simply meaning 

"is a"). as shown in Figure 4. Among other things, this network states that a Ford 

is a car and a car is a vehicle. Similarly, a Harley:--Davidson is a motorcycle and a 

motorcycle is also a vehicle. This hierarchy can also be extended to individuals as 

indicated by the fact that Jon's bike is a Honda. 

Another important aspect of semantic networks is that concepts. can have 

properties or attributes. For example, vehicles "can move" and cars have "four 

wheels". In addition, properties can be inherited, that is to say, a property can 

be considered as also belonging to all descendants in the hierarchy. Hence, we 
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can infer that Chevys have four wheels and can move. An obvious advantage of 

property inheritance is the efficiency of storage; a property that may have a broad 

applicability need only be stored once at the most general level. 

What has been presented so far is only the network part of the entire semantic 

network formalism. The network part alone is said to comprise the semantic 

memory. In order to make use of a network, a set of interpretive procedures must 

be defined that operate on the network. One clear function for these procedures 

is to make inferences. As mentioned above, the possession of a property can be 

inferred by following the isa hierarchy. Inferences can also be drawn by matching 

network fragments. Assume we wish to find out what kind of vehicles have two 

wheels. This could be represented as in Figure 5. By matching "vehicles" and 

"two wheel", we can conclude that motorcycle is the answer. 

Another operation that can be done on semantic networks 1s associative 

search. One original intent of semantic networks was, in fact, an associative model 

of human memory. In this context, related ideas could be found by following 

edges like ripples spreading out in a pond. This is called spreading activation 

and the number of edges in a path between two concepts is the semantic distance. 

Some experimental evidence supports the idea that humans do take longer to verify 

statements involving a greater semantic distance, e.g., "a poodle is a dog" versus "a 

poodle is an animal", but this is not strictly true [ JLCH84]. In practice, spreading 

activation is constrained by techniques such as maximum distance, maximum 

I 
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connectivity (fan-out) from a concept, and minimum strength of an association 

(weight of a link) (CoHKJ87]. 

Semantic networks can be further organized by the use of partitions [HEN75, 

FIHE77, HEN79]. The nodes and edges of a network can be partitioned into spaces. 

Networks can then represent propositional formulas where each argument of any 

logical connective is a space. Spaces can also be used to· define the scope of 

quantified variables and can be nested. The semantics of a semantic network can 

be more clearly defined by using procedural attachment (LM79]. This approach 

distributes the interpretive procedures over the entire network by associating with 

each node the procedures that are meaningful for it to perform. 

Semantic networks certainly have their share of controversy concerning what 

their precise meaning is and what they are capable of. The question of meaning 

arises from what nodes and links are intended to represent. In Quillian's originating 

work on semantic memory [QuIL68], nodes represented natural language "word 

concepts". Groups of word concepts were linked together to form a definition a~d 

was considered to lie in a plane. Concepts within a definition could have their 

own definition via a link to another plane. These links defined relationships like 

subclass, subject/object, modification, conjunction and disjunction. 

Over the years, however, many different things were represented with nodes 

and links resulting in many different interpretations. This is typified by the different 

shades of meaning given to the isa link as summarized by Brachman [BRACH83]. 

After noting that nodes have been used to represent concepts, sets, predicates, 

prototypes, descriptions, general terms, and individuals, among other things, 

Brachman makes a fundamental dichotomy between generic and ind~vidual inter­

pretation of nodes. This leads to generic/generic relations and generic/individual 

relations. The isa link can be further characterized by the effects of node-meaning, 

e.g., whether the links are sentence-forming or concept-forming. In summary, 
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Brachman suggests that i.rn ought to be broken into sub-component parts which 

are primitive3 in the targeted representation problem. 

This problem of determining what is to be represented was also examined 

by Woods (Wooos75]. One distinction he makes is between exten3ional and in­

ten3ional knowledge which is the difference between denotation and meaning. For 

example, the extension of the concept published could simply be a predicate that 

is true or false for a given author. The intension of published is what it means 

to be published, i.e., writing, submission, review, acceptance, printing, distribu­

tion, tenure. This also illustrates that links in a network can be used not only 

as relations between concepts but also as predicates and that the two uses should 

be distinguished. Another distinction exists between as3ertional and 3tructural 

links or properties. We can assert that George is x centimeters tall and assign 

any value to x without changing what it means to be tall. On the other hand, if 

every buy node has agent, object and time links associated with it, then these links 

structurally define what it means to buy something. 

Brachman has also investigated "what knowledge is" with regard to semant.ic 

networks at a more global level (BRACH79]. Given the varied usages and meanings of 

the nodes and links of semantic networks, he identifies five levels at which networks 

can be understood: 

1) Implementation, 

2) Logical, 

3) Epistemological, 

4) Conceptual, and 

5) Linguistic. 

The implementation level is the simplest since nodes and links are just records and 

pointers with which to build a data structure. The logical level encodes logical 

connectives and predicates can be considered "foundational" due to the formal 

mathematical rigor which can be applied. The conceptual level is most commonly 

I 
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associated with semantic networks since it deals with concepts and relations that 

can be limited to a well-defined set of "primitives". On top is the linguistic level 

where nodes are language-specific word senses and topics like analogy, metaphor 

and anaphoric references must be resolved. In the middle is Brachman's previously 

"missing" 'link; the epistemological level. This is based on formal knowledge­

structuring primitives which can be applied to any concept domain. This is in fact 

Brachman's main argument: the central problem in any representation scheme is 

finding the concepts and relations that are primitive at the desired level. 

There is, of course, much more that could be said about the capabilities 

and inabilities of semantic networks. Johnson-Laird, et al. [JLCH84], lodge 

many complaints against semantic networks primarilY. at the linguistic level but 

what is interesting is their main thesis: all these problems stem from semantic 

networks being "only connections", devoid of any a priori relation to the "real­

world" which could give it true meaning. This is reminiscent of the formalist 

school of mathematics that holds that math is purely a formal symbol system with 

syntactic rules for manipulating marks on a page with no necessary relation 'to 

anything else whatsoever. This is in some sense true and emphasizes the difficulty 

in capturing informal ideas in a formal system which is at the heart of much of 

AI. 

4.2. Applications 

Despite any difficult subtleties, semantic networks have been applied in a 

variety of ways. We will review only a few. 

Agarwal describes the use of semantic networks to solve problems in robotics 

[ AGAR83]. The state of the robot's world and a problem are represented as a 

network. Problems are solved by applying transformations that correspond to 

robot actions. Agarwal notes that this technique could be used to controlling 

multiple robots in parallel provided that interfering actions are prevented. 



43 

Ince reports a network for source code version control for major software de­

velopment projects [INCE84]. A large piece of software is represented as a hierarchy 

of modules and submodules including different versions and subversions. The de­

velopment history can also be represented along with the programmers responsible 

for maintaining each module. The language SOLO was developed to maintain the 

network and extract information from it. 

Cohen and Kjeldsen describe the GRANT system that finds granting agencies 

for academic research proposals [CoHKJ87]. The network here represents the 

interrelations between thousands of research topics in the health sciences. Each 

topic is connected to all granting agencies interested in that topic along with the 

type of interest, e.g., supply, educate, study, etc. Connections between agencies 

and proposals are found by spreading activation constrained by distance, fan-out 

and link strength. Performance data is given. 

5. Combining All Three: Logic, Parallelism and Semantic Networks 

We now discuss the intersection of all three subject areas. It has, already 

been mentioned in the previous sectiOn that logic can be represented in semantic 

networks. This section establishes that connection more explicitly which carries 

with it the opportunities for parallelism. We can then state how BPEM is similar 

and dissimilar to research done separately in semantic networks and in parallel 

logic programming. 

5.1. Representing Logic in Semantic Networks 

First-order predicate logic can be represented in semantic networks given that 

the standard logical connectives, predicates and quantifiers can be represented. We 

now examine how these elements of logic can be expressed. Ultimately, however, 

we will be more interested in representing the clausal form of logic. 

I 



fido 

5.1.1. Predicates 
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Representing Predicates 
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dog 

Predicates can be represented as edges between the terms in several ways 

as illustrated by the literal isa{fido,dog) as shown in Figure 6 [SHAP79). Since 

this is a binary predicate, it can be expressed simply as an edge labeled with the 

predicate name connecting the two terms. The edge direction identifies the term 

order. (Conversely, any edge can be considered a binary predicate.) We can also 

represent the predicate name with a node connected to the arguments with edges 

labeled by the "role" the argument plays. Finally, we can represent the occurrence 

of the literal by introducing a new, unique node "e" connected to the predicate 

name and the arguments. This last case illustrates how any n-ary predicate can 

be represented as n + 1 binary predicates [DK79). It is quite common to represent 

predicates in this manner [FIHE77, DK79, SHAP79, VK85]. This also illustrates the 

fact that any n-ary predicate can have a graphical representation. This is central 

to BPEM. 
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5.1.2. Functional Terms and Quantifiers 

Functional terms are not always explicitly dealt with in semantic networks. 

This is in part because many networks are not built at the logical level but also 

because the way quantification is handled may not require the Skolemization of 

existential quantifiers. In some network formalisms, functional terms are just 

recorded as a term (node) regardless of their structure [DK79, VK85]. Because 

of their syntactic similarity with predicates, however, they can be represented in 

much the same way as predicates with edges connecting the term with each of its 

sub-terms [SGC79]. 

~s noted before, quantification can be represented by network partitioning 

[HEN75, FIHE77, HEN79]. A partition is used to delimit the scope of an existentially 

quantified variable where each such variable node has an edge to the set in which the 

quantified element must exist. A universally quantified variable can be represented 

as an implication Vx E X --+ P( x ). (See Section 5.1.3 for the representation 

of conn~ctives.) Here, the antecedent essentially types the universally quantified 

variable and the consequent must be true for all values that satisfy the typing. 

5.1.3. Connectives and Clauses 

The usual logical connectives, including negation and implication, can also 

be represented by partitions. Each partition contains the terms in a conjunction 

or disjunction or the term to be negated or the antecedent and consequent of an 

implication. This association between the terms can also be made by a special 

node that identifies the connective, e.g., an or-node, and that has edges to each 

term involved [SGC79]. 

It is more common, however, to express formulae in clausal form. In this 

case, all antecedents are implicitly or-ed and all consequents are implicitly and-ed. 

Hence, only a distinction between antecedent and consequent needs to be made. 

This is easily done by typing or coloring the edges [DK79, SHAP79, VK85]. 

I 
I 
I 
I 
I 



46 

5.2. Inferencing 

Given that semantic networks can be viewed as a syntactic variant of logic, 

it must be possible to perform logical operations such as deduction. Since the 

network formalisms are not all the same variant, how inferencing "looks" is differ­

ent. Common among them all, however, is the matching between conditions and 

conclusions in order to draw an inference. 

5.2.1. Matching 

Inferencing using partitions is done by extending the notion of spaces to that 

of a KVISTA, representing a knowledge vista, and a QVISTA, representing a query 

vista (FIHE77}. The QVISTA may contain variables and the desired answers, the 

bindings, must be found by matching the two vistas and bindfu.gs the variables 

to elements in the KVISTA. Actually finding matches is a complicated matter 

embodied in a system called SNIFFER. SNIFFER builds a tree of alternative 

solutions, assigns them a .Priority level and uses "strategy selectors" which invoke 

"expert" binding tasks that find matches in specialized classes of relationships ... 

Shapiro [SHAP79] describes the network representations for four deduction 

rules that are more organized yet nonetheless non-standard. These are: 

1) V-entailment: {A1, ... , An}V-+ {C1, ... , Cm} is true if each Ai, 1::;; i::;; n, 
entails each Cj, 1 ~ j ~ m. 

4 

2) /\-entailment: {Ai, ... , An}!\-+ {C1, ... , Cm} is true if each Cj, 1 ~ j ~ n, 
is entailed by the conjunction of the Ai, 1 ~ i ::::; n. 

3) AND-OR: -:«{{Pi, ... , Pn} is true if at least i and at most j of the P are 
true. 

4) THRESH: 8i{Pi, ... , Pn} is true if fewer than i of the P are true or they 
all are. 

While these deduction rules may be useful in representing deductive situations 

occurring in natural language, any process that must match these structures to 

draw an inference must reflect their increased complexity. Rather than having 
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a straight-forward method of inferring the desired goal, some strategy heuristics 

must be used. 

The use of a clausal form of logic adds tremendous structure to the inferencing 

process and generally follows the constraints for theorem-proving in logic described 

earlier in this chapter. Given that the conditions and conclusions for clauses are 

identified, inferences can be drawn by successive steps of resolution. Deliyanni 

and Kowalski (DK79] use two different edge types for conditions and conclusions 

and ·allow constants to be shared between clauses since clauses are (pictorially) 

partitioned. A query graph is added and then unification and resolution are used 

to deduce the empty graph. A clausal representation is also used by Vagin and 

Kiknadze (VK85]. These network formalisms are, in fact, the closest syntactic 

variants of logic. 

5.2.2. Efficiency 

Clausal form still has the same efficiency concerns as discussed earlier but 

there are several techniques that can be used. The first is simply the use of Horn 

clauses which simplifies the search and computation rules. This also allows a 

procedural reading of the clauses. 

Another _approach is to use a many-sorted logic. It is not uncommon that a 

variable can only take values from a specific set. For example, 

X == brando,. footbalLplayer( X ) 

can never succeed since X should only be bound to football players which Marlon 

Brando is not. Hence, unification can be made more efficient by essentially typing 

the variables which identifies which sort they can take values from. This is used in 

(McSM79] and (VK85]. Of course, the unification algorithm must be modified to 

use the sort information. In (McSM79], the sort information is stored in an acyclic 

hierarchy which facilitates finding the intersection of sorts during unification. 

I 
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Efficiency is also improved by the inherent property of indexing that semantic 

networks have. By their graphical nature, terms that occur in more than one 

clause can be represented by the same node. Thus, all other relations (edges) that 

term has are immediately available without searching. For example, an ancestor 

hierarchy may have thousands of mother facts recorded but mother(J'oe,X) will 

have only one mother edge that is relevant. This can greatly decrease the amount 

of time required to search for all possible matches. Thi3 type of indexing occur3 

naturally in BPEM. 

There is another way of improving efficiency that is unique to BPEM. Other 

models of parallel logic programming encompass logic programming in general. 

This requires high overhead in maintaining parallel binding environments, as dis­

cussed in Section 3.3, especially in the case of building arbitrary functional terms 

which can require remote data lookups to accomplish unification. BPEM can ac­

complish the processing necessary for semantic networks without this overhead by 

restricting how functional terms can be used. This means that BPEM will not be a 

general programming system but it will be a completely asynchronous, distributed 

inference engine. 

5.3. Parallelism 

Many of the semantic network formalisms that have been described here 

lacked parallel processing capability. BPEM, however, provides a massively-parallel 

context for semantic networks and knowledge bases. It.does this using logic wherein 

parallelism is easily identified. The use of logic also provides a clearly understood 

programming paradigm that is lacking in many semantic network models. The 

next chapter draws on the network formalism to develop BPEM as a distributed, 

massively-parallel execution model for a subset of logic. 

I 



CHAPTER 3 

The Binary Predicate Execution Model 

1. Basic Concepts 

This chapter introduces the Binary Predicate Execution Model (BPEM). It 

is based on predicate logic and resolution as discussed in the last chapter with 

the distinction that most predicates must be binary or binarized. Specifically, all 

assertions and all query literals that would match an assertion must. be binary. The 

motivation for this is that binary predicates have a simple graphical interpretation: 

the terms are the endpoints of a directed edge that is labeled with the predicate 

name. If this is done for assertions and queries, t.hen resolution becomes a process 

of graph matching. If we consider the assertion terms to be active processing 

elements (PEs) and the assertion edges to be communication channels, then this 

graph matching can be accomplished by exchanging messages about the portion of 

the query that remains to be matched. 

· This graphical interpretation is the basis for BPEM's distributed, massively­

parallel nature. This does, however, impose certain restrictions for efficient exe­

cution. Hence, this chapter will concomitantly introduce Restricted Binary Logic 

(RBL), the subset of first-order predicate logic that is used by BPEM. We begin by 

reviewing the binarization of predicates, their graphical interpretation and resolu­

tion as a process of graph matching. Subsequently, clause invocation, functional 

terms, attributes and the control of parallelism will be discussed. We will conclude 

with a comparison of other work. Much of this material also appears in [BL87]. 

49 



50 

1.1. Binarization of Predicates 

As ,noted in the last chapter, any n-ary literals can be represented as n + 1 

binary literals where the predicate name p and each argument are associated via 

a new constant symbol e that denotes a specific literal and new predicates that 

define the "roles" that each argument played. As special cases, if n = 2, the 

transformation is identity and if n = 1, only one binary literal need be introduced. 

The important thing is that the semantics of the n-ary literal are syntactically 

preserved in the binary literals. 

Also noted was that n + 1 binary literals can be reduced to only n. Since we 

are dealing with first-order logic, the predicate name is a constant. In this case, 

the new constant symbol that denotes the literal can be made a tuple of a new 

constant symbol and the predicate name, (e,p), denoting the unique occurrence of 

this literal. For example, p( x1, x2, . .. , Xn) can be written as: 

f irst_arg( ( e, p), x1 ). 
second_arg( ( e, p), x2 ). 

n-th_arg((e,p), Xn)· 

This reduction in the number of literals is paid for by the increased cost of unifica­

tion with a tuple. An advantage, however, is that the predicate name is recorded 

with each literal. As we shall see later in this chapter, clause heads will not be 

binarized in order to handle conflicting data dependencies between clauses. 

1.2. The Assertion Graph and Query Templates 

Since we are now only dealing with binary literals, we can represent logic 

programs as graphs. To begin, any literal e( v1, v2) may be transformed into a 

directed edge of the form: 

The arrowhead records the order in which the terms of the literal were given. This 

information must be preserved when the literal represents an asymmetric relation. 

I 
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Figure 7 

An Assertion Graph and Query Template 

As will be discussed later, the arrowheads do not prescribe the direction in which 

messages may flow through the graph. Note: Since an edge is just another way of 

representing the same information contained in a literal, we will use the expressions 

'literal' and 'edge' as synonyms. Similarly, the expressions 'term' and 'vertex' will 

refer to the same concept. 

With this graphical interpretation, the set of all assertions containing only 

ground terms, representing the set of explicit facts, form the Assertion Graph 

(AG). This graph is also referred to as the extensional database [GAMI78]. Note 

that multiple occurrences of any ground term are mapped onto the same vertex of 

the assertion graph. The AG is a task interaction graph which implies that each 

vertex is an active element capable of receiving, processing, and emitting messages 

traveling asynchronously along the graph edges. 

In a way similar to the AG, any query body and all clause bodies may be 

viewed as a graph. These will be referred to as query templates ( QTs ). We note 

that this set of clauses is also referred to as the intensional database [GAMI78]. 

While all AG vertices must be constants, QT vertices are allowed to be constants 

or variables. 

Example: Figure 7a shows the assertion graph for the facts 

p(a, b). 

· p(a, c). 

p(c, b). 

p( c, d). 

p( d, a). 

p(d, e). 

p( e, c). 

