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Introduction

The key role of microbes in soil processes has been appreciated for decades. In his book Principles of 
Soil Microbiology, Selman Waksman [1927] noted that soil organic matter “depends upon the activities of
the soil microorganisms, which are in their turn influenced by environmental soil conditions including 
moisture, aeration, soil reaction, and presence of available nitrogen and mineral nutrients” (p. 669). This 
statement foreshadowed a current, 21st century, explosion of interest in linking microbial communities 
with soil functioning and global change [Bardgett et al., 2008]. Despite this renewed interest, our ability 
to make reliable, quantitative predictions of microbial functioning has advanced relatively little since the 
1920s. The aim of this chapter is to provide relevant background and a vision to overcome this challenge.

As key players in all of the planet’s biogeochemical cycles, microbes influence ecosystem process rates 
and their responses to human-caused perturbation [Singh et al., 2010]. For example, microbes control soil
carbon sequestration through decomposition of organic matter (a loss pathway) and formation of stable 
organic residues (an input pathway). Bacteria, fungi, and archaea mineralise nutrients that support plant 
growth in unmanaged and agricultural ecosystems. Soil methanogens produce methane, a potent 
greenhouse gas, while methanotrophs consume methane [Gulledge and Schimel, 2000; McCalley et al., 
2014]. Nitrifiers and denitrifiers produce nitric and nitrous oxide gases that contribute to air pollution and 
greenhouse warming, respectively [Firestone et al., 1980; Firestone and Davidson, 1989].

Now is an opportune time to make progress on predictive models of microbial processes in soil. That 
microbes influence biogeochemical processes has long been known, but there is increased urgency to 
predict how these processes and their associated ecosystem services will respond to human-caused 
environmental change. Harking back to Waksman, environmental conditions such as temperature, 
moisture, nutrient availability, and organic matter inputs are being altered at a global scale through 
changes in land use, climate, and nutrient inputs.

Reliable predictions require more than just recognition that microbes are important for a process. 
Fundamental, mechanistic understanding must be established from empirical studies. The mechanisms 
must be unified into a theoretical framework that provides a basis for quantitative mathematical models. 
The models must then be scaled, analysed, and validated against independent observations. Often, the 
models fail to predict patterns in the data and must be refined over and over again. Perhaps not 
surprisingly, this challenging series of steps has not yet been accomplished at a large scale with soil 
microbes [Wieder et al., 2015].

Still, several recent scientific developments make a focus on prediction tractable and worthwhile. The 
molecular revolution (genomics, metabolomics, proteomics, etc.) and the microbiome concept have 
increased the potential for rapid advances in fundamental understanding of diverse microbial communities
[Tringe et al., 2005; Sharon et al., 2013]. Although more work must be done to fully interpret the datasets 
emerging from these advances, it is now feasible to quantify the genetic content and distribution of soil 
microbes at high spatial, temporal, and taxonomic resolution. Well-conceived models are essential for 
translating genetic data into predictions with relevance for critical environmental issues.

Another key discovery is that biological processes interact dynamically with the physical environment to 
influence ecosystem processes. Soils are complex adaptive systems [Levin, 2002] in which biological 
interactions may be quantitatively important relative to abiotic factors in determining function. Rather 
than just responding to the environment, as Waksman suggested, soil microbes alter the environment 
through a range of eco-evolutionary mechanisms that were not well understood a century ago. For 
example, social evolution theory (related to game theory) has informed our understanding of mutualistic 
and antagonistic interactions that play out among microbes [Allison, 2005; West et al., 2006; Folse and 
Allison, 2012; Foster and Bell, 2012].
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In the short term, microbes can acclimate to environmental changes through physiological mechanisms. 
Changes in gene expression may result in acclimation to temperature, substrate availability, and time of 
day [Hurley et al., 2014]. Yeasts can acclimate their physiology in anticipation of future environmental 
changes [Mitchell et al., 2009]. Acclimated microbes should respond differently to environmental 
changes than non-acclimated microbes, meaning that predictive models need to account for physiological 
mechanisms [Crowther and Bradford, 2013].

Likewise, numerous studies have shown that the genetic content of microbial communities also changes 
with the environment [Shade et al., 2012]. Both evolutionary and ecological mechanisms contribute to 
such responses. Genetic variants with higher fitness in a given environment will increase in frequency due
to natural selection. Experimental evolution studies have shown for example that bacterial genes 
associated with stress tolerance and protein stability increase rapidly in frequency under selection by high 
temperatures [Tenaillon et al., 2012]. Shifts in the environment often alter the competitive interactions in 
soil microbial communities, leading to changes in composition and functioning through ecological 
mechanisms [Allison and Martiny, 2008].

