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Abstract
Ocean warming endangers coastal ecosystems through increased risk of infectious disease, yet detection,

surveillance, and forecasting of marine diseases remain limited. Eelgrass (Zostera marina) meadows provide
essential coastal habitat and are vulnerable to a temperature-sensitive wasting disease caused by the protist
Labyrinthula zosterae. We assessed wasting disease sensitivity to warming temperatures across a 3500 km study
range by combining long-term satellite remote sensing of ocean temperature with field surveys from 32 meadows
along the Pacific coast of North America in 2019. Between 11% and 99% of plants were infected in individual
meadows, with up to 35% of plant tissue damaged. Disease prevalence was 3� higher in locations with warm tem-
perature anomalies in summer, indicating that the risk of wasting disease will increase with climate warming
throughout the geographic range for eelgrass. Large-scale surveys were made possible for the first time by the
Eelgrass Lesion Image Segmentation Application, an artificial intelligence (AI) system that quantifies eelgrass
wasting disease 5000� faster and with comparable accuracy to a human expert. This study highlights the value of
AI in marine biological observing specifically for detecting widespread climate-driven disease outbreaks.

Disease outbreaks frequently cause rapid declines of host
populations, transforming community structure and ecosys-
tem functioning. Outbreaks that affect foundation or keystone
species have particularly widespread and long-lasting

consequences. Prominent examples include the ecological extinc-
tion of chestnut trees in eastern U.S. forests from chestnut blight
(Ellison et al. 2005); decimation of at least 20 species of sea-stars
in the eastern Pacific due to sea-star wasting disease (Hewson
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et al. 2014); and vast reduction of reef-building corals throughout
the Caribbean due to white-band disease (Aronson and
Precht 2001). These outbreaks fundamentally reshaped ecosys-
tems, with enduring impacts on human communities, yet timely
monitoring of disease to identify outbreaks and inform manage-
ment is limited. New methodologies are needed to alert managers
to disease outbreaks across geographies that vary widely in envi-
ronmental conditions, species characteristics, and human capac-
ity to observe disease (Burge et al. 2014; Groner et al. 2016). Here,
we investigate the relationship between warming climate and dis-
ease across 23� of latitude by harnessing advances in artificial
intelligence (AI) to develop a novel and exponentially faster
approach to disease detection in seagrass ecosystems.

Seagrasses are foundation species of highly productive coastal
habitats that support fisheries, harbor biodiversity, filter pollut-
ants, protect shorelines, and sequester carbon (UNEP 2020). Eel-
grass (Zostera marina), a globally distributed species that is the
dominant seagrass in temperate North America, is vulnerable to
eelgrass wasting disease, caused by the protist Labyrinthula
zosterae. Wasting disease infections occur when the pathogen
enters eelgrass cells and consumes the chloroplasts; severe infec-
tions can cause shoot mortality (Short et al. 1987). Wasting dis-
ease outbreaks have contributed to ecologically damaging loss of
seagrass during the last century, including extensive declines
throughout North Atlantic coasts in the 1930s (Sullivan
et al. 2013). Since L. zosterae was identified as the causative agent
of wasting disease (Muehlstein et al. 1991), the eelgrass-L. zosterae
pathosystem has been widely studied (Sullivan et al. 2013; Groner
et al. 2016; Brakel et al. 2019; Jakobsson-Thor et al. 2020). Never-
theless, the drivers of wasting disease across the global distribu-
tion of eelgrass are poorly understood and surveillance is limited,
in part due to the effort involved in confirming disease. Eelgrass
wasting disease can be identified by characteristic dark-rimmed
lesions on the leaf tissue, which to a trained eye are visually dis-
tinct from other damage such as desiccation (Fig. 1) (Sullivan
et al. 2013, 2018). The presence of L. zosterae can be further veri-
fied with microscopy, culturing, and/or quantitative PCR (qPCR)
(Bockelmann et al. 2013; Groner et al. 2016; Yoshioka
et al. 2019). However, identification and quantification of lesion
area are laborious and rely on specialized expertise, complicating
surveillance at scales relevant to management and limiting our
ability to forecast outbreaks or develop mitigation measures.

Warming ocean temperatures increase the urgency of
developing scalable wasting disease detection methods to
facilitate study of wasting disease sensitivity to temperature in
the field. Eelgrass wasting disease infections peak during warm
summer months (Bockelmann et al. 2013), and short-term
warming events of < 5�C can negatively impact eelgrass growth
(Reynolds et al. 2016), yet how warming temperatures may
increase the risk of disease is not well understood. Warmer tem-
peratures likely contributed to the 1930s outbreak (Sullivan
et al. 2013), while regional surveys have shown that higher
infection rates are also associated with longer plant leaves,
higher shoot densities, and increased epiphyte loads, possibly

due to increased direct transmission in dense meadows and
increased shading from epiphytes (Groner et al. 2016). Deter-
mining the generality of the temperature sensitivity of wasting
disease across the geographic, morphological, and environmen-
tal variation known for eelgrass is critical to understand the
impact of warming temperatures on disease risk.

