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Abstract  
 

Changing Fuel Loading Behavior to Improve Airline Fuel Efficiency 

 

by  

 

Lei Kang  

 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 

University of California, Berkeley  

 

Professor Mark Hansen, Chair  

 

 

This dissertation investigates how to improve airline fuel efficiency by changing fuel loading 

behavior of airline dispatchers and reducing unnecessary fuel loading. First, we estimate the 

potential benefit of fuel loading reduction for six major U.S.-based airlines. We find that the 

annual monetary savings per airline of avoiding carrying unused fuel in 2012 ranges from $42 

million to $605 million, with a total across all six airlines of $1.16 billion. This suggests that 

there may be significant benefit from reducing unnecessary fuel loading in the U.S. airline 

industry.  

Second, to capture that benefit, we first study the behavior of dispatchers – who make 

fuel loading decisions – based on comprehensive historical fuel burn data provided by a major 

U.S.-based airline. Risk-neutral and risk-averse newsvendor models are applied to better 

understand how dispatchers trade off safety concerns due to possibly insufficient fuel loading 

and extra fuel burn costs due to excess discretionary fuel loading.  We find that dispatchers place 

extremely high priority on safety relative to excess fuel cost in making discretionary fuel loading 

decisions. Furthermore, combining our results with a dispatcher survey, we also find that 

dispatchers who are detail oriented and conservationists are likely to load less discretionary fuel. 

Our results imply that airlines may want to select for these characteristics during dispatcher 

interview and seek to cultivate such behavior in dispatcher recurrent training.  

Finally, besides behavioral modeling of dispatchers, we propose two novel discretionary 

fuel estimation approaches that can assist dispatchers with better discretionary fuel loading 

decisions. Based on the analysis on our study airline, our approaches are found to substantially 

reduce unnecessary discretionary fuel loading while maintaining the same safety level compared 

to the current fuel loading practice. The idea is that by providing dispatchers with more accurate 

information and better recommendations derived from flight records and related contextual data, 

unnecessary fuel loading and corresponding cost-to-carry could both be reduced. The first 

approach involves applying ensemble machine learning techniques to improve fuel burn 

prediction and construct prediction intervals (PI) to capture the uncertainty of model predictions. 

The upper bound of a PI can be used for discretionary fuel loading. The potential benefit of this 

approach is estimated to be $61.5 million in fuel savings and 428 million kg of CO2 reduction 

per year for our study airline. The second approach in estimating discretionary fuel originates 

from the idea of statistical contingency fuel (SCF). Due to limitations in the current SCF 
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estimation method, dispatchers have low confidence in applying SCF values and generally load 

more discretionary fuel than recommended. Therefore, improved SCF estimation offers another 

practical approach for reducing discretionary fuel loading. The estimated annual benefit of using 

this approach is $19 million in fuel savings and 132 million kg CO2 emissions reductions for our 

study airline. A similar analysis could be easily generalized to other airlines or the industry as a 

whole when such detailed airline fuel data becomes available. 
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1 Introduction 

1.1 Background 

Reducing fuel consumption is a goal that unifies the aviation industry, owing to the recent 

significant increase in fuel cost (see Figure 1.1). The price of jet fuel has a significant impact on 

airline costs. According to the Bureau of Transportation Statistics (BTS), fuel costs account for 

about 15.5% of total operating expenses for U.S. passenger airlines (BTS, 2016). Furthermore, 

air transportation contributes 8% of transportation greenhouse gas (GHG) emissions in the U.S. 

(Environmental Protection Agency (EPA), 2016) and 10.6% of transportation emissions globally 

(Intergovernmental Panel on Climate Change (IPCC), 2014). The global GHG emissions by 

2020 from aviation are projected to be around 70% higher than in 2005 even if fuel efficiency 

improves by 2% per year (International Civil Aviation Organization (ICAO), 2014). As the share 

of global emission from aviation is expected to increase dramatically, there is consequently 

intense focus on reducing fuel consumption from many stakeholders (e.g. governments, airlines, 

and aircraft manufacturers), who have undertaken a wide range of efforts and initiatives (see 

Table 1 for summary of selected initiatives).  

On the government side, enhanced air traffic management (ATM) aiming at aviation 

system efficiency has been estimated to provide from 6% to 12% savings in fuel burn (IPCC 

1999). For instance, the benefits of the enhanced capacity of the Next Generation Air 

Transportation System (NextGen) in the U.S. have been estimated at $132.5 billion from delay 

savings and environmental emissions reductions over the period of 2013–2030 (Federal Aviation 

Administration (FAA), 2014). All of the emissions reductions and a large portion of the delay 

savings value are related to fuel burn. Other ATM initiatives include the Single European Sky 

(SES) program in Europe (European Commission, 2010) and the Seamless Asia Sky (SAS) 

program in Asia (ICAO, 2012). Besides ATM, regulatory initiatives such as the European Union 

Emissions Trading System (ETS) (European Commission, 2008) and fuel and environmental 

taxes are also means to help reduce aviation emissions.  

Another way of reducing fuel consumption is through improved fuel efficiency through 

new designs of aircraft and engines. Intensive efforts have been made in aircraft and engine 

improvements by aircraft manufacturers. According to the IPCC (2014), aircrafts being produced 

today are about 70% more fuel efficient per passenger-kilometer than 40 years ago, and fuel 

efficiency is projected to improve 2% every year for the foreseeable future. One example of such 

improvement is that the addition of winglets to the wingtips of aircraft has been shown to 

improve the aerodynamics of aircraft and hence reduce fuel burn by 2.5-5% (Irrgang et al., 2011).  

High fuel prices and the environmental effects of aviation are also motivating strong 

interest in alternative jet fuels. Adoptions for alternative aviation fuels (e.g. bio-jet fuel and 

synthetic fuel) may also help improve price stability and provide possible reductions in GHG 

emissions in the face of dramatic fuel cost fluctuation. Since 2006, the FAA, United States 

Department of Defense (DoD) and the aviation and fuels industries have aligned their efforts to 

explore the potential for alternative jet fuels through the Commercial Aviation Alternative Fuels 

Initiative (CAAFI) (Hileman et al., 2008). Although initiatives in support of aviation alternative 

fuels are active, their timeline is highly uncertain (Ryerson et al., 2015). 
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Figure 1.1 Monthly fuel price

1
, consumption, and cost (domestic)

2
 from 2000 to 2016 in current values 

   

Meanwhile, airlines are also seeking to improve fuel efficiency by improving operations. 

The fuel consumption of a flight can be influenced by many factors, including flight planning 

(Schiefer and Samuel, 2011), load factor (International Air Transport Association (IATA), 

2004)), ground operations (Hao et al., 2016a), usage of auxiliary power units (APU) (Walker, 

2010), single-engine taxi-out and taxi-in (Walker, 2010)), speed and altitude (Lovegren and 

Hansman, 2011; Roberson, 2010), route selection (Altus, 2009), continuous descent approaches 

(CDA) (Clarke et al., 2004; Irrgang 2011)), and aircraft maintenance (IATA, 2004; Irrgang 

2011). See Table 1.1 for a summary of initiatives for reducing fuel burn by adjusting these 

various aspects of operations. 

Another approach to reducing fuel consumption is to reduce aircraft weight (Ryerson et 

al., 2015). The lighter the aircraft is, the less thrust is required from the engine for a given speed 

and altitude, and hence the less fuel is consumed. For this reason, airlines are purchasing aircraft 

made with lightweight materials (Lee et al., 2009), and charging passengers for luggage 

(Abeyratne, 2009). Other efforts include accommodating lighter seats and galleys and reducing 

drinking water loads (European Commission, 2015). However, even though the biggest source of 

excess weight added to the aircraft is excess fuel (Sadraey, 2012; Irrgang, 2011), there has been 

little discussion on reducing unnecessary fuel loading. Among very few studies in this field, 

Ryerson et al. (2015) find that reducing unnecessary fuel loading by dispatchers could result in 

                                                           
1
 U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price: 

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=eer_epjk_pf4_rgc_dpg&f=m 
2
 U.S. Carriers Fuel Cost and Consumption: http://www.transtats.bts.gov/fuel.asp 
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fuel savings on the order of $220 million and 660 million kg CO2 reduction per year based on the 

analysis of a major U.S. airline. The fuel saving estimate amounts to 4.48% of total flight fuel 

consumption for this airline. Motivated by the potential benefit of reducing unnecessary fuel 

loading demonstrated by Ryerson et al. (2015), based on one major U.S airline, this study 

focuses on strategies that can help airlines reduce unnecessary fuel loading. First, as part of this 

study’s motivation, we estimate the potential benefit of fuel loading reduction for the U.S. airline 

industry as a whole. Second, we focus on the behavioral analysis of dispatcher fuel loading 

decisions. Third, to better assist dispatcher fuel loading, we propose two approaches to improve 

current airline fuel planning practice. In order to better understand the context of this study, it is 

useful to describe the general fuel loading practice, before moving on to the problem statement 

and research questions. In next section, we will focus on the fuel planning process which is a key 

element of domestic flight planning. 

 

 

Table 1.1 Summary of fuel consumption reduction initiatives 

Stakeholders Category Efforts/Initiatives 

Government 

Enhanced ATM 

NextGen (FAA, 2014);  

SES (European Commission, 2010);  

SAS (ICAO, 2012) 

Regulation 
EU ETS (European Commission, 2008);  

Fuel and environmental taxes (European Commission, 2015) 

Airlines  

Operational 

responses 

Optimized flight planning (Schiefer and Samuel, 2011);  

Single engine taxi (Walker, 2010);  

Operating at fuel efficient speed and altitude (Lovegren and Hansman, 2011); 

Minimizing the usage of APU (Walker, 2010);  

Dynamic route optimization (Altus, 2009);  

Speed selection through Cost Index (Roberson, 2010); 

Using CDA (Clarke et al., 2004; Irrgang 2011);  

Maintaining clean and efficient airframes and engines (IATA, 2004);  

Maximizing the aircraft’s load factor (IATA, 2004) 

Weight 

reduction 

Lightweight materials (Lee et al., 2009); 

Lighter weight seats and galleys (European Commission, 2015); 

Luggage charge (Abeyratne, 2009); 

Fuel Loading (Ryerson et al., 2015) 

Aircraft 

Manufactures 

Aircraft and 

engine 

improvements 

Winglets (Irrgang et al., 2011); 

Engine evolution (IPCC, 1999; European Commission, 2015); 

Alternative fuels (IPCC, 1999; European Commission, 2015) 
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1.2 Domestic Flight Planning Fundamentals 

Airlines rely on flight dispatchers to perform the duty of flight planning. Based on a study of a 

U.S. major airline (which is also the study airline for the following analysis), we summarize the 

typical flight planning process. For both domestic and international flights, a flight plan is 

created and submitted from a dispatcher to Air Traffic Control (ATC) for clearance around two 

hours prior to the scheduled departure time and will be revised if necessary based on updated 

information. A flight plan
3
 is a regulatory requirement, and its contents are developed in order to 

ensure an airplane meets all of the operational regulations for a specific flight, to give the flight 

crew information to help them conduct the flight safely, and to coordinate with ATC (Altus, 

2009). Given a pair of cities, a flight plan could be characterized by two inter-related parts: 

route-related decisions (the route of flight, the planned speed, and the planned altitudes along the 

route) and fuel planning (the quantity of different categories of fuel loaded). 