Advances in our understanding of physiological, evolutionary, and ecological mechanisms in microbial 
communities are relevant for building predictive models. Such models must be able to predict phenomena
such as hysteresis and historical contingencies. Hysteresis occurs when a the relationship between a 
process rate, such as soil respiration, and an environmental driver, such as temperature, differs based on 
the previous state of the system (i.e., whether the system was recently warm or cold) [Updegraff et al., 
1998]. Historical contingencies, or legacies, arise when a current process rate depends on the history of 
the system in addition to current environmental conditions [Evans and Wallenstein, 2012]. Both hysteresis
and historical contingencies are likely driven by physiological, evolutionary, and ecological responses of 
microbial communities.

History of microbial biomass models

Models of microbial processes in soil have evolved considerably over time. The first large-scale 
biogeochemical models such as RothC and CENTURY included microbial biomass, but it played no 
direct role in organic matter decomposition [Jenkinson and Rayner, 1977; Parton et al., 1988]. Instead the 
models assumed that microbial activity was a linear function of the substrate pool size. Factors like 
substrate chemistry, temperature, moisture, and soil texture were included as coefficients in the linear 
function. Schimel [2001] defines this approach as implicit with the dynamics and influence of the 
microbial community implied indirectly by the environmental conditions. An implicit approach is 
convenient because linear models are easy to analyse mathematically [Xia et al., 2013], and they make 
predictions that are consistent with empirical data from laboratory and field experiments [Powlson et al., 
2011].

On the other hand, models with explicit microbes represent a direct role of microbial biomass in soil 
processes [Schimel, 2001]. The defining feature of microbial-explicit models is the mathematical 
coupling of dynamic microbial biomass with substrate pools [Todd-Brown et al., 2012]. Substrate 
decomposition rates depend on the quantity of microbial biomass, and microbial biomass depends on the 
quantity of substrate. In some microbial-explicit models, decomposition rates depend on enzymes 
produced by microbes rather than the quantity of microbial biomass per se [Allison et al., 2010]. Organic 
matter loss rates in all microbial-explicit models are non-linear with respect to substrate concentration 
because of the coupling to microbial biomass.

The concept of explicit microbes dates back at least to Waksman [1927], but microbial-explicit 
mathematical models did not appear until almost 50 years later. In 1979, O. L. Smith described and 
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validated an analytical model of soil organic matter decomposition [Smith, 1979a, 1979b]. The model 
represented enzymatic degradation of multiple substrate pools with Michaelis-Menten kinetics and 
included carbon, nitrogen, and phosphorus submodels along with a plant component. Yet Smith’s model 
failed to gain a major foothold in the biogeochemical literature, possibly because it was viewed as too 
complex [Andrén and Paustian, 1987] or contained too many equations [Fawcett and Higginson, 2012]. 
Not until almost 25 years later did the idea begin to take hold with models by Schimel and Weintraub
[2003] and Fontaine and Barot [2005].

Over the last 10 years, there has been an explosion of interest in microbial-explicit models. They have 
begun to include aspects of microbial functional diversity [Allison, 2005; Moorhead and Sinsabaugh, 
2006] and explore responses to changing environmental conditions [Allison et al., 2010; Davidson et al., 
2012; Sistla et al., 2014]. Newer models consider important microbial interactions with soil mineralogy
[Wang et al., 2013; Wieder et al., 2014]. Several models have been scaled up to simulate soil carbon pools
and dynamics in the Earth system [Wieder et al., 2013; Sulman et al., 2014]. Enough conceptual diversity
has developed to allow model intercomparisons and data assimilation at the local to global scale
[Lawrence et al., 2009; Li et al., 2014; Wang et al., 2014; Hararuk et al., 2015], and readers may consult 
recent review articles dedicated to microbial-explicit models [Todd-Brown et al., 2012; Wieder et al., 
2015].

All of this attention has stimulated calls to incorporate microbial-explicit models into Earth system 
models as an alternative to conventional first-order models [Todd-Brown et al., 2012; Treseder et al., 
2012; Wieder et al., 2015]. Recent analyses have revealed major shortcomings with the conventional 
approach for modelling soil organic matter dynamics [Todd-Brown et al., 2013, 2014]. Still, scaling of 
microbial-explicit models should be done with caution. The modelling community has a responsibility to 
analyse the variation, advantages, and shortcomings inherent in the conceptual and mathematical diversity
of current microbial models. Such an effort will help instil confidence in global predictions that arise from
microbial-explicit models and ultimately appear in climate assessment reports that influence societal 
decisions. To that end, the following sections lay out key approaches at the heart of microbial modelling.

Figure 1. Distinction between the implicit approach to modelling microbial processes (A) and the microbial-explicit approach 
(B). SOC = soil organic carbon; MIC = microbial biomass carbon.
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Microbial modelling approaches

Under the implicit approach of conventional biogeochemical models, microbial communities are 
represented through environmental response functions (Fig. 1). For instance, a Q10 function is commonly 
used to describe how decay coefficients and soil respiration (k-values) increase with increasing 
temperature [Davidson et al., 2006]. This approach assumes that the rate of enzyme-driven microbial 
metabolism increases exponentially with increasing temperature. Most models also assume that the rate is
the same for metabolism of different soil substrates and microbial communities. Response functions for 
other environmental variables such as soil moisture and texture have different forms, but are also assumed
to apply across substrates and ecosystems.