I 
I 
I 

I 
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Figure 8 

A Query Template and One Possible Spanning Tree 

Figure 7b shows the QT for 

~ p(c, X), p(X, Y), p(Y, c). 

1.3. Graph Matching as Resolution 

With this graphical interpretation of facts and clauses, we can show how 

resolution can be interpreted as graph matching. One step of resolution corresponds 

to matching a QT edge to an AG edge. This requires that both pairs of endpoints 

match, i.e., are unifiable, and that the edge label and direction match. A pair of 

endpoints unify if (1) they are the same constant, or (2) a variable (from the QT) 

is bound to the AG constant. Finding a solution corresponds to finding a match for 

each edge and vertex in the QT. Finding all solutions means finding all matches. 

For example, the AG and QT in Figure 7 have two solutions given that c 

must be matched between the two graphs: { d/ X, a/Y} and { d/ X, e/Y}. All 

other bindings for X and Y are incorrect since the edge directions do not match. 

Since a QT represents a conjunction of literals, opportunities for AND­

parallelism may exist. As discussed in the previous chapter, consistent bindings for 

any variables shared between AND-parallel literals can be obtained by perform­

ing an equi-join operation after the bindings have been produced or by defining 

I 
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producer-consumer relationships to prevent inconsistent bindings from being pro­

duced. The extra work of an equi-join can be avoided by using depth-first spanning 

trees to define the order of binding, i.e., the producer-consumer relationships, 

among the variables and also to identify independent sub-trees in the QT that 

can be done AND-parallel. 

Figure 8a shows a QT and Figure 8b shows one possible spanning tree for it. 

Any depth-first spanning tree partitions a graph into tree-edges (solid lines) and 

back-edges (dashed arcs). Starting at the root k, matching can proceed along all 

descendent tree-edges in parallel until the leaves are reached. Of course, a spanning 

tree may be rooted at any vertex and any vertex may be the root of many different 

spanning trees. In general, the top-level query is rooted at some constant since 

this constant must match in the AG. Each clause body spanning tree is rooted 

depending on which variable is bound first in the calling literal. Note that each 

root may have many spanning trees with differing execution costs. This is discussed 

in a later section. Also note that the spanning tree is defined as if the graph. _is 

undirected. This is because the edge direction does not affect the order of binding. 

It makes no difference that binding is conceptually done from head to tail or tail 

to head just so long as the edge directions match. 

In a spanning tree, any vertex at depth i is the generator for all descendants 

at depth i + 1. For any vertex v with a back-edge to some ancestor w, it is easy 

to show that w is always bound before v since depth( v) > depth( w ). Hence, the 

matching of back-edges can be done from the deeper vertex, guaranteeing that both 

vertices are bound at the time of matching, thus avoiding inconsistent bindings. 

Since there are no cross-edges, there are no dependencies between branches. Thus, 

all descendent tree-edges from a vertex represent independent sub-queries that can 

be processed in parallel. 

I 
I 
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This tree structure can be easily represented using a nested syntax. Hence, 

the query from Figure 7b can be written as 

~ p( c, X)[p(X, Y)[p(Y, c )]]. 

The query from Figure 8 can be written as 

~ p{Y,k)[ 
p(Y,X)[ 

p(k,X), 
p(X,b)[ 

p(b, Y) 
. j 
], 

p(Y,Z)[ 
p(W,Z)[ 

p(k, W) 
J 

j 
]. 

assuming that all predicates are labeled p. Note again that the order of the terms 

in each literal corresponds to the direction of the edge but this does not affect t~e 

order of matching. 

Given that the AG is considered a task interaction graph and that a QT is 

represented as a depth-first spanning tree with back-edges, matches between them 

may be found in the following manner. 

1) Select a QT vertex Vq as the root. It is best if Vq is a constant that occurs in 
the AG since all solutions would have to match here. If the QT only contains 
variables, then any Vq could potentially match any AG vertex. In this case, 
however, only those AG vertices with the same incident edges as Vq must be 
attempted. 

2) Place a description of the QT on a query message and "inject" it into the AG 
at the matching AG vertex Va. 
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3) Unify Vq with Va. 

A) If this fails, then the (sub )query fails; send a failure reply me:Mage to the 
sender of this message. 

B) If this succeeds, then 

a) If there is more to match, then send new query messages along all 
AG edges incident on Va that match descendent tree-edges and 
ascendant back-edges from vq. Repeat Step 3 with the vertices on 
the other ends of these edges as the new Va and Vq. 

b) If there is no more to match (at a leaf), then send a success reply 
message to the sender of this message with any binding that was 
made. . 

4) If at least one success message is received for each descendent tree-edge and 
ascendant back-edge, then send a new success message to the sender of the 
original message. Otherwise, send a failure message. 

5) When the initial Va has received replies for all initial query messages, then all 
solutions have been found. 

1.4. An Example 

The AG and QT of Figure 7 would produce the following sequence of events: 

1) Inject QT at c. 

2) c finds matches for the first edge and sends query messages to b and d. 

3a) b binds X but fails since it can't match the next QT edge; it sends a failure 
message back to c. 

3b) d binds X, matches the second edge and sends query messages to a and e. 

4a) c receives the failure message from b. 

4b) a binds Y, matches the last edge and sends query messages to b and c. 

4c) e binds Y, matches the last edge and sends a query message to c. 

5a) b doesn't match c; sends a failure message back to a. 

5b) c matches itself and sends success messages back to both a and e. 

6a) a receives a failure from b and a success from c; it sends a success message 
with { a/Y} back to d. 

6b) e receives a success from c and sends { e/Y} back to d. 

7) d receives success messages from a and e; it sends { d/X, a/Y} and { d/X, e/Y} 
back to c. 

8) c receives final solutions. 

I 

I 
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This is a simplified, conceptual description of how the model accomplishes graph 

matching by message-passing. Actual implementation techniques are significantly 

different and are covered in Chapter 5. 

2. Clause Invocation 

In conventional logic implementations, no distinction is made between uni­

fication with a clause whose body is empty or not. The only difference is that 

after successful unification, the length of the goal list either decreases or it doesn't. 

BPEM, however, handles the two cases very differently. As described in the previ­

ous section, a step of resolution involving unification with an assertion that occurs 

in the AG corresponds to messages sent between PEs. Clause heads, however, do 

not occur in the AG. Hence, clause head unification must be done within one PE. 

Because of this, and because of potential data dependencies when invoking bina­

rized n-ary clauses, every predicate name must be associated with either assertions 

or cla'use heads, not both, thus making it easy to determine when clause invocation 

is required. We will first introduce clause invocation in the simplest case when the 

clause head is already binary. We then give the general case for clause invocation 

that handles the invocation of binarized n-ary clauses. 

2.1. Invoking Binary Clause Heads 

As discussed earlier, a clause body can be viewed as a graph and, hence, 

transformed into a spanning tree in the same manner as an initial query. The edge 

representing a binary clause head can be replaced by the tree representing its body 

where the end-points (variables) of the head are unified with the vertices (constants 

or variables) in the query tree. As an example, Figure 9a shows the query 

f- p(a, B), p(a, C), p(B, D), q(B, E), p(E, F), p(E, G). 
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Figure 9 

A Clause Invocation 

Figure 9b shows the clause body for 

q(P,T) ~ r(P,Q), r(Q,R), r(Q,S), r(Q,T). 

Assume that p matches only assertions but q matches the head for the clause shown 

in Figure 9b. The query tree that results from the invocation is shown in Figure 9c. 

The edge q in Figure 9a has been replaced by the tree in Figure 9b where B and 

P have been unified and E and T have been unified. 

Note that any back-edges in the query template would just be "carried-along" 

after the invocation. If there had been a back-edge from F to a, then this same 

back-edge would exist after invocation even though the tree path between F and 

a may have changed. Also, if more than one clause head for predicate q could 

be unified, then an equal number of tree substitutions would occur, increasing 
I 
I 
I 
I 
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the OR-parallelism. It is important to note that, in general, the variable names 

(identifiers) in the resultant query must be modified to avoid identifier collision. If 

D appeared in the clause body for predicate q in Figure 9b, then identifier collision 

would occur after invocation. 

This scheme handles recursion given that identifier-collision is avoided. This 

also means that non-terminating computations are possible. A query template 

could in theory become infinite due to a recursively-defined predicate. Matching 

such an infinite tree to the AG constitutes a non-terminating computation. Since 

any AG is finite in size, the only way such a match could occur is if the AG is 

cyclic. If the AG was not cyclic then only part of the query tree could be matched 

and only those solutions found so far (if any) would be returned. Consider the 

transitive brother relation: 

brother( sam) bob ). brother( bob) joe ). brother( joe) sam ). 

If we define 

find_brother( x) y) f- brother( x) y ). 

find_brother( x) z ) f- brother( x) y )) find_brother( y) z ). 

and then ask t- find_brother( sam) X ), an infinite number of answers will be 

generated even though only three will be unique. If one brother fact is removed then 

the AG becomes acyclic. Now, even though the query tree· is potentially infinite, 

only a finite sub-tree can be matched and only a finite number of answers produced. 

Unfortunately, being able to detect cyclic matching beforehand is tantamount to 

solving the halting problem. Practical methods for dealing with this dynamically 

are discussed in [WoB186]. 

2.2. Invoking Binarized n-ary Clause Heads 

In the previous subsections, depth-first spanning trees were used to handle 

the data dependencies within the goal list. If any cyclic dependenciea appear in the 

goal list (ignoring edge directions), one edge is guaranteed to become a back-edge. 
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With this property, matching can proceed down the tree-edges without any ne.~d 

of synchronization. 

Now consider what happens when a binarized n-ary literal in a query template 

is unified with a clause head as shown in Figure 10. The query template appears 

on the left and the clause body template for p(X, Y, Z) appears center. The query 

template has the binding order a 1-+ B 1-+ C while the clause body has the order 

X 1-+ Z 1-+ Y. Vertex ep and its incident edges (all shown in bold) are to be replaced 

by the clause graph. The resultant graph with the appropriate unifications appears 

on the right. Note that both paths between B and C consist of tree-edges that 

expect the binding of Band C to occur in the opposite and conflicting order.· The 

clause body will bind C and then B. After completing the the clause, the query 

template expects to use its binding for B to generate bindings for C which has 

already been bound. Hence, clause invocation superimposes the data dependencies 

I 
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of the invoked 'child' clause on those of the invoking 'parent' template which may 

involve conflicting orders of binding. 

One possible solution would be to redefine the spanning tree for the query tem­

plate on the fly to agree with the binding order required by the child. Unfortunately, 

this is not practical. The PE handling the invocation would have to notify every 

other PE that could possibly handle B and C of the redefinition which is effective 

oniy for this clause. If other clauses matched p( a, B, C), a redefinition could be 

necessary for each one. Thus, the redefined spanning tree would have to be carried 

on every subsequent message from a drastically increasing the communication and 

message processing time. 

The solution used here rests on the observation that invokin.g literals are 

never matched to the AG. In Figure 10, vertex ep and its incident edges are never 

matched. Since this is the case, it does not make sense to define a spanning tree, 

which defines the propagation of messages through the AG during computation, 
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using the sub-graph of the literal. Thus, every literal that can match a clause will 

be represented by one vertex in a clause body or query template. 

Consider the example given in Figure 11. The query at the top of the figure 

. has a spanning tree as shown immediately below it. This tree is rooted at x with 

solid tree-edges and dashed back-edges. Given that the literals p 'and r match 

assertions, they appear in the graph template in their binarized form and are used 

as part of the spanning tree. Given that the literal q matches a clause head, it must 

appear as one "macro" vertex in the spanning tree. The arguments of q appear on 

the boundary of this "macro" vertex as shown at the bottom of the figure. In the 

most general case, there is one incoming tree-edge. There can, however, be multiple 

outgoing tree-edges and multiple incoming and outgoing back-edges. Since binding 

proceeds from the root to the leaves of the spanning tree, binding information 

first arrives at A which then initiates the clause jnvocation. Any invoked q clause 

template must provide some path between A and the other arguments such that 

back-edges from B to some ancestor of A may be checked and that matching of 

the spanning tree may continue from C which may eventually check back-edges 

against D. 

In a sense, the macro vertex acts as an interface between the parent template 

and the invoked child template. The parent's spanning tree is defined as. if all 

arguments of a clause head are bound at once. In execution, however, the binding 

order is defined by the child's spanning tree. This requires two properties that have 

not been heretofore explicitly stated and also introduces some synchronization 

concerns. We first present the properties and then address the synchronization 

problem. 

1.) Every predicate name must be associated with either assertions or clause 
heads; not both. Clauses like 

p(a, b). 
p(X, Y) f- q(X, Z), p(Z, Y). 

I 
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are not allowed since a literal cannot be represented as both a graph with 
edges and a single vertex at the same time which would be necessary 
if p occurred as both a fad and a clause head. This is remedied by 
replacing every non-fact occurrence by a new predicate p1 and adding 
new clauses to the fact occurrences: 

p(a, b). 
p1(a, b) ~ 

p1(X, Y) ~ 
p(a, b). 
q(X, Z), p'(Z, Y). 

2.) Every clause graph must be connected .. Clauses like 

p(W, X, Y, Z) ~ q(W, X), r(Y, Z). 

are not allowed since, in general, the PE handling the invocation (as 
A in Figure 11) will eventually need a path to the P Es handling every 
other variable occurring in the head. This is remedied by creating a new 
clause for each connected component. Thus, a clause 

p(x, y) ~ q1(x), ... , qn(x), r1 (y), ... , rm(y). 

with two disjoint, connected components defined over the variables x 
and y, is replaced by 

PI(x) ~ q1(x), ... , qn(x). 
pz(Y) ~ r1(y), ... , rm(y). 

and every reference to the head 

... ,p(x, Y), ... 

is replaced with 

Of course, changing one clause may require changing others and two clauses for p 

may not have the same components defined over the same variables, thus requiring 

more new clauses. This is. a finite process, however, since any program has a finite 

number of clauses and variables. 

To completely understand how the macro vertex functions, we consider each 

case of how ·information flows between A, B, C, and D and how to accomplish 

synchronization when necessary. The process of invocation is initiated at A which 

may receive binding information along the tree-edge. 
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e Every out-going back-edge, as from B, checks some ancestor of A in the parent 
template. Hence, all necessary binding information entered with the message 
to A. This information must be passed along some path in the child clause 
to B such the back-edge can be checked. 

• The flow of data between C and D depends on the fact that every back-edge 
to D is descendent from one specific C. (If this was not the case, then the 
back-edge to D must come from some ancestor of A, in which case it can't 
be a back-edge, or from some aunt or uncle of A, in which case it would be a 
cross-edge, which can't exist in a depth-first spanning tree. The flow of data 
from A to D and its specific C depends on their binding order in the child 
template: 

o If the child clause has the binding order A i--+ D i--+ C then there is no 
problem. All PEs handling Ds pass their binding information to their 
respective Cs such that some descendent in the parent template can 
check for the back-edge. 

o If the child binding order is A i--+ C i--+ D then each PE binding a C initiates 
the sub-query in the child clause that will bind D but suspends the out­
going tree-edge in the parent graph. If the sub-query to D succeeds 
and returns bindings, then the sub-query along the parent tree-edge is 
initiated with D's binding information such that the back-edge to D can 
be checked by a descendent in the parent template. 

o If the binding order is A i--+ X i--+ C and X i--+ D where X is the m<;>st 
recent ancestor of both C and D in the child clause, then D returns 
its binding to X and C returns its network address. X then forms the 
cross-product of each binding and address and sends each cross-product 
element to the appropriate C which then initiates the parent sub-query 
with the appropriate binding of D. 

In the best case, when there are no conflicting binding orders, i.e., data 

dependencies, this scheme does not change the behavior of the execution model. 

When conflicts do occur, some synchronization must be done between the PEs 

binding a D and its, C to resolve the conflict. In the worst case, when the most 

recent ancestor X is identical with A, invoking a clause becomes like a procedure 

call. The child clause must execute completely and all head variables must be 

bound before any processing in the parent graph continues. This limits parallelism, 

however, only at this particular interface. All parallelism initiated before arriving 

at q continues and all child clauses can execute in parallel. 

I 
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Figure 12 

General Query Tree 
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In the preceding query template examples, there was usually only one con­

venient root for the template spanning tree. In general, however, there could be 

many possible roots (and injection points) from which the same solutions could 

be found. The difference between spanning trees is the amount of computation 

required to arrive at the solution bindings. This subsection develops the idea of 

spanning tree cost to compare- otherwise equivalent spanning trees. 

To satisfy any literal (edge) in the graph requires finding all possible matches 

or bindings for its end-points. The computational resources required for this will 

be called the cos·t; Not surprisingly, the cost of different literals will vary since 

they will have a different number of possible solutions. Furthermore, the cost of 

one particular literal can also vary according to the direction in which matching 

is being done; from tail to head or head to tail. Thus, the aggregate cost between 

entire. spanning trees can vary greatly even though they cover the same connected 

graph and are used to compute the same solutions. 

Cost is clearly proportional to the number of messages that get sent. In the 

model as it has been presented so far, there is one reply message for each activation 

message. So the cost of a tree, or of an entire computation, can be characterized 

by the number of activation messages. We can define the cost of a spanning tree 
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by the following recursive equation (with reference to Figure 12) that starts with 

the tree-edges incident on the root: 

where, 

Wtree = L (Wei + Kvi · WtJ 
1::5i::5n 

- the cost of the entire (sub )tree, 
- the cost of this particular edge, regardless of 

whether it is an assertion edge or a clause head, 
the number of bindings for Vi that require the 
sub-tree to be satisfied, and 
the cost of the sub-tree. 

(1) 

Intuitively, the cost of the entire tree. is calculated recursively by adding the costs 

of satisfying each immediate tree-edge, ei, and the corresponding sub-tree, ti. 

Satisfying ei produces zero or more bindi~gs for Vi which requires an equal number 

of solutions for the sub-tree ti. If ei matches an assertion edge, then Wei is the 

number of activation messages. In this case, vo is bound and each activation 

message -sent by vo results in a binding for Vi, so Kvi = Wei. If ei is a clause head, 

then Wej is calculated by applying equation (1) to the clause tree. The value of 

Kvi, however, depends on the location of the second argument within the tree; it is 

the product of the number of solutions on the path from vo to Vi. Hence, for every 

vertex w on the path vo ~ Vi excluding vo, the definition for K Vi can be written 

as: 
if ei is an assertion edge; 

if ei is a clause edge. 

In both cases, if ei is the final edge in a tree branch, then ti is empty with a cost I 
of zero. 

Hence, it is possible to compare the cost of different spanning trees and choose 
1 

I 
the most efficient for execution given that the cost of each assertion tree-edge is 

known. This cost is determined by the occurrences of the assertion edge label in 

the assertion graph. In general, however, an assertion edge in a query will not 

I 
I 
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A B c 

Figure 13 

Domain Element Fan-in/Fan-out 

necessarily cause an activation message to be sent on every matching edge. An 

unsuc.cessful query may not send any messages. A query may be successful having 

only sent one message for each edge in the query. Partial solutions that eventually 

fail may generate many messages before failure is established and so on. 