Here, we determined the wasting disease status of eelgrass
meadows across 23� of latitude (Fig. 2), and we leveraged long-
term records of sea surface temperature (SST) to assess the sensi-
tivity of eelgrass wasting disease to warming. Large-scale sur-
veys were made possible for the first time by the Eelgrass
Lesion Image Segmentation Application (EeLISA), an AI system
that we developed to facilitate robust and standardized detec-
tion of eelgrass wasting disease (Rappazzo et al. 2021). EeLISA
harnesses a convolutional neural network (CNN) for image seg-
mentation and human–computer interaction for expert feed-
back (Fig. 3). Using EeLISA, we surveyed eelgrass wasting
disease in 32 eelgrass meadows distributed across 3500 km of
the Pacific coast of North America (Supporting Information
Table S1). We used this dataset to investigate the effects of
warming temperatures and plant and meadow characteristics
on disease metrics across a wide range of eelgrass morphologies,
environmental conditions, and levels of disease.

Materials and methods
Study sites

We sampled eelgrass meadow sites in six regions from 32�N
to 55�N along the west coast of North America. (Fig. 2). We
identified regions using abbreviations for the local state/
province (AK, Alaska; BC, British Columbia; WA, Washington;
OR, Oregon) except for in California, where we differentiated
two regions by the local city where sampling occurred (BB,
Bodega Bay; SD, San Diego). We sampled five meadows per
region except in AK and BB where we sampled six meadows.
We selected meadow sites based on the presence of intertidal

Fig. 1. Images of eelgrass leaves. (a) Eelgrass leaf with a wasting disease
lesion, image credit: O. Graham. (b) Scanned image of a diseased eelgrass
leaf. (c) Image segmentation mask produced by EeLISA, identifying
healthy tissue in bright green and diseased tissue in red.
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eelgrass, accessible at low tide by foot, and strong marine
influence (salinity > 25 ppt in mid-summer, Supporting Infor-
mation Table S1). Meadow sites within regions were located in
distinct embayments or in distinct areas of seagrass within a
larger embayment and separated by a channel or other
feature, always being at least ca. 1 km apart from each other.

Field surveys
During field surveys in July 2019, we laid six 20-m transects

parallel to the shore at each meadow, with three upper inter-
tidal transects, separated laterally by at least 2 m, at the shore-
ward edge of continuous eelgrass, and three lower intertidal
transects at least 4 m closer to the water. Upper transects at the
edge of continuous eelgrass were typically close to the mean
lower low water height. To assess disease impacts, we sampled
eelgrass shoots at each meter along the transects by harvesting
the third-rank (third-youngest) eelgrass leaf as representative of
disease status of the shoot. Leaves were trimmed by hand at the
top of the sheath bundle. At the OR meadows, where eelgrass
shoots commonly have only four leaves compared to five or
more elsewhere, third-rank leaves are often on the outside of
the sheath bundle and carry high epiphyte loads, making it dif-
ficult to clean the leaves for imaging. Wasting disease infection
rates did not differ significantly between second- and third-
ranked leaves at the OR sites (Supporting Information Fig. S1);

we therefore sampled second-rank leaves in OR. Harvested
leaves were stored in unfiltered seawater on ice until processing
(within 4–6 h of sampling).

To characterize meadows, we measured shoot densities in
four replicate quadrats (0.0625–0.36 m2) at 4-m intervals
along each transect; we also collected five intact shoots from
4-m intervals to measure shoot morphologies and epiphyte
load. During the analysis of disease signs, we imaged the
third-rank leaves of these intact shoots, for a total of 120 leaves
collected for disease analysis at each site.

Eelgrass metrics
In the lab, we measured sheath length and canopy height

(sheath length plus longest leaf length) of the intact shoots,
and we assessed epiphyte load by scraping epiphytes from the
third-rank leaf onto a preweighed foil tin and drying at 60�C
until constant mass. Using the third-rank leaves, we created
high-resolution images for analysis of disease prevalence (pres-
ence or absence of lesion tissue on an eelgrass leaf), lesion area,
and disease severity (proportion of leaf area damaged by
lesions). After scraping the leaves to remove epiphytes, we
placed the leaves between two sheets of transparent plastic
film, scanned the sheets at 600 dpi using an Epson Perfection
V550 scanner, and saved the high-resolution images in TIFF
format. In most cases, we scanned each entire eelgrass leaf by
separating it into multiple fragments and placing the fragments
side-by-side on the plastic film (Fig. 1b). To reduce processing
time of large leaves (length > 1 m), we excluded visually
healthy tissue from the scans; this was done conservatively so
that we scanned all areas of visually damaged tissue, including
nonwasting disease damage. For this subset of samples, we mea-
sured total leaf area (leaf length and width) by hand before sep-
arating the diseased tissue for scanning. We also excluded
leaves that were entirely visually asymptomatic from scanning.