More specifically, the duties of a dispatcher involve carrying out strategic decisions such 

as checking weather forecasts and operating conditions, selecting routes and flight levels, and 

determining fuel loads, as well as tactical decisions, such as providing pilots with real-time 

updates, coordinating between various parties to resolve maintenance issues, and continuously 

monitoring the flight from takeoff to landing (Ryerson et al., 2015). Assisted by the Flight 

Planning System (FPS), dispatchers choose a route of flight among several possible routes. A 

dispatcher will generally prefer the “economical” route, or “econ” route, for short (the route with 

the lowest fuel consumption). However, the selected route might deviate from econ route due to 

forecasted en route weather or traffic constraints. 

Regarding fuel planning, there are generally four components to the fuel loaded on the 

airplane: mission fuel, reserve fuel, alternate fuel, and contingency fuel. The amount of 

mandated fuel needs to satisfy the U.S. Federal Aviation Regulations (FARs) for over-land 

flights (i.e. within the 48 contiguous states and the District of Columbia), or both the FARs and 

the International Civil Aviation Organization (ICAO) Annex 6 for over-water flights (outside the 

48 contiguous states and the District of Columbia) and international flights. Domestic (over-land) 

and international flights (over-water plus outside the U.S.) require different considerations in 

dispatch and fuel planning. In this study, we will focus on domestic operations. 

According to the U.S. FARs Part 121.639 (e-CFR: Title 14, 2015)
4
, fuel requirements for 

all domestic operations under Instrument Flight Rules (IFR) include: 

(a) enough fuel to fly to the airport to which the airplane is dispatched; 

(b) thereafter, to fly to and land at the most distant alternate airport (if required by weather 

conditions) from the airport to which it is dispatched; and 

(c) thereafter, to fly for 45 minutes at normal cruising fuel consumption. 

Item (a) is described as mission fuel, which is the amount of fuel required from take-off 

at the departure airport to landing at the destination airport. This fuel is calculated by the FPS 

based on factors including the route selection, altitude structure, winds and other weather 

forecasts, anticipated traffic delays, and aircraft performance.  

Item (c) is termed (domestic) reserve fuel. The quantity of reserve fuel is required for the 

aircraft to continue to fly for 45 minutes at normal cruising speed, presumably to enter a holding 
                                                           
3
 A sample flight plan form could be found at http://www.faa.gov/documentLibrary/media/Form/FAA_7233-

1_PRA_revised_12-2013.pdf 
4
 http://www.ecfr.gov/cgi-bin/text-

idx?SID=a8d3c4800d167b64bbfa2349ec337755&mc=true&node=pt14.3.121&rgn=div5#se14.3.121_1639 

http://www.faa.gov/documentLibrary/media/Form/FAA_7233-1_PRA_revised_12-2013.pdf
http://www.faa.gov/documentLibrary/media/Form/FAA_7233-1_PRA_revised_12-2013.pdf
http://www.ecfr.gov/cgi-bin/text-idx?SID=a8d3c4800d167b64bbfa2349ec337755&mc=true&node=pt14.3.121&rgn=div5#se14.3.121_1639
http://www.ecfr.gov/cgi-bin/text-idx?SID=a8d3c4800d167b64bbfa2349ec337755&mc=true&node=pt14.3.121&rgn=div5#se14.3.121_1639


5 
 

pattern above either the destination airport or an alternate airport or to enter a holding pattern en 

route in the case of reduced airport or airspace capacity (Ryerson et al., 2015). This fuel 

requirement cannot be changed by the dispatcher, and the amount of fuel is calculated based on 

aircraft type. According to the interview with dispatchers of the study airline, reserve fuel should 

be completely unused when the flight lands, except in extraordinary circumstances. 

Item (b) is called alternate fuel, which is the quantity that would be needed to fly from the 

destination airport to the alternate airport. An alternate airport is an airport in the vicinity of the 

destination airport which can be used in case the destination airport becomes unusable while the 

flight is in progress (e.g. due to weather conditions). An alternate is required by the FARs when 

the forecasted visibility is less than 3 mile or the ceiling at the destination airport is less than 

2,000 feet at the flight’s estimated time of arrival, plus or minus one hour. The policy of our 

study airline also recommends adding an alternate when thunderstorms are forecast for the same 

time window. A second alternate might also be added if the forecasted weather conditions at both 

the destination and first alternate airport do not meet the minimum ceiling and visibility 

requirement. When a dispatcher enters an alternate airport into the release, the FPS calculates the 

amount of alternate fuel needed.  

The fourth common category of loaded fuel is called contingency fuel, which is usually 

added to the release by dispatchers to allow for known and unknown airborne contingencies such 

as arrival delays and in-flight weather changes. This added fuel is based on the dispatcher’s 

experience on a certain route and aircraft (Trujillo, 1996) and reflects a dispatcher’s assessment 

of traffic and weather uncertainties. In addition to adding contingency fuel labeled as such, the 

alternate airport and the corresponding alternate fuel might also be added by dispatchers as a 

form of contingency fuel to provide an extra buffer for unexpected events even when an alternate 

is not required by weather conditions.  

To provide consistent and objective fuel planning, some FPSs provide recommended 

contingency fuel numbers based on a statistical analysis of historical fuel consumption for 

similar flights. Carriers usually term this Statistical Contingency Fuel (SCF) (Schiefer and 

Samuel, 2011). In the case of our study airline, the set of similar flights consists of those that 

took place over the previous year (365 days) and have the same origin, destination, and 

scheduled hour of departure. For each historically similar flight, the difference between the 

actual trip fuel consumption and the planned mission fuel consumption is calculated. If this 

difference is negative, it is then called “under-burn”; otherwise, it is termed “over-burn.” We will 

call this the over/under burn value. The FPS converts the over/under burn value in pounds to 

minutes and estimates a normal approximation of the distribution of this excess required fuel 

burn. The 95
th

 and 99
th

 percentiles of the distribution, which are also called the SCF95 and the 

SCF99, are provided to dispatchers by the FPS as guidelines for contingency fuel loading. The 

interpretation of SCF95 (SCF 99) is that based on historical fuel consumption, loading the 

quantity of contingency fuel specified by SCF95 (SCF99) would result in a flight being able to 

land without dipping into any reserve fuel 95% (99%) of the time, assuming not alternates. 

Because the SCF values are based on actual fuel consumption, these contingency guidelines 

implicitly account for weather and other events in history. More details regarding SCF can be 

found in Karisch et al. (2012). However, in the airline focused upon in this case, these SCF 

values are rarely trusted, and dispatchers typically load much more contingency fuel on a flight 

than the SCF numbers recommend (Ryerson et al., 2015). 

One final loaded fuel type arises as a result of fuel cost differences; it is sometimes less 

expensive to carry fuel into particular airports for subsequent use than it is to purchase it at these 
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airports. Therefore, airlines might decide to carry tanker fuel. Other considerations also feature in 

tanker fuel loading. For instance fuel may be unavailable because the destination airport is in a 

remote location, or the airline may not be permitted to refuel at certain airports because of fuel 

contracts (Guerreiro et al., 2013). For some airlines, dispatchers may also need to decide taxi fuel 

loading (Trujillo, 1996).  Similar to contingency fuel, the FPS will provide historically average 

taxi fuel. The dispatcher can make adjustments to the suggested taxi fuel based on experience, 

weather, and traffic conditions at the airport. 

1.3 Problem Statement  

As discussed in Section 1.2, loaded fuel can be generally categorized into mission fuel, reserve 

fuel, and discretionary fuel. Here, we define discretionary fuel as the summation of contingency, 

non-weather-required 1
st
 alternate fuel, and all 2

nd
 alternate fuel added by dispatchers. Reserve 

fuel quantity is mandated by the federal government and mission fuel (as well as required 

alternate) is calculated by the FPS, making these quantities non-discretionary. 
 

 
Figure 1.2 Fuel categorization 

 

On top of mission fuel and reserve fuel, airline dispatchers will always load some 

discretionary fuel on the aircraft to hedge against various uncertainties. In other words, 

dispatchers load discretionary fuel to cover the uncertainty associated with the over/under burn 

distribution (and possible need to use an alternate) so that a flight can land without touching 

reserve fuel. However, dispatchers are found to be conservative in discretionary fuel loading. 

This behavior has been observed by Trujillo (1996), Ryerson et al. (2015), and Hao et al. (2014). 

For instance, based on a survey of 50 U.S. pilots and dispatchers about their fuel-loading 

practices, Trujillo (1996) finds that airline dispatchers and pilots load contingency fuel above the 

contingency value suggested by the airline. Moreover, the amount of contingency fuel has been 

found to be related to weather uncertainty and system predictability (Hao et al., 2014). In some 

cases, this extra fuel is actually needed, but in most cases, the vast majority of it remains in the 

tanks when the flight pulls into the destination gate.  
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Therefore, given the significant potential benefit of reducing fuel loading, the objectives 

of this study are two-fold: (1) estimate the benefit of reducing unnecessary fuel loading at the 

airline level; (2) seek strategies that can help reduce unnecessary discretionary fuel loading while 

maintaining the same safety level. 

1.4 Overview  

To achieve the first goal mentioned above, we estimate the potential benefit of fuel loading 

reduction for six major U.S.-based airlines. In particular, the cost to carry (CTC) unused fuel 

when flights push into the gate (termed as gate-in fuel [GiF]) will be evaluated. To the best of 

our knowledge, this study offers the first comprehensive evaluation of fuel costs due to carrying 

extra fuel at an airline level. The annual monetary savings of avoiding carrying unused fuel for 

six airlines in 2012 ranges from $42 million to $605 million, with a total across all six airlines of 

$1.16 billion. This analysis justifies the importance of considering reducing unnecessary fuel and 

provides us with a benefit pool. Details can be found in Chapter 3.  

To answer the second question, about how to (safely) reduce discretionary fuel loading, 

we will leverage the detailed flight-level fuel data of one major U.S.-based airline and tackle this 

problem from two directions. The first direction is to study dispatcher discretionary fuel loading 

behavior and identify opportunities to reduce fuel loading. In Chapter 4, a newsvendor model is 

applied to better understand how dispatchers trade off safety concerns due to possibly 

insufficient fuel loading and extra fuel burn cost due to excess discretionary fuel loading. Under 

several identification assumptions (see Chapter 4 for details), we find that dispatchers place 

extremely high priority on safety relative to excess fuel cost in making discretionary fuel loading 

decisions. Combining our results with a dispatcher survey, we also find that dispatchers who are 

detail oriented and conservationists are likely to load less discretionary fuel. When airlines 

interview dispatchers, in addition to skill- and behavior-based performance evaluations, it would 

be helpful to also test the detail-orientation of dispatchers, as well as their belief in conservation. 

This might help airlines to select dispatchers who are less likely to overload fuel resulting in 

potential fuel savings. Airlines may also target dispatchers for recurrent training. Adding training 

topics on detail-orientation and conservation may also encourage dispatchers to load less 

unnecessary fuel. 

While Chapter 4 focuses on the behavioral modeling of dispatcher discretionary fuel 

loading, in Chapter 5 and 6 we explore the second direction by proposing two novel 

discretionary fuel estimation approaches. The idea is that by providing dispatchers with more 

accurate information and better recommendations, unnecessary fuel loading and CTC 

unnecessary fuel loading could both be reduced. In Chapter 5, a prediction interval (PI)-based 

discretionary fuel estimation approach is discussed. It involves applying ensemble machine 

learning techniques to improve fuel burn prediction and construct PIs to capture the uncertainty 

of over/under burn distribution. The upper bound of a PI can be used for discretionary fuel 

loading. The potential benefit of this approach is estimated to be $61.5 million in fuel savings 

and 428 million kg of CO2 reduction per year for our study airline. 