To approach this problem, a technique for estimating· the average number of 

activation messages has been developed that is based on a weighted average of edges 

incid~nt· on vertices in the assertion graph. Consider Figure 13. It shows three s~ts 

A, B, and C that are the domains and ranges of two relations (sets of assertions) 

Ri and R2 where B is shared. If we want to determine how many messages (on 

the average) flow out of domain B for predicate R2, then what we need to know 

is how many out-going messages (on the average) are produced by each in-coming 

message for some given predicate Ri with domain A. This requires knowing the 

in-degree and out-degree of every vertex in any domain B that is shared between 

any two predicates Ri and R2 such that the average number of messages for R2 

can be c~lculated using the following weighted average: 

Here, R2 is taken to be an assertion edge ei in the original statement of the cost 

function, equation (1 ), if only one argument is instantiated. If both arguments are 
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instantiated, then Wei = rz/(b · c), which is the probability that is met by every 

message from A that an edge exists between any two specific elements in B and C. 

While this cost estimate is fairly accurate, it does require computing the 

weighted average for every pair of edges in a query. While these averages could be 

pre-computed for an entire AG, they still represent a significant cost themselves. 

In order to be useful, the computation of the cost function should cost significantly 

less than the work avoided by a more efficient spanning tree. In situations where 

large computations on large databases are contemplated, the investment may well 

be worth it. In smaller tasks, however, any tree may do .since the choice of tree 

affects only the efficiency of an implementation and not the correctness of the 

model. Simpler but less accurate estimates are investigated in [LEE85]. 

4. Functional Terms and Variables in the Assertion Graph 

As introduced in the first section of this chapter, the AG consists of facts 

with only ground terms, i.e., they do not contain variables. This does not exclude 

functional terms as we will discuss here. We will, however, present the main 

restriction of RBL that only functional terms that occur in the AG can also occur 

in query templates. 

4.1. Functional Terms 

Functional terms can be partially incorporated into BPEM by associating 

an AG vertex with each functional term that occurs in the program assertions. 

This is consistent with our previous thinking since a constant can be considered 

a functional term of zero arity. Since functional terms can have any arity and 

be recursive, we introduce function edges to connect a functional term with its 

arguments. These edges are labeled with the function's name and directed towards 

the argument. 

I 

I 
I 
I 



p( a, J(b,g(a)) ). 
p( a, b ). 
p( b, g(a) ). 

Figure 14 

Simple Assertion Graph with Functional Terms 
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This is illustrated in Figure 14. Three facts appear on the left which for 

simplicity have the same name p. (In this section, we follow the convention of 

representing variables with upper-case identifiers and representing constants with 

lower-case identifiers.) Four different functional terms appear in these three facts: 

a, b, g( a), and f ( b, g( a)), having arities 0, 0, 1, and 2, respectively. Even though 

these three facts are already binary, for completeness, we show them as binarized 

with the new constant symbols produced by binarization, ep1, ep2 and ep3, with 

edges that identify their arguments. There are three function edges; two for f and 

one for g. One may note at this point how a predicate argument can be distribut~d 

over many vertices. 

4.2. Functional Terms in the Query 

A similar graphical transformation is applied to any queries and clause bodies. 

Consider Figure 15. A simple query is shown in Figure 15a. Its graphical inter­

pretation is shown in Figure 15b. To establish an order for matching the query 

to the AG and to identify independent sub-queries, a depth-first spanning tree is 

found, again ignoring the edge directions since they do not affect the direction of 

matching. Figure 15c shows one such tree. The spanning tree partitions the graph 

edges into tree-edges (solid) and back-edges (dashed) and, of course, is rooted, here 

at a. 
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Figure 15 

Simple Query with Functional Terms 

4.3. Matching without Clause Invocation 

The matching process between. a QT and the AG proceeds basically the same 

as before. The QT is injected at an AG vertex matching the QT root and matching 

continues along the spanning tree edges which could now also be function edges. 

In Figures 14 and 15c, for example, the initial query is injected at a and the first ep 

tree-edge is matched with ep1 and ep2 .. The match at b fails but the PE for f ( •, •) 

matches and sends a message down the f edge to match Y with g( • ). In turn, X 

is rnatched to b and the PE for b checks that it has a back-edge to f ( •, • ). Finally, 

success and the bindings for X and Y are reported back to a. 

Several related observations can be made at this point. First, a functional : I 
term that contains occurrences of n other functional terms can be distributed 

over n + 1 PEs. For example, the term f(b,g(a)) is actually represented by all ·1 

vertices in Figure 14 and the structure is recorded by the function edges. This 

means that the unification process is also necessarily distributed over several P Es 

and may not be completed until other work is done. For example, the unification 

I 
I 
I 
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for the term f(X, Y) is not complete until the following literal p(X, Y) has been 

resolved. Hence, each message corresponds to one "call" in the recursive unification 

algorithm. Only when functional terms are absent, does each message correspond 

to one step of resolution. 

4.4. Clause Head Unification with Functional Terms 

An important part of logic programming is the use of unification with func­

tional terms to build new functional terms that don't explicitly appear anywhere 

in the program, e.g., lists and trees. This is typically implemented by representing 

the static structure of a program as a skeleton and building a stack of environment 

frames where each frame, one per unification, defines the value of each variable 

occurring in the clause for that invocation. Each variable value is represented by a 

molecule in the frame which is a skeleton/ environment pointer pair. In the course 

of computation, a new functional term is represented by a forest of pointers going 

up and down in the stack [BRUY82]. 

BPEM's distributed nature, however, makes the environment stack moqel 

of sequential implementations inappropriate. We have already noted that BPEM . 

must consider unification with facts as a different operation from unification with 

clause heads. Unifying a functional term in a QT with a fact is easy since it 

means simply matching· each function and predicate edge in the term with the AG 

according to the QTs spanning tree. Unifying a literal and a clause head where 

functional terms appear is more difficult for at least three reasons: 

1) Due to the first property previously discussed to solve the data dependen­

cies, each calling literal must be handled by one PE. This means that the 

unification with the clause head must be done by that PE and cannot have 

the distributed nature of unifying with the AG. 

2) Each PE handles a set of vertices in the AG which corresponds to a set 

of functional terms which occur in the assertions. If arbitrary functional 
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Figure 16 

Head Unification with Functions from the AG 
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terms could occur in a clause head or a calling literal then completely new 

functional terms could be built that do not occur anywhere in the AG. 

For further distribu.ted processing to occur, other PEs needing this new 

functional term would have to remotely request its value from the creating 

PE. 

3) While the search rule of BPEM is essentially breadth-first, the spannir:-g 

tree concept produces a very unorthodox computation rule. A spanning 

tree defines the order in which variables are bound yet there is no guarantee 

that all variables from one literal are bound before processing another literal. 

One literal may be partially solved and a second literal worked on· before 

returning to the first. If this was allowed for a clause head, work could 

begin on par.ts of the clause body before the head was completely unified, 

i.e., before it was known that the unification succeeds and that the clause 

body should be executed at all. 

Hence, to maintain the efficiency of BPEM'S' distributed nature, we will 

require that the only those functional terms that occur in the AG may occur 

in query templates or clause bodies. Figure 16 gives an example. where "p" is a 

macro vertex with two arguments on its boundary that have been unified with the 

I 
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head of a clause. For X to unify with g( • ), the PE handling this unification must 

have g( •)with a g-edge to some other AG vertex that will bind with A. The body 

of the invoked clause must then define some binding path from A. to B. When B in 

the clause body is bound, it must be an f( •) vertex with an f-edge to some other 

vertex that will bind Y. Note that this is really just matching functional terms 

that already exist in the AG. The functional terms occurring in the calling literal 

or· the clause head can be thought of as just an extension of the goal list or clause 

body that must also be matched. 

4.5. Variables in the Assertion Graph 

Variables in the AG are problematic, not because they don't have an inter­

pretation in BPEM but rather because their usefulness in semantic networks and 

knowledge bases is unclear. Consider the.following assertion and query: 

v(a,X). 

~ v(a, Y), p(Y, Z). 

Assume this query was injected at a and has propagated to X. At this point, X apd 

Y are bound. To continue the query, however, Y should be b.ound to the first term 

of every p fact. This suggests some- type of broadcast mode of communication since 

any other vertex in the AG could bind with Y. This will not be pursued further here 

since this is considered an atypical operation for semantic networks and knowledge 

bases and since BPEM is targeted for asynchronous, message-passing systems over 

which large amounts of base data are distributed. 

5. Non-Logical: Extensions 

The model as described· so far is firmly based in logic and is sufficient for 

a great many applications. To make BPEM more useful in a practical sense, 

however, we now introduce several non-logical extensions. These include variable 

attributes for semantic networks and syntactic constructs to allow the user to 
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Figure 17 

An Attribute 
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control parallelism by sequentializing AND/ 0 R-branches and to improve efficiency 

by avoiding unnecessary computation with cut. 

5.1. Variable Attributes 

Attributes are a well-known concept in semantic networks. They are simply 

some property with some value that is owned by an object. For example, 

color( elephant,gray) 

means that elephants have the color gray. In RBL, this can be interpreted as simply 

a logical edge between elephant and gray as shown in Figure 17. The query 

color( elephant,X) 

will succeed by binding the variable X to gray. Over the course of a computation, 

the value of an attribute will not necessarily remain constant. To change the value 

of an attribute, it is necessary to (conceptually) retract the original clause, e.g., 

color(elephant,gray), and assert a new clause, e.g., color(elephant,pink). To do this 

we simply introduce the non-logical predicates retract and assert: 

retract( color, gray) 

asse.rt( color,pink) 

Since changing the value of an attribute is a common operation, we introduce a 

special notation for it: If the second: term of an attribute literal appears in quotes, 

it is interpreted as assigning that value to th,e attribute. For example, the literal 

I 
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color( elephant, ''pink") 

assigns the value pink to the color of elephants regardless of any previous value. 

The predicates assert and retract fill the same niche as in conventional logic 

languages. We note that assert is a no-op if the attribute already exists with the 

same value and that retract fails if the attribute doesn't exist with the proper value. 

They are non-logical in that their purpose is to have the side-effect of changing the 

program (the AG) at run-time. In BPEM, as we shall see, attributes are kept 

locally with its owner. Thus, AG vertices with attributes have a form of memory 

that can. be read and written. While this allows semantic networks to record data 

and also the state of the query, it also allows race conditions to occur if improperly 

programmed and multiple (sub )queries assign the same attribute. 

5.2. Evaluable Predicates 

The value of a variable in the local environment of an AG vertex can be tested 

with six relational operators written as evaluable predicates. This means that the 

binding of any variable passed to a vertex in a query or reply message or the value 

of a local attribute can be compared with another or tested against a constant. 

These are written as prefix operators: 

== ==(X,pink) 

l==(X,pink) 

<(X,3) 

<=(X,3) 

>(X,3) 

>=(X,3) 

These predicates will succeed or fail depending on the current bindings of the 

variables involved. While these predicates are consistent with the graphical inter­

pretation of BPEM, they are most efficiently evaluated in a non-logical, procedural 

fashion. For example, if an attribute X took an integer value, then testing for 

inequality with a constant in a logical fashion would require a prohibitive number 

of edges or require a prohibitive number of inferences to establish the inequality. 
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5.3. User Control of Parallelism 

The other non-logical extensions involve the control of the computation, i.e., 

the control of parallelism. In BPEM, clauses are written using a nested sub-query 

syntax where literals at the same level indicate AND-parallelism. As usual, OR­

parallelism occurs between clauses or assertions having the same predicate. The 

user is allowed basic control of parallelism with the following constructs: 

•Parallel AND: ... p(x)lq(y) .. . 

• Sequential AND: ... p(x), q(y) .. . 

•Parallel OR: ... p(x) .. . 

• Sequential OR: ... p(l, ... , n)(x) ... 

.. . p()(x) .. . 

•Cut: p(x) f- q(x), !, r(x). 

A query or clause body is written as a sequence of literals. Every literal 

that is followed by a vertical bar "I" executes in parallel with the literals that 

follow. Every literal that is followed by a comma "," must complete its executiOn 

before the next literal begins. This simple scheme is not as powerful as other 

well-known parallel constructs such as fork-join or cobegin-coend in that some 

combinations of sequential-parallel execution are not possible. In the vast majority 

of situations, however, it should be completP.lY adequate. The simplicity of this 

syntax is extremely attractive for readability since a recursive syntax (nesting) is 

already being used for sub-queries. 

To control OR-parallelism we introduce an annotation that simply specifies 

the sequential order in which literals are to be done. In general for any literal 

p(a, b), all matching literals are done in parallel. For p(l, ... , n)(a, b), however, 

literals 1, ... , n based on order of occurrence in the program, are done sequentially. 

Note that literals could be done in any order and not necessarily from 1 to n. As 

I 
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a simplification, just p() (a, b) is used to indicate sequential execution from 1 to n 

as opposed to complete 0 R-parallel execution. 

This allows us to introduce the last non-logical extension: cut. If cut "!" 

occurs in any clause, then all subsequent OR-branches from the previous literal 

back to the clause head are discarded. This essentially prunes those OR-branches 

from the search space thus making it smaller. Of course, the PE that actually 

does the cutting is the one that invoked the clause in which the cut occurred. 

This means that when a PE encounters a cut, it must return a "cut encountered" 

status to the (not necessarily proper) ancestor such that the ancestor can prune 

any remaining 0 R-branches. 



·l. Introduction 

CHAPTER 4 

Example Applications 

This chapter gives two larger examples to illustrate BPEMs usefulness. The 

first is a geographical database. This will illustrate the basic aspects of building 

a database, i.e., the AG, and queries and clauses. More importantly, this will 

illustrate the fact that an extensional database is a set of relations between domain 

sets that could quite easily grow very large and, hence, would benefit from a 

massively-parallel system. The second is a real-time monitoring system which 

illustrates the use of BPEM for semantic networks. This example is longer and more 

involved since it uses many of the non-logical extensions to capture the behavior 

of a real-time system. Each example will be followed by a discussion. 

2. A Geographical Database 

2.1. The Assertion Graph 

A relatively small database of world geography was built to test cost estimates 

for BPEM queries. This database has the domains and predicates listed in Table 1 

with the indicated sizes. It is graphically depicted in Figure 18 where each line 

represents a set of tuples. While this database is certainly not geographically 

exhaustive it is large enough to support queries generating thousands of query 

messages. 

The predicate names are self-explanatory. Assertions such as 

borders(france,mediterranean) and isacityin(naples,italy) appear in the 
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size Domain Sets (7 sets with 151 elements) 

6 Continents 
4 Oceans 

22 Seas 
42 Countries 
56 Cities 
16 Rivers 
5 Set_Names 

size Predicates (13 predicates with 860 tuples) 
260 borders ( Countries U Oceans U Seas, Countries U Oceans U Seas ) 
-104- isa( Continents U Oceans U Seas U Rivers U Cities, Set_Names ) 

42 isacountryin ( Countries, Continents ) 
56 isaci tyin ( Cities, Countries ) 
42 iscapi talof ( Cities, Countries ) 
40 flowsby ( Rivers, Countries U Cities ) 
16 flowsinto ( Rivers, Oceans U Seas U Rivers ) 

104 ais ( SeLNames, Continents U Oceans U Seas U Rivers U Cities ) 
42 hascountry( Continents, Countries ) 
56 hasci ty( Countries, Cities ) 
42 hascapi tal ( Countries, Cities ) 
40 hasri ver ( Countries U Cities, Rivers ) 
16 drains ( Oceans U Seas U Rivers, Rivers ) 

Table 1 

World Geography Database 

database. There is a special domain set, called 'Set_Names', that is used with the 

isa and ais predicates. This includes facts such as isa(atlantic, ocean) and 

its inverse ais (ocean, atlantic). This allows us to query an entire domain set. 

The reader may note that borders is the only symmetric predicate. The ·other 

predicates are paired for traversing a relation in either direction. 

2.2. Queries and Clauses 

Three possible queries that could be put to this database have the English 

equivalents: 

(1) "Which cities are in countries on an ocean?" 

(2) "Which triplets of countries border on each other?" 
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Figure 18 

World Geography Database 

(3) "Which cities are on a river that flows into an ocean after flowing through 
exactly one other country downstream?" 

These could be written in logic as: 

?- ais(city,City), isacityin(City,Country), 
borders(Country,Dcean), isa(Ocean,ocean). 

?- ais(country,Country1), borders(Country1,Country2), 
borders(Country2,Country3), borders(Country3,Country1), 
isa(Country2,country), isa(Country3,country). 

?- ais(city,City), hasriver(City,Riv), flowsinto(Riv,Dcn), 
isa(Dcn,ocean), borders(Dcn,Coun1), hasriver(Coun1,Riv), 
isacountryin(Coun1,Cont), borders(Coun1,Coun2), 
hascity(Coun2,City). 

respectively, and have the graphical RBL representation as shown in Figure 19. 

Three possible clauses that could be defined for this database have the English 

equivalents: 

(1) "Does this city have ocean access via a river?" 

(2) "Is this city a capital on a river?" 

I 



(1) 

I 

(2) 
' ' ' ' \ 

I \ 
I \ 

I \ 
isa isa ' 

I 
I 
I 

I 

Figure 19 

Three Queries in RB L 

(3) 

(3) "Which cities are on the same river in bordering countries?" 

These could be written in logic as: 

ocean_access(City,Ocean) :- hasriver(City,River), 
flowsinto(River,Ocean), isa(Ocean,ocean). 

capital_on_river(City,River) :­
iscapitalof(City,Country), hasriver(City,River). 

rivercities(City1,City2) :- hasriver(City1,River), 
flowsby(River,City2), isacityin(City2,Country2), 
borders(Country2,Country1), hascity(Country1,City1). 
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respectively, and have the graphical RBL representations as shown in Figure 20. 

2.3. Discussion 

The construction and use of this database is relatively straight-forward. It 

could be made extremely large simply by making the geographical data more 

complete and extensive. Queries, such as (1 ), (2) and (3),· can be answered by 
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Figure 20 

Three Clauses in RBL 
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Country1 

bor ers 

injecting them into the AG vertex matching their root vertices and matching the 

spanning tree edges (solid arrows) until the leaves are reached and all back-edges 

(dashed arrows) have been checked. Clauses, such as (1), (2) and (3), can be used 

to construct larger queries. 

The efficiency of this database, however, could be improved. Since some 

relations, such as borders, connect several domain sets, it is sometimes necessary 

to check whether a variable is bound to the desired type of constants. In query (1), 

for example, it is necessary to check whether Ocean is actually bound to an ocean -

name rather than to a country or sea name. A similar situation occurs for Country1 

and Country2 in query (2). This is an example of where a many-sorted logic would 

improve :efficiency by restricting the types of constants that can bind to a given 

variables. This can also be avoided in a simpler way by using specific relations to 

relate just two domains. One relation can be used for oceans bordering oceans and 

another for oceans bordering countries, etc. The broader interpretation, however, 

can be retained by a new predicate, say borders_all, that invokes a set of clauses 

which name the specific relations in their bodies. 