The simplest explicit approach for representing microbial communities is to include a single biomass pool
that is mathematically linked to substrate inputs and outputs [German et al., 2012]. In this case the model 
fluxes are a function of the biomass pool size which is in turn dependent on substrate availability and 
environmental variables. For instance, the biochemical response to temperature is captured by modifying 
the kinetic parameters for enzyme catalysis. The form of this function is often very similar to the Q10 
function employed by conventional models. However with the microbial-explicit model, the kinetic 
parameters are biomass-specific, so changes in microbial biomass also influence the total rate of substrate 
decay by enzymes.

On one hand, this change in model approach is relatively subtle. There are no new pools; most 
conventional models already include pools for microbial biomass. The environmental response functions 
are nearly identical and involve the same parameters. Both model types include kinetic parameters—k-
values in the implicit models and Vmax values in the explicit models. Thus microbial-explicit models 
with a single biomass pool are not inherently more complex than implicit models.

On the other hand, differences in the mathematical structure of microbial-explicit models—how the pools 
interact—have a big impact on the model behaviours. In particular, the explicit models are less sensitive 
to changing inputs [Allison et al., 2010; Wieder et al., 2013]. As substrate pool sizes increase, so does 
microbial biomass. Because the two pools are mathematically coupled, the increase in biomass increases 
substrate turnover and reduces substrate pool size. Microbial-explicit models reflect Waksman’s 
(paraphrased) observation—microbes eat soil carbon.

In general, microbial-explicit models differ from implicit models in their response to perturbations. The 
up-and-down dynamics of coupled substrate and microbial pools manifest as oscillations in response to 
changes in pool sizes [Wang et al., 2014]. For example, if microbial biomass declines due to temperature 
effects on growth efficiency, substrate pool sizes increase. The increase then supports more biomass and 
the system exhibits oscillations that dampen over time.

It remains unclear whether the behaviours of simple microbial-explicit models are realistic. There is little 
empirical evidence that soil substrate and microbial biomass pools oscillate in response to disturbance. 
However, few studies have looked for such behavior, and there is some evidence from soil warming 
experiments, such as Harvard Forest, that the transient dynamics of microbial-explicit models are 
consistent with observational data [Allison et al., 2010]. The insensitivity of microbial-explicit models to 
substrate inputs is also debatable, as inputs are clearly required to generate soil organic matter in the first 
place. Still, the global-scale relationship between net primary production and soil carbon stocks is weak
[Todd-Brown et al., 2013], making it difficult to reject the microbial model predictions.

Another key question for microbial models is whether diverse communities should be represented as a 
single biomass pool. This simplifying assumption reduces the potential to incorporate many of the 
biological processes known to be important in microbial communities. To address this issue, a number of 
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microbial-explicit models include aspects of functional diversity in the microbial biomass pool by 
defining distinct functional groups or allowing for variation in functional traits [Moorhead and 
Sinsabaugh, 2006; Wieder et al., 2014].

Functional group approaches, common in vegetation models, separate biomass into classes with different 
functional parameters. For example, in vegetation models, functional groups are assigned based on leaf 
morphology (broadleaf or needleleaf), growth form (grass, shrub, tree), leaf longevity (deciduous versus 
evergreen), and other characteristics. The parameters are static within a functional group, so grasses 
cannot become trees, for instance. Moorhead and Sinsabaugh [2006] used an analogous approach with 
litter-decomposing microbes. They defined opportunist, decomposer, and miner guilds that target early, 
middle, and late stages of litter decay, respectively. As each functional guild consumes substrate, it alters 
the chemical environment and shifts the competitive landscape such that guilds bloom and die off in 
succession as litter decays. As with plant functional groups, the functional parameters of the microbial 
guilds do not change—succession is driven by the environment.

The functional group approach is one example of trait-based approaches that are now being applied to 
model functional diversity in microbial communities. A trait can be defined as a parameter associated with
the microbial biomass. For example, Moorhead and Sinsabaugh specified guilds based on traits like 
enzyme maximum catalytic rate (Vmax), enzyme half-saturation constant (Km), maximum substrate 
uptake rate, basal respiration rate, and C:N ratio. Other trait-based models use a continuous approach 
rather than specifying guilds a priori. Sistla et al. [2014] allowed the C:N ratio of the microbial biomass to
vary based on carbon substrate and soil nitrogen availability. Lower C:N ratios corresponded to 
bacterially-dominated communities whereas higher ratios corresponded to fungal-dominated 
communities.