Eelgrass lesion image segmentation application
Components and workflow

The EeLISA system uses a positive feedback loop with three
main components: a CNN machine learning module, a labeling
web application module, and a data analysis module (Fig. 3).
When the user inputs a batch of scanned images for processing,
the machine learning module performs image segmentation to
classify each pixel as healthy tissue, lesion tissue, or back-
ground. The predictions and scans are then sent to a server and
stored in a MongoDB database that users can access through
the labeling web application module, which is hosted on Ama-
zon Web Services with a public web address. The labeling appli-
cation visualizes the scans overlaid with EeLISA’s predictions
and allows users to edit the predictions if necessary. After the
user verifies the predictions from EeLISA, the scans and predic-
tions are processed by the data analysis module, which is writ-
ten in Python 3.7 and uses the Python library SciPy to calculate
total leaf area and lesion tissue area for each leaf, tagged with
its respective metadata. Corrections to the predictions made by

Fig. 2. Map of study sites and representative images of eelgrass
meadows from each region. Study sites were located in six regions, dis-
tributed across 23� of latitude; see text for region codes. Image credit:
B. Yang and L. Reshitnyk.
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the user can be incorporated by the machine learning module
to further train the CNN model, completing the feedback loop.
All predictions in this study were made from the same trained
and calibrated version of EeLISA, described below.

Development and training
We trained this version of EeLISA using the positive feedback

loop described above and a dataset of 1036 eelgrass scans from
an earlier study of eelgrass wasting disease in the San Juan
Islands, WA (Groner et al. 2021). We divided the dataset into sets
of 789 and 247 scans for training and testing sets respectively,
and a human processor manually labeled each scan by classify-
ing every pixel as healthy tissue, lesion tissue, or background.

The CNN used to perform the image segmentation was the
UNet framework (Ronneberger et al. 2015), which was
implemented in the PyTorch deep learning framework. Themodel
was trained on the training set for 40 epochs, using the cross
entropy loss and optimized via the ADAM optimizer (Kingma and
Ba 2015), with a learning rate of 0.0001 and a batch size of 8. After
training, the best performing EeLISA model had an average differ-
ence in disease severitywith thehuman labeler of 0.075%.We also
assessed the model’s performance in terms of average Dice and
Jaccard Score, where it scored values of 0.92 and 0.87, respectively.
For further details, seeRappazzo et al. (2021).

Calibration
In order to ensure the trained model generalized well to the

dataset collected in this study, we compared manual image
labels with EeLISA’s predictions on a set of 32 calibration scans,
with one scan selected randomly from each meadow in the cur-
rent study. One human expert manually labeled all 32 calibra-
tion scans, and two additional human experts labeled a

random subset of 10 calibration scans. The average difference
between EeLISA and the human labelers in scoring severity was
1.8% for the full calibration set and 1.5–2% for the subset of
10 calibration scans. These differences were comparable to the
differences among the three human labelers (1.1–1.4%), indi-
cating that the trained model generalized to the full dataset.

Analysis of eelgrass wasting disease
After training, we used EeLISA to classify the images of

leaves processed during the surveys. We determined disease
prevalence by the presence or absence of wasting disease
lesions in EeLISA’s classifications; total lesion area of each leaf
was output directly from EeLISA. We conservatively catego-
rized leaves with < 2 mm2 of total lesion area to be asymptom-
atic, that is, disease was absent, because human experts could
not reliably classify damaged areas < 2 mm2 during training
and calibration. Less than 3% of leaves were in this category.
We determined disease severity as the proportion of leaf area
covered by lesions using the lesion area and total leaf area
measured by EeLISA. For leaves for which only damaged por-
tions of tissue were scanned, we used the hand-measured leaf
area to determine severity. Our metric of disease severity is
similar to the wasting index proposed by Burdick et al. (1993);
however, the wasting index is the maximum percentage of
damaged leaf tissue across all leaves on an individual plant
whereas in this study we measured severity for the third-rank
leaf only. Disease severity of the third-rank leaf is therefore
not directly comparable to the plant-level wasting index. We
restricted this analysis to third-rank leaves because older leaves
with deteriorating tissue and high epiphyte loads could not be
reliably cleaned for imaging and because third-rank leaves

Fig. 3. Schematic of the EeLISA. (a) Diagram of EeLISA’s workflow, including the positive feedback loop between the machine learning module, human–
computer interaction in the labeling application, and the data analysis module. (b) Schematic of the machine learning module, a fully CNN that takes as
input a full scan and outputs a matrix of the same dimensions as the original image, with each pixel classified. (c) Schematic of the labeling application
where the user is shown the original scan, overlaid with EeLISA’s predictions.
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integrate environmental conditions over roughly the most
recent 2–6 weeks, compared to younger first and second-rank
blades (Sand-Jensen 1975).