I 
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Display 

Data 

The second example involves a remote manipulator sy$tem that is currently 

being developed by the McDonnell Douglas Astronautics Corporation for the NASA 

sp,ace station. This system will have an on-board monitoring system known as 

the Remote Manipulator System Knowledge-Based Maintenance Expert System, 

RMS_KNOMES for short. RMS_KNOMES is a non-classified research project and 

thus we were able to obtain the specifications as well as some actual code for 

the knowledge base from McDonnell Douglas [MDAC87]. This is an excellent 

example application for BPEM that demonstrates virtually all aspects of the model; 

especially the use of the non-logical extensions to handle continuous streams of 

real-time input data. 
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3.1. Overview 

The overall idea of RMS_KNOMES is shown in Figure 21[FRANK87]. The 

real-time data stream into the Monitor consists of message tuples with the form 

( mes.rnge_id, time, content). The field message_id identifies the message type (not 

the individual message). The field time is simply a time-stamp and content is 

simply some data meaningful to the given type. The function of the Monitor is to 

detect anomalies is this data stream. When this happens, it passes the anomaly to 

the Master Diagnostic which identifies the sub-systems that could be responsible. 

The anomaly is then passed to the Domain-Specific Diagnostic for detailed analysis. 

This whole process is chronicled by the Display Manager. The two modules of 

interest to us are the Monitor and the M a3ter Diagnostic. 

3.1.1. The Monitor - Contexts, Scripts and Expectations 

To detect anomalies, the Monitor uses the idea of contexts and scripts to 

form expectation3 of what it should see in the data stream. There is a hierarchy 

of contexts that describe general modes of operation for the manipulator. Each 

context can have any number of scripts associated with it that describe the expected 

sequence of events for various operations in that context. 

Contexts are enabled or disabled by specific enable/ disable messages on the 

input stream. (Note that more than one can be enabled simultaneously.) When 

a message occurs that signals the initial event in a script, that script is enabled if 

its context is enabled. (Note that a script may require more than one context to 

be enabled.) 

In addition to the script-based anomalies, built-in test equipment can generate 

simple anomaly messages on the data stream that explicit denote anomalies; the 

Monitor recognizes these anomalies by simply recognizing their message types. 

Hence, the anomaly types that can be detected are summarized as follows: 

I 
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1) Script-based event timed-out. The expected event did not occur within the 

proper time window. 

2) Unexpected script-based events. An event occurred without the properly 

enabled scripts. 

3) Simple anomalies. 

Note that the first anomaly is categorized as an expected change while the second 

and third are both categorized as an unexpected change. 

In conclusion, the message types that drive the Monitor are summarized as 

follows: 

1) Enable/ disable contexts, 

2) Event messages, and 

3) Simple anomaly messages. 

3.1.2. The Master Diagnostic - Command Chain Models 

When the Monitor detects an anomaly, it sends that information to the 

Master Diagnostic (MD). The job of the MD is to identify the possible sourc.es 

of the anomaly. This is done by using a hierarchy of command chain models. A 

command chain model is a linear chain that shows the sequence of commands that 

should occur within a given context; the same contexts as for scripts. These models 

can be very general or very specific and can be placed into a hierarchy by relating 

the vertices of the more general and more specific models. Hence, a sequence of 

-commands would follow the horizontal edges while models of varying generality 

would be related by the vertical edges. Note that a relation and not a mapping 

exists between models since the vertices may not fall into a vertical one-to-one 

correspondence. Also, a command chain model is not required to be complete; it 

may have missing horizontal edges. 

When the MD receives an anomaly message, it conceptually enables the model 

corresponding to the context in which the anomaly occurred and all of the more 
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generic contexts. If the anomaly is an expected change, then the precursor event 

and the expected event have a predefined mapping to left and right edges in each 

model, respectively. All vertices between each pair of left-right edges then become 

swJpect sources of the anomaly. If the anomaly is an unexpected change, then the 

unexpected event is mapped into each model and all "upstream" vertices to the 

left become suspect. Since each model may be incomplete, following the vertical 

links between models from suspect vertices, in addition to following the horizontal 

links, may find other suspect vertices. 

Each suspect vertex corresponds to a specific hardware entity that becomes 

suspect. (Note that if the anomaly is simple, an entity is directly made suspect.) 

This preliminary diagnosis is then given to a Domain-Specific Diagnostic for a more 

detailed examination. 

3.2. A Semantic Network for RMS_KNOMES 

Contexts, scripts and models all have a graphical representation which makes 

BPEM a potential vehicle. A general description of a semantic network for 

I 



enb_cxt_msg( X ) :-
sub_cxt( Y, X )[ enb_att( Y, yes ) ] , 
enb_att( X, "yes" ) . 

disab_cxt_msg( X ) :-
enb_att ( X, 11 no 11 

) , 

scr_cxt( X, S ) [ exp_att( S, 11 0.0 11 
) ] 

sub_cxt( X, Y )[ disab_cxt_msg( Y) ]. 

Figure 23 

Context Clauses Initiated at Cxt Vertices 
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specific context. Event messages signal the occurrence of a specific script event. 

Simple anomaly messages directly identify suspect vertices in the chain models 

and don"'t require further processing by the Monitor. In the following discussion, 

we present the clauses for processing context and event messages and the clauses 

for handling anomalies that have been detected by script vertices. The message 

type and content determine which context or script vertex is its destination. This 

gives rise to two possibilities for injecting queries: (1) a dedicated PE listens to the 

data stream and knows how to directly route each message to its final destination, 

or (2) data stream messages are broadcast to all PEs which listen for their ow~i. 

Which method is used is unimportant here. Copies of the context and event clauses 

are located at each context and script vertex, respectively. A copy of the model 

clauses for handling anomalies is located at each model vertex. 

Context Messages. Figure 23 shows the clauses for enabling/ disabling a 

context ... The enb_cxt....msg and disab_cxt....msg clauses are invoked, respectively, 

whenever an enable/disable message has been recognized by a context node. When 

enabling a context, the PE first checks that the parent context of X is enabled and 

only then sets X's enable attribute ( enb_att) to "yes". Similarly, to disable context, 

the PE handling (X) sets its enable attribute to "no", removes all expectations of de­

pendent script vertices by setting the expectation attribute exp_att to 11 0. 0 11
, and 

then recursively sends the disable message to all descendant contexts. Attribute 
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RMS_KNOMES is given in Figure 22 with contexts, scripts and models in large 

ellipses and their associated attributes in small ellipses. The context vertices, 

labeled Cxti, can be in a tree structure and each context has an attribute that 

records whether the context is enabled or not. Each context can enable many 

script vertices, labeled Seri, each of which has four attributes. (These are ex­

plained in the next section.) The chain models are shown here from top to bottom 

with more general on the left and more specific on the right with vertices labeled 

Mdlki each of which have a suspect attribute. The model vertices are enabled 

by the same contexts and each script vertex can detect an anomaly that has a 

precursor event and an expected event in the command chain models. As noted 

previously, model vertices that lay between these two boundaries correspond to 

the suspected hardware modules. As defined in the previous chapter, each context, 

script and model vertex is conceptually an active processing element (PE) capable 

of communicating with its neighbors. 

3.3. BPEM Logic Clauses for RMS_KNOMES 

For the purpose of developing these clauses, we assume that each message on 

the real-time data stream initiates the processing of a clause as if each real-time 

message was a literal in a query that matches the clause head. Since invoking 

literals are represented as one vertex in a query template, they do not need to be 

binary or binarized. Hence, the primary purpose of each data stream message is to 

provide an initial binding environment for the clause body via their unification. In 

addition, since messages are received one at a time, this means that entire queries 

are incrementally received in a non-deterministic order. Thus, attribute variables 

will essentially be used to record state information about the messages that have 

been seen so far. 

As mentioned previously, there are three types of real-time messages: context) 

event and simple anomaly messages. Context messages either enable or disable a 

I 

j 
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supplies the initial bindings of Ser _Id, Val and Time. According to the clause 

body, the script vertex first checks for the proper content value and gets the value 

of its context's enable attribute. The clause test_enb is called and two clauses are 

invoked for the cases yes and no. If the context is not enabled, then an unexpected 

anomaly message is sent to the associated model vertex. This message corresponds 

to the literal unx_anc (Ser _Id, Mdl). If it is enabled, then the expectation required 

attribute (req_exp_att) is tested in the same OR-branch manner. If no expectation 

of this event is required, then the allowed time until the next event in this script 

(the flt value of the dt_att attribute) is added to the current Time and used to 

set the expectation attribute ( exp_att) of all subsequent vertices in this script. If 

an expectation is required, then the value of the expectation attribute is tested. If 

there was no expectation (Eta == 0. 0) then another unexpected anomaly message 

is sent. If Eta < Time, then the event did not occur within the proper time window 

and an expected anomaly message is sent. If the event did occur within time (Time 

<= Eta), then the expectation is removed and the expectation attributes of all 

subsequent script vertices are set as before. 

Anomalies. The event clauses can detect expected and unexpected anomalies. 

Whenever this occurs, the detecting script vertex initiates the exp_anc or unx_anc 

clause, respectively, in the model vertex that is specifically associated with the 

detected anomaly. For every .expected event anomaly, there is a precursor event 

and an expected event. These two events give two boundaries in the chain models 

between which all vertices represent sub-systems suspected of causing the anomaly. 

In this case, the clauses in Figure 25 are used to set the susp_att attribute of all 

suspect vertices. (Of course, the suspect attribute could be a vecto~ of Booleans 

if many anomalies could occur simultaneously.) In exp_anc, the model's context 

is first checked to make sure it is enabled. Then the susp_att is set if it is not 

set already. Next, check_boundary _1 is called sequentially in order to make use of 



event_msg( Scr_Id, Val, Time ) :­
my_value( Scr_Id, Val), 
src_cxt( Cxt, Scr_Id )[ enb_att( Cxt, Enb) ], 
test_enb( Scr_Id, Enb, Time). 

test_enb( Scr_Id, Enb, Time ) :­
==( Enb, no), 
anornaly_precursor( Scr_Id, Mdl )[ unx_anc( Scr_Id, Mdl)]. 

test_enb( Scr_Id, Enb, Time ) :­
==( Enb, yes), 
test_req_exp( Scr_Id, Time). 

test_req_exp( Scr_Id, Time ) :­
req_exp_att( Scr_Id, no), 
dt_att( Scr_Id, Td ), 
+(Time, Td, Next_Time ), 
next( Scr_Id, Next_Id )[ exp_att( Next_Id, "Next_Time")]. 

test_req_exp( Scr_Id, Time ) 
req_exp_att( Scr_Id, yes), 
exp_att( Scr_Id, Eta), 
test_eta( Scr_Id, Eta, Time ). 

test_eta( Scr_Id, Eta, Time ) :­
== ( Eta, 0. 0 ) , 
anomaly_precursor( Scr_Id, Mdl )[ unx_anc( Mdl, Scr_Id) ]. 

test_eta( Scr_Id, Eta, Time ) :­
<(Eta, Time), 
anomaly_precursor( Scr_Id, Mdl )[ exp_anc( Mdl, Scr_Id) ]. 

test_eta( Scr_Id, Eta, Time ) ·­
<= ( Time, Eta ) , 
exp_att( Scr_Id, 11 0.0 11 

) , 

dt_att( Scr_Id, Td ), 
+(Time, Td, Next_Time ), 
next( Scr_Id, Next_Id )[ exp_att( Next_Id, "Next_Time") ]. 

Figure 24 

Event Clauses Initiated at Ser Vertices 
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operations are always local and done first but the second and third operations can 

be done in parallel as indicated by the vertical bar. 

Event Messages. Figure 24 shows the clauses that handle event messages. 

An event message initiates the event_msg clause in a specific script vertex and 



unx_anc( A, Id ) :-
mdl_cxt( A, Cxt )[ enb_att( Cxt, yes ], 
susp_att( A, no ), 
susp_att ( A, "yes" ) , 
covers( Apar, A)[ unx_child( Apar, Id) ] I 
covers( A, Achild )[ unx_par( Achild, Id) ] 
next( A, Anext )[ unx_anc( Anext, Id)]. 

unx_child( A, Id ) ·-
mdl_cxt( A, Cxt )[ enb_att( Cxt, yes)], 
susp_att( A, no), 
susp_att ( A, "yes" ) , 
covers( Apar, A )[ unx_child( Apar, Id ) ] 
next( A, Anext )[ unx_anc( Anext, Id)]. 

unx_par( A, Id ) :-
mdl_cxt( A, Cxt )[ enb_att( Cxt, yes)], 
susp_att( A, no ), 
susp_att( A, "yes" ) , 
covers( A, Achild )[ unx_par( Achild, Id)] 
next( A, Anext )[ unx_anc( Anext, Id)]. 

Figure 26 

Md l Clauses for Unexpected Anomalies 
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For unexpected anomalies, only the upper boundary exists. In this case, the 

clauses in Figure 26 are used to make all lower vertices suspect. This means that 

messages propagate until there are no further edges to check. Note that it makes no 

difference if these messages are propagated in an 0 R-parallel or an AND-parallel 

fashion since it is their side-effects on the attribute variables which are important. 

The success or failure of these clauses is immaterial. This is the case in general for 

clauses dealing with attribute variables. Reply messages, however, should be sent 

because an ancestor PE may be executing branches sequentially and would need 

the reply messages for synchronization, i.e., starting the next branch on receipt of 

a reply message from the previous branch. 

3.4. Discussion 

This example application is very different from the first, especially in its 

use of the non-logical extensions. Rather than inferring statements from a static 

I 

I 
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exp_anc( A, Id ) :-
mdl_cxt( A, Cxt )[ enb_att( Cxt, yes ) ]) 
susp_att( A, no), 
susp_att ( A, "yes" ) , 
check_boundary_1<>( A, Id). 

check_boundary_1( A, Id) :- anomaly_expected( A, Id), ! . 
check_boundary_1( A, Id ) :-

covers( Apar, A)[ exp_child( Apar, Id)] I 
covers( A, Achild )[ exp_par( Achild, Id)] 
next( A, Anext )[ exp_anc( Anext, Id)]. 

exp_child( Ai Id ) :-
mdl_cxt( A, Cxt )[ enb_att(. Cxt, yes)], 
susp_att( A, no), 
susp_att( A, "yes" ) , 
check_boundary_2<>( A, Id). 

check_boundary_2( A, Id) :- anomaly_expected( A, Id), !. 
check_boundary_2( A, Id ) :-

covers( Apar, A)[ exp_child( Apar, Id)] 
next( A, Anext )[ exp_anc( Anext, Id)]. 

exp_par( A, Id ) :-
mdl_cxt( A, Cxt )[ enb_att( Cxt", yes)], 
susp_att( A, no), 
susp_att ( A, "yes 11 

) , 

check_boundary_3<>( A, Id). 

check_boundary_3( A, Id) :- anomaly_expected( A, Id), ! . 
check_boundary_3( A, Id:) :-

covers( A, Achild )[ exp_par( Achild, Id)] I 
next( A, Anext )[ exp_anc( Anext, Id)]. 

Figure 25 

Mdl Clauses for Expected Anomalies 
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the cut. If an anomaly_expected edge exists between this model vertex and the 

originating script vertex, then the lower bound has been reached and no further 

messages are sent. If this is not the case, then the next check.;.boundary _1 clause is 

invoked which propagates messages left, right and downin the models. Similar sets 

of clauses are used when the message comes from the right and is only propagated 

left and down and when the message comes from the left and is only propagated 

right and down. 

I 



CHAPTER 5 

Implementation and Architectural Issues 

1.· Introduction 

Chapter 3 introduced BPEM and RBL by conceptualizing the AG as a 

network of PEs that communicate via message-passing. This very natural, straight­

forward interpretation of graph matching makes some clear choices on the general 

design issues for parallel systems discussed in Chapter 2. 

1) This will be a data-driven system since every message can be pr'ocessed 

immediately after arrival which may, in turn, initiate other messages. 

2) The problem will be decomposed along the lines of resolution arid unification. 

Each query message will cause some relatively small number of unificatioI?-s 

to be done. 

3) Since a typical query could consist of hundreds or thousands of unifications 

or more, the granularity will still be rather fine. It is, however, not as fine 

as it could be. Each unification is potentially part of many different steps 

of resolution (when initiating parallelism). Furthermore, since the number 

of unifications per message can vary, so does the grain size. 

4) Scheduling can be done simply by using a FIFO queue; messages can be 

processed in the arrival order. As long as the AG is considered to be an 

active network of PEs, there is really· no allocation of AG vertices to PEs 

that needs to be done. As soon as we discuss supporting architectures, how­

ever, allocation becomes very important since the AG may have a different 

topology and be much larger. 
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knowledge base, the side-effects of assigning to variable attributes are used to 

dynamically change the knowledge base. This is done for enabling and disabling 

contexts, for setting and resetting the expectation of events, and flagging suspect 

sub-systems. These attributes are tested using the relational predicates and new 

expected time values are computed using the arithmetic predicates. 

There are several other important observations to be made. The first is that 

in rriany cases, reply messages are not needed. Whether a literal or clause succeeds 

or fails is secondary to the side-effect of setting an attribute. Secondly, this makes 

"incremental" queries possible. Literals that have a logical effect on one another 

can be processed independently when they become available. A further effect is 

that the distinction between forward and backward chaining is blurred. While 

each clause is backward chaining, the overall computation is a forward chaining 

of attribute assignments. A fair question to ask at this point is whether this is 

really logic programming any more? One answer is that this is as much logic 

programming as Prolog is since the same non-logical capabilities that diverge from 

the mathematical basis of resolution theorem-proving, exist in Prolog. Regardless 

of the usage. ·~"solution still remains as the inference mechanism. 
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......... ...... _____ ...., ..... 

...... __ ----
Figure 27 

A General Layer of the Activation and Environment Trees 

An activation tree is built in a distributed manner over the network as the 

computation proceeds. Every edge from an AND-node to a descendent OR-node 

corresponds to a match between the AG and QT or a clause invocation. If an edge 

corresponds to a match, then the sub-tree below this edge possibly resides on a 

different processor. (In the section on supporting architectures, we will see why 

this is possible but not necessary.) 

In parallel with the activation tree is the environment tree. Every OR-node 

has a binding environment (BE) that is an array of binding pairs. The contents 

of this BE are defined by the match or clause invocation that produced the O,R­

node. Every AND-node, in general, has a list of BEs whose parent is the OR-node 

environment. While AND-branches share the parent environment, they cannot 

"see" the environments of their siblings since each represents an independent sub­

qu.ery with no shared variables. 

A list of BEs can result when AND-branches are done sequentially. Consider 

Figure 27 and assume that the predicates Pl, p2 have to be done sequentially from 

branch and1. Predicate Pl may return more than one solution which would be 

recorded in environments en and e12. Predicate p2 then has to be solved twice; 

once for the environment eooe11 and once for the environment eo oe12. We note that 

if AND-sequential execution is not used, then the activation and environment tree 

are isomorphic. In this case, storage of the binding information could be simplified 

by keeping it with vertices of the activation tree. 
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5) A loosely-coupled, message-passing method of communication is central to 

achieving a highly-parallel, distributed system that is not, constrained by 

a tightly-coupled, shared-memory design. We also note that BPEM does 

not usually require any synchronization. This is only necessary when clause 

invocation causes conflicting binding orders that must be resolved. 

6) Finally, a variety of network topologies are feasible assuming that the allo­

cation can be done properly. 