A major challenge with trait-based approaches is that trait parameters are often uncertain, especially when
specifying many functional groups. To circumvent this issue, some models use a stochastic approach to 
assign trait parameters and allow environmental conditions to select, or filter, the resulting functional 
groups. This idea was pioneered by Follows et al. [2007] who randomly assigned trait parameters to 78 
hypothetical functional groups of phytoplankton and then observed the abundance and geographic 
distribution of each group after years of simulated competition in the global ocean. At the end of the 
simulation, the distributions of the dominant hypothetical groups matched the distributions of several 
known lineages of phytoplankton. There was also correspondence between the randomly-assigned trait 
parameters of the hypothetical groups and the measured traits of the known lineages—real patterns 
emerged from the model dynamics.

Allison [2012] applied a similar approach to litter-decomposing microbial communities. The model was 
able to replicate patterns in litter decomposition and enzyme activity from a Hawaiian rainforest, but the 
abundance distribution of hypothetical functional groups was more difficult to validate. Unlike with 
phytoplankton, the geographic distributions and functional trait parameters for most litter- and soil-
associated microbes are unknown.

Key microbial traits for modelling

The increasing interest in trait-based modelling approaches justifies a closer look at the key trait 
parameters involved in microbial functioning (Table 1). Community ecologists have developed a useful 
conceptual framework that distinguishes response and effect traits [Lavorel and Garnier, 2002; Webb et 
al., 2010]. Response traits govern the response of organismal physiology or abundance to environmental 
conditions, whereas effect traits describe how the organism affects biogeochemical processes. The 
categories are not mutually exclusive, as traits underlying growth, stoichiometry, and turnover influence 
both ecosystem processes and microbial responses to resource availability.
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Growth-related traits are fundamental for microbial-explicit modelling and fall into both response and 
effect categories. Typically the instantaneous growth rate of microbial biomass in these models is an 
emergent property determined by trait interactions with environmental conditions. The key underlying 
traits are related to resource acquisition and metabolic losses such as respiration. For heterotrophic 
microbes, resource acquisition is determined by kinetic parameters for uptake such as biomass-specific 
Vmax and Km. Biomass-specific Vmax can be specified directly or result from multiplying enzyme-
specific Vmax by the cellular investment in uptake enzymes, which allows for cellular regulation of 
uptake investment.

In many microbial-explicit soil models, resource acquisition by microbes also depends on extracellular 
enzyme traits [Allison, 2005; Wang et al., 2013; Kaiser et al., 2014]. Analogous to uptake, there are 
enzyme-specific kinetic parameters for Vmax and Km. Other trait parameters may determine investment 
in enzyme production expressed as a fraction of microbial biomass or microbial uptake. Therefore 
instantaneous resource acquisition rates for heterotrophic microbes may depend on a suite of kinetic traits 
that interact with the availability of high and low molecular weight substrates.

Table 1. Microbial trait parameters.

Parameter Description Values Units Citations

Enzyme-specific Vmax Quantity of product formed per unit 
time per unit enzyme

24-60 g g-1 day-1
[Allison et al., 2010; Wang et 

al., 2013]

Biomass-specific Vmax Quantity of product formed per unit 
time per unit microbial biomass

0.24 g g-1 day-1
[German et al., 2012; Li et al., 

2014]

Enzyme Km Michaelis-Menten half-saturation 
constant for enzymes

0.050-
0.600

g cm-3
[Allison et al., 2010; German et 

al., 2012; Wang et al., 2013]

Substrate Km Reverse Michaelis-Menten half-
saturation constant for substrate

0.0003 g C g-1 
soil

[Schimel and Weintraub, 2003]

Biomass-specific 
enzyme production

Quantity of enzyme produced per 
unit time per unit microbial biomass

0-0.00028 g C g-1 C 
day-1

[Allison, 2005, 2012, 2014]

Uptake-specific enzyme 
production

Quantity of enzyme produced per 
unit resource uptake

0-0.12 g C g-1 C [Allison, 2005, 2012, 2014; 

Kaiser et al., 2014]

Enzyme-specific uptake 
Vmax

Rate of resource uptake per unit 
enzyme

14400 g g-1 day-1
[Allison, 2005]

Biomass-specific uptake
Vmax

Rate of resource uptake per unit 
microbial biomass

0.012-
0.24

g g-1 day-1
[Wang et al., 2013; Li et al., 

2014]

Uptake Km Michaelis-Menten half-saturation 
constant for uptake proteins

1  10-6-3
 10-4

g cm-3
[Allison, 2005; Allison et al., 

2010]

Enzyme specificity Inverse of the number of substrates 
targeted by a given enzyme

1/3-1 [Allison, 2012]

Growth efficiency Fraction of resource uptake allocated 
to biomass growth

0.14-0.77 g g-1
[Six et al., 2006; Sinsabaugh et 

al., 2013]

Basal respiration rate Rate of respiration per unit microbial 
biomass for cellular maintenance

0.064-
0.216

g g-1 day-1
[Allison, 2005; Kaiser et al., 

2014]
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Enzyme respiration rate Rate of respiration per unit enzyme 
produced

0.1-1 g C g-1 C [Allison, 2005, 2012]

Bacterial cell size Mass of individual bacterial cells 30-300 fg C [Allison, 2005; Kaiser et al., 