Verification of pathogen presence
We used qPCR to verify that L. zosterae DNA was present in

tissue samples with disease signs visually characteristic of eel-
grass wasting disease; samples for qPCR were collected at the
five meadows in Washington. We further used histological
analysis to identify L. zosterae cells within diseased plant cells,
qualitatively supporting the presence of L. zosterae as an infec-
tious agent. Additional details are available in the Supporting
Information.

Temperature
We compared eelgrass wasting disease to SST across the

study range using 1-km gridded daily SSTs from Group for
High-Resolution SST Level 4 analyses, available via NASA’s
PODAAC portal. This global SST dataset assimilates multisensor
satellite data as well as in situ measurements from NOAA
iQuam project and meteorological stations. The major SST
source was the Multi-Scale Ultra-High Resolution (MUR) prod-
uct (JPL MUR MEaSUREs Project 2015), with auxiliary data
from the Global 1 km SST (G1SST) product (Chao et al. 2009).
The coordinates of some meadows fell within the land mask of
the SST records; for these sites, we identified the closest ocean
pixel within 2 km. The MUR and G1SST products center the
1-km pixels over different points; we accessed both products in
order to retrieve SST records for the maximum number of
coastal meadows (27 of 32 meadows, Supporting Information
Table S1). We excluded one OR meadow, one BB meadow, and
three SD meadows from the temperature analysis because they
were located in enclosed estuaries and/or distant from the estu-
ary mouth such that the closest ocean pixels were offshore,
beyond the estuary areas. The SST values likely did not fully
capture thermal variation in the intertidal seagrass meadows;
however, comparison between daily SSTs and mean daily in
situ temperatures recorded on HOBO MX 2201 temperature
loggers (Onset) deployed at each meadow site showed consis-
tent linear relationships (Supporting Information Fig. S3). The
SSTs were therefore a reasonable proxy for thermal exposure,
and the long-term SST record allowed for calculation of thermal
anomalies relative to long-term temperatures.

We retrieved daily SSTs from the MUR and G1SST satellite
products for 27 meadows from June 2011 to August 2019. To
explore the relationship between temperature and eelgrass
wasting disease, we compared meadow-level prevalence, severity,
and lesion area to monthly and seasonal mean and maximum
temperatures from January to June 2019 (Supporting Informa-
tion Table S2). Given the spread in local temperatures across the
study range (Supporting Information Fig. S2), and the likely
adaptation of eelgrass populations to local temperature regimes
(Beca-Carretero et al. 2018; King et al. 2018; DuBois et al. 2022),
we also calculated relative metrics of anomalies above long-term
mean and 90th percentile temperatures. Long-term temperatures

were based on 11-d rolling averages over the 9-yr period of avail-
able SST (Hobday et al. 2016). We calculated cumulative positive
temperature anomalies as the sum of positive anomalies during
each month from January to June 2019 and for 14, 30, 45, 60,
and 90 d prior to site-specific sampling dates. Cumulative posi-
tive temperature anomaly in June 2019 had a clear and signifi-
cant correlation with disease prevalence (Supporting Information
Table S2), so we selected this relative metric to explore further
through statistical modeling.

Statistical analysis
We constructed statistical models of wasting disease preva-

lence, lesion area, and severity at the scales of meadows, tran-
sects, and individual leaves using R (version 4.0.3). For meadows
and transects, prevalence was the proportion of diseased leaves
out of the total leaves sampled; for leaves, prevalence was the
presence or absence of lesions. The predictors in the models were
measured at different scales (leaf area at the scale of individual
blades, shoot density and epiphyte load at the scale of 20-m
transects, and temperature anomaly at the scale of individual
meadows). By comparing models across the different scales of
analysis, we investigated the relative importance of predictors
measured at different scales, to understand if the coarse resolu-
tion (1-km) temperatures influenced disease metrics within
meadows compared to the finer-resolution seagrass predictors.