This chapter will develop these design choices with the dual purpose of 

(1) investigating their ramifications and (2) making the model concrete enough to 

simulate. We will begin by identifying how the computation will be structured by 

using message-passing and concomitantly what information a message must carry. 

We will then define basic procedures for using these messages, i.e., the "code" that 

each PE will run. Supporting network architectures are discussed next including 

the topics of allocation and routing. Miscellaneous topics are discussed last. 

2. Computation via Message-Passing 

2.1. The Activation and Environment Trees 

We have introduced BPEM as a process of matching a tree with back-edges 

to a graph. Since the solutions produced may be completely distinct or share 

common sub-solutions, a tree is the natural data structure for recording this 

process. This will be called the activation tree. This is essentially an AND /OR-tree 

that corresponds to the search space of the query. Every vertex in a query template 

and every clause invocation is associated with an OR-node and the immediately 

descendent level of AND-nodes. Each OR-node and its sub-tree is associated with 

one specific alternative solution. Similarly, each AND-node is associated with an 

independent partial solution under its parent OR-node. The root of an activation 

tree is an OR-node. 
I 

I 

I: 

r 
I 



97 

and Figure 28b shows the query f-P1(a,X)( p2(X,Y) I p3(X,Z) ]. The QT and 

the activation tree, Figure 28c, are both rooted at a. Since there is only one tree­

edge from a, there is only one AND-node and a conceptually empty environment. 

There are two different matches for pi, however, so there are two OR-nodes which 

indicate two different bindings for X. From X, there is AND-parallelism between 

P2 and p3 and also OR-parallelism within each one. This produces the remainder 

of the trees. A solution can be found by following any successful OR-branch and 

following all successful AND-branches. The four possible solutions here are: 

{X/b, Y/d, Z/k} 

{X/b, Y/e, Z/k} 

2.2. Static and Dynamic Data 

{X/c, Y/J, Z/k} 

{X/c, Y/g, Z/k}. 

For efficiency, we must try to minimize the amount of data that must be 

communicated between parts of the network in order to build the activation and 

environment trees. That is to say, we have to determine which data must travel 

between PEs and which can be kept in one place. An important observation is 

that static data (data that does not change during a computation) should· be 

initialized once while dynamic data must, by its nature, be communicated during 

the computation. 

The static data here are the AG and the QTs which includes the initial query. 

This constitutes the program and it can be partitioned or replicated over the PEs 

only once at the beginning of the computation. The dynamic data here are the 

activations, specifying which vertices of the QTs are being processed, and the 

binding environment. This constitutes the execution of the program and must be 

communicated as it is generated. 
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(b) a 

Figure 28 

An Example of the Activation and Environment Trees 

We now give an example of the activation and environment trees that demon-

strates AND-parallelism and OR-parallelism. Figure 28a shows the AG correspond­

ing to the facts 

P1(a,b). 

P1(a,c). 

p2(b, d). 

p2(b, e ). 

P2( c, !). 

P2( c, g ). 

p3(b, k ). 

p3( c, k ). 

I 
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a: (0,0) 
b: (1,1),(0,1) 
c: (2,1),(1,2),(0,1) 
d: (2,2),(1,2),(0,1) 
e: (0,2) 

Figure 29 

Activation Stack Example 

+-- q( a, B)[ p4(B, C) ]. 

q(D, F) +-- pl(D, E)[ r(E, F) ]. 

r(G, J) +-- p2(G, H)[ p3(H, J) ]. 

2 

/D 
/E/G 
/H 
/J/F/B 
/C 
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are shown at the right in tree form and are identified by a query index at the top 

of the figure and a vertex index within each ellipse. These two indices together 

constitute a QT tuple. The dashed lines indicate the unifications that are made 

between clauses during the invocations. The activation stacks of tuples that are 

sent to each AG vertex are shown at the bottom of the figure along with the 

bindings that are made in the course of execution. The initial message sent to a is 

a stack of one tuple that tells it to process clause body 0, vertex 0. To proceed, a 

must invoke q. So it binds to D and matches the first edge of clause 1. Hence, bis 
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2.2.1. Partitioning/Replicating the Program 

One of the explicit assumptions of BPEM is that the base data in a program, 

i.e., the AG, is so large that replicating it among all PEs is impractical. Hence, 

we will always partition the AG over a network of PEs. The QTs, however, are 

assumed to be relatively small and few. Here, replication of the QTs over all PEs, 

or rather replication of the QTs to some memory local to each PE, is feasible. Since 

each AG vertex can participate in only a subset of all literals, only those QTs in 

which those literals occur would have to be replicated for the PE handling that AG 

vertex. Since we partition AG vertices over PEs, however, each PE would probably 

receive a copy of most QTs. Hence, the space saved by doing this would probably 

be small so we will always replicate all QTs over all PEs. 

Since the structure of the QTs are static, every QT and each vertex within a 

QT can be identified by an index. Hence, every QT vertex will be represented by 

a tuple of indices: (i,j). Such a tuple identifies the j-th vertex of the i-th QT. 

2.2.2. Activations 

Every query message that starts an activation in an AG vertex will carry a 

QT tuple ( i, j) that identifies which QT vertex it is to match. This is simple and 

straight-forward. Nested clause invocation, however, requires that processing on 

those clauses be continued when a term in the clause head is matched. Hence, the 

query and clause vertices being processed can be specified by a stack of QT tuples 

that reflects the currently invoked clauses. While the size of this stack is technically 

unbounded, the stack required for an average semantic network or knowledge base 

query is not expected to be excessively large. In any case, this is clearly preferable 

to actually transmitting entire graph templates. 

Example: Figure 29 shows an example of an activation stack involving two 

clause invocations. The AG is the chain on the left side. The initial query and 

clauses 
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q(D, E) f-- pl(D, E) I p2(D, F). 

in the same format as before. The initial message is sent to a which invokes q 

and binds to D. The stack element for the calling clause is only sent along edge 

p 1, however, and not edge p2 since F does not occur in the head of q. While c is 

binding to F, b is binding to E, popping the stack, binding to B and sending a 

message to d. Vertex d binds to C and finishes the query. 

In the most general case, n - 1 head terms could appear on n - 1 different 

branches and each branch could require a different subset of bindings. Hence, when 

processing at any particular vertex, it would be optimal to "split" the received 

activation stack vertically and sent only the required subset down each descendent 

tree-edge. This is difficult, however, because every order of clause invocations 

requires a different "split". Rather than compute this at run-time, the current 

implementation simply passes the entire sta<;k down all branches that contain a 

head term. While this may increase the average message length, the execution 

time may remain the same since not splitting the stack compensates for time spent 

processing the longer messages. In addition, n is not expected to be much larger 

than two in practice. 

2.2.3. Binding Environments and Binding Scope 

The binding environment is the set of bindings necessary for a PE to process 

a query message. Not surprisingly, this is only a subset of all prior bindings 

that have been made. A variable X may have many solutions and, hence, many 

bindings. Any sub-problem of X, however, must be solved independently for each 

such binding. Thus, any activation within one of the independent sub-solutions 

can observe only one binding of X. Also, when AND-parallelism is present, a prior 

binding may not be needed in all subsequent AND-branches. 

This idea is developed by the concept of each variable having a binding scope. 

The boundary of a variable's scope starts where its bindings are produced and ends 



a: (0,0) 
b: (1,1),(0,1) 
e: (0 ,2) 

/D 
/E/B 
/C 

0 

c: (1,2) 

Figure 30 

Activation Stack Path Example 
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/F 

sent a message of two tuples telling it to process clause 1, vertex 1, and clause 0, 

vertex 1. Vertex b binds to E, must invoker and also binds to G. Similar messages 

are sent to c and d. When d binds to J, it discovers that clause r is finished, pops 

a stack element, and binds to F. Clause q is also finished so another stack element 

is popped and d binds to B. Finally, c is sent a message to process the last vertex 

in the initial query and it binds to C. 

The previous example demonstrates that the processing of a calling clause is 

resumed when a head term is reached, e.g., J and F. Clauses in RBL are tree­

structured, however, and not all branches may contain head terms. Hence, the 

stack element for the calling clause does not 'have to be passed down all branches 

and, in general, different branches will have different stacks. 

Example: Figure 30 shows an AG, the initial query and a clause 

f- q (a, B) [ p3 ( B, C) ] . 
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deepest variable to which it is connected by a back-edge. The next two trees show 

the scopes for B and C. Since D and E have no back-edges to a descendant, their 

scopes are limited to themselves. The superimposition of these scopes determines 

the binding environments that must be transmitted between vertices along the 

tree-edges to check for back-edges as discussed above. The binding environments 

for this example are shown as sets at the far right. A must be sent as far as D, B 

and C must be sent to E but D and E need never be sent. 

While bindings are clearly dynamic, scope is static. They can be determined 

once at the beginning of the computation. Hence, it is possible to determine at each 

activation, which bindings need to be transmitted. Consider that the processing of 

an activation always commences with a specific binding environment. It will always 

use the binding from its parent. If there are any back-edges, it will use the bindings 

for those. If it is not the final activation in a sub-query, it will always produce one 

binding. If it is on the boundary for any binding it used, then this binding does 

not need to be propagated to the sub-queries. Thus, the size and composition of 

the binding environment can change very much between successive activations arrd 

can directly affect the average size of a query message by minimizing the nun;iber 

of bindings that it must convey. This is important since most variables will have 

a scope contained by the clause in which they appear. This is akin to the use of 

a local stack in most sequential Prolog implementations to handle 'local' variables 

- variables that only appear within a clause body that can be garbage-collected 

after the clause is satisfied [MELL82]. 

2.3. Activity Names 

By now it should be clear that each AG vertex can be receiving and sending 

many messages from and to many other vertices. Hence, some method is needed to 

distinguish between the various messages as they travel through the network. This 

can be solved by using the same principles employed in general datafiow systems 
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Example of Binding Scope 
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{A} 

{A,B} 

{A,B,C} 

{B,C} 

at thy farthest points where they are consumed. In terms of a spanning tree, a 

variable's scope starts at the vertex where its binding is produced and ends at every 

descendant to which it is connected via a back-edge. When a back-edge exists, the 

PE binding to the variable must send the binding information to the descendant 

at the other end of the back-edge over the tree- edges such that the P Es that bind 

to the descendant (there may be more than ~ne) can check for the existence of 

the proper back-edge. If no back-edges exist, no descendants need the binding 

information and, hence, it need not be included in any message. 

Example: Figure 31 shows a spanning tree for the: query 

+- p(A, B)[p(B, C)[p(A, C)jp(C, D)[p(A, D)jp(D, E)[p(B, E)jp(C, E)]]]]. 

Tree-edges are solid lines and back-edges are dashed, as usual. The scope of 

variables, however, is shown by the heaviness of the line or arc. The tree at the 

far left shows the scope of the variable A. This extends from A itself to D, the 

I 
I 
I 
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Bounded activity names can be accomplished simply by associating a counter 

(of bounded length) with each logical vertex. Every time a vertex emits a message, 

the message is stamped with the name of the sending vertex and the value of the 

counter which is then incremented. This is sufficient to uniquely identify every 

message generated during the solution of a query. Of course, bounding the length 

of the counter bounds the number of outstanding messages any one logical vertex 

can have without risking the possibility of confusing one message for another. All 

machines are finite, however, in some respect, so the counter length would just 

have to be set at some value that is commensurate with other limitations such as 

total storage. The main attraction of bounded activity names is that they cannot 

cause the overall message length to grow indefinitely. 

Unbounded activity names can be accomplished by concatenating characters 

from some alphabet to form a string that describes the entire path of activations 

from the initial injection point to the current logical vertex. This scheme is 

describe·d in more detail by Bic [Brc84]. While unbounded activity names can 

cause the overall message length to grow indefinitely, they do provide the following 

important capability. 

It is common knowledge that if one literal in a conjunction is false then the 

entire conjunction is false. Once one literal !s shown to be false then the other 

literals need not be evaluated. If their evaluations have already begun then they 

can be canceled. The dual of this is that if one literal in a disjunction is true then 

the entire disjunction is true. If it is only important to know that there exists 

at least one solution, then when one literal is shown to be true, the others need 

not be evaluated. If their evaluations have already begun then they too can be 

canceled. To do this, we must cancel all subsequent activations from a literal that 

may have spre.ad to any or all PEs in the network. This may be accomplished 

by a global cancellation mechanism which is facilitated by unbounded activity 
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[AGP78]. Each message, in addition to carrying the necessary binding information, 

contains a unique identifier called an activity name. 

The basic principles governing the generation and use of activity names are 

as follows. There are basically two types of messages in our system as already 

mentioned. Query messages propagate forward in an attempt to find a match for 

the graph templates they carry. Reply messages, on the other hand, return along 

the same paths in the opposite direction and report the bindings made during 

the forward propagation. Whenever a query message is propagated forward, new 

activity names are generated for the subsequent query messages that initiate work 

on the sub-queries. Whenever a reply message is propagated backward, the activity 

name is used to match it to other OR and AND branches of the same parent 

activation. Another way of thinking about it is that activity names are used 

to connect different parts of the activation tree as it is built-up in a distributed 

manner; each activity name uniquely identifying a link over the network. 

To be more specific, activity names are used in the following way. Assume 

that a vertex wo has just received a query message conceptually carrying a graph 

template that has descendent tree-edges ei, ... , en from wo and has an activity 

name we shall denote as a. For each label ei that matches one or more edges in 

the assertion graph, wo will send a new query message along each such matching 

edge. These messages will be given unique activity names Cieil, Ciei2, ... , Cieib given 

k matches for ei. All these activities are recorded by the vertex wo as pending, 

that is, reply messages with matching activity nam~s are expected to arrive. Note 

that clause invocation does not directly require any new activity names since it is a 

local operation. A unique activity name is required only when a literal is matched 

to the AG and a query message is generated. There are two general methods for 

generating activity names; one where the length of the name is bounded and the 

other where the length is unbounded. 

r 
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activation environment is a QT tuple for the template and vertex to match and a 

binding environment that contains envlen bindings. Reply messages are divided 

into .mccess and failure messages. Success messages contain a tree of successful 

bindings whereas a failure message contains no such information. The special cut 

message is sent up the activation tree to remove choice points (opportunities for 

OR-parallel execution) when the cut predicate '!' is encountered. 

2.5. Procedures 

Finally, we outline procedures for processing these messages in a high-level, 

pseudo-language. These procedures "summarize" the operational semantics since a 

precise definition, i.e., complete procedures, would be too lengthy to include here. 

Figure 33 gives the query message procedure and is the most interesting. Note that 

the new activity must be processed along with the unstacked activities from the 

query message as long as head terms in an activity are being matched. That is to 

say, it the current vertex matches a head term then it must continue processing the 

parent clause. Also note that only tree-edges or clause invocations can continue 

forward propagation of messages; the others only specify local operations. Hence, 

if there are no outstanding sub-queries, then a reply must be sent which may 

be success or failure. Figure 34 gives the procedures for the success, failure and 

cut messages. The success and failure procedures are very similar. The main 

difference is that the success message has bindings that become part of the local 

environment. Then, success or failure is propagated up the activation tree as long 

as the current sub-tree has completed, i.e., all sub-queries have finished and all 

replies have returned. When the root (of the sub-tree at this vertex) is reached, 

then a reply message is sent to the parent activation. The cut message processing 

is relatively simple. It propagates up the activation tree setting pointers to NULL 

that effectively throws-away the alternatives to literals between the cut and the 
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Message Grammar 
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names. To cancel the evaluation of a literal with activity name a, all PEs must 

asynchronously cancel all activations with activity names a/3 where J,BJ ~ 0, i.e., 

all activations whose activity names have a as a prefix. This information could be 

"broadcast" to all PEs such that the cancellation occurs promptly. With bounded 

activity names, on the other hand, cancellation messages. would have to be sent 

individually to "chase" after irrelevant branches of computation. Furthermore, 

additional work would be wasted until the cancellation messages caught-up with 

the leaves of the activation tree; assuming that the cancellation messages would be 

pr?pagated faster than the leaves of the activation tree are extended. 

2.4. Message Grammar 

All of the concepts presented in the preceding sections can be used to define a 

message grammar; a precise definition of the information that must be carried in a 

message and its structure. This appears in Figure 32. A message is ~ivided into a 

header and a body. The header contains the addresses of the source and destination 

PEs and the activity name. The message type is defined by the body. Query 

messages are prefixed with 'q' and contain a stack of activation environments. Each 

1 
j 
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Success Message Procedure: 

Store bindings in proper environment; 
Set success for this sub-query; 

if all replies have arrived for this activation then 

recursively propagate success up the activation tree for completed branches. 

if root reached then send success reply with all bindings to parent; 

Failure Message Procedure: 

Set failure for this sub-query; 

if all replies have arrived for this activation then 

recursively propagate failure up the activation tree for completed branches; 
if root reached then send failure reply to parent. 

Cut Message Procedure: 

Set body literal alternatives to NULL; 
if clause invocation occurred at this vertex 

then set clause head alternatives to NULL; 

else relay cut message to parent. 

Figure 34 

Success, Failure and Cut Message Procedures 

3. Scheduling 
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In a tightly-coupled, shared-memory system, any PE can service any mem­

ory regardless of how the program of available work (activities) are distributed. 

Deciding which activity gets done by which PE requires some form of scheduling. 

Since we wish to avoid any kind of central control that would inhibit massive 

parallelism, we reject any kind of global scheduler. In a loosely-coupled network, 

we are able to e~ploy local scheduling. 

The simplest form of scheduling is to maintain incoming messages (available 

work) in a FIFO queue. Hence, work is processed in the order of arrival and does 

not require any other knowledge of the computation. Of course, other scheduling 

policies are possible. In fact, messages can be processed in any order since they 

do not require any other information. As will be mentioned in Section 6.1, the 



Query Message Procedure: (indentation indicates scope of statements) 

Initialize new activity; 
Unstack activations; 
for each activation 

if binding doesn't match me 

then set failure and ·break; 

else bind me to it; 

if success so far then 
for each activation 

for each edge 
case edge type of 

·tree-edge: 

build new query message; 

send on each matching edge; 
if no matching edges then set failure; 

clause invocation: 

for each matching clause head 
extend the activation tree; 

recursively process edges; 

if no matching clause heads then set failure; 
back-edge: 

match back-edge neighbor to binding in local environment; 

if matching fails then set failure; 
attribute~ 

match or set local attribute; 

if matching fails then set failure; 
evaluable predicate: 

look-up arguments in local environment; 
do operation; 

if operation fails then set failure; 

if failure or not at head term then break; 

if no active sub-queries then send reply to parent (success or failure). 

Figure 33 

Query Message· Procedure 
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clause head. The cut message is relayed to parents until the vertex is reached that 

actually did the clause invocation. 

I 
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As noted in Chapter 2, static allocation cannot utilize PEs that become idle 

and cannot alleviate hot-spots. In BPEM, however, we note that multiple top­

level queries can be executed in parallel since they are logically independent. These 

queries could be utilizing different parts of the AG and, hence, increasing the overall 

network utilization. Also, in the next section, we will discuss a form of dynamic 

load-balancing using a hybrid architecture. 