2014]

Fungal cell size Mass of individual bacterial cells 750-7500 fg C [Allison, 2014; Kaiser et al., 

2014]

Cellular N quota Minimum fraction of cellular 
biomass as nitrogen

0.1 g g-1
[Allison, 2012]

Cellular P quota Minimum fraction of cellular 
biomass as phosphorus

0.015 g g-1
[Allison, 2012]

Biomass turnover rate Fraction of microbial biomass loss 
per unit time

0.01-0.04 day-1
[Allison, 2005, 2012]

Enzyme turnover rate Fraction of enzyme loss per unit time 0.020-
0.024

day-1
[Allison, 2012; Wang et al., 

2013]

Osmolyte content Fraction of microbial biomass 
allocated to osmolytes

0.10 g C g-1 C [Schimel et al., 2007]

Residue content Fraction of microbial biomass 
allocated to resistant compounds

0.5-0.94 g g-1
[Allison et al., 2010; Kaiser et 

al., 2014]

Vmax temperature 
sensitivity

Activation energy for Vmax 34-53 kJ mol-1
[Allison et al., 2010; Allison, 

2012; Wang et al., 2013]

Km temperature 
sensitivity

Activation energy for Km 20-30 kJ mol-1
[Wang et al., 2013; Allison, 

2014]

Growth efficiency 
temperature sensitivity

Change in growth efficiency per 
change in temperature

-0.016-0 g g-1 ºC-1
[Allison et al., 2010]

Turnover temperature 
sensitivity

Change in turnover rate per change in
temperature

0.003-
0.004

day-1 ºC-1
[Hagerty et al., 2014]

At a minimum, microbial-explicit models must include trait parameters for a convex (e.g. saturating) 
function that relates resource acquisition rate to resource pool size [Wutzler and Reichstein, 2008]. There 
must be a parameter that determines the maximum rate of resource acquisition, and the function must 
level off, otherwise microbial biomass grows indefinitely and consumes all substrate. Functions that level 
off with increasing substrate concentration (e.g. Michaelis-Menten kinetics), or increasing enzyme 
concentration [e.g. reverse Michaelis-Menten; Schimel and Weintraub, 2003] both serve this purpose. 

A number of other trait parameters specify metabolic losses from microbial biomass. Most models include
a growth efficiency parameter corresponding to the fraction of substrate uptake converted into microbial 
biomass, with the remainder being respired [Allison et al., 2010; Allison, 2014]. Some models also 
include a basal respiration parameter that specifies respiration rate as a fraction of microbial biomass
[Allison, 2005; Kaiser et al., 2014]. If there are pathways for enzyme or other metabolite production, 
these may be associated with respiratory fluxes as well [Allison, 2005; Kaiser et al., 2014]. Together, 
respiratory losses, metabolite production, and substrate uptake combine to determine the emergent growth
rate of microbial biomass.

Cell size is also an important trait for growth [Yoshiyama and Klausmeier, 2008]. Given a similar 
biomass-specific growth rate, larger cells divide less frequently and have lower population growth rates. 
Larger cells also have a lower surface area to volume ratio, which can reduce cell-specific resource uptake
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rates. In models, specifying larger minimum cell sizes or larger cell sizes required for duplication results 
in lower microbial population sizes and potentially lower resource acquisition rates. Smaller populations 
reduce the spatial extent of microbial biomass and may be at higher risk for stochastic extinction.

Aside from cell size, trait parameters may specify growth form. Some microbes, such as fungi and 
actinomycetes, display filamentous growth whereas many bacteria and archaea grow as colonies on 
surfaces. Still others are free-living in aqueous phases. Filamentous growth may be specified in cellular 
automaton models with probabilities of movement differing for each growth direction [Boswell, 2008]. 
Instead of new biomass spreading out from a central point at random, the growth becomes directional. 
Directionality rules may be combined with physiological differences associated with filamentous growth, 
particularly the ability to translocate carbon and nutrients along the filaments. In this way, fungal growth 
strategies can be represented in microbial models as large cells that grow directionally with connectivity 
of nutrient pools [Allison, 2014].

For models including nutrient dynamics, cellular stoichiometry is a key trait. Stoichiometry may be 
specified as a fixed parameter [Kaiser et al., 2014] or vary within maximum and minimum limits
[Allison, 2012; Sistla et al., 2014]. When metabolic processes result in biomass stoichiometry that 
deviates from the fixed value or exceeds the limits, the elements in excess are lost. For example, cells 
respire excess carbon as CO2 or mineralise excess nitrogen. In some models, cellular stoichiometry may 
also affect resource uptake rates through a nutrient demand function [Allison, 2005]. When microbes with
different life history traits and stoichiometric ratios are represented in microbial models, feedbacks in the 
microbial community can alleviate nutrient limitation [Kaiser et al., 2014].