The second approach in estimating discretionary fuel originates from the idea of SCF. 

Due to limitations in the current SCF estimation method (see Chapter 6 for details), dispatchers 

have low confidence in applying SCF values (e.g. SCF95) and generally load more discretionary 

fuel than recommended. Therefore, improved SCF estimation offers another practical approach 
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for reducing discretionary fuel loading. The estimated annual benefit of using this approach is 

$19 million in fuel savings and 132 million kg CO2 emissions reductions for our study airline. 

In sum, the research questions addressed in this study include the following:  

(1) What is the size of the benefit of reducing unnecessary fuel loading? (Chapter 3) 

(2) How do dispatchers’ make a trade-off between safety and cost in discretionary fuel loading, 

and how are these trade-offs influenced by dispatcher attitudes? (Chapter 4) 

(3) How can reliable discretionary fuel recommendations be provided to dispatchers? (Chapter 5 

and 6) 

Chapter 2 summarizes several data sources being used in this study. Summary and 

conclusions can be found in Chapter 7. 
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2 Data 

In this chapter, we will summarize six datasets used in this study. The FAA fuel burn data 

(Section 2.1) and BTS T-100 data (Section 2.2) are used to estimate potential benefit of reducing 

unnecessary fuel loading for six major U.S. airlines. However, the FAA fuel burn data doesn’t 

include detailed fuel-loading decisions from the six airlines. In order to better understand airline 

fuel loading behavior as well as develop fuel efficiency improvement strategies, we also leverage 

a detailed airline fuel burn dataset (Section 2.3) along with a dispatcher survey (Section 2.4). 

This offers us an excellent opportunity to study airline dispatchers’ behavior in fuel loading 

decisions. One limitation of this detailed airline fuel burn dataset is the lack of weather and 

traffic information. To this end, we also incorporate terminal weather forecast (Section 2.5) and 

historical traffic information (Section 2.6) into this analysis. The applications of detailed airline 

fuel dataset will be discussed in Chapter 4, 5, and 6. 

2.1 FAA Fuel Burn Data 

Recent legislation has mandated that airlines provide flight-level fuel data to the FAA (referred 

to as FAA data). The FAA collects detailed flight-level information from six major airlines for 

1,956,822 domestic flights (airlines being presented anonymously in the following text). The 

FAA data covers domestic operations between January 2012 and September 2014. Specifically, 

for a given flight, this dataset contains its origin and destination (OD) airports, departure and 

arrival time, aircraft type, aircraft pushback weight, aircraft fuel burn for three flight phases 

(taxi-out, airborne, and taxi-in). However, the FAA data does not include detailed fuel-loading 

information. 

2.2 Bureau of Transportation Statistics T-100 Data 

The BTS T-100 Domestic Segment data provides monthly aggregate payload information by OD 

and aircraft type for each airline. This aggregate payload information is expressed in terms of 

monthly summations of number of passengers transported, freight
5
 transported (in pounds), and 

mail transported (in pounds). It also contains monthly scheduled and actually performed 

operations for each OD, airline, and aircraft type combination. We combine the BTS payload 

data with the FAA data to estimate the quantity of unused fuel as well as the CTC that unused 

fuel when a flight lands. Details can be found in Chapter 3. 

2.3 Airline Fuel Data 

A major U.S.-based airline (different from the six airlines reported to the FAA) provided detailed 

flight-level information from its domestic and international flights between April 2012 and July 

2013 (referred to as airline data). This airline operates an extensive domestic network during this 

period. In addition to basic flight operation characteristics (i.e. aircraft type, OD airports, flight 

distance, scheduled and actual departure and arrival information), this dataset also contains 

flight-level fuel loading data in all categories (mission, reserve, tinker, contingency, 1
st
 alternate, 

and 2
nd

 alternate fuel), target GiF, SCF in units of both pounds and minutes, aircraft pushback 

weight in units of pounds. It also provides actual fuel burn quantities (in pounds) by flight phase, 

                                                           
5
 Property, other than express and passenger baggage transported by air. 
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including taxi-out, en route, and taxi-in. For some aircraft, the fuel on arrival is keyed in by the 

pilot, and as a result is sometimes entered incorrectly. We therefore exclude any flights for which 

the fuel on arrival is outside of a reasonable range defined by our study airline
6
 and flights for 

which the fuel on arrival is greater than the fuel loaded prior to departure. After excluding 

outliers with respect to pushback weight, taxi-in fuel burn, taxi-out fuel burn, en route fuel burn, 

gate-out fuel, and GiF, there were a total of 728,455flights in the airline data within the 

continental US (with eight major aircraft types
7
).  

2.4 Dispatcher Survey Data 

Besides fuel data, this major airline also provided results of a dispatcher survey (referred to as 

survey data). This data covers self-reported confidence in decision-support tools, flight planning 

behaviors, and three sets of personal assessment statements with respect to environment, 

personal habit, and risk. These questions, designed to capture attitudes and habits of a dispatcher, 

ask about individuals’ degrees of agreement on a number of statements, with answers ranging 

from 1 (strongly disagree) to 5 (strongly agree). In Section 4.4, we discuss how to leverage these 

survey responses to better understand dispatcher fuel loading behavior. With survey data and 

airline data merged, 109 dispatchers are matched with corresponding flights.  

2.5 Weather Data 

The airline data does not include forecast or actual weather data, and instead we collected 

weather data from the National Oceanic and Atmospheric Administration (NOAA) database. The 

weather data included both the actual weather and weather forecast (i.e. terminal aerodrome 

forecasts [TAFs]) information for major U.S. airports. The actual and forecast weather 

information contains ceiling, visibility and indicators of the presence of thunderstorms, snow, 

and visibility conditions by hour, date, and airport.  

Dispatchers typically make fuel-loading decisions around the time the flight plan is 

created. Small deviations in this time do occur from flight to flight, but typically these decisions 

are made two hours prior to the flight’s scheduled departure time. We will refer to this time as 

the dispatch time. According to an on-site airline interview conducted by Hao et al. (2016b), 

flight dispatchers also consider actual weather conditions at the dispatch time when making fuel 

decision. Thus, we merged the weather data with the airline data to recreate both the real-time 

and forecast weather available at the dispatch time for each flight. For the real-time weather, we 

found the actual weather at the OD airports at the dispatch time. For the forecast weather, we 

found the most recent forecast issued prior to the dispatch time and refer to the forecast 

conditions for the origin at the planned departure time and for the destination at the planned 

arrival time. This matching allowed us to identify the following weather conditions for each 

flight: (1) the actual weather at the OD airports two hours prior to the scheduled flight departure 

time (as the actual weather at time of flight planning could influence dispatcher fueling decisions) 

and (2) the most recent forecasted weather (as forecasted two hours prior to the flight departure) 

for the OD airports at the scheduled times of arrival and departure. More details about this 

weather data could be found in Hao et al. (2016b).  

                                                           
6 
Ratio of target gate-in fuel over actual gate-in fuel within [0.7, 1.3]. 

7
 A319, A320, B757-300, B757-200, M88, M90, DC9, B737-800 
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2.6 Aviation System Performance Metrics  

The FAA Aviation System Performance Metrics (ASPM) database includes individual flight data 

for the 77 large airports in the U.S.. The airline data does not contain en route traffic information, 

so we used historical traffic conditions obtained from the ASPM as a proxy. For a given flight in 

the airline data, we considered at its historical flights with same OD pair, scheduled departure 

hour, and month as in the previous year. Then we calculated the mean and standard deviation 

(SD) of airborne time based on these historical similar flights. To ensure reliable estimates for 

SD, only combinations of these arguments with more than 10 flights were kept in our dataset. 

This historical airborne time information provided a good approximation of possible weather 

conditions for a current flight. The deviation of historical airborne times and the corresponding 

flight plan airborne times served as another measure of flight time variability. Hence, we also 

computed the mean and SD of the difference between actual airborne time and planned airborne 

time, based on a current flight’s previous year’s counterparts.  

2.7 Summary 

The following chapters are based on the datasets described in this chapter. After merging 

weather data and ASPM data with the airline data, we ended up with 368,607 flights with no 

missing weather information. This merged dataset is used in Chapters 5 and 6. Regarding 

dispatcher fuel loading behavior modeling, we merged the original dataset with dispatcher 

survey data. We retained 175,617 flights, corresponding to 109 dispatchers. Data summary is 

provided in Table 2.1. 
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Table 2.1 Variable description 

Category Variable Note Data Source 

Weather 

Ceiling condition at origin and destination airports 

Current weather at the 

time of flight planning 

NOAA 

Visibility condition at origin and destination 

airports 

Thunderstorm condition at origin and destination 

airports 

Snow condition at origin and destination airports 

IFR condition at origin and destination airports 

Forecasted ceiling condition at origin and 

destination airports 

Forecasted weather at the 

time of scheduled 

departure and arrival 

Forecasted visibility condition at origin and 

destination airports 

Forecasted thunderstorm condition at origin and 

destination airports 

Forecasted snow condition at origin and destination 

airports 

Traffic 

Conditions 

(in minutes) 

Standard deviation of airborne time 

Based on flights falling 

into same OD-hour-month 

in previous year 

ASPM 

Standard deviation of the difference in airborne 

time from flight plan 

Average airborne time 

Average difference in airborne time from flight plan 

Dispatcher 

Characteristics 

Age, working experience Personal characteristics 
Survey 

Personal attributes Latent variables 

Fuel Loading 

(in minutes) 

Contingency fuel loading Target variable 

Airline Data 

Alternate airport and alternate fuel Target variable 

Actual fuel burn Target variable 

Planned fuel burn -- 

SCF95 & SCF99 Target variable 

Other categories of fuel -- 

Flight 

Information 

Schedule departure/arrival time -- 

Aircraft type 8 major types 

Origin-Destination airports -- 

Flight distance (in nautical miles) -- 

Planned  trip time (in minutes) -- 

 

 

  



13 
 

3 Benefit Pool from Reducing Unnecessary Fuel Loading 

In this chapter, we characterize the extent of the benefit of reducing fuel loading at an airline 

level. We estimate the potential benefit of fuel-loading reduction for six airlines using the FAA 

data. In particular, CTC GiF is evaluated. 

Gate-in fuel is the amount of fuel left in the tanks when a flight pulls into the destination 

gate. In general, the amount of discretionary fuel loaded could be related to flight predictability, 

as discussed in Section 1.2. Ideally, in a perfectly predictable system (with no weather or traffic 

uncertainty, no human error, and no reserve requirements), a flight could be loaded with optimal 

amount of fuel and land with no fuel left. Under this scenario, the value of GiF is zero. In reality, 

however, due to the unpredictable nature of the system, the amount of fuel loaded will always be 

greater than the actual fuel burn. This eventually creates positive GiF. In fact, as we mentioned 

before, a certain amount of extra fuel is mandated by government regulations. This fuel includes 

reserve fuel and, in some circumstances, fuel to fly to an alternate airport. However, airline 

dispatchers may also load extra fuel above these requirements. This behavior has been 

investigated by Trujillo (1996) and Ryerson et al. (2015). In some cases, this extra fuel is 

actually needed, but in most cases, the vast majority of it remains in the tanks when the flight 

pulls into the destination gate. Based on one major U.S. airline data, Ryerson et al. (2015) 

estimate the CTC GiF would result in around 223 million dollars in annual fuel burn cost. When 

there is low predictability, the difference between actual fuel burn and fuel loaded will, on 

average, be greater, resulting in higher GiF. Therefore, assuming consistent fuel-loading 

behavior of airline dispatchers, changes in GiF over time will also reflect trends in system 

predictability.  