As also noted in Chapter 2, the problem of mapping one graph on to another 

such that some metric is optimized is, in general, NP-Complete. Hence, a practical 

method of finding good, sub-optimal solutions must be found. Such methods 

usually exploit some special case or property of the problem graph. Approaches 

like these are not likely in BPEM since an AG is not a data:flow or task-precedence 

graph; it is a task-interaction graph. An AG does not determine when or under 

what conditions two vertices will communicate or in which direction; it only says 

who may communicate. QTs are also not data:flow graphs since each sub-tree in 

a QT may have multiple instances in an AG. Also, an AG may be very irregular 

such that there may be no regularities that can be exploited for mapping. 

4.2. Simulated Annealing 

Because of these limitations, we will use the more general approximation 

technique of simulated annealing. This technique was introduced by Kirkpatrick, 

Gelatt and Vecchi [KGV83] and has been used for a wide variety of NP-Complete 

combinatorial optimization problems [KGV83, RVS84, Mo1185, IW87] in addition 

to Boltzmann machines [FHS83, AHS85]. Simulated annealing is essentially an 

iterative improvement algorithm but it seeks to avoid entrapment in a local minima 

by probabilistically accepting "uphill" moves. 

In engineering sciences, annealing is the process of heating and gradually 

cooling materials, such as glass or metal, to eliminate internal stresses. Simulated 

annealing is' patterned after the physical annealing process as a close analogy. It 
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scheduling policy or queuing discipline can be used to control the generation of 

parallel activities depending on how full the input queue is. A priority queue could 

also be used based on the sender of the message or how much work a message 

represents. 

4. Allocation 

As mentioned before, if the AG is considered to be an active network of PEs, 

there is no allocation of program and available work that needs to be done. Each 

vertex must handle its own incoming messages. To build a network in the shape 

of an AG, however, is not practical. Every AG can have a different irregular shape 

while a physical network will have a relatively small, fixed number of PEs in a 

very regular shape. Hence, the logical architecture of the AG must be allocated or 

mapped on to the physical architecture of the network. 

4.1. Static vs. Dynamic Allocation 

Any such map must satisfy two competing goals as well as possible: 

1) even distribution of work, and 

2) minimized communication distances. 

The obvious mapping that satisfies (2) maps all AG vertices on to one PE. The 

communication distance is zero but this is the worst possible distribution of work. 

It is also possible to satisfy (1) but every communicating pair of AG vertices may 

be mapped to diametrically opposite sides of the network. 

The even distribution of work, or load balancing, is difficult to do since the 

amount of available work is constantly changing over the course of a computation. 

Any kind of dynamic allocation at run-time is especially difficult since this requires 

the overhead of moving an AG vertex from.one PE to another along with all incident 

AG edges and possibly forwarding any outstanding messages. Hence, due to its 

simplicity, we will use static allocation. 

I 
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a problem of size n, "equilibrium" is reached after an changes have been accepted 

or bn changes (accepted or not) have been attempted, whichever comes first; a and 

b are chosen such that 1 :::; a < b. It should, however, be pointed out that this 

equilibrium criterion is only a simplification, since, in general, the number of moves 

necessary to reach equilibrium increases as the temperature is lowered. 

After equilibrium is reached, the temperature is decreased, and the same 

process of random changes is repeated until equilibrium is reached again. The 

lowering of the temperature typically follows an exponential decay function until 

the system is considered "frozen" and annealing terminates. We use the simple 

termination condition cited in (RVS84] which declares the system frozen when E 

has not changed for three consecutive temperatures. 

The main disadvantage of simulated annealing is that it can be slow for larger 

problems. We can use a faster special case of annealing that is called quenching. 

This corresponds to a rapid cooling of the system to a freezing temperature. Note 

that when T = 0, all decreases in energy are accepted and all increases are rejected. 

Hence, quenching approaches iterative improvement. While the ability to avoid 

local minima is decreased, experience has shown us that the solutions found by 

quenching are only slightly worse but take a small fraction of the time. 

4.3. The Distance-Variance Energy Function 

To use simulated annealing on the mapping problem, we must define some 

energy function such that given a network graph Gn = (Vn, En) and an assertion 

(problem) graph Gp = (Yp, Ep), it returns the energy value E for any mapping 

m : Vp 1--+ Vn. (Note that we are particularly interested in the case where IVnl ~ 

I Vp j.) As mentioned before, E must measure the competing goals of minimizing 

the communication distance and evenly distributing the work across the entire 

network. 
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is applicable to any combinatorial optimization problem whose solution can be 

represented by a configuration or set of values in which point-wise changes can 

be made. In physical annealing, the energy of the system is determined by its 

temperature. In simulated annealing, " temperature" is a parameter defined by the 

user. Similarly, the "energy" of the system is determined by a user-defined energy 

function (also called the co.st or objective function). The "energy" Eat every point 

in the computation represents the "goodness" of the current solution. 

The simulated annealing process begins at a high "temperature" level by 

performing a series of random changes to the current solution, just as random 

chan~es would occur in the physical system. After each change, the resulting 

"energy" E' of the configuration is calculated. The change !:lE = E' - E 

corresponds to improving or worsening the solution. This change is accepted and 

becomes part of the solution with probability 

1 
P(t:,.E) - 1 + eAE/T 

.. 

where a decrease in the energy (negative !:lE) has an increasing probability and an 

increase (positive t:,.E) has a decreasing probability. We will vary this decision 

criterion by accepting all decreases in energy while probabilistically accepting 

mcreases. This probability can be evaluated as 

P(6.E) for 0 ~ t:,.E . 

Note that in both cases when the temperature is high, gross changes in E may 

occur. As the temperature is decreased, parts of the solution are "fine-tuned" as 

it settles down (hopefully) close to a global minimum, i.e., an optimal solution. 

The series of random changes continues until the systems reaches "thermal 

equilibrium". To determine when this occurs, however, is not a simple manner. For 

the purposes of this paper, we used the same conditions proposed in [KGV83]: For 
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problem vertices during the optimization process do not alter the distribution of 

the problem (the L V metric) and hence the minimization function uses only the 

QD metric (or the cardinality as a special case) to derive a solution. 

In the general case, however, we must first scale the two metrics to the same 

numerical range before they can be weighted. To do this, we will identify the 

minimum, maximum and mode values for QD and LV. The minimum QD occurs 

when all AG edges are mapped to one PE. The maximum QD occurs when all 

communicating AG vertices are mapped to diametrically opposite sides of the 

network. Hence, we have 

QDmin = 0, QDmax = jEpj . diam 

where diam is the diameter of Gn, i.e., the network. The mode of the distribution 

of the quadratic distance for all possible maps, however, occurs when each AG edge 

is mapped only half-way across the network: 

QD = jEpl ·diam 
mode 2 

The minimum LV occurs when there is a perfect distribution. The maximum LV 

occurs when all AG edges are mapped to one PE. Hence, we have 

LV min= 0 

LV = (IVnl - l)dav/ + (2 · jEpj - davg)
2 

= 4 ·IE 
1

2. ( IVnl -1) 
max IVnl . p 1Vnl 2 

where 
2 · IEpl 

davg = IVnl 

is the average logical degree for any PE. The mode of the distribution of the logical 

variance, however, does not fall in the middle of this range; it is extremely skewed 

towards LVmin· LVmode occurs when the logical degree varies from the average by 

one half. Hence, 
~(3·davg _ d )2 

Lv: 2 avg 
mode= j Vnl 

jEpj2 

4 · IVnl2 . 
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To minimize the communication distance, adjacent vertices in the problem 

graph must be mapped as close together in the network as possible. Hence, the 

sum of the network distances between any two adjacent problem vertices, 

QD - L dist( m( v1), m( v2) ) 
(v1,v2)EEp 

where dist is the network distance between any two PEs, must be minimized. This 

is called QD for the quadratic distance due to its similarity with the quadratic 

assignment problem. (Note that since an attribute is owned by one AG vertex, it 

will be kept local to that vertex, i.e., it will simply follow the mapping of its owner 

and not· enter into the annealing process.) 

For most applications, it is desirable that work be evenly distributed through­

out the network. In the absence of any prior information about the application, we 

assume that all problem edges carry an equal amount of traffic and the processing 

of each message generates an equal amount of work. Under this assumption, an 

even distribution of the problem graph is achieved by distributing the problem 

edges such that the variance of the number of problem edges incident on each PE 

is minimized. Hence, we minimize LV, defined as: 

LV var(LDw), for w E Vn, where 

LDw - deg(v), for v E Yp, w E Vn. 
veinverse-image( w) 

L V is called the logical variance of LD, the logical degree, which is the number of 

logical edges incident on each w E Vn. 

As mentioned above, these two metrics are competing and work in opposite 

directions. To find useful maps, we must use a weighted composite of these two 

metrics as the energy function. In systems where l"YFI ~ IVnl, LV can be simplified 

by requiring that each problem vertex is mapped onto a different PE, i.e., that 

m be one-to-one, as in the approach described in [BoK81]. Pairwise exchanges of 
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Figure 35 

A PE with Separate Router 

us to hybrid architectures where locally a tightly-coupled, shared-memory design 

is used but the overall global design is still a loosely-coupled, message-passing 

network. 

5.1. Routing 

The first step is to separate. the message routing function from those functions 

directly related to BPEM. A dedicated router or "post office" can be used to send 

and receive all messages on the channels to and from the immediate neighbors as 

shown in Figure 35. If a message is addressed to the router's PE, then it is placed 

in the PE's input message queue rather than being sent on the next hop of its path. 

All output messages that a PE generates from an input message are placed in the 

output queue. Thus, a PE only has to deal with its own messages and does not 

have to deal with routing. The amount of time that is saved, however, depends not 

only on the amount of traffic through a particular router but also on the aver~ge 

number of hops per message. If a parallel programming paradigm only requires an 

average number of hops of about 1.0, then independent routers would not save any 

time. This may not be that uncommon since any parallel system needs to minimize 

the communication overhead or distance. This is, in fact, the case for BPEM as 

shown in Chapter 6. 
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Using these mode values, we can scale the metrics and weight them: 

QD LV 
E = Wqd + W1v---

QDmode LV mode 

where vVqd and vViv are the weights and 

and 

4.4. NP-Completeness of the Mapping Problem 

To show that the mapping problem in its general form is NP-complete, we can 

restate it as a decision problem. Choose a value J for the quadratic distance and 

a value ]{ for the logical variance and ask: Is there a mapping such that Q D :::; J 

and L V :::; K? This is a clear instance of the Graph Partitioning problem which 

is NP-Complete. (See [GJ79], problem [ND14].) Each PE represents a partition 

and mapping a logical vertex is assignment to a partition. This fits well with our 

assumption that the problem size is in general larger than the network size. 

5. Supporting Architectures 

Simulated annealing allows us· to map an AG onto any network. Hence, 

the only topological requirements of the network are the fundamental ones of 

degree, diameter, symmetry and scalability. As reviewed in Chapter 2, there is 

a ~ide variety of topologies that have been proposed. In the subsequent chapter 

on simulation results, we will use n-cubes because of the low diameter and easy 

routing and also because of its wide popularity. 

In all previous discussions on loosely-coupled, message-passing networks, how­

ever, we tacitly assumed that a PE is an atomic entity with: private .memory that 

can communicate with neighbors over some number of channels. In this section, 

we discard this assumption and examine the structure of a PE to understand how 

parallelism can be exploited from within a PE on a hardware level. This will lead 
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Figure 37 

Variable Service 
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of the same activation. It would be possible, however, to implement the Q.M as 

a segmented or interleaved memory and to assign activations to different sections 

of memory. Contention for the PM, on the other hand, is much less since the 

PM is written only at initialization (possibly through the router) and when an 

attribute value is assigned. Since attributes are logically immediate neighbors, it 

is convenient to consistently store this information in the PM. If attributes were 

stored in the QM, however, the PEs could treat the PM as a read-only memory. 
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5.2. Multiple Message-servers 
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The structure of a PE can be further refined as in Figure 36. Since a PE can be 

thought of as a message-server for a queue of input messages, we can certainly· have 

multiple servers to increase throughput. We can also refine the memory functions. 

The Query Memory (QM) contains dynamic data, i.e., activations that are built 

and dismantled as query and reply messages are processed. The Program Memory 

(PM) contains "static" data, i.e., the QTs and the attributes and logical neighbors 

for each AG vertex mapped to this PE. 

With multiple PEs, both the QM and PM are shared-memories. Hence, 

memory access must be arbitrated to avoid corruption due to parallel writes. In 

the QM, thiS is only a problem when two PEs want to process the same vertex 

I 
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6.1. Queue Overflow, Deadlock and Resource-Driven Parallelism 

In this chapter and in the simulations reported in the next chapter, we have 

assumed that the message queues are infinite in length. Hence, we do not worry 

about what happens when a queue fills-up. In a physical machine, however, 

overflow is a serious situation. If full input queues were able to block message 

transmission from neighbors, then deadlock would be possible. This would occur 

if two neighboring PEs with full input queues attempted to send messages to each 

other. 

This brings up the question of controlling or throttling parallelism at the 

message level. Clearly, unbridled parallelism that can swamp a machine is not 

desirable. Since every machine is finite, the size should be able to affect the amount 

of active parallelism. This is the concept of resource-driven parallelism. When the 

PEs become saturated, the spawning of new parallel activities is reduced until the 

load decreases. One method to accomplish this is to have PEs switch from parallel 

(breadth-first) to sequential (depth-first) execution as their queues fill-up. Another 

method is to switch the queue discipline from FIFO to LIFO. This does not cause 

strict depth-first exploration of the search space but rather causes the activation 

tree to be expanded at deeper q,nd deeper levels such that· the leaves of the search 

space are (hopefully) reached before overflow occurs (WATS88). This can be thought 

of as sparse breadth-first execution. 

In general, PEs under resource-driven parallelism must be able to efficiently 

execute in parallel and in sequence. If there are sufficient PEs, then they must 

execute code in parallel. If they are fully-loaded, they must execute code sequen­

tially. They must also efficiently record the opportunities for parallelism such that 

these records don't swamp the machine. While resource-driven parallelism is a 

very interesting idea, it will unfortunately not be pursued further in this thesis. 
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5.3. Variable Service 

We can extend the concept of multiple message-servers to include a form of 

load balancing. Load balancing is usually done by sending work to less busy PEs. 

The dual of this is skewing a PEs service to those input message queues that are 

more busy. This duality can be stated in a larger context. All computation is the 

application of an operation to data. Application can only occur when the operation 

and data are connected in some sense. Classical dataflow supports parallelism by 

sending the data to the operation. The dual of this is sending the operation to the 

data. 

Consider Figure 37 which, for sake of argument and without loss of generality, 

assumes a grid topology. The central feature here is a bus represented by the heavy 

diagonal line. The router handles communications, as usual, and places messages 

in the_ input queue. Each of four different PEs, however, can service this queue 

and interact with the PM, QM and the output queue. Note that each PE in the 

network can talk with a different subset of buses and their memories. If all input 

queues are equally loaded, then all PEs equally divide their service between the 

buses in their subset. If an input queue is more loaded, then the PEs will give it 

a larger share of their time. This requires, of course, some policy for allocation of 

service. While this cannot eliminate hot-spots, it can alleviate them by providing 

variable service. Given the previously mentioned difficulties in load-balancing a 

loosely-coupled, message-passing system where a large amount of data (the AG) is 

statically allocated, this might be a viable alternative. 

6. Other Issues 

We conclude this chapter by discussing several issues which would not directly 

affect BPEMs viability but would have to be addressed in any genuine implemen­

tation. 
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CHAPTER 6 

Simulations Results 

L Introduction 

In this chapter, we present simulation results that demonstrate the model's 

fundamental performance capabilities. We will do this by using problems that 

exerci~e very specific aspects of the model, e.g., OR-parallelism, AND-parallelism 

and clause invocation. This will give us an estimate of the model's peak perfor­

mance under each type of operation. The average performance as exhibited by 

"real-world" problems will, of course, depend on the mix of these operations and 

primarily on the depth ~f clause invocation. In the absence of comparable per­

formanc~ data for "real-world" problems, an estimate of performance in absolute 

terms (logical inferences per second, lips) will demonstrate the model's viability: 

Besides giving us an idea of the model's peak performance, using specific 

problems will allow us to demonstrate a very important property: the processing 

of OR-parallelism, AND-parallelism and clause invocation is essentially linear such 

that the model's performance will scale-up; a l~rger machine will run a proportion­

ally larger problem with similar performance. There are, however, cases where this 

property is not maintained. When clause invocation is nested, as would occur in 

recursion, the processing of each level of invocation becomes more expensive and 

performance suffers. This will be demonstrated. 

The following section describes the simulator and various metrics that can be 

used to evaluate performance. Section 3 then demonstrates that performance under 

OR-parallelism scales-up. Section 4 demonstrates that AND-parallelism is handled 

just as efficiently as 0 R-parallelism. Section 5 demonstrates clause invocation. 
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6.2. Adaptive Routing 

Routers can become hot-spots as well as PEs or message queues. If messages 

from PEi to PEj are always sent over the same path, then a combination of such 

paths may cause some routers to become overloaded. In any network, there may be 

one unique path that is the shortest. In general, however, there are many paths that 

are not much longer. Adaptive routing can increase overall message throughput by 

finding alternate, if slightly longer, paths around overloaded routers. 

6.3. Fault Tolerance 

While there are many possible failures in a complex system, we will only 

briefly-discuss three broad categories: (1) communication channels, (2) PEs, and 

(3) memories. The methods of dealing with these faults are based_ on the ideas of 

redundancy or shared resource. 

Communication channel faults can be tolerated by using adaptive routing. If 

a channel fails, adaptive routing could treat this as a severely overloaded router 

and si.mply attempt to re-route the message around that channel. PE faults can 

be tolerated using the multiple-server schemes of Figures 36 and 37. If any one PE 

failed, the system would continue to function, albeit a little slower. Memory faults 

can be tolerated by using error detecting/ correcting memories. Here, redundancy 

(extra bi ts) must be built into each word since the AG vertex information is only 

loaded into one PM and the activations are oniy built in one QM. 

! 

I 
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list of queries for simulation. These are written in Restricted Binary Logic (RBL). 

The fourth file· (S.A. Prm.) contains network information and simulated annealing 

parameters. 

The compiler first parses the facts files and builds the Assertion Graph. The 

parameter file is read and the AG is annealed on to the network graph as discussed 

in Chapter 5. Specifically, the parameter file gives 

1) the number of P Es in the network, 

2) the diameter of the network, 

3) the quadratic distance weighting factor, 

4) the logical variance weighting factor, 

5) the initial temperature, 

6) the temperature decay factor, 

7) the maximum-number-of-moves factor a, and 

8) the maximum-number-of-attempted-moves factor b. 

In addition, a distance function (dist. func.) for the network topology being 

simulated is linked into BPC. All of this information is used to evaluate the energy 

function and conduct the annealing. 

Once this is done, the rules and queries are parsed. This is very similar since 

most of the work is involved in processing the clause bodies. This requires (1) 

building a spanning tree for each clause body (rule or query), (2) identifyirig all 

occurrences of variables that occur in the head and their branch to the root, ( 3) 

finding all producers; consumers of shared variables and their niost recent ancestor, 

and ( 4) identifying the binding environment that must be sent by a vertex to each 

of its immediate descendants. 