For meadows, we used beta regression (Douma and
Weedon 2019) and the package betareg (Cribari-Neto and
Zeileis 2010) to model prevalence and severity as functions of
cumulative SST anomaly as a single fixed effect and in combi-
nation with leaf area, shoot density, and epiphyte load
(Supporting Information Table S3). We used generalized linear
mixed models (GLMMs) with gamma distribution to model
lesion area, using the package glmmTMB (Brooks et al. 2017).
For transects and leaves, we constructed models using a hurdle
approach (Zuur et al. 2009), with all leaves included in the
prevalence models and only leaves with disease signs included
in the severity and lesion area models. We used GLMMs with
a binomial distribution to model prevalence, mixed-effect beta
regression to model severity, and GLMMs with gamma distri-
bution to model lesion area, all using the glmmTMB package.
We compared models with fixed effects of SST anomaly, leaf
area, shoot density, epiphyte load, tidal height (upper or
lower), and all interactions between tidal height and other
fixed effects to models that excluded interactions and tidal
height (Supporting Information Tables S4, S5). We included
tidal height as a fixed effect to test whether upper intertidal
conditions, likely including increased desiccation and expo-
sure, were associated with greater disease as has been shown
in prior work (Groner et al. 2016). For the leaf-level models,
we used transect-level means of shoot density and epiphyte
load. Random effects were meadow nested within region for
transect-level models and transect nested within meadow
nested within region for leaf-level models.

Aoki et al. Seagrass disease linked to warming

5



Due to the lack of temperature data for five meadows, we
ran parallel models, first using data from all 32 meadows and
excluding the temperature anomaly effect and second on a
restricted dataset from 27 meadows with SSTs and including
temperature anomaly as a fixed effect. We compared standard-
ized effect sizes and conditional and marginal R2 values
between models to understand the effect of temperature
anomaly and to confirm the restricted dataset did not distort
the effects of seagrass metrics compared to the full dataset. For
all model sets, we determined best-fitting models using AIC
and Akaike weight (Zuur and Ieno 2016) and validated models
with residual simulations using the DHARMa package
(Hartig 2020). We considered effects significant for p < 0.05.

Results
Temperature and disease at the meadow scale

Across the study range, wasting disease prevalence and
lesion area increased with cumulative positive temperature
anomalies. Daily anomalies ranged from �3.6�C to 2.5�C across
meadows and cumulative positive anomalies over the month
of June ranged from 0�C to 24.1�C (Fig. 4). Both cumulative
anomaly in June and leaf area were significant predictors of
meadow-wide disease prevalence in July (Fig. 5a,b), together
explaining 33% of variation (Supporting Information Table S8),
but leaf area had a much smaller effect size (Supporting Infor-
mation Fig. S4). For lesion area, temperature anomaly was sig-
nificant while leaf area was not, together explaining 22% of
variation (Fig. 5c,d; Supporting Information Table S8). For dis-
ease severity, leaf area was a significant predictor but tempera-
ture anomaly was not together explaining 43% of variation
(Fig. 5e,f; Supporting Information Table S8). Similarly, tempera-
ture anomaly was a significant predictor of prevalence and
lesion area but not severity for transect- and leaf-level models
(Supporting Information Figs. S5, S6). One meadow (BB-E)
appears as an outlier, with a high cumulative temperature
anomaly yet low disease prevalence; thermal and saline stratifi-
cation at this low-inflow estuary site may account for this dif-
ference (Hearn and Largier 1997). Excluding this meadow, we
found a stronger link between meadow-scale prevalence and
temperature anomaly (pseudo-R2 = 0.49).

In contrast to the significant link between warm tempera-
ture anomalies and wasting disease, we found no associations
between absolute temperature metrics in winter, spring, or
summer and disease in summer (Supporting Information
Table S2). Across the meadows, daily winter temperatures
ranged from 5.3�C to 16.1�C, daily spring temperatures ranged
from 6.3�C to 19.5�C and daily summer temperatures ranged
from 10.8�C to 22.6�C (Supporting Information Fig. S2).

Wasting disease across latitudes
Wasting disease prevalence, severity, and lesion area varied

substantially without any strong latitudinal trend (Fig. 6).
Between regions, prevalence was highest in WA (70%) and

lowest in OR (20%); however, there was considerable variation
within regions (e.g., prevalence ranged from 11% to 92% across
the six BB meadows). Disease severity was less variable than prev-
alence between regions but again varied substantially within
regions (e.g., severity ranged from 2% to 31% across the five WA
meadows). Lesion area was highest in WA and BB and lowest in
OR and SD.