To prevent microbial biomass from growing indefinitely, models must specify parameters for biomass 
turnover. Processes such as predation, starvation, and environmental stress may trigger microbial 
turnover, although the mechanism is usually not defined explicitly in models. Turnover rate parameters 
may reflect traits of the microbial biomass as well as external drivers, such as predation pressure. Many 
modelling studies have specified turnover rates as constants [Schimel and Weintraub, 2003; Moorhead 
and Sinsabaugh, 2006; Allison et al., 2010], but microbial traits such as cell wall thickness, investment in 
osmolytes, and antibiotic production could cause variation in turnover rates. In their MIMICS model, 
Wieder et al. [2014] assign different turnover parameters to microbial functional groups with fast versus 
slow growth strategies.

Related to turnover are traits that affect the fate of dead microbial biomass. Microbial residues are thought
to be important contributors to soil organic matter formation [Grandy and Neff, 2008]. Most conventional 
and microbial-explicit models include transfer coefficients that specify the fraction of turnover entering 
one or more soil carbon pools, which may include dissolved or polymeric forms [Schimel and Weintraub, 
2003; Allison et al., 2010; German et al., 2012; Kaiser et al., 2014]. Many studies use a constant transfer 
coefficient, although the MIMICS model specifies a higher transfer of residues to soil organic pools from 
the slow-growing microbial functional group [Wieder et al., 2014], and Kaiser et al.’s [2014] model 
represents variation in the stoichiometry of residues. MIMICS assumes that microbial traits such as cell 
wall chemistry differ across functional groups and alter the fraction of dead biomass that is stabilized as 
SOC versus being respired quickly as CO2 or transferred to fast-turnover pools like DOC.

Microbial modelling studies have started to explore the consequences of response traits related to 
temperature and moisture. Response trait parameters are used as coefficients in functions that specify how
resource acquisition, growth, and turnover traits vary with environmental conditions. For example, 
enzyme Vmax can be specified as a constant [Schimel and Weintraub, 2003], or a function of 
temperature. Several microbial-enzyme models use the Arrhenius function to describe the temperature 
relationship, effectively defining the activation energy as a response trait parameter [Allison et al., 2010; 
Wang et al., 2013; Wieder et al., 2013].
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This response function approach has been implemented in a number of microbial-explicit models with a 
range of trait parameters. Equilibrium soil carbon pools are very sensitive to varying the slope parameter 
in a linear function describing the dependence of microbial growth efficiency on temperature [Allison et 
al., 2010; Li et al., 2014]. An analogous sensitivity is apparent when microbial turnover rates increase as a
function of increasing temperature [Hagerty et al., 2014]. Moisture responses are not yet well studied, but 
there are efforts underway to define moisture response functions for enzyme kinetic parameters and 
microbial turnover rates (Allison unpublished).

Due to physiological and evolutionary constraints, traits are often correlated. For example, high rates of 
resource acquisition correlate with low growth yields [Pfeiffer et al., 2001], and this rate-yield tradeoff is 
well-established in microbial physiology [Frank, 2010]. Allocating energy to resource uptake increases 
the rate of acquisition but reduces the fraction of acquired resources available for growth. There is also a 
positive correlation between extracellular enzyme Vmax and Km, meaning that enzymes with higher 
catalytic rates also require higher substrate concentrations to achieve the maximum rate [Sinsabaugh et 
al., 2014].

Life history strategies, or syndromes, may arise from correlations among multiple traits with different 
strategies residing in different regions of trait space. Among plants, the ruderal (weedy) strategy is 
characterized by high leaf nitrogen, high rates of photosynthesis, high specific leaf area, and high 
vulnerability to herbivory. For microbes, Fierer et al. [2007] have proposed a copiotroph-oligotroph life 
history continuum, whereby copiotrophs have higher resource acquisition rates, higher nutrient demands, 
and potentially lower growth yields than oligotrophs. Different trait-based strategies represent a key 
organizing principle for communities of microscopic phytoplankton [Litchman et al., 2015].

Modelling efforts can exploit trait correlations and life history continua to represent microbial processes. 
When assigning trait parameters in models, such correlations reduce the dimensionality of the parameter 
space because some trait parameter combinations do not occur. This approach has been used in both 
marine and terrestrial systems with complex microbial communities [Follows et al., 2007; Allison, 2012]. 
Members of the community may possess any strategy along the life history continuum but cannot break 
the rules and fall into an unoccupied area of trait space. Such trade-offs may constrain processes such as 
decomposition at the ecosystem scale [Allison, 2014].

Defining strategies a priori is impossible if the trait correlations are unknown, but there is an alternative 
inverse approach. Initial trait parameters can be assigned to cover a large volume of trait space with 
environmental selection ruling out unfavourable trait combinations [Allison, 2012]. Although 
computationally more intensive, this approach allows viable strategies to emerge from the model 
dynamics. Both approaches can be applied simultaneously with known trade-offs parameterized a priori 
and additional refinement of strategies occurring through environmental selection.