When this is completed, two initialization files are written: ini tpe1 and 

ini tpen. The file ini tpe1 is read by a special PE, simply named PE1, and uses the 

information to "inject" queries into the proper AG vertex. ini tpe1 also contains a 

symbol table such that query solutions can be printed in terms of the original query. 

The file ini tpen is used to initialize all other network PEs. It specifies which PEs 
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Section 6 demonstrates performance on a wide range of very small to very large 

problems and shows the effect on the number of active PEs and the queumg. 

Conclusions are given in Section 7. 

2. The Simulator 

These simulations involve two major programs as shown in the simulator flow 

graph in Figure 38: the Binary Predicate Compiler (BPC) and the Binary Predicate 

Execution Model Simulator; both written in C. We discuss these separately. 

2.1. The Binary Predicate Compiler 

BPC requires four input files and produces a log file and the initialization files 

for the actual simulator. Three of these input files contain the facts, rules and a 

I: 

I 
I 
I 
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2) PE active time, 

3) messages/ clause invocations per unit time, 

4) message queue length at any point in time, 

5) communication time, and 

6) average message length. 

The overall query execution time is the simulated real-time required to completely 

solve a query. If we look at the active time for all PEs, then we can derive an activity 

curve for all PEs throughout a query that describes the PE utilization. Since a 

message can be considered unification with the AG and invocation is unification 

with a clause head, the sum of these tell us the total number of unifications or logical 

inferences per unit time. The length of input message queues can tell us when 

the network as a whole is becoming overloaded or when a hot-spot is developing. 

Since each PE is handling message routing in software, the communication time 

denotes how much time is spent doing it. We can also estimate the goodness of 

the mapping by the average number of hops each message must take. The average 

message length, on the other hand, is an approximate measure of how complicated 

the average message is and how much processing time it will take. 

2.3. Timing Instrumentation 

Most of the metrics above require some notion of timing the simulation events. 

The timing provided by the Unix operating system, however, was found to be 

inadequate. The only resolution available is 10 msec. which is too coarse. When 

Unix timing was used, many messages would be processed in "zero" time. To avoid 

this, the assembler code for the simulator that is produced by the C compiler was 

examined. The number of instructions for each loop and branch were counted .. 

For each procedure, loop and if statement, the simulator keeps a running total 

of the number of instructions executed and uses this figure as the elapsed running 

time. This figure is not exact but is closely proportional to the true behavior of the 

simulator to within a small constant since the time for every procedure, loop and 

f 
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handle which AG vertices and contain all clause body information, whether it is a 

query or a rule. 

Finally, BPC produces a log file. This identifies which rules, facts and 

queries were compiled, i.e., which problem resides in the initialization files, and the 

annealing parameters that were used. The initial and final (annealed) mapping 

metrics are recorded such that the goodness of the maps and the efficiency of the 

annealings can be evaluated. 

2.2. The BPEM Simulator 

The BPEM Simulator is built on top of a modified version of the Marlin 

Datafiow Emulator [MARL84]. It essentially implements a message-passing star 

network with the emulator at the hub and the simulated PEs at the-end of the 

spokes. Time-stamped messages are stored in a priority queue. Running on a 

receive-to-receive cycle, the oldest message is removed and passed to the appropri­

ate PE. In reality, the PE code goes through a hash table to find the appropriate 

AG information and.current activations, i.e., previously processed messages for this 

PE whose replies are pending. In processing the current message, new query br 

reply messages could be enqueued with the simulator. 

The BPEM simulator produces three files: (1) the log file, (2) the activity 

file, and (3) the message file. The log file captures information from the simulator 

itself and also special log messages from the simulated PEs. The answers to initial 

queries are recorded here as special log messages from PE1. The activity file records 

when each PE is busy, when it receives or transmits a message, and if it is just 

routing a message destined for some other PE. The message file records when a 

message is sent, how long it is in transit, its length, how long it spends in the 

queue, and if it is taking the last hop before reaching its final destination. 

These files allow each simulation to be evaluated on the following metrics: 

1) overall query execution time, ix, 
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Figure 39 

The Binary Tree Search Problem 

Using an AG that is a balanced binary tree may seem like a very special ca;Se 

but BPEM does not exploit the properties of balance or having two sub-trees for 

performance. The AG could be an arbitrary tree or, in fact, an arbitrary graph; 

this makes no difference in satisfying a query. The benefit that is derived here is 

that the problem size and depth and the required number of logical inferences are 

precisely known. 

I 
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if statement is represented. If we assume each instruction executes in 1 µsec., then 

we can estimate the model's performance in logical inferences per second (lips). 

In the simulations that follow, we will also assume that messages are transmitted 

between P Es at 1 µsec./ character. 

3. OR-Parallelism 

Here we show that BPEM performance scales-up under OR-parallelism. By 

using a problem that exhibits only OR-parallelism, and keeping a constant propor­

tion between the problem size and network size, we can show similar performance 

as constrained by the maximum parallelism available in the problem. This demon­

strates that overhead costs, such as communication, synchronization, etc., do not 

grow faster than the problem size. We will show this for three proportions: when 

the problem size is 4, 8 and 16 times larger than the network. We begin by 

describing the problem. 

3.1. The Binary Tree Search Problem 

Figure 39 illustrates the Binary Tree Search Problem. The Assertion Graph 

(AG) is a balanced binary tree and the problem is to find one solution at a leaf. 

Hence, the query template is a chain, shown at the right of the binary tree, that 

must match one specific branch. Note that all AG and query template edges can 

have the same name, hence, they are not labeled here. If at every vertex, one 

branch is given to another PE, as illustrated by the tree with ellipses in Figure 39, 

then maximum parallelism is achieved. Given that the tree height is h, we can say 

Problem Size = 2h+l - 1 

ix= O(h) 

Note that the number of vertices in the AG and the number of query messages 

(logical inferences) all equal 2h+l - L Also note that even under maximum 

parallelism, ~he execution time, ix, is constrained by the tree height h. 
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h 5 6 7 8 9 10 11 

IAGI 63 127 255 511 1023 2047 4095 

4x 

!PEI 16 32 64 128 256 
tx 10.64 10.34 13.02 14.93 18.01 

tx/h 2.13 1.72 1.86 1.87 2.00 
k-lips 5.92 12.28 19.59 34.23 56.80 

Bx 

!PEI 16 32 64 128 256 
tx 13.05 14.91 17.11 20.41 22.15 

tx/h 2.11 2.13 2.14 2.27 2.22 
k-lips 9.73 17.08 29.87 50.12 92.42 

16x 

IPE/ 16 32 64 128 256 
tx 19.30 24.86 24.34 27.62 33.28 

tx/h 2.76 3.11 2.70 2.76 3.02 
k-lips 13.21 20.56 42.03 74.11 123.05 

Table 2 

Simulation Results under 0 R-parallelism 
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3.2. Results 

Here we present simulation results for the Binary Tree Search problem when 

the AG is 4, 8 and 16 times larger than the network. In all cases, the network is a 

cube and for each proportion, five values of h are used. The size of the cube is 2h 

and its diameter is h. For the annealings, the initial temperature was 100 and the 

decay factor was 0.9. Since the degree variance of the AG vertices was not great 

to_ begin with, a 0.9/0.1 weighting in favor of the distance metric was used. The 

maximum-number-of-moves factor and the maximum-attempted-number-of-moves 

factor was 1 and 2, respectively. This made the annealings more like quenching 

and relatively quick. 

Table 2 summarizes the results. For each proportion, the sizes of the AG, 

jAGj, and the network, jPEj, are given. Also given are the overall query execution 

times, ix, in thousands of time units (instruction counts). As mentioned before, 

if we assume that each instruction executes in 1 µsec., then these values can 

be considered pseudo-milliseconds. Since maximum parallelism is constrained by 

h, the ratio ix/ h indicates the model's performance relative to the theoretical 

optimum. Also shown are the number of logical inferences per (pseudo) second 

in thousands (k-lips). The activity curves (number of active PEs at any given 

·instant) for each proportion are shown in Figures 40, 41 and 42. In each figure, 

the larger problems bring more PEs into the c;mputation in parallel. The overall 

execution time, ix, for each query, however, does not increase in proportion to 

the problem size but rather in proportion to the problem depth, i.e., h. Hence, 

the ix/h ratios are essentially flat as shown in Figure 43. (Some variability can 

be expected due to the maps produced by simulated annealing.) This shows that 

the model provides maximum parallelism as the problem size and network size 

increase. In other words, the model's performance scales-up as constrained by the 

available parallelism. If we look at the k-lips plotted in Figure 44, we see that the 
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Activity Curves for Different Amounts of AND-parallelism 

each pair of AG edges at this level are also given two different labels (such that 

half are g and half are d as in Figure 45), then we have preserved the same amou~t 

of overall work. Since these two edges will be matched at the bottom of the AG, 

we have in fact replaced 50% of the OR-parallelism with AND-parallelism. If we 

progressively build up a binary tree from the leaves, then we progressively replace 

more OR-parallelism following the inverse powers of two. Note that to achieve 

100% AND-parallelism, the query template and the AG must be equal in size since 

replacing each edge in the template with a pair results in a tree that is identical to 

the AG. 

4.2. Results 

A series of simulations were done where a constant h = 10 was maintained 

and the height of the AND-parallelism, ha, was varied from 1 to 5. The resulting 

percentage of AND-parallelism and the overall query time is given in Table 3. The 
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Figure 45 

Replacing 0 R-parallelism with AND-parallelism 

larger networks are effectively utilized to obtain more "horsepower". As long as the 

networks are not saturated, they can provide exponentially more k-lips for a given 

problem.' As a rough maximum, ~ 100 k-lips are possible for 256 PEs. Note that 

for any given h, however, the higher proportions provide slightly lower k-lips. This 

is due to hot-spots arising as the AG tree becomes larger. A method of dealing 

with this will be discussed in Section 6. For comparison with later simulations, vve 

note that the average message length for all queries was ~ 8.5 characters. 

4. Introducing AND-Parallelism 

In the Section 3, we used the Binary Tree Search problem to demonstrate 

BPEMs behavior under just OR-parallelism. In this section, we will mqdify 

the problem such that the OR-parallelism is progressively converted to AND­

parallelism while the total amount of work remains the same. This will show that 

AND-parallelism is handled just as efficiently as 0 R-parallelism since the resulting 

simulations are virtually identical. 

4.1. Problem Statement 

Recall that the query template in Figure 39 is just a chain. If we replace 

the last edge with the conjunction of two differently labeled edges, as shown in 

Figure 45, then we have replaced some OR-parallelism with AND-parallelism. If 
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simple clause of the form: 

q( x, y ) :- p( x, y ) . 

where p matches in the AG but q only matches the clause head. There is still only 

OR-parallelism in such a query but it requires 2h - 1 invocations in addition to 

sending 2h+l - 1 query messages. This increases the number of logical inferences 

needed to solve the query by 50% since a clause invocation is required for each pair 

of_ query messages. 

Case 2: Simple Invocation with Multiple Clauses 

After each invocation in Case 1, the clause body literal p ( X, Y ) matches 

two AG edges. This is the source of OR-parallelism in Case 1. In this case, the 

invocation will be the source of OR-parallelism in the following way. Give each 

pair of AG edges two different labels as in Section 4 and let each query chain edge 

match two different clause heads: 

q( X, Y ) ·- g( X, Y ) . 

q( x, y ) ·- d( x, y ) . 

where g and d match in the AG. Here the number of query· messages remains the 

same as in Case 1 since the same number of AG edges must be matched but 2h+l _ 2 

invocations are required. This doubles the number of logical inferences needed to 

solve a query. 
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ha 1 2 3 4 5 

% 50.0 75.0 87.5 93.8 96.9 
ix 22.07 22.09 21.63 22.63 22.79 

Table 3 

Simulation Results under AND-parallelism 

same annealing parameters as before were used where jAGj = 204 7 and IP El = 256. 

Note that ha = 1 requires a query of 11 literals whereas ha = 5 requires a query 

of 67 literals while the AG consists of 2046 literals (edges). Here the overall query 

times are essentially constant. The overall activity is also very similar as shown in 

Figure 46. This demonstrates that BPEM handles AND-parallelism just as well as 

OR-parallelism and by implication, the performance under AND-parallelism will 

scale-up as well. The average message length was again ~ 8.5 characters for all 

queries. 

5. Clause Invocation 

In this section, we present further twists on the original OR-parallelism 

problem to demonstrate the effect of clause invocation (clause head unification) 

on BPEM's performance. We simulated three cases. The first is simple invocation 

where matching each AG edge requires one invocation. The second is simple 

invocation where the OR-parallelism is derived from invoking multiple clauses 

rather than from matching multiple edges in the AG. The third is nested invocation 

where a chain of invocations is done. 

5.1. Problem Statements 

Case 1: Simple Invocation 

In the original problem, the query template was a chain that directly matched 

AG edges. Here, each edge in the chain will be a reference to the head of one very 

I 
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h 6 7 8 9 10 

Case 1 

tx 21.79 28.19 30.63 33.23 40.04 
tx/h 3.63 4.03 3.83 3.69 4.00 
k-lips 8.72 13.55 25.01 46.16 76.67 

Case 2 

tx 25.07 28.84 33.56 35.87 41.33 
tx/h 4.18 4.12 4.20 3.98 4.13 
k-lips 10.09 17.65 30.42 57.01 99.03 

Case 3 

tx 46.01 56.68 74.31 93.39 117.67 
tx/h 7.67 8.10 9.23 10.38 11.77 
k-lips 4.13 6.74 10.31 16.42 26.09 
a.m.l. 61.9 73.2 85.6 98.2 109.7 

Table 4 

Simulation Results under Clause Invocation 
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Case 3: Nested Invocations 

This case demonstrates a situation where the model's performance does not 

scale-up. When invocations are nested, as in recursion, each descendent must be 

sent information about all clauses that are being "worked on" such that messages 

become longer and require more processing. Here the query templates are still 

chains but will require an invocation to add the next edge in the chain as matching 

proceeds. Hence, for AG height h, the program would have the structure 

:- qi( a, X ) . 
q1( x, z ) . - p( x, y )[ q2( Y, z ) J . 
q2( x, z ) . - p( x, y )[ q3( y' z ) J . 
q3( x, y ) . - p( x, y )[ J . 

qh ( x ' y ) . - p ( x ' y ) . 

where the predicate p matches twice in the AG and the constant a is its root. 

There is still only OR-parallelism in this query (from the AG) and it requites 

2h - 1 invocations and 2h+l - 1 query messages (same as Case 1). 

5.2. Results 

In all cases, IAGI = 8 · IP El was maintained as the average case of the 

preceding simulations and the same annealing parameters as in Section 3 were 

used. Table 4 summarizes the performance for all three cases. The activity curves 

are shown in Figures 47, 48 and 49, respectively. The txf h and k-lips curves are 

shown in Figures 50 and 51, respectively. The significance of these are discussed 

for each case. 

In Case 1, the overall query times have almosf doubled when compared with 

the 8x case in Section 3. This is reflected in the average message length for all 

queries of ~ 16.3 characters. The k-lips, however, have only slightly decreased 
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(~ 173 at h = 10) since more inferences are being done, i.e., clause invocations in 

addition to query messages are being produced. The ix/ h ratios have also increased 

but they are again essentially flat as seen in Figure 50. This suggests that while 

clause invocation is a more expensive operation, it is still linear such that the 

model's performance still scales-up. 

In Case 2, the queries take slightly longer but since twice as many logical 

inferences are being done, the k-lips are higher. This implies that the second 

invocati9n is cheaper than the first. As a result, the k-lips curve is significantly 

higher than Case 1. The ix/ h curve is also flat and only slightly above that of 

Case 1. 

In Case 3, the performance has suffered significantly as shown by the longer 

overall query times and also the lower k-lips that are attained. The performance 

is not scaling-up as well as shown by the increasing ix/ h ratio. This reflects the 

fundamental property of BPEM that information about each invocation must be 

passed to all descendants, thus increasing the amount of work that must be done 

after each one. This is reflected in the increasing average message lengths ( a.m:l., 

in characters). 

6. A Spectrum of Problem Sizes 

In this section, rather than showing how the model scales-up by maintaining 

a constant ratio between the problem and network sizes, we fix the network size 

and demonstrate the behavior of the model for a spectrum of problem sizes; from 

very small to very large compared to the network. These simulations show the 

performance when the network is hardly used at all up to when the network is 

saturated with work. Besides showing activity curves, we will show curves of the 

average and maximum queuing of messages over the entire network. 
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IAGl/IPEI h tx tx/h k-lips 

1/8 2 4.01 2.00 1.74 
1/4 3 5.37 1.79 2.79 
1/2 4 7.12 1.78 4.35 

1 5 9.48 1.90 6.64 
2 6 11.03 1.84 11.51 
4 7 12.63 1.80 20.19 
8 8 16.85 2.11 30.33 
16 9 25.53 2.84 40.07 
32 10 42.92 4.29 47.69 
64 11 80.04 7.28 51.16 

Table 5 

Simulation Results for a Spectrum of Sizes 

The network size was fixed at 64 PEs. The Binary Tree Search problem was 

used as in Section 3 along with the same annealing parameters. The problem size 

was varied from 1/8 to 64 times the network size which also varies h from 2 to 11 

as indicated in Table 5. The activity curves are shown in Figures 52 and 53 where 

the vertical scale is given in percent from 0 to 100 since the number of PEs is fixed. 

Clearly, for h = 10 and h = 11, the network has become saturated. If we now look 

at the txf h ratios, as plotted in Figure 54, we see that the network is providing 

maximum parallelism until about h = 8, i.e., until the problem is about 8 times 

the network size.· Above this point, the exponential size of the problem is reflected 

in exponential execution times since the simulated machine can utilize only a finite 

number of PEs. What this means in terms of k-lips, is that instead of a constantly 

rising rate (as when the network size is increasing), we see ans-curve, as shown in 

Figure 55, where the network is reaching an asymptote of maximum performance 

between 50 and 60 k-lips as the utilization approaches 100% over the course of the 

computation. This suggests that each PE is capable of ~ o~g k-lips. 
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With regards to queuing, Figures 56 and 57 show the <:tverage and maximum 

message queuing per PE, respectively, for h = 9, 10 and 11. (Some smoothing has 

been done on Figures 57 and 58 to reduce the amount of data for plotting and 

typesetting.) Negligible queuing occurs for h < 9. Not surprisingly, the queuing 

increases the most when the network is saturating. If we look at the average 

and maximum queuing for h = 11, as shown in Figure 58, we see an interesting 

phenomenon. The maximum queuing reaches its peak after the average queuing 

does. At t = 60.0, the average PE has about 7 messages queued-up while at least 

one PE has almost 40 messages. This indicates hot-spots that are probably due 

to the reply messages that are generated late in the computation and .converge on 

fewer PEs as they propagate back up the tree to the root. While this particular 

pattern of queuing is specific to this problem, it does demonstrate the need for some 

type of load balancing or, alternatively, variable service as discussed in Chapter 5. 
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IAGl/IPEI h ix hop/msg 

1/8 2 4.72 1.57 
1/4 3 7.84 1.47 
1/2 4 8.75 1.29 

1 5 11.38 1.33 
2 6 12.70 1.01 
4 7 15.88 0.65 
8 8 17.20 0.55 
16 g 26.65 0.47 
32 10 42.10 0.44 
64 11 79.55 0.44 

Table 6 

Simulation Results for a Spectrum with Independent Routers 
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Execution Times with and without Independent Routers 

for the larger problems. This .is shown graphically in Figure 59. We can see from 

the average hops/msg that there is not very much .routing that must be done, 

hence, the similar performance. These results indicate that simulated annealing is 

working quite well in this situation; again, especially for the larger problems. The 
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The number of queued messages does not pose any problems for BPEM, per 

se; it is only indicative of a saturated machine or a hot-spot. Since all physical 

machines are finite, there is always some problem that is large enough to saturate 

it. If a problem has an inherent bottleneck, then a hot-spot is likely. Larger 

problems can be accommodated by larger machines. Hot spots can be alleviated 

by the variable service technique mentioned above. In any physical implementation, 

however, the length of the queues in which messages must reside is finite. In this 

case, the issues of queue overflow and deadlock would have to be addressed as 

discussed at the end of Chapter 5. 