Temperature and disease at transect and leaf scales
Across the transect- and leaf-level models, cumulative SST

anomaly had a larger standardized effect size on disease preva-
lence than any seagrass metric, except for shoot density in the
leaf-level model of lesion area (Supporting Information
Figs. S5, S6). Models that included cumulative anomaly as a
predictor explained more variation in prevalence and lesion area
than models with only eelgrass metrics (higher marginal R2), and
models with eelgrass metrics alone explained little variation in
prevalence compared to random effects of location. Eelgrass met-
rics explained a moderate amount of variation in disease severity
(Supporting Information Table S8). Shoot density had a consis-
tent positive correlation with prevalence and lesion area and was
positively correlated with severity at the leaf level. Leaf area had
a consistent negative correlation with severity, a consistent posi-
tive correlation with lesion area, and was positively correlated
with prevalence at the leaf level. Epiphyte load had a positive
correlation with severity at the leaf level (Supporting Information
Fig. S6). Tidal height did not directly affect disease metrics, but
did interact with shoot density, likely due to peak shoot densities
along upper intertidal transects at two sites in BC (Supporting
Information Figs. S7, S9).

Application of EeLISA to identify eelgrass wasting disease
EeLISA accelerated the workflow of disease detection by

more than 5000� and eliminated the need for a trained
human expert at every sampling site. Image processing time
using EeLISA was less than 5 min, whereas a conservative esti-
mate of human expert processing time, based on prior studies
without EeLISA (Groner et al. 2016; Dawkins et al. 2018),
would be 7 min per leaf, or 432 h for the complete dataset of
3702 leaves. Calibration testing showed that EeLISA produced
image segmentation comparable to a human expert using
novel images drawn from all study regions. Eelgrass shoot
morphology varied substantially across regions (Supporting
Information Fig. S10), and EeLISA’s success across variation of
three orders of magnitude in leaf area, and across the irregular-
ities in images prepared by > 20 personnel, demonstrates the
power and flexibility of this application.

Verification of pathogen presence
Positive amplification of L. zosterae DNA from diseased tis-

sue samples confirmed the presence of this pathogen in lesion
tissue samples, and positive identification of L. zosterae cells in
histological samples qualitatively indicated the presence of
the pathogen within plant cells (Supporting Information
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Table S9). Together, the qPCR and histology indicated that
lesions visually identified as eelgrass wasting disease were signs
of infection by L. zosterae, supported by prior studies that con-
firmed L. zosterae infection in field-identified lesion tissue at
several of our study sites in WA and OR (Groner et al. 2016;
Yoshioka et al. 2019).

Discussion
By leveraging AI to conduct rapid and standardized surveys,

we quantified eelgrass wasting disease at an unprecedented
spatial scale from southeast Alaska to southern California, and
we linked disease prevalence and lesion area to warm tempera-
ture anomalies across latitudes. In our analysis, absolute tem-
perature and geographical region were not significant
predictors of disease, indicating that disease is not a problem
restricted to populations at geographic range limits or those at
warmest latitudes. Indeed, our findings suggest that the risk of
eelgrass wasting disease outbreaks will increase with climate-
induced warming throughout the entire range of eelgrass.

A key finding from this study is that the cumulative posi-
tive temperature anomaly in the month of June was the stron-
gest predictor of infections in July. This suggests an
accumulating negative impact of the warm anomaly on eel-
grass performance, as has been documented in mesocosm
experiments (Reynolds et al. 2016; Saha et al. 2020). A cumu-
lative temperature effect may explain why laboratory incuba-
tions have not generally shown a strong effect of elevated
temperature on wasting disease infection, as experimental
L. zosterae inoculation typically occurs within a day of temper-
ature treatments (Dawkins et al. 2018; Brakel et al. 2019). The
cumulative anomaly effect further demonstrates that tempera-
tures do not have to be extreme to cause negative impacts
(Reynolds et al. 2016; DuBois et al. 2020), including a negative
carbon balance in the plant (Lee et al. 2007; Nguyen
et al. 2021). Warming increases growth of the pathogen
(Dawkins et al. 2018), reduces the availability of resources for
plant immune response (Vergeer et al. 1995), and may impact
eelgrass–L. zosterae interactions indirectly through changes to
the eelgrass microbiome (Trevizan Segovia et al. 2021) and

Fig. 4. Daily SSTs and anomalies for June 2019. Daily SSTs (a) ranged from � 12�C to 20�C across the study range in June 2019. Solid lines show site-
specific temperature records, dashed black lines show the regional long-term mean temperature. Cumulative positive temperature anomaly (b) in June
2019 reached maximum values of � 24�C (over 30 d) for sites in Alaska and Washington. Daily temperature anomalies were calculated relative to site-
specific long-term means and summed over the month of June.
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epifauna grazers (Reynolds et al. 2018). Although we cannot
distinguish between these likely simultaneous mechanisms in
this study, the overarching relationship between warm water

anomalies and both disease prevalence and lesion area sug-
gests that eelgrass wasting disease will be sensitive to increas-
ing water temperatures from climate change.