Scaling up microbial models

Microbes interact at the micron scale, whereas biogeochemical models aim to predict microbial processes 
at the ecosystem to global scale. Bridging these scales is an important challenge because accurate 
predictive models rely on integration of key mechanisms across scales. Whereas most current models 
operate on a single scale, a hierarchical approach is necessary to address the challenge of scaling 
microbial models.

Several models capture key mechanisms of microbial interaction at the micron scale. These agent-based 
models reveal how social interactions and spatial structure in microbial communities influence 
biogeochemical processes [Allison, 2005, 2012; Folse and Allison, 2012; Kaiser et al., 2014]. The upshot 
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is that micron-scale interactions must be considered in macro-scale processes. Although they represent 
less than one square millimetre of physical space, these models are too complex conceptually and 
computationally to run at larger scales where different sources of environmental variation contribute to 
biogeochemical processes.

Moving up from the micron scale, other important mechanisms operate at the scale of soil aggregates and 
the rhizosphere. Aggregates couple the physical influence of soil minerals with biological processes of 
organic matter formation and turnover [Jastrow, 1996; Sollins et al., 1996; Kleber et al., 2007]. In the 
rhizosphere, root exudation and turnover affect substrate availability to the microbial biomass, leading to 
processes such as nutrient mineralization and priming of soil organic matter decomposition [Talbot et al., 
2008; Cheng et al., 2014]. The importance of these processes means that microbial-explicit models should
represent the spatial scale of aggregates and the rhizosphere. The CORPSE model [Sulman et al., 2014] is
an excellent example of how physical stabilization and rhizosphere processes can be represented to 
predict microbial effects on soil carbon storage under elevated CO2.

At the plot scale and beyond, established tools in ecosystem ecology can be applied to scale up microbial 
models. The soil state factor approach [Jenny, 1980] defines climate, parent material, topography, 
vegetation type, and time as the key drivers of soil formation. Landscape variation in state factors can be 
used to specify the local environment for microbial processes. For example, by overlaying maps of 
temperature, precipitation, elevation, plant chemistry, and soil type, it becomes possible to specify the 
environment for microbial interactions at any point on Earth.

A hierarchical approach involves a set of nested microbial models, each capturing key mechanisms at an 
appropriate spatial scale. Rather than running micron-scale, agent-based models at every grid point in a 
global model, a hierarchical approach distils emergent patterns from small scales and applies them at 
larger scales. Micron-scale models can be run across environmental gradients, such as temperature and 
moisture, to construct response functions for macro-scale processes like enzymatic decomposition and 
heterotrophic respiration. The parameters from these response functions can then be used in larger-scale 
models with greater confidence because they emerge from micro-scale processes. Likewise, aggregate or 
rhizosphere models incorporating the emergent micro-scale functions can be run across state factor 
gradients to scale up processes to the ecosystem or global level.

There are statistical and computational techniques available to reduce model complexity in a 
mechanistically informed way. Although not yet applied to soil microbial biomass models, emulation 
approaches have been used in other fields to distil the complexity of numerical models [Castruccio et al., 
2014]. Emulation fits complex model output to a statistical model. Parameters from the statistical model 
are then used to emulate the behavior of the more complex model. Castruccio et al. [2014] used a 
statistical emulator to represent the relationship between radiative forcing and temperature in climate 
model outputs. A similar approach could be used to construct functions for the response of microbial 
processes, such as heterotrophic respiration, to environmental variables based on outputs from micro-
scale agent-based models. The functional parameters could then be used in larger scale models.

An alternative but less mechanistic approach to scaling involves the application of community-averaged 
trait values. Rather than capturing mechanisms operating at the micron or aggregate scale that shape 
community composition and the associated distribution of traits, empirical approaches can provide 
information about trait values averaged across the community. These values can then be applied in 
ecosystem- to global-scale models. In particular, metagenomic techniques allow quantification of gene 
frequencies in a sampled community [Berlemont et al., 2014]. If these frequencies are assumed to 
correspond to traits, they can be summed or averaged to estimate community-wide trait values [Fierer et 
al., 2014]. Alternatively, community-averaged traits may be measured directly; for example, most 
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empirical assays of extracellular enzyme potential and microbial growth efficiency represent community 
averages, and these have been applied in ecosystem models [German et al., 2012; Hagerty et al., 2014].

Challenges and future directions

Ideally, recent advances in microbial ecology could inform revised global models that make more 
accurate predictions of soil biogeochemistry. This objective is within reach, but there are important 
challenges to overcome, including model parameterization, validation, and scaling approaches. A recent 
review by Wieder et al. [2015] described specific recommendations to address these challenges.

One of Wieder et al.’s [2015] major recommendations focused on coordination between modellers and 
empiricists regarding microbial parameters. Some parameters such as growth efficiencies and temperature
response coefficients are represented in many microbial-explicit models, yet relatively few studies 
measure them. Conversely, few microbial-explicit models have considered moisture responses whereas 
many empirical studies have focused on this topic [Lennon et al., 2012; Placella et al., 2012; Meisner et 
al., 2013].