Given the motivation described above, the benefit of reducing unnecessary fuel loading 

could be evaluated based on the estimation of the CTC GiF. Unfortunately, the FAA data does 

not contain GiF, thus requiring us to estimate GiF for each airline based on aircraft departure 

weight and fuel consumption. To do so, we use the airline data. Our goal is to use the airline 

data to develop a GiF prediction model that can be applied to other airlines reported in the FAA 

data. 

3.1 Methodology 

One possible GiF modeling strategy is to follow the physical model of aircraft weight (Anderson, 

2005) as described in Equation 3.1. Since we are trying to develop a GiF prediction model based 

on the airline data and then apply it to the FAA data, this specification can help avoid the impact 

of airline-specific fuel loading behavior, thus possessing high transferability. For a given flight i, 

its GiF quantity can be obtained by subtracting operating empty weight (OEW)
8
, total fuel burn 

(FB), and payload (PL) from its pushback weight (PB).  

 

  iiiii PLFBOEWPBGIF            (3.1) 

Operating empty weights for major aircraft types considered in this paper are presented in 

Table 3.1.  

                                                           
8
 Operating empty weight (OEW) is the basic weight of an aircraft including the crew, all fluids necessary for 

operation such as engine oil, engine coolant, water, unusable fuel and all operator items and equipment required for 

flight but excluding usable fuel and the payload. 
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Table 3.1 Operating empty weight 

Aircraft Type (Engine type) Operating Empty Weight (lbs) 

Airbus A319-100(CFM56) 87930 

Airbus A321-200 (V2500s) 105875 

Airbus A320-200 (V2500s) 93079 

Boeing 737-300 (CFM56) 72490 

Boeing 737-400 (CFM56) 76200 

Boeing 737-500 (CFM56) 70510 

Boeing 737-700 (CFM56) 84100 

Boeing 737-800 (CFM56) 90710 

Boeing 737-900 (CFM56) 93680 

Boeing 757-200 (RB.211 SERIES) 220000 

Boeing 757-300 (RB.211 SERIES) 142400 

Boeing 767-200 (CF6-80 SERIES) 177500 

Boeing 767-300ER (CF6-80 SERIES) 198800 

Boeing 767-300 (PW4000 SER) 192100 

Boeing 767-400 (CF6-80 SERIES) 227300 

Boeing 777-200 (GE90) 304500 

McDonnell Douglas MD-82/83 (JT8D SERIES) 78000 

McDonnell Douglas MD-88 77976 

McDonnell Douglas MD-90-30 88000 

Douglas DC-9-50 61880 

Embraer 190 (GE CF34-10E) 61910 

Source: 

http://www.airliners.net/aircraft-data/ 

http://en.wikipedia.org/ 

 

However, flight level payload information is not available in either airline data or FAA 

data. We therefore use BTS payload data as a proxy for actual payload. In this regard, BTS T-

100 Domestic Segment data (discussed in Section 2.2) which provides monthly aggregate 

payload information by OD, airline, and aircraft type for the study time period (January 2012 

through September 2014), was merged with the FAA data and airline data. This aggregate 

payload information is expressed in the form of monthly summations of number of passengers 

transported, freight
9
 transported (in pounds), and mail transported (in pounds). By dividing the 

total number of performed operations in a specific OD, airline, month, year, and aircraft type 

combination, we can get its mean payload quantity. In order to develop prediction models for 

GiF using monthly payload data, we aggregate the airline data based on OD-airline-month-year-

aircraft type (denoted by c) and merged that data with the BTS payload data
10

. Thus, a mean GiF 

is enabled to match with its mean payload and mean fuel burn in a more accurate manner. 

Equation 3.1 can thus be replaced by Equation 3.2, with mean representation.  

 

                                                           
9
 Property, other than express and passenger baggage transported by air. 

10
 To reduce the error caused by unusual operations, we exclude combinations with 10 operations or less. Moreover, 

due to outliers removal in the early data cleaning stage, the performed number of operations reported in the BTS 

data for a given type combination may not match the number of operations left in the airline data. To improve 

approximation accuracy of aggregate level payload statistics obtained from the BTS to actual payload, only 

combinations with match rate (defined as the ratio between BTS reported operations and airline recorded operations) 

within [0.8, 1.2] were left. Ultimately, 9608 combinations were generated based on the airline data for later model 

development. 

http://www.airliners.net/aircraft-data/
http://en.wikipedia.org/wiki/McDonnell_Douglas_MD-80
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            cctypecc PLFBOEWPBGIF                  (3.2) 

 

Here we use type to denote aircraft type. Furthermore, payload can be categorized into freight, 

mail, and passenger transported and fuel burn can be decomposed into taxi-in, airborne, and taxi-

out fuel burns, see Table 3.2 for details. Thus we were able to establish the relationship between 

the mean GiF ( cGIF ) and its mean pushback weight ( cPB ), mean payload (represented by mean 

freight ( cFPL _ ), mail ( cMPL _ ), passenger transported ( cPPL _ ), mean fuel burn 

(represented by mean taxi-out ( cOUTFB _ ), airborne (
cARFB _ ), and taxi-in fuel burn 

( cINFB _ ).Note that while freight and mail payload data are in pounds, passenger payload is in 

units of passengers, which needs to be converted to pounds. The means for doing this is 

discussed below. 
 

Table 3.2 GIF Physical Model Notations 

Notations Explanations 

cGIF  Mean GIF 

cPB  Mean pushback weight 

cPL  

cFPL _  Mean freight payload 

cMPL _  Mean mail payload 

cPPL _  
Mean number of passenger 

transported 

cFB  

cOUTFB _  Mean taxi-out fuel burn 

cARFB _  Mean airborne fuel burn 

cINFB _  Mean taxi-in fuel burn 

typeOEW  Operating empty weight 

 

Based on the above-mentioned decomposition, Equation 3.2 can be expressed in a statistical 

manner: 

 

                    

ctypecc

ccc

ccc

OEWPPLFPL

MPLARFBOUTFB

INFBPBGIF













*_*_*

_*_*_*

_**

876

543

210

               (3.3) 

 

where s' are the parameters associated with each variable. In the physical model setting, 

intercept 0 and error term should be equal to 0, 1 should be equal to 1 while other parameters, 

except for 7 , all equal to -1. 
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3.2 Estimation Results 

We investigate the performance of the physical model prediction (Equation 3.3) in the following 

section.  Mean GiF is treated as the dependent variable and under the physical model, as shown 

in Equation 3.3, we fix the parameters of mean taxi-in fuel burn, mean taxi-out fuel burn, mean 

airborne fuel burn, mean mail weight, mean freight weight, and OEW to be -1 and constrain the 

parameter of mean pushback weight to be 1. However, we also need to estimate average 

passenger weight (denoted by 7 , see Table 3.3) which is the weight summation of a passenger 

and that passenger’s checked bags and carry-on items. Aircraft-specific fixed effects were also 

included to capture unobserved mean effects and ensure the unbiased estimation of average 

passenger weight.  

The estimation results are shown in Table 3.3. The average passenger weights vary by 

month; for example, the estimated winter average passenger weights are greater than summer 

weights, due to clothing. These values are consistent with the FAA’s suggested values
11

 (FAA, 

2005). The estimated negative aircraft-type-specific effects indicate that there are missing items 

not being captured, presumably due to differences in OEW between the aircraft used in the 

observed flights and the values in Table 3-1. These differences could be caused by differences in 

fixed equipment, repairs and alteration, and aircraft aging (FAA, 2007). As an aircraft ages, its 

weight usually increases due to trash and dirt collecting in hard-to-reach locations, and moisture 

absorbed in the cabin insulation (FAA, 2007). Usually weight grows average 0.1% to 0.2% per 

year, up to about 1% total (Irrgang, 2011) due to aging. In the following prediction analysis, we 

assume that the estimated aircraft-specific effects do not carry over to other airlines, and GiF is 

predicted following the physical model using the estimated passenger weights in Table 3.3
12

. 
  

                                                           
11

 The standard average weight for a checked bag is 30 lbs. Standard average weight for adult male is 205 lbs at 

winter and 200 lbs at summer, whereas for adult female is 184 lbs at winter and 179 lbs at summer. Child weight is 

87 lbs at winter and 82 lbs at summer. Thus 213 lbs per passenger is a reasonable estimation. 
12

 Another option is to assume the estimated fixed effects are in general aircraft-type specific and we tried to apply 

the fixed effects estimates to other airlines, but for one airline, we got a large number of negative GIF predictions. 

So we decide to make an assumption that these estimated fixed effects are airline-specific. 
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 Table 3.3 Estimation results (dependent variable: mean gate-in fuel in lbs) 

 Note: *** indicates 1% significance level. 

  

Notation Variable Parameter Estimates (T-statistics) 

0  

A319 -4915.65  (-74.24 ) *** 

A320 -3519.46 ( -45.57) *** 

B737-800 -7625.63 ( -90.47) *** 

B757-300 -9220.69 ( -71.65) *** 

B757-200 -8806.77 ( -81.79) *** 

DC9 -9231.69 ( -145.12) *** 

M88 -9235.17( -122.00) *** 

M90 -7853.08 ( -91.44) *** 

1  Mean pushback weight (lbs) 1 (fixed) 

2  Mean taxi-in fuel burn (lbs) -1 (fixed) 

3  Mean taxi-out fuel burn (lbs) -1 (fixed) 

4  Mean  airborne fuel burn (lbs) -1 (fixed) 

5  Mean mail weight (lbs) -1 (fixed) 

6  Mean freight weight (lbs) -1 (fixed) 

7  

Average number of passengers in January -208.62 (-305.97) *** 

Average number of passengers in February -208.77 (-288.02) *** 

Average number of passengers in March -206.36 (-298.94) *** 

Average number of passengers in April -205.06 (-311.01) *** 

Average number of passengers in May -202.03 (-320.95) *** 

Average number of passengers in June -199.31 (-320.03) *** 

Average number of passengers in July -196.47 (-326.94) *** 

Average number of passengers in August -199.28 (-313.00) *** 

Average number of passengers in September -203.20 (-315.89) *** 

Average number of passengers in October -203.05 (-294.01) *** 

Average number of passengers in November -206.57 (-310.02) *** 

Average number of passengers in December -207.53 (-300.98) *** 

8  Operating empty weight (lbs) -1 (fixed) 

Residual standard error 897 

10-fold cross validation error 899 

Number of observations 9,608 

Adjusted R-squared 0.76 
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3.3 Gate-in Fuel Prediction and Metrics Trends 

In order to predict gate-in fuel (GiF) for the other airlines in the FAA data using the aircraft 

weight physical model and BTS monthly average payload information, we needed to aggregate 

the FAA data based on the same grouping criterion discussed in Section 3.1 which is {OD, 

airline, month, year, and aircraft type}. Then we apply aggregate level prediction on the FAA 

data using the physical model specification and passenger weights estimated from the previous 

section. Prediction results for six airlines are presented in Figure 3.1. Note that these results 

assume the operating empty weights in Table 3.1, whereas the results for single airline presented 

above suggest that, at least for that airline, these weights are several thousand pounds greater. If 

these weight disparities carry over to the other airlines in the FAA data, the results presented here 

would be overestimates of GiF. On the other hand, if we adjust the results for the six airlines 

assuming the additional weights implied by the 0  values in Table 3.3, we obtain negative GIF 

values for a number of observations. For this reason, we assume the extra weights do not apply 

to the airlines included in the FAA data. 