Fig. 5. Effects of cumulative positive temperature anomaly in June and leaf area on wasting disease prevalence, severity, and lesion area at the meadow
scale. Both cumulative anomaly in June (a) and leaf area (b) were significant predictors of wasting disease prevalence. For lesion area, cumulative anomaly
was a significant predictor (c) and leaf area was not (d). For wasting disease severity, cumulative anomaly was not a significant predictor (e) whereas leaf
area was significant (f). Solid lines show simulated model predictions of disease prevalence and severity across the range of the variable of interest while
holding the second predictor constant at the median value (median cumulative anomaly was 11.7�C, median leaf area was 29.1 cm2). Dashed lines show
the 97.5% and 2.5% quantiles of the simulation. See Supporting Information Fig. S4 for effect sizes and p-values.
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The link between increased wasting disease and warm water
anomalies, rather than absolute temperature, highlights the
importance of eelgrass adaptation to local conditions. Eelgrass
is widely distributed, occurring from � 30�N to 70�N; optimal
temperatures for growth and photosynthesis vary across this
range and generally fall between 15�C and 25�C (Lee
et al. 2007). However, populations in different geographic
regions occupy distinct thermal niches. Prior work has shown
that northern (pole-ward) populations are more sensitive to
absolute warming, with plant respiration increasing more rap-
idly at lower absolute temperatures compared to more south-
ern populations (Beca-Carretero et al. 2018), and that
southern (equator-ward) populations recover more quickly
from exposure to high absolute temperatures (Franssen
et al. 2011; Jueterbock et al. 2016). Our findings emphasize

the importance of relative warming since similar absolute tem-
peratures can represent different intensities of temperature
anomalies for distinct eelgrass populations. For example, in
2019, absolute spring temperatures were similar in our British
Columbia and Washington sites, and absolute summer tem-
peratures were warmer in British Columbia (Supporting Infor-
mation Fig. S2), but temperature anomalies, as well as disease
metrics, were higher in Washington (Figs. 4, 6). Both genetic
adaptation and local acclimation (phenotypic plasticity) likely
play a role in these differing responses to thermal stress
(Reynolds et al. 2016; King et al. 2018; DuBois et al. 2020).
Even at limited spatial scales within our regions, populations
of eelgrass separated by less than 20 km exhibit adaptation to
local thermal conditions (DuBois et al. 2022). This study con-
nects increases in disease prevalence and lesion area with local

Fig. 6. Wasting disease metrics across the study sites. Wasting disease prevalence (a), lesion area (b), and severity (c) varied between sites and regions
with no overarching geographic pattern. Regions are arranged from north (Alaska, AK) to south (California—San Diego, SD) and sites are ordered by lati-
tude within each region. Round points show the site-level mean (� SE, n = 96–120 eelgrass leaves), with labels A–F. Stars show the regional means (� SE,
n = 5–6 meadows), labeled Rg.
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warming regardless of absolute temperature, emphasizing the
vulnerability of eelgrass across its geographic range.

Our disease metrics of lesion area and disease severity
responded differently to warm temperature anomalies,
highlighting the complexity of eelgrass wasting disease dynam-
ics. Below an optimal threshold, warming increases eelgrass
growth (Lee et al. 2007); because disease severity standardizes
lesion area by leaf area, enhanced plant growth may outpace
lesion growth andminimize increases in ourmeasure of severity,
despite increased lesion area. Eelgrass also exhibits consistent rel-
ative growth rates of 1–2% per day globally, which means that
longer leaves grow faster in absolute terms (Ruesink et al. 2018),
and the negative correlation between disease severity and blade
area shownhere and in priorwork (Groner et al. 2016, 2021) sug-
gests that eelgrass leaves can outgrow lesions. However, in some
cases, possibly when plants are stressed, lesion growth rate can
outpace leaf growth (Graham et al. 2021). Furthermore, the posi-
tive correlation of lesion area with temperature anomalies sug-
gests that damage to plant tissues from wasting disease will
increase with warming. Larger lesion areas will reduce photosyn-
thetic capacity and can damage plant tissue that is not visually
infected (Ralph and Short 2002). Infected plants also grow more
slowly, and plants with more severe infections can accumulate
less sugar in belowground tissues (Graham et al. 2021). Many of
the meadows surveyed here may therefore experience negative
physiological impacts, with possible consequences for dimin-
ished ecosystem function.