7. Independent Routers 

In Chapter 5, the use of independent routers was described to improve system 

performance. The most improvement will be realized, however, only when the 

average number of hops per message is greater than one. If this is not the case, 

then an independent router is only saving the associated PE the work of routing 

its own messages and not the larger routing task of relaying those messages that 

are simply being forwarded. 

This section demonstrates this phenomenon by repeating the spectrum of 

simulations from the previous section but using independent routers. Thi's was 

simulated by having the originating router compute the number of hops a message 

requires, adjusting its time-stamp accordingly, and sending the message directly 

to its destination. While this simulates the propagation time of a message, it does 

not simulate the contention a message would encounter at each router. This does 

not, however, affect the results presented here. 

Table 6 presents the execution times, ix, and the average number of hops per 

message, hop/msg, for the same queries as in the previous section. One can note 

immediately that the execution times follow closely their previous values; especially 

I 
I 
I 
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not expected to be a serious drawback, however, since semantic network queries 

are not expected to be as deeply nested as general logic programs. 

These statements of BPEMs performance are, of course, tied directly to this 

software implementation. A. more efficient implementation, especially concerning 

the management of storage, would certainly yield better results. Hardware support 

would also greatly speed-up processing. Besides off-loading message routing (which 

is ·currently done in software), each PE could enjoy multiple message-servers. 

Message-servers could even be. shared between PEs such that service could be 

skewed to busier PEs in order to alleviate hot-spots. 



150 

fact that the average hops/msg decreases from 1.57 to 0.44 as the problem size 

increases demonstrates that simulated annealing with the distance-variance metric 

is able to evenly distribute the AG while minimizing communication when there is 

more AG to distribute relative to the size of the network. 

Of course, these results depend on the relative cost of transmitting a message 

and routing a message and also of enqueuing and dequeuing messages. Since it 

was not the original intent of the simulator to model this level of hardware, more 

properly designed simulations should be done that could include such factors as 

router contention. 

8. Conclusions 

Basic simulation results of the BPEM have been presented. We have shown 

that the performance of the model scales-up under OR-parallelism and AND­

parallelism. While it is not surprising that they are both linear time operations, it 

is surprising that they take essentially the same amount of time. If we assume th~t 

every simulator instruction takes 1 µsec., then 256 PEs can deliver on the order of 

105 k-lips regardless of the mix of OR and AND-parallelism. This is quite realistic 

given that the simulations with saturated PEs suggest a peak performance of~ 0.9 

k-lips/PE (for this implementation) which scales to ~ 230 k-lips for 256 PEs. 

Performance is sensitive to clause invocation which is a more expensive op­

eration. While the performance of 256 PEs dropped to ~ 76 k-lips for single 

invocations, it still scaled-up as the problem and network sizes were increased. 

Doing multiple invocations for each literal is a little more efficient in that the per­

formance only dropped to~ 99 k-lips. We also demonstrated the effect that nested 

invocations have on performance. As nesting deepens, each query message becomes 

longer and requires more processing. As a result, the performance no longer scales­

up, i.e., as the problem/network sizes increase, the performance degrades. This is 
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little time must be spent relaying messages. The quality of the map also depends, 

however, on the structure of the logical architecture. It is possible that for some 

graphs, no good map exists, thus requiring a significant number of hops per 

message. Regardless of how low the average number of hops is, however, time must 

still be spent encoding and decoding messages and this source of overhead may be 

reflected in the relatively low performance of an individual PE. This overhead, 

however, is proportional to the size of the problem in the absence of nested clause 

invocation, i.e., the overhead per message is constant. Thus, the asynchronous 

message-passing of BPEM can successfully scale-up to larger machines and larger 

problems to allow massive parallelism. It imposes no limits on the size of problem 

to which it can be applied due to any kind of centralized controller or memory. 

The granularity of BPEM is generally a step of resolution but this can vary 

for several reasons. The first is that a message may cause one or more clause 

invocations, each of which is a step of resolution that may or may not directly 

generate any new messages. Such a message represents a much larger grai.~. 

Second, simulated annealing may allocate neighboring AG :vertices to the same 

PE such that several steps of resolution may be done without physically sending 

any messages between PEs. This also represents a much larger grain. Hence, in a 

typical query, there is much parallelism that is available but the granularity is not 

as fine as it could be thus lowering the commu~ication overhead. 

1 BPEM derives specific benefits from using logic as a programming paradigm. 

One very important benefit is that multiple top-level queries can be executed in 

an OR-parallel fashion since they are logically independent. Logic also allows one 

to concentrate on the logical solution without having to pay as much. attention 

to control issues. This is especially evident when compared with other semantic 

network systems that use a set of system-specific primitive operations as described 

in the next section on related work. Such primitives have little to do with the 



CHAPTER 7 

Conclusions and Future Research Directions 

1. ·contribution 

The contribution of this work is the development of a distributed, massively­

parallel system for semantic networks and knowledge bases that is built on a 

subset. of first-order predicate logic. The reliance on logic gives the model an 

easily-understood programming paradigm and a well-defined semantics of execu­

tion. The parallelism is extracted from a graphical representation of logic based 

on the binarization of predicates; hence, the name Binary Predicate Execution 

Model. Execution is supported by asynchronously passing messages between pro­

gram col).stants along edges defined by the program facts. Under most conditions, 

the model's performance scales-up for larger problems and machines, demonstrat­

ing that it does not introduce any artificial locality or computation bottlenecks. 

2. Discussion 

The overall performance of this model is.favorable given that we have exam­

ined a relatively simple software implementation. This suggests a performance of 

~ 0.9 k-lips/PE or on the order of 105 k-lips for a 256 PE n-cube. Of course, this 

figure includes the communication overhead which can vary according to .the size 

of the problem and the quality of the map found by simulated annealing. Even so, 

the performance per PE is similar to that of the first sequential implementations 

of logic languages. 

We have shown that simulated annealing can produce very adequate maps 

such that the average number of hops per message is < 1.0 meaning that very 
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The Semantic Network Array Processor (SNAP) is similar but a little more 

complicated than NETL. It consists of a grid of PEs with local communication 

in addition to a global bus managed by a synchronous controller [MT85]. The 

nodes of a semantic network are mapped one-to-one on to the PEs and the global 

controller broadcasts a sequence of primitive instructions that are carried out in 

parallel by the PEs. Here, each PE has a list of logical neighbors in the semantic 

network and a set of general purpose flags. The broadcast instructions involve 

searching the list of neighbors, testing the flags and doing logical operations on 

them. Messages can also be sent on the local grid to neighboring PEs. These 

messages, however, are more than just a marker in that they can set a specific flag 

in a neighbor and they are queued rather than immediately OR-ed. More complex 

application functions that can be built out of the primitive instructions including 

pattern matching, production systems and inferencing. Image understanding can 

also be done given that the elements of a scene are represented as a graph [DM87]. 

The simple nature of marker-passing systems ensures that processing is done 

quickly. For set operations like intersection, marker-passing is ideal. Marker­

passing is insufficient, however, for any reasoning involving probabilities or con­

fidence levels. Another drawback is that the set of primitive instructions have a 

semantic gap between them and the application level. To ease the burden of hand­

coding higher-level operations, a compiler would be very helpful in generating the 

required sequence of instructions. In the case of both NETL and SN AP, the global 

bus limits the size of the machine and the size of feasible problems. The size of 

feasible problems will also be limited if each PE can handle only one node. Even 

with one-to-one mapping, the problem of mapping nodes on to PEs must still be 

adequately solved to minimize communication costs. 
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application and, hence, reqmre the development of an algorithm to solve the 

problem at hand. Control becomes an issue again, however, with the introduction 

of non-logical extensions. These do allow the user to specify control and also 

to blur the distinction between forward and backward chaining by using variable 

attributes as memory. They also allow "incremental" queries; partial queries may 

be processed independently in time but still have an effect on later ones. 

3. Related Work 

BPEM is related to the concept of connectionism m AI in that some part 

of the problem is viewed as a massively-parallel active graph of relatively simple 

elements that process more complex problems. The architectures that support 

connectionism can be classified according to how they pass information and the 

programming paradigm that is used to organize the computation: marker-passing, 

value-passing and message-passing [FHS83]. This provides a useful framework 

for BPEM's comparison with other parallel systems for semantic networks and 

know ledge bases. 

3.1. Marker-Passing 

Marker-passing systems are the simplest since PEs exchange only single-bit 

marker messages along the network links. This is typified by NETL where PEs are 

the nodes of a semantic network and may store a few markers. Simple operations 

may be done on these markers and PEs may be associatively polled for a given 

marker pattern to accomplish search and deduction within the network [FAHL 79]. 

While many markers may be flowing between PEs, there is no contention since 

it is assumed that dedicated lines between PEs exist and that multiple markers 

arriving at the same node are simply OR-ed together. The instructions for doing 

these operations, however, are organized and broadcast over the entire network by 

a synchronous external controller. 
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While both the Connection Machine and Shastri 's connectionist encodi~g 

"circuits" can be termed value-passing, the contrast between their method of 

communication and capabilities is very interesting. Shastri's system can only do 

inheritance and categorization; no other operations were discussed. It does this, 

however, just by asynchronously passing simple value messages. The Connection 

Machine, on the other hand, can do more complex operations like inferential 

reasoning but uses synchronous broadcast of primitive instructions to all PEs. 

A program for a connectionist encoding must be "hard-wired" into the "circuit"; 

that is to say, it really doesn't have a programming paradigm. A program for the 

Conn~ction Machine is a sequence of primitive instructions sent over a separate 

channel similar to NETL and SN AP. Thus, it should not be surprising that an 

encoding may be faster for a particular problem but the Connection Machine is 

more general. 

3.3. Message-Passing 

Message-passing systems are the most powerful and the most complex since 

messages of arbitrary complexity are allowed. BPEM clearly. falls in this category. 

While the simpler cases can be viewed as possible models of information processing 

in the brain itself, message-passing is certainly too complex for this purpose. 

For the processing of semantic networks, however, message-passing allows the 

specification of more complex operations to be carried on the messages themselves. 

One example is IX. This is a pyramid-shaped, packet-switched network with 

PEs that have associative memory which supports the language IXL [HHKF86]. IX 

the machine appears to be an asynchronous, message-passing system whose shape 

is suggested by a logic program's execution tree. IXL the language specifically 

supports semantic networks by creating nodes, links and inference rules. Different 

kinds of links are possible: isa, instance_of, a_kind_of and source/ destinations links 

for relations. A distinction is made between properties and assertions. An assertion 
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3.2. Value-Passing 

Value-passing systems remove some limitations of marker-passing by passing 

bit vectors that can represent integers or floating-point numbers. One example of 

this is Thistle which uses eight-bit values [FHS83]. A Thistle PE can do simple 

arithmetic operations on these values and can handle multiple incoming messages 

by finding the min or max of their values. 

Another example is the Connection Machine [HILL84, TR88]. Messages in the 

Connection Machine have a type and a value that can be a number or a pointer. 

Each PE has a group of set-registers which contain sets of nodes in a semantic 

network. Each PE also has a group of function-registers which contain "functions", 

i.e., the network links which "map" nodes to nodes or nodes to values. Different 

groups of operations can be done on these registers. These groups include set 

operations, propagation of values for property inheritance, "function" manipulation 

and arithmetic. While the Connection Machine does have a synchronous, broadcast 

controller, it also has nearest-neighbor grid communications. 

In contrast to the Connection Machine, Shastri reports an asynchronous, 

value-passing system with no central controller that uses evidential reasoning to 

find most likely conclusions [SHAS87]. Shastri calls this a connectionist encoding of 

semantic networks and can handle inheritance, categorization (the dual of inher­

itance), exceptions and conflicting information by using evidential reasoning. A 

network is built of five different units: concept, property, binder, relay and enable 

nodes which exchange real-valued potentials in the range (0,1]. A property P with 

a value V is said to support a concept A with a strength computed by a binder 

node. Enable nodes determine the type of query (inheritance or categorization) 

while relay nodes determine the directionality of computation. A query is specified 

by setting certain external inputs to 1.0 and after a number of time steps related 

to the size of the network, the solution is found. I 

I 
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final solutions. (This may be related to another model for doing set operations 

between pairs of semantic networks (SAP83). Here, an input "block" injects a 

textual representation for one network into all PEs connected as the other network 

and all partial solutions are reported to a single output "block".) Such "common 

channels" have the possibility of becoming bottlenecks and limiting performance. 

A major difference between the message-passing models and the others like 

NETL and the Connection Machine is that since instructions are not broadcast over 

the entire network, they must be somehow included in the messages themselves. 

Hence, they communicate asynchronously like the connectionist encoding yet the 

added message complexity allows it to support more complex formalisms such as 

resolution in first-order logic. This eliminates the need for broadcast communica­

tion. Thus, we have a distributed inference engine which is sufficient to support 

such formalisms such as semantic networks and knowledge bases. The fact th.at 

there is no broadcast communication and that the system is distributed means that 

there is no size limit imposed by the model. 

Another major difference between BPEM and all of these models is the use of 

logic as the supporting formalism. This provides a clear, well-defined programming 

paradigm that is integrated into the execution model. One does not encounter 

the same semantic gap between the application problem and a set of primitive 

instructions as in most of the systems discussed above. Whether logic is sufficient to 

represent knowledge, however, is another topic of discussion (IsRAEL83). Regardless 

of arguments pro and con, one cannot deny that logic is capable of many things 

including the organization of massively-parallel computation. 
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is a relation between sources and destinations themselves. A 'property is a relation 

between in3tances of sources and destinations. IXL is a logic-like language which 

may be influenced by the fact that it is implemented in Prolog. All links and 

inference rules are written as predicates and clauses. While IXL has a basis in 

logic as a programming paradigm, the restriction to higher-level semantic network 

concepts has the effect of prohibiting some of what logic can do. The authors 

state, for example, that IXL is limited when dealing with sets, quantification or 

the "grouping" of knowledge. 

Another example is proposed by Sapaty [SAP86]. This model is perhaps the 

closest in spirit to BPEM yet its programming paradigm is completely different. 

Here, a semantic network is also envisioned as a graph of active PEs that asyn­

chronously pass messages. Queries are written, however, in a wave language. This 

is a family of languages and the most basic is WAVE-0 which expresses primarily 

navigational information. Each query message consists of a concatenated sequence 

of primitive operations. When a message is received, the head operation is p~r­

formed and the tail can be replicated and sent to other PEs according to edge 

name and direction. The spreading of messages is referred to as a wavefront and 

the contents of a message as a search-image. In contrast to BPEM, wavefronts 

can be synchronized by using hierarchical colorings, i.e., path names of unbounded 

length. 

Clearly, WAVE-0 is not a logic language and queries must be built from 

primitive operations that are not related to the content of the semantic network. 

Hence, like SN AP, there exists a semantic gap that must be bridged. Ironically, 

a Prolog-like example is given that matches binary predicates. The processing, 

however, does not follow the structure of the goal list but rather the structure of 

primitive operations. All nodes try to match to all variables and all partial matches 

are output 'to a "common channel" that finds the union of these to produce the 
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to adju.1Jt granularity would be advantageous but appears difficult since granularity 

depends in part on the mapping which can have a different effect on the granularity 

of different queries. 

Syntactic Entitie.'J V.'J. Semantic Implementation. The granularity of BPEM 

and other such systems is also determined by the relationship between the syntactic 

entities of a program and the implementation of their semantics. BPEM, for 

example, associates active processing with constants and derives parallelism from 

unifying facts. Other systems, as described in Chapter 3, associate processing 

with literals and clauses and derive parallelism from unification with either facts 

or clauses. The effect that each approach has on the granularity is interesting not 

only for implementations but also from a basic science standpoint. 

More General Theorem Proving. Many graph-oriented methods for proving 

theorems in one form or another have appeared in the literature and one cannot 

help but wonder about the possible parallelism and required overhead of such 

systems. Gallier and Raatz describe HoRNLOG [GR85, GR87] which uses general 

Horn clauses and is based on graph rewriting rules for connection graphs [CS79, 
-

Kow75]. Since general Horn clauses are used, assertions and indefinite answers 

are possible. Even though the authors mention definite parallel possibilities, no 

work has been done on it as of this writing [RAATZ88]. Bibel describes a method of 

theorem proving by finding mating between matrices which is similar to work by 

Andrews (BIBEL83, ANDR81]. Here general formulae are represented in matrix form 

and solutions, called matings, are found by building paths through connections of 

negated and unnegated literals. This method also has tremendous opportunities 

for parallelism. Of course, this is no longer using resolution. In fact, there are many 

non-resolution strategies for theorem proving [BLED77] which could very well offer 

many different highly-parallel methods for solving "intelligent" problems. 
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4. Future Work 

There are many potential areas of further work related to BPEM. Some of 

these concern just implementation issues while others have a more general concern 

of parallelism and logic. 

WAM-like Storage Model and Instruction Set. The Warren Abstract Machine 

(WAM) has provided a coherent model for storage and instructions for sequential 

execution [WARR83]. Since it is expressed at an abstract level, any component could 

be implemented in software, fi~mware or hardware. BPEM could also benefit from 

a similar unified approach to storage and the processing of each different message 

type. 

Overhead. The simulations of Chapter 6 provide a good idea of the poten­

tial overall performance but do not quantify tl~e cost of each type of overhead. 

Such an analysis could identify overhead costs that need to be reduced such as 

the encoding and decoding of messages. Of course, any such analysis would be 

implementation-specific. Another implementation strategy, such as derived from 

an abstract machine, could change the cost of various overheads. 

Load Balancing. The saturation simulations demonstrate the general need 

for some form of load balancing. While not all problems will have unavoidable 

hot-spots, some will. Given the overhead of migrating logical vertices, the variable 

service hybrid architecture described in Chapter 5 deserves further investigation 

and simulation. This provides flexibility in the allocation of service with a lower 

overhead. 

Granularity. This is related to both overhead and load balancing in that 
) 

overhead is associated with each grain and load balancing depends on the number 

and size of grains relative to the size of the problem and machine. Hence, the 

distribution of grain sizes in BPEM needs to be more accurately characterized in 

order to ascertain whether the average grain is too large or too small. Being able 

.1 
1 

~ 
I 
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