In light of the recent focus on microbial trait-based models, there should also be greater attention to 
assembling model-relevant trait data [Litchman and Klausmeier, 2008]. Numerous datasets exist, but they
are often dispersed across the literature, and new efforts to synthesize trait information in databases would
benefit modelling efforts. Trait databases are available for plants [Kattge et al., 2011] and are being 
assembled for phytoplankton [Litchman et al., 2015], bacteria [Martiny et al., 2013], and fungi [Treseder 
and Lennon, 2015]. Still, these databases should be expanded and leveraged to engage modellers who aim
to represent microbial traits.

Microbial-explicit models should be thoroughly tested against empirical data and compared amongst 
themselves to identify strengths and weaknesses. Adequate testing is essential to ensure confidence in 
larger-scale predictions based on microbial-explicit models. Bayesian inference is particularly useful for 
model-data integration because empirical data can be assimilated to both test models and estimate 
parameters along with uncertainties [Hararuk et al., 2015]. These approaches are most useful when 
multiple independent empirical datasets are available. If validation datasets are limited, it becomes 
impossible to identify unique parameter values in microbial-explicit models [Sierra et al., 2015].

In addition to trait parameter information, future microbial model development would benefit from 
databases of empirically-measured output variables. For example, datasets on soil carbon and nutrient 
stocks, microbial biomass pools, litter decay rates, and rates of soil respiration over time are essential for 
model validation and data assimilation [Wieder et al., 2015]. Measurements of these variables in response
to disturbances such as temperature change, resource pulses, moisture pulses, and nutrient addition can 
provide additional constraints on model predictions.

New scaling approaches are needed to assemble the hierarchy of models that will allow better global-
scale predictions. Model emulators represent one promising approach but have not yet been applied to 
microbial systems. Monte Carlo simulation approaches are also promising for analysing emergent 
behaviours of micro-scale models. One issue with microbial-explicit models is that they assume 
homogeneity of biomass and soil carbon pools. When these homogeneous pools are mathematically 
coupled, they oscillate in response to perturbations [Li et al., 2014; Hararuk et al., 2015], a behaviour for 
which there is little empirical support, especially at large scales.

Still, we know that microbes and soil organic matter interact at the micron scale where there is high 
variation in biomass density and substrate availability [Sierra and Müller, 2015]. When this heterogeneity 
is represented through repeated random sampling of microbial trait parameters and substrate input rates, 
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pool size oscillations occur at different frequencies. If the pool dynamics of many random simulations are
aggregated, the oscillatory behaviour dampens and disappears (Fig. 2). These results suggest that 
microbial mechanisms operating in heterogeneous microsites are consistent with empirical data when 
aggregated at larger scales. By coupling Monte Carlo-type simulations with statistical emulation, we may 
be able to incorporate microbial mechanisms into models while accurately representing emergent 
behaviours at large scales.

Figure 2. Aggregation of micro-scale processes to generate macro-scale emergent properties. (A) When a two-pool microbial-
explicit model [German et al., 2012] is perturbed by a 5ºC temperature increase, the soil carbon pool oscillates asymptotically to 
a higher equilibrium value based on parameters from Li et al. [2014]. (B) When heterogeneous microsites are averaged, the 
oscillatory pattern diminishes (W. Sherman, unpublished). The line represents the average of 68 microsites, each defined by 
unique parameter values for Vmax, Km, biomass turnover, and substrate input drawn at random from plausible distributions.

An additional need for scaling microbial models centres on state factor relationships. It is not yet clear 
how emergent microbial properties and responses vary with state factor gradients. There have been some 
studies of microbial trait parameters across environmental gradients [German et al., 2012; Whitaker et al.,
2014], but more studies with additional environmental drivers are needed to scale up to the global level. 
Additional gridded data products on state factor variables at the global scale represent another key need 
for scaling up these models.

Conclusions

Now is an opportune time to make progress on modelling and scaling microbial processes to improve 
biogeochemical predictions. New empirical tools, particularly sequencing technology, are making 
unprecedented volumes of data available with the potential to inform microbial models. Realizing this 
potential will require new theory to translate sequences into ecologically relevant traits. Coupled with 
increased efforts to assemble data on microbial traits and processes, these advances will provide a basis 
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for parameterizing new trait-based models. Increases in computational power to support Monte-Carlo 
approaches and richer data sources from remote sensing and ecological experiments will facilitate the 
upscaling of microbial models.

The recent blossoming of microbial modelling approaches presents both an opportunity and a challenge. 
There is great potential for improving Earth system models by representing microbial processes with 
greater fidelity and elegance. The diversity of modelling perspectives is stimulating healthy debate about 
the best way to account for microbes in the Earth system. At the same time, all microbial-explicit models 
are relatively unproven. More rigorous validation is necessary to avoid scaling up theoretical approaches 
with fundamental flaws. Still, this challenge can be overcome with sufficient intellectual investment to 
yield Earth system predictions with much greater certainty and confidence than is currently possible.
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