As shown in the boxplots across six airlines, the summer period, especially in July, is 

found to have higher GiF. This increase is due to the aviation system’s usually severe congestion 

and delay during summer period, which lowers system predictability. Accordingly, as responses 

to low system predictability, on average, we would expect to observe higher GiFs. It is also 

noted that airlines have different fuel loading strategies regarding flight predictability. As shown 

in Figure 3.1, Airline 3 was found to have unusually high GiFs in 2012, suggesting that it was 

loading excessive fuel in this period. This changed in 2013 and 2014, when Airline 3 GiFs fell 

within a range comparable to other airlines, but still with high variance. Airline 5 was found to 

have the lowest GiF level across the six airlines. This result suggests that Airline 5 has less 

conservative fuel loading strategies than others. It is also possible that Airline 5 operates in a 

region with higher predictability.  
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Figure 3.1 Predicted GiF for six airlines 
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3.4 Cost-to-Carry Analysis of Gate-in Fuel 

Based on gate-in fuel (GiF) prediction, we can calculate the fuel burned to carry the GiF using 

CTC factors. “Cost-to-carry” is defined as the pounds of fuel consumed per pound of fuel carried 

per mile and it varies across aircraft types and flight distances. We borrowed the estimated CTC 

factors from Ryerson et al. (2015). Those factors were estimated using Piano-5, state-of-the-

practice aircraft performance analysis software by Lissy (Pham et al., 2010). Piano is frequently 

used in both research and practice for aviation fuel modeling to predict fuel consumed as a 

function of aircraft dynamics and flight mission characteristics (Ryerson et al., 2015).  
 

Table 3.4 Approximated cost-to-carry factors 

Aircraft Types 

 

Mass Parameter 

( 1 ) 

Mass-Distance 

Parameter ( 2 ) 

Cost-to-carry Factor  

( 2
1 



d

) 

Airbus A300-600 0.024 05-E3.591  05-E3.5910.024/d   

Airbus A319-100 0.020 05-E4.604  05-E604.40.020/d   

Airbus A321-200 0.019 05-E4.644  05-E4.6440.019/d   

Boeing 767-200 0.020 05-E4.463  05-E4.4630.020/d   

Boeing 777-300ER 0.028 05-E030.3   05-E030.30.028/d   

Boeing 737-300 0.020 05-E289.5   05-E289.50.020/d   

Boeing 737-400 0.020 05-E289.5   05-E289.50.020/d   

Boeing 737-500 0.020 05-E289.5   05-E289.50.020/d   

Boeing 737-700 0.021 05-E476.5   05-E476.50.021/d   

Boeing 737-900 0.021 05-E476.5   05-E476.50.021/d   

Embraer 190 0.020 05-E289.5   05-E289.50.020/d   

McDonnell Douglas MD-11 0.024 05-E591.3   05-E591.30.024/d   

 

For a given flight i with aircraft type a, flight distance d (in miles), weight m (in pounds), 

and gate-to-gate fuel consumed b (in pounds), its CTC factor (in pounds/pounds-mile) is 

estimated by Ryerson et al. (2015) in the below way. Gate-to-gate fuel consumption is assumed 

to be a function of distance and weight, as shown in Equation 3.4. 

 

aiaaiaiaaiaai ddmmb ,,3,,,2,,1,            (3.4) 

 

Then, the CTC factor can be expressed as 

 

        a

ai

a
ai

d
,2

,

,1
, 


             (3.5) 

 

where 1 and 2 are parameters associated with mass and mass-distance. CTC factors for a 

majority of aircraft types have been estimated by Ryerson et al. (2015). However, several aircraft 

types in the FAA data that have still not been covered. Thus we approximated CTC factors for 

those uncovered aircraft types based on similar aircraft types reported in Ryerson et al. (2015) 

(see Table 3.4). More technical details about the CTC factor estimation can also be found in 
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Ryerson et al. (2015). The estimated GiF CTC’s for six airlines are shown in Table 3.5. In this 

case, we will assume fuel price is $3/gallon. 

Based on weighted average CTC estimates, we also seek the annual GiF CTC for six 

airlines. Total costs were extrapolated based on the number of performed operations obtained 

from the BTS data. However, such extrapolation might over-estimate the over-loading impact, 

because the average CTC estimates were based on the airline-reported OD pairs (in the FAA data) 

and these ODs are likely to have more predictability issues than those not reported. Since actual 

flight distance is not available in the FAA data, great circle distance between two OD pairs is 

used instead in the CTC calculation. The GiF CTC values for the different airlines range from 

$59 million to $667 million in 2012 and from $63 million to $428 million in 2013. The system 

level (total across six airlines) GiF CTC values for 2012 and 2013 are estimated to be $1.46 

billion and $1.22 billion, respectively. 

The GIF quantities estimated above include mandatory reserve fuel - the quantity of fuel 

required for an aircraft to continue to fly for 45 minutes at normal cruising speed. A more 

reasonable basis for estimating the costs of extra fuel loading is the difference between the GiF 

and the reserve fuel. Although detailed reserve fuel was not reported in the FAA data, we could 

use reserve fuel statistics obtained from the airline data as a benchmark. To improve estimation 

precision, average reserve fuel for an OD segment was used if the FAA data covered the same 

OD segment as the airline data. For those segments in the FAA data not being covered in the 

airline data, airline-level average reserve fuel (which is 4,225 lbs) was used.  

After the removal of nominal reserve fuel from the predicted GiF, the estimated CTC 

values for the different airlines in 2012 ranged from $42 million to $605 million, with a total 

across all six airlines of $1.16 billion. Similarly, in 2013, the total GIF CTC estimate was $0.93 

billion. Thus, the vast majority of the GiF and its CTC cannot be attributed the FAA-mandated 

reserve fuel. 
 

 

Table 3.5 Cost-to-carry estimates for year 2012 and 2013 

Year Items Airline 1 Airline 2 Airline 3 

2012 

Average of predicted GIF (lbs) 17445 16727 39364 

Total CTC extrapolated (lbs) 5.92E+08 2.75E+08 1.48E+09 

Total fuel cost at 3$/gallon 2.66E+08 1.24E+08 6.67E+08 

Second order fuel cost at 3$/gallon 2.02E+08 9.41E+07 6.05E+08 

2013 

Average of predicted GIF (lbs) 16667 17046 27861 

Total CTC extrapolated (lbs) 5.71E+08 2.87E+08 9.51E+08 

Total fuel cost at 3$/gallon 2.57E+08 1.29E+08 4.28E+08 

Second order fuel cost at 3$/gallon 1.91E+08 9.90E+07 3.72E+08 

  Airline 4 Airline 5 Airline 6 

2012 

Average of predicted GIF (lbs) 13692 10400 15028 

Total CTC extrapolated (lbs) 1.33E+08 5.14E+08 2.39E+08 

Total fuel cost at 3$/gallon 5.98E+07 2.31E+08 1.08E+08 

Second order fuel cost at 3$/gallon 4.29E+07 1.42E+08 7.69E+07 

2013 

Average of predicted GIF (lbs) 13617 10283 14597 

Total CTC extrapolated (lbs) 1.40E+08 5.09E+08 2.46E+08 

Total fuel cost at 3$/gallon 6.32E+07 2.29E+08 1.11E+08 

Second order fuel cost at 3$/gallon 4.51E+07 1.40E+08 7.84E+07 
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3.5 Summary 

Due to the unpredictable nature of the aviation system, the amount of fuel loaded per flight will 

be higher than the amount needed in a perfectly predictable world, where in order to minimize 

fuel cost, flights could land without any fuel left. Therefore, the GiF metric reflects flight 

predictability. Furthermore, this metric can also connect predictability with fuel consumption, 

which offers us a direct monetization scheme through CTC estimation. Therefore, the proposed 

GiF metric can also be integrated in the benefit assessments of various initiatives and programs, 

such as NextGen. 

 In this chapter, a comprehensive dataset for a specific airline was used as a training set to 

estimate passenger weight and test the performance of the physical model specification. Since we 

wanted to develop a model that could be transferred to other airlines, the physical model 

specification allowed us to avoid airline-specific fuel loading behavior. However, due to 

measurement error, presumably due to OEW, uncertainty remained concerning the prediction 

performance using the physical model. Therefore, one recommendation for policy makers is to 

add GiF as another required reporting item in the fuel burn data currently being provided to the 

FAA.   

 With the help of CTC factors, we were also able to calculate the extra fuel burn to carry 

GiF. The extra fuel burn could then be translated into monetary costs. We calculated the CTC 

values for six U.S. airlines for the year 2012 and 2013, based on the predicted GiF and CTC 

factors. Per flight GiF CTC and the annual number of performed operations were combined to 

extrapolate the CTC to an airline level. In 2012, the monetary CTC values were found to range 

from $59 million to
 

$667 million, showing significant benefits toward improving flight 

predictability, with a total across all six airlines of $1.46 billion. Even considering removing the 

impact of reserve fuel, the second order CTC values still ranged from $42 million to $605 

million, with a total of $1.16 billion. In 2013, the total benefit after removing the impact of 

reserve fuel was estimated to be $0.93 billion. 

This chapter suggests that there may be significant benefit from reducing unnecessary 

fuel loading in the U.S. airline industry. To capture that benefit, we must better understand the 

behavior of the agents – dispatchers –who make fuel loading decisions, as well as the ways in 

which historical fuel burn data can be leveraged to inform better fuel loading choices. These are 

the subjects of the following chapters, which focus on the detailed fuel loading data set available 

from a single airline.  
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4 Behavioral Modeling of Discretionary Fuel Loading 

Decisions 

Safety is the number one priority of airline operations. To ensure safety, dispatchers may 

overload discretionary fuel to account for various uncertainties such as weather uncertainty, 

traffic congestion uncertainty, traffic control uncertainty, and so forth. As discussed in Section 

1.2, discretionary fuel is defined as the summation of contingency fuel, non-weather required 1
st 

alternate fuel, and all 2
nd

 alternate fuel. On the other hand, a flight has to burn extra fuel to carry 

excess discretionary fuel which raising fuel costs for the airline. Therefore, dispatchers need to 

make a trade-off between safety and cost in discretionary fuel loading. As shown in Chapter 3, 

U.S. airlines incur a substantial cost from carrying unused fuel. Moreover, reducing unnecessary 

fuel loading is shown to be effective in reducing fuel consumption and CO2 emissions (Ryerson 

et al., 2015; Kang et al., 2016). Previous studies have found that dispatchers’ discretionary fuel 

decisions are influenced by system predictability and weather forecasts (Hao et al., 2016b). 

However, from a behavioral perspective, dispatcher fuel-loading decisions under risk
13

 have not 

been fully investigated. In this study, we bridge this gap. Specifically, the objectives of this 

chapter are as follows: 

 

 Understand how dispatchers trade off perceived safety cost of possible insufficient fuel 

and CTC excess fuel; 

 Gain behavioral insights by relating dispatcher safety-cost trade-offs to dispatcher survey 

responses. 

 

To meet the stated goals, we leverage the airline fuel data with detailed fuel-loading 

decisions and dispatcher survey information. To get a rough idea of discretionary fuel loading in 

our study airline, Figure 4.1 presents the relationship between discretionary fuel loading and 

over/under burn across all flights. Blue dots, accounting for 99.96% of total operations, indicate 

flights with discretionary fuel greater than over/under burn value. This is desirable because the 

goal of loading discretionary fuel is to cover the discrepancy between actual fuel burn and FPS 

planned fuel burn so that a flight can land without touching reserve fuel. On the other hand, the 

red dots are non-covered cases, which constitute about 0.04%. To be consistent with dispatcher 

fuel-loading practice, fuel burn is measured in minutes in this chapter. Using minutes instead of 

pounds to describe fuel burn helps to avoid the influence of different fuel-burn rates across 

aircraft types. Two observations can be drawn from Figure 4.1. Looking vertically, we can see 

that in most situations, discretionary fuel is greater than over burn, sometimes far greater, which 

suggests that most discretionary fuel loading is unnecessary. If we examine the figure 

horizontally, we find that there is a huge variability in over/under burn distribution. With such a 

wide spread of over/under burn distribution presumably due to inaccurate planned fuel burn 

predictions, it is unsurprising that, for the safety consideration, dispatchers tend to overload 

discretionary fuel to minimize the risk of encountering fuel exhaustion or flight diversions. 

                                                           
13

 An old idea in the economics literature, dating back at least to Frank Knight, is that a distinction should be drawn 

between risk (probability distribution of the potential outcomes is known) and uncertainty or ambiguity (i.e. 

probability distribution of possible outcomes is unknown) (Levin, 2006; de Palma et al., 2008). In the later analysis, 

I will assume probability distribution is known which fits into the regime of decision making under risk.  
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Figure 4.1 Discretionary fuel loading overview 

 

The outline of this chapter is as follows. In Section 4.1, we introduce the basic 

newsvendor model and the risk-averse newsvendor model used to estimate dispatchers’ trade-

offs between the perceived safety costs of insufficient fuel and CTC excess fuel. Section 4.2 

describes approaches in estimating key elements in the newsvendor model. Section 4.3 and 

Section 4.4 focus on the estimation results of safety-cost trade-offs and how such trade-offs can 

be related to dispatcher survey responses, respectively. The summary and conclusions are 

discussed in Section 4.5. 

4.1 Modeling Framework 

The newsvendor problem is one of the classical problems of inventory management. The original 

goal of newsvendor model is to determine optimal inventory levels where the demand is 

stochastic and the costs are deterministic. The costs arise either from not having enough 

inventories to meet demand or from holding excess inventory that must be discarded because of 

the perishable nature of the good. Under the basic newsvendor model set up, the optimal 

inventory level is jointly determined by stochastic demand distribution and cost ratio (which is 

also the trade-off between these two cost items). A comprehensive review of newsvendor models 

can be found in Qin et al. (2011). In the context of fuel loading, dispatchers face two costs when 

deciding on discretionary fuel (analogy to inventory level): perceived safety cost when 

discretionary fuel is less than over/under burn value (analogy to not having enough inventory to 

meet demand) and CTC excess fuel (cost from holding excess inventory). However, instead of 

determining optimal discretionary fuel, we are interested in inversely estimating the cost ratio, 

given that we have observed the optimal discretionary fuel loading decisions by dispatchers. By 
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assuming dispatchers make rational fuel loading decisions, the newsvendor model provides us a 

framework of estimating the safety-cost trade-offs dispatchers make in fuel loading decisions. 

4.1.1 Basic Newsvendor Model 

We denote over/under burn (in minutes) as a random variable u following a distribution F: 

Fu ~ where F refers to a cumulative distribution function (CDF). Let a denote discretionary fuel 

loading (in minutes) and ),( uaL  denote the cost of a discretionary fuel loading decision. As 

shown in Figure 4.2, we also use q to represent fuel-burn CTC excess fuel and p to represent 

perceived safety cost of possibly insufficient fuel loading, where p and q are both positive. 
 

 
Figure 4.2 Newsvendor model setting 

 

Then the cost can be written as 
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where the expectation is taken over over/under burn u. If we take the derivative of the function 

we are minimizing and set this derivative equal to zero, then we can get a closed form solution of 

optimal a (Arrow et al., 1951) 
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Thus, the optimal discretionary fuel is the )/( qpp  -th quantile of the over/under burn 

distribution F. Moreover, the ratio between p and q gives us a measure of how a dispatcher trade-

offs between cost of insufficient fuel and excess fuel. A higher qp / ratio implies a dispatcher is 

willing to load more fuel to reduce the risk of having to burn reserve fuel.  

4.1.2 Risk-Averse Newsvendor Model 

The basic newsvendor model assumes a decision maker is risk-neutral. In the context of flight 

fuel loading, it is also reasonable to assume dispatchers are risk-averse, given that safety is the 

top priority in the airline industry. In this section, we consider how to account for risk-aversion 

explicitly in the newsvendor model. In the setting of newsvendor problems, risk-averse behavior 

is generally modelled using three approaches (Qin et al., 2011): expected utility maximization 

with concave utility functions (EU), mean-variance analysis (MV), and conditional value-at-risk 

(CVaR) minimization.  

Within the EU framework, risk-aversion is captured by concave and non-decreasing 

utility functions. Decision makers place orders by maximizing utility. For example, exponential 

utility function has been used by Choi and Ruszczynski (2011), Katariya et al. (2014), Bouakiz 

and Sobel (1992). However, due to the complexity of the first order condition, this approach is 

not applicable in our context. To be more specific, the utility function can be written in the 

following way, where  is a general risk-aware parameter. 

 

           ])()()()([min)),((min 21  


a
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a
u

a
udFuaqudFaupuaLE

  (4.4) 

 

However, if we take the derivative of Equation 4.4 with respect to a, unlike risk neutral 

newsvendor model described in Section 4.1.1, here no closed form expression exists for the 

parameters we are interested in, making behavioral modeling very difficult.  

Under MV and CVaR analysis, risk-averse behavior is characterized by downside risk 

measures. For MV (Lau,1980; Anvari, 1987), the variance or standard deviation of profit is used 

as a risk measure. Then, decision makers try to maximize the difference between the expected 

profit and the variance of the profit multiplied by a positive constant b, which is used to capture 

the degree of risk-aversion. When b=0, the decision maker is risk-neutral. However, there are 

criticisms of the MV approach. First, as pointed out by Choi (2009), in theory, the MV criterion 

is inconsistent with stochastic dominance
14

 because the MV criterion is symmetric and treats 

over-performance and under-performance equally. For instance, an efficient option (in the sense 

of the MV criterion) may be stochastically dominated by another option. Second, variance as a 

risk measure is not coherent
15

. Moreover, the expected profit formulation is not applicable in our 

setting. In our case, only cost is incurred, meaning that an MV formulation only contains a 

                                                           
14

 Some notes on stochastic dominance: The distribution of a random outcome X is preferred to random outcome Y 

in terms of a stochastic dominance relation if and only if expected utility of X is preferred to expected utility of Y 

for all utility functions in a certain class (Choi, 2009). For example, a random outcome X first-order stochastically 

dominates a random outcome Y if and only if every expected utility maximizer with an increasing utility function 

prefers X over Y. 
15

 A coherent measure of risk is a functional that satisfies the following four axioms: convexity, monotonicity, 

translation equivariance, and positive homogeneity (Artzner et al., 1999). MV risk function does not satisfy 

convexity and positive homogeneity (Choi, 2009). 
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variance term for cost. This is equivalent to the concave utility function by setting 221    

and we are back to the previous problem. 

To overcome the limitations of the MV and concave utility settings in our application, we 

applied the CVaR formulation to capture the risk-aversion of dispatchers in discretionary fuel 

loading. The idea of CVaR is that instead of focusing on the entire distribution of cost, a decision 

maker is more sensitive to the upper tail of the distribution (Rockafellar and Uryasev, 2002). 

Concretely, let )),((:)|(   uaLPaD which is the CDF of cost L. Define VaR  as the  -th 

quantile of )|( aD  . A  -tail distribution focusing on the upper tail part of the cost distribution 

can then be written as 
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CVaR model assumes decision makers care about the upper tail part of the loss 

distribution that they are trying to minimize: 

 

                                                 )),((:)( uaLEaL 
                                                      (4.6) 

 

where the expectation is taken under the  -tail distribution )|( aD  .  

It has been shown that minimizing )(aL  is equivalent to minimizing an auxiliary 

function (Rockafellar and Uryasev, 2002): 
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and 
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By solving the equivalent minimization problem ),(min
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, Gotoh and Takano 

(2007) finds an analytical solution for the above minimization problem under the total cost 

formulation. In the total cost formulation, a decision maker wants only to minimize the total cost, 

and no profit is involved. This formulation suits our application perfectly. The optimal 

discretionary fuel under over/under burn distribution F can be computed as follows: 
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where )(1 F is the inverse of F and where p and q are defined as before.  is a risk-averse 

parameter ranging from 0 to 1. If  = 0, then Equation 4.9 reduces to Equation 4.3, the risk-

neutral case.  

CVaR also has several good theoretical properties. It is coherent (Artzner et al., 1999) 

and consistent with first (or higher) order stochastic dominance (Shapiro et al., 2009). In 

particular, the consistency with the stochastic dominance implies that minimizing the CVaR 

never conflicts with maximizing the expectation of any risk-averse utility function (Ogryczak 

and Ruszczynski, 2002).  

 

4.2 Estimation Approach 

In order to estimate dispatchers’ safety-cost trade-offs using the newsvendor modeling 

framework, we will discuss how to compute different elements in the newsvendor model, namely 

F (over/under burn distribution), q (CTC excess fuel), and p (perceived safety cost of insufficient 

fuel). 

4.2.1 Estimation of q  

The fuel-burn CTC one minute of excess fuel is a function of trip distance and aircraft type 

(Ryerson et al., 2015). Hence, q can be computed for each individual flight using the CTC factor 

provided by Ryerson et al. (2015). As shown in Section 3.4, for a flight i with aircraft type ac 

and flight distance di (in statute mile), the additional burn iq  to carry one minute of excess fuel 

could be expressed in the following form: 

 

aciacaci dq ,,2,1                          (4.10)  

 

where ac,1 and ac,2 are the mass parameter and mass-distance parameter for aircraft type ac 

respectively (see Section 3.4 for details). 

 

4.2.2 Estimation of F 

In order to estimate an over/under burn distribution F perceived by a dispatcher during flight 

planning stage, the following assumptions are made: 

• A1: Dispatchers are fully aware of F and make discretionary fuel decisions based on F. 

• A2: The over/under burn distribution F varies according to flight distance, terminal 

weather forecasts, airports, and month. 

According to FAA regulation and airline interviews, reserve fuel should be completely unused 

when the flight lands, except in extraordinary circumstances. Thus, it is reasonable to assume the 

goal of discretionary fuel loading is to cover possible fuel insufficiency conditions such that 

dispatchers’ discretionary fuel decisions are based on F (A1). Note that the F refers to perceived 

over/under burn distribution by dispatchers, so F must be conditional on information available to 

dispatchers. However, since we do not have access to the airline traffic and weather forecast 

system, the best available information was used: terminal weather forecasts (from NOAA), flight 

distance, OD airports and month (from airline data). 

• A3: For simplicity, we also assume F follows a normal distribution. 
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As shown in Figure 4.1 and Section 5.4 (to be discussed in details later), over/under burn 

distributions generally exhibit bell shapes, thus it is reasonable to make the normality assumption. 

 In light of the above assumptions, the original estimation task is transformed into a mean-

SD estimation problem where the mean and SD of F are functions of the observables described 

in A2. We can formulate this problem in the following way. The over/under burn iu of flight i 

can be expressed as 

 

                                     ))(,0(~,)( iiiii XNXu                                           (4.11) 

 

where  ii XX )( and  ii XX ))(log( .  and  are parameters to be estimated. The SD 

function is modeled through a log-linear model to avoid any possible negative SD predictions. 

The conditional probability density of iu is given by 
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The negative log-likelihood of N observations in the dataset can be written as 
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The estimation goal is to find ̂ and ̂ that minimize LL (or maximize the likelihood). 

However, LL  is non-convex (Cawley et al., 2004), making reaching the global minimum not 

guaranteed. But if we decompose LL  into two separate functions, one for the mean function 

the other for the SD function, then each sub-problem is convex and can be solved using gradient 

descent or a stochastic gradient descent approach. Although the original minimization problem is 

non-convex and its solution converges to a local minimum, by experimenting with different 

random starting values, we can alleviate the influence of non-convexity and obtain a good 

solution.  

This line of reasoning leads to the next alternating estimation algorithm for estimating ̂ and 

̂ . 

 

Step 0: Initialization 

Initialize )( iX =1 for all observations. 

      Step 1: -step 

Fix )( iX , solve for  


N

i
iii uXw

1

2 )))|(((minargˆ  with 12 )](2[  ii Xw  and 

 ii XX )|( . This is equivalent to solving a weighted least squares problem. 

      Step 2:  -step 
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Fix )ˆ|(  iX , solve for  


N

i
iii ZZ
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 iiii XXXZ  ))(log()|( and 
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uX 
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
 . This minimization problem is 

convex and can be solved using stochastic gradient descent.  

      Step 3: Compute LL based on the current estimates of ̂  and ̂ . 

      Step 4: Repeat Step 1, 2, and 3 until convergence is achieved. 

 

The standard error estimates can be computed using observed information under the asymptotic 

normality theorem.   

4.2.3 Estimation of p 

After obtaining the estimated distribution F and CTC excess fuel q for flight i, we can inversely 

solve for p. In this case, for a dispatcher j who has handled jN flights, under basic Newsvendor 

model (risk-neutral), p can be estimated for each dispatcher using non-linear least squares by 

minimizing the squared difference between observed quantile and theory-predicted quantile: 
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where 
*
ia is the discretionary fuel loaded by a dispatcher for flight i. Similarly, under a CVaR 

risk-averse setting, p and  can be estimated for each dispatcher using the same minimization 

criterion: 
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Since we have only two unknowns in Equation 4.15, grid search can be used to find the best 

combination of )ˆ,ˆ( jjp  . 

 

4.3 Estimation Results 

In this section, we focus on the estimation results of F and p under different newsvendor model 

settings. A conditional mean-SD model is estimated using weather-matched airline fuel data. For 

p estimation, to ensure robustness, we consider only 96 dispatchers who have handled more than 

100 flights in the dataset.  

 

4.3.1 Estimation Results of F  

The estimation results of mean-SD model are shown in Table 4.1. Based on the likelihood ratio 

test, the estimated model is found to provide a statistically superior fit to the constant model with 
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a p-value of less than 0.0001. In this case, the constant model is equivalent to using sample mean 

and sample standard deviation to make predictions. 

 Regarding terminal area weather forecast, all adverse weather conditions are found to 

have a positive effect on both the conditional mean and conditional SD of over/under burn 

distributions. The construction of low ceiling and low visibility variables accords with the 

criteria used in FARs, which require a flight to carry enough fuel to travel to an alternate airport 

if the weather conditions are such that visibility is less than 3 miles and the ceiling at the 

destination airport is less than 2,000 feet at the flight’s estimated time of arrival, plus or minus 

one hour. 

Longer flights are also found to result in higher mean and SD of over-burn distributions, 

partly because longer flights are more likely to experience unpredicted unfavorable en route 

weather and traffic conditions. Turning to monthly effects, the winter season is found to have 

both higher mean and SD of over-burn. In other words, winter season is less predictable than 

other months. Major destination airports fixed effects are presented in Figures 4.3 and 4.4. Most 

hub airports are found to have higher actual fuel burns than planned fuel burns. This is because 

most hub airports of our study airline are busy airports with high delay and fuel burn. Moreover, 

LGA, JFK, LAX and BOS airports are found to have relative higher variability to over/under 

burn, which suggests those hub airports are relatively less predictable than others. After 

estimating the mean-SD model, we can apply them to predict perceived over/under burn 

distribution F for each flight. 
 

Table 4.1 Mean-SD model results (dependent variable: over/under burn in minutes) 

Variables 
Parameter Estimates for 

conditional mean 

Parameter Estimates for 

conditional standard 

deviation (log-linear 

model) 

 Intercept -4.866 *** 2.201 *** 

TAF weather forecast 

for destination 

airports 

Low visibility indicator (1-if 

lower than 3 miles, 0-

otherwise) 

0.557 *** 0.106 *** 

Low ceiling indicator (1-if 

lower than 2000 feet, 0-

otherwise) 

2.524 *** 0.099 *** 

Thunderstorm indicator (1-if 

thunderstorm presents, 0-

otherwise) 

2.165 *** 0.202 *** 

Snow indicator (1-if snow 

presents, 0-otherwise) 
0.973 *** 0.108 *** 

Distance  
Flight distance (in nautical 

miles) 
0.001 *** 0.0001 *** 

Season (Baseline: 

January) 

February -0.093 -0.012 *** 

March -0.803 *** -0.035 *** 

April -0.240 *** -0.031 *** 

May -0.170 ** -0.003 *** 

June -0.422 *** -0.044 *** 

July -0.604 *** -0.018 *** 

August -0.359 *** -0.035 *** 

September -0.712 *** -0.038 *** 

October -0.686 *** -0.062 *** 

November -0.796 *** -0.085 *** 
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December -0.121 -0.028 *** 

Log-likelihood at constant -1,062,083 

Log-likelihood at convergence -1,026,468 

Number of observations 368,607 

Note: Hub destination airport fixed effects are presented in separate figures. To save space, hub origin airport fixed 

effects are not presented. 

 

 
Figure 4.3 Hub destination airport fixed effects for conditional mean (baseline is non-hub airports) 

 

 
Figure 4.4 Hub destination airport fixed effects for conditional SD (baseline is non-hub airports)

16
 

  

                                                           
16

 The estimates presented in this figure has been taken exponential transformation and compared against 1 instead 

of 0. 
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4.3.2 Estimation Results of p  

The estimated p for each dispatcher under risk-neutral newsvendor and risk-averse newsvendor 

settings are presented in Figure 4.5. It can be seen that the estimation results are consistent across 

the two models, although the estimated p values under the risk-averse model are systematically 

lower than for risk-neutral estimates. These lower values occur because in the risk-averse (CVaR) 

model, we also need to estimate a risk-averse parameter. Since risk-averse parameter  and 

safety-cost parameter p both capture a dispatcher’s risk attitudes, when we estimate these two 

competing parameters simultaneously, they are expected to be negatively correlated with each 

other. This expectation is also confirmed in Figure 4.6. It is also noted in Figure 4.5 that several 

p estimates have extremely high values.  

 

 
Figure 4.5 Safety cost parameter estimates (unit is in cost/minute reserve fuel) 
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Figure 4.6 Relationship between risk-averse parameter and p parameter 

 

After obtaining the p estimates for dispatchers, we can compute the ratio between p and q for 

each flight handled by a dispatcher. This safety-cost ratio gives us a measure of how a dispatcher 

trade-offs between cost of insufficient fuel and excess fuel. As shown in Figure 4.7, for each 

dispatcher, we compute the mean ratio (red dot), 2.5
th

 percentile ratio and 97.5
th

 percentile ratio 

(error bar). This 95% interval gives us a sense of the situations faced by dispatchers. We can 

observe that this ratio varies significantly even with the same dispatcher. Across the 96 

dispatchers being considered, the mean ratio is about 1200, indicating that dispatchers assign a 

much higher cost to burning reserve fuel than to burning non-reserve fuel. In the next section, we 

demonstrate the use of survey instruments in predicting the mean trade-offs of dispatchers. 
 



37 
 

 
Figure 4.7 95% Safety-cost ratio for dispatchers 

4.4 Latent Variable Modeling 

In this section, we incorporate dispatcher survey responses (the survey data discussed in Section 

2.4) to investigate links between dispatcher beliefs and attributes and fuel loading decisions. 

Specifically, structural equation models are applied to model the relationship between mean 

safety-cost ratio and various latent variables derived based on the dispatcher survey. The 

objectives of this section are two-fold. One is to identify relationships between latent variables 

derived from survey responses and a dispatcher’s safety-cost ratio. Another is to propose 

initiatives based on these relationships that can help reduce discretionary fuel loading.   

Based on exploratory factor analysis (EFA), among environmental attitudes statements, 

two latent variables have been revealed as shown in Table 4.2. The number of latent variables is 

determined according to eigenvalue decay. In this case, we retain only latent variables with 

eigenvalues greater than 1 (Kaiser, 1960). Since our goal is to find an optimal interpretable 

structure capturing dispatchers’ attitudes, the oblique factor rotation method which allows for 

correlation among latent variables is used in the EFA instead of orthogonal rotation (Yong and 

Pearce, 2013). Based on factor loadings, the two revealed latent variables can be interpreted as 

environmentalist and conservationist. The environmentalist latent variable refers to the attitude 

that environmental concerns are important whereas conservationist captures one’s attitudes in 

conserving resources. Similar EFA has also been performed on the risk attitudes statements and 

behavioral habits statements (See Table 4.3 and Table 4.4). Two risk-related latent variables: 

prudent and risk-taking, have been identified. In addition, two personal habit-related latent 

variables: not detail-oriented and detail-oriented, have also been revealed. 
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Table 4.2 EFA and summary statistics on environmental questions 

Environmental attitudes 

statements 

Summary Statistics Factor Loadings 

Mean Standard 

Deviation 

Environmentalist Conservationist 

Current levels of greenhouse 

gases do not pose a threat to the 

environment. 

2.83 1.17 -0.712 -- 

I am willing to change my 

lifestyle to reduce my 

environmental impact. 

3.43 0.97 0.468 0.463 

I take an active role in recycling. 4.13 0.91 -- 0.794 

Individuals should not be 

responsible for the 

environmental impacts caused 

by others. 

2.86 1.06 -0.793 -- 

I would contribute money to a 

campaign to strengthen 

environmental protection. 

2.68 1.01 0.520 -- 

Consideration of environmental 

impacts rarely affects my 

lifestyle choices. 

2.58 1.00 -0.664 -- 

We must conserve our resources 

for future generations. 
3.86 0.98 -- 0.601 

The world's oil reserves are 

adequate for sustaining current 

levels of consumption. 

2.70 1.22 -0.510 -- 

I would be prepared to pay 

higher taxes in order to protect 

the environment. 

2.65 1.16 0.468 -- 

Note: Factoring method: principal axis factoring; Factor loadings less than 0.3 are not presented. 

 

 

Table 4.3 EFA and summary statistics on risk questions 

Risk attitudes statements Summary statistics Factor Loadings 

Mean Standard 

Deviation 

Prudent Risk-taking 

People who know me would 

describe me as a cautious 

person. 

3.41 0.78 0.385 -- 

I generally look for safer 

investments, even if that means 

lower returns. 

3.01 0.84 0.709 -- 

I associate the word “risk” with 

the idea of “opportunity”. 
3.01 0.78 -- 0.518 

I generally prefer bank deposits 

to riskier investments. 
2.56 0.87 0.807 -- 

I’d rather take my chances with 

higher risk investments than 

increase the amount I’m saving. 

2.63 0.64 -- 0.569 

I think it is more important to 

have safe investments and 

guaranteed returns than to take a 

risk to have a chance to get the 

3.01 0.82 0.619 -- 
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highest possible returns. 

I would never consider 

investments in shares because I 

find this too risky. 

2.12 0.69 0.490 -- 

If I think an investment will be 

profitable, I am prepared to 

borrow money to make this 

investment. 

2.31 0.96 -- 0.531 

I want to be certain that my 

investments are safe. 
3.40 0.80 0.438 -- 

I get more and more convinced 

that I should take greater 

financial risks to improve my 

financial position. 

2.53 0.75 -- 0.728 

I am prepared to take the risk to 

lose money when there is also a 

chance to gain money. 

3.21 0.82 -- 0.559 

Note: Factoring method: principal axis factoring; Factor loadings less than 0.3 are not presented. 

 

 

Table 4.4 EFA and summary statistics on habit questions 

Behavioral habits 

statements 

Summary statistics Factor Loadings 

Mean Standard 

Deviation 

Not detail-oriented Detail-oriented 

I do chores right away. 3.84 0.90 -0.557 -- 

I'll leave my things lying 

around. 
2.10 0.99 0.668 -- 

I neglect my obligations. 1.31 0.67 0.495 -- 

I have an eye for details. 4.27 0.83 -- 0.653 

I am accurate in my work. 4.53 0.71 -- 0.957 

I forget to put things back 

where they belong. 
1.81 0.94 0.638 -- 

I am always well prepared. 4.11 0.64 -- 0.543 

I often make a mess of 

things. 
1.71 0.85 0.758 -- 

I like order. 4.24 0.69 -0.681 -- 

Note: Factoring method: principal axis factoring; Factor loadings less than 0.3 are not presented. 

 

These latent variables reveal dispatcher personal attitudes and habits that may help 

predict the trade-offs between perceived safety cost and fuel cost. For each dispatcher, we are 

interested in the mean trade-offs measured by the mean ratio between p and q. To ensure the 

robustness of the following structural equation models, we consider dispatchers with p estimates 

less than 200. As we can observe in Figure 4.7, the mean safety-cost ratio is highly skewed. 

Therefore, a logarithm transformation is applied to the mean safety-cost ratio to create a more 

normal distribution. Model specifications for the risk-neutral model and risk-averse model are 

presented in Figure 4.8 and 4.9 respectively. To save space, for each category of attitude 

questions, we use a single item (e.g. habit statements) to represent all statement questions 

associated with that category. For the risk-averse model, we allow the error terms of log mean 

ratio and risk-averse parameter to be correlated. 
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Figure 4.8 Risk-neutral SEM model specification 

 
Figure 4.9 Joint modeling specification 
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The estimation results for the structural equation models are presented in Table 4.5. The 

second column shows the risk-neutral model results, where the dependent variable is the log 

mean safety-cost ratio estimated using the basic newsvendor model (risk-neutral). A variable 

with a positive estimated parameter means an increase in that variable, on average, predicts a 

higher mean safety-cost ratio, resulting in higher discretionary fuel loading. Detail-oriented 

dispatchers tend to load less discretionary fuel. This may be because dispatchers who care about 

details are more likely to make careful evaluation of a fuel plan, given various sources of 

information. Dispatchers with higher factor loadings on the conservationist latent variable are 

also found to load less discretionary fuel. Such dispatchers may be responding to the CTC 

unnecessary discretionary fuel and the resulting harm to the environment. Regarding personal 

characteristics, it is found that older dispatchers tend to load more discretionary fuel than young 

dispatchers.  

Under CVaR newsvendor model, perceived safety cost p and risk-averse parameter  are 

estimated simultaneously and both parameters capture the risk-averse attitudes of a dispatcher to 

some degree. Therefore, we decided to perform a joint estimation of mean safety-cost ratio and 

risk averse parameter  . The estimation results are presented in columns 3 and 4 in Table 4.5. It 

is shown that dispatchers who are detail-oriented are more likely to load less discretionary fuel. 

This result is consistent with the risk-neutral model results. The conservationist latent variable is 

not significant in the CVaR model in contrast to the risk neutral one. The correlation between the 

error terms of the two models was found to be negative, which is also in line with Figure 4.6, 

showing that perceived safety cost p and risk averse   parameter are negatively correlated. 

 

Table 4.5 Estimation results of structural equation models 

 Risk-Neutral Risk-Averse (Joint Modeling) 

Variables Log mean ratio 

(p/q))  

Log mean ratio 

(p/q) under CVaR 

Risk-averse 

parameter 

Latent variables Parameter estimates 

Personal habit Detailed oriented -0.272 * -0.252 * -- 

Not detailed oriented -0.126 -0.169 -- 

Environment Conservationist -0.521 * -0.279  -- 

Environmentalist 0.367 0.082 -- 

Risk  Prudent 0.278  0.312 0.074 

Risk taking 0.134 0.014 -0.009  

Personal characteristics Parameter estimates 

Age (35 years 

old and younger 

is set as 

baseline) 

Age (36-45 years old) 0.421 0.160 0.054 

Age (46-55 years old) 0.896 * 0.464 0.087 

Age (56 years old and 

above) 
0.609 0.340 0.123 

Intercept 6.084 * 5.795 * 0.211 * 

Correlation estimates 

Correlation between detail oriented and not-

well organized 
-0.268  -0.269 

Correlation between environmentalist and non- 

environmentalist 
0.772 * 0.774 * 

Correlation between prudent and risk taking -0.598 * -0.592 * 

Correlation between log mean ratio and risk-

averse parameter 
-- -0.154 * 

Note: 1. * denotes significant at 5% significance level. 

2. To establish the scale of a latent variable, the variance for the latent variable is fixed to be 1 (Ullman, 2006). 
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The above estimation results suggest that dispatchers who are detail-orientated are more 

likely to load less discretionary fuel. There is also some evidence that conservationist dispatchers 

load less fuel. It is also shown that survey instruments designed to capture dispatchers’ attitudes 

towards personal habits and environment are useful in predicting perceived safety-cost trade-offs. 

Based on the identified significant latent variables, there could be two small yet powerful 

strategies for airlines. One is about screening for dispatchers. When airlines interview 

dispatchers, in addition to skill- and behavior-based performance evaluations, it would be helpful 

to also test the detail-orientation of dispatchers, as well as their belief in conservation. This might 

help airlines to select dispatchers who are less likely to overload fuel resulting in potential fuel 

savings. Another implication is to target dispatchers for recurrent training. Most dispatcher 

recurrent training programs
17

 focus on the knowledge and skills which would improve the 

operational safety and efficiency of flight dispatching. However, adding training topics on detail-

orientation and conservation may also encourage dispatchers to load less unnecessary fuel. 

 

4.5 Summary 

In this chapter, we estimate dispatchers’ trade-offs between safety and cost in discretionary fuel 

loading using newsvendor models. We assume dispatchers make discretionary fuel loading 

decisions by minimizing the expected cost of over-loading (CTC excess fuel) and under-loading 

(safety cost due to insufficient fuel loading). This problem can then be formulated as a 

newsvendor problem with closed-form solutions. Both risk-neutral and risk-averse newsvendor 

model formulations are explored. The ratio between perceived safety cost and CTC excess fuel 

provides us a measure of how dispatchers trade off safety and fuel cost.  

 In order to estimate perceived safety cost for each dispatcher, we first estimate the 

perceived over/under burn distribution for each flight, involving a joint estimation of mean and 

standard deviation models. An alternating estimation algorithm is used to estimate over/under 

burn distribution conditional on various covariates such as weather forests, flight distance, month, 

and airports. After obtaining the estimated over/under burn distributions, based on actual 

discretionary fuel loading, we can inversely solve for perceived safety cost for each dispatcher. 

On average, dispatchers are found to value reserve fuel 1,200 times more than other fuel. This 

underscores the focus on safety in dispatcher culture.  

To better understand dispatchers’ safety-cost trade-offs, results from a dispatcher survey 

is incorporated in the mean safety-cost ratio modeling. Six latent variables are identified with 

respect to attitudes towards personal habits, environment, and risk. It is found that dispatchers 

who are detail oriented and conservationists are likely to load less discretionary. Airlines may 

want to select for these characteristics and seek to cultivate them in recurrent training. However, 

one limitation of this analysis is that the perceived over/under burn distribution by dispatchers 

might be hard to estimate without imposing strong assumptions. Moreover, it is also difficult to 

evaluate the monetary savings of the two proposed strategies.  
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 https://atpflightschool.com/aircraft-dispatcher-training/dispatcher-recurrent-training.html 
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5 Fuel Burn Prediction Model Development  

Accurate flight fuel burn predictions are crucial in the aviation industry. The required trip fuel is 

calculated by an airline’s Flight Planning System (FPS) based on factors including the route 

selection, flight altitude, winds and other weather conditions, anticipated traffic delays, and 

aircraft performance. However, the FPS trip fuel predictions are not perfectly accurate, because 

of they are based on forecast conditions and imperfect aircraft performance models, and cannot 

account for variation pilot technique. If planned trip fuel is higher than actual trip fuel, then a 

flight will waste fuel by carrying excess fuel weight. On the other hand, if trip fuel is under-

estimated, then a flight might be required to make an unscheduled fuel stop, which is 

operationally disruptive, or, worse, risk fuel exhaustion, as occurred very recently in the tragic 

crash of LaMia Flight 2933
18

. In practice, in response to prediction uncertainty, airlines carry 

discretionary fuel (e.g. contingency fuel) to avoid the latter (under-prediction) case. However, 

carrying unnecessary fuel can prove costly to airlines and harmful to the environment. Some of 

this wasted fuel burn can be avoided by more accurate fuel predictions and a better 

understanding of the prediction uncertainty.  

Large airlines operation thousands of flights every day, and the records of these flights 

offer a rich base of empirical data for improving fuel burn predictions. This chapter investigates 

the potential improvement fuel burn prediction accuracy that can be attained by leveraging such 

data. In particular, ensemble learning is used to improve fuel burn prediction and construct 

prediction intervals (PI). Then the upper PI can be provided to dispatchers as recommended 

discretionary fuel.  

This chapter makes the following contributions to the airline fuel loading field: (1) under 

the ensemble learning framework, we find that ensemble learning can significantly improve fuel 

burn prediction accuracy compared to airline FPS and offer some improvement compared to the 

best individual machine learning algorithms; (2) we propose a PI-based discretionary fuel 

estimation approach which can reduce unnecessary discretionary fuel loading while maintaining 

a safety performance; (3) we quantify the benefit of improved fuel prediction and the use of PI-

based discretionary fuel estimation approach through a CTC analysis. 

The remainder of this chapter is organized as follows. In Section 5.1, exploratory data 

analysis is performed on the airline fuel data and stability-based K-means clustering technique is 

used to spatially segment flights into three OD clusters. The ensemble learning framework is 

discussed in Section 5.2 and construction of PI is discussed in Section 5.3. Model performance is 

presented in Section 5.4. The benefit assessment of improved fuel burn prediction is described in 

Section 5.5. Section 5.6 provides a summary of this chapter. 

5.1 Exploratory Data Analysis 

Over/under burn value, defined as the difference between actual trip fuel burn and FPS planned 

trip fuel burn, is used to gauge the prediction performance of the airline FPS. In this chapter, we 

use pounds (lbs) to measure fuel burn and fuel loading since it is a more generic unit for 

describing fuel burn quantity. The FPS of our study airline tends to over-predict trip fuel burn at 