Correlations between disease and temperature anomalies
indicate the importance of ecosystem-scale environmental
conditions. Across the spatial scales of our analysis (meadow,
transect, leaf), temperature anomaly measured at the meadow
scale (1-km resolution) was a stronger predictor than eelgrass
predictors measured at finer scales. Shoot density and leaf area
likely increase prevalence of wasting disease and lesion area by
increasing direct transmission of the pathogen through con-
tact with diseased tissue (Groner et al. 2016), and in our analy-
sis these plant characteristics were more important to
understand wasting disease at smaller spatial scales. Variation
in ecosystem-scale environmental conditions other than tem-
perature will also affect eelgrass wasting disease. Abiotic fac-
tors such as salinity and light have interactive effects on
disease in laboratory studies (Dawkins et al. 2018; Brakel
et al. 2019; Jakobsson-Thor et al. 2020) and likely played a role
in the 1930s eelgrass wasting disease pandemic (Sullivan
et al. 2013). These and additional factors, ranging from nutri-
ent availability to pathogen virulence, were not captured in
the surveys and may interact with warming temperatures.
Here, we delineate the relationship between localized warming
and wasting disease across an unprecedented geographic scale,
revealing the urgency for further work, including monitoring
over time, to fully characterize the temperature sensitivity of
eelgrass wasting disease and to develop forecasting tools.

Surveillance at relevant spatial and temporal scales is criti-
cal to successful management and mitigation of disease

(Maynard et al. 2016). EeLISA, the AI system we deployed in
this study, facilitates the rapid disease detection necessary for
effective surveillance by vastly reducing the time required for
image analysis while providing results comparable to a human
expert. In marine ecosystems, near real-time monitoring and
forecasting tools have been developed for coral bleaching (Liu
et al. 2014), but other widely distributed and ecologically dis-
ruptive diseases, including dermo in Eastern oysters (Burge
et al. 2014), withering syndrome in abalone (Friedman and
Finley 2003) and sea-star wasting disease (Harvell et al. 2019)
have only been studied retrospectively. EeLISA demonstrates
how the application of AI to detect disease outbreaks can
accelerate and standardize surveillance for the globally distrib-
uted eelgrass wasting disease; this AI system could be
expanded to incorporate Labyrinthula infections of other
seagrass species (Sullivan et al. 2018) and potentially diseases
of other marine foundation species, especially those that cause
visible changes to coloration of plant tissue, such as bacteria-
induced bleaching in macroalgae (Case et al. 2011). More
broadly, EeLISA extends recent efforts to apply AI image analy-
sis for detection of crop disease (Mohanty et al. 2016) to
marine ecosystems and creates opportunities for streamlined
disease surveillance in coastal habitats.

As oceans warm, characterization of temperature–disease
relationships is needed to develop forecasting tools to inform
management and conservation actions (e.g., as for coral
bleaching, Liu et al. 2014; Maynard et al. 2016). By docu-
menting correlations between disease metrics and warm
water anomalies across a broad geographic range, our results
improve understanding of the temperature sensitivity of eel-
grass wasting disease. By identifying a relevant temperature
metric, cumulative anomaly in June, these results can inform
future efforts to predict outbreaks. Similar metrics that inte-
grate temperature exposure over time are used in agronomy
to time pest control interventions (e.g., degree-days, Knutson
and Ree 2019); in marine systems, integrated exposure met-
rics for low pH to can support timing of interventions in
commercial oyster hatcheries to mitigate effects of ocean
acidification (Gimenez et al. 2018). Although interventions
to treat eelgrass wasting disease outbreaks have not yet been
developed, tracking these outbreaks is a valuable first step as
a sentinel for impending bed decline. Meadows with high
disease levels will benefit from management actions that
improve growing conditions by minimizing non-disease
stressors (e.g., through improved water quality, protection
from boat anchoring) and thus provide a better environment
for seagrass to resist both disease and temperature stress.
Identification of eelgrass populations that are particularly
vulnerable to disease, based in part on exposure to warming,
can guide prioritization of conservation effort, similar to
approaches in coral reef management (Beeden et al. 2012;
Darling et al. 2019).

Anthropogenic climate change is increasing positive SST
anomalies (Laufkötter et al. 2020), which in turn can increase
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disease across taxa (Burge et al. 2014). Climate warming is a
major threat to seagrasses (Duarte et al. 2018) and this large-
scale study demonstrates that local warming will increase dis-
ease risk for eelgrass populations across the species’ range,
not just for edge-of-range populations. The advances pres-
ented here, including the ability to rapidly detect disease
signs using AI for image analysis and the application of
global SST data to characterize temperature-disease relation-
ships, can provide a foundation for understanding, monitor-
ing, and predicting marine disease dynamics under climate
change. As warming increases the risk of outbreaks, new
technologies that enable disease surveillance and forecasting
at geographic scales will be key to preserving coastal ecosys-
tems and the essential social and economic benefits they
provide.

Data availability statement
Data and code for this paper are available at doi.

org/10.5281/zenodo.4776958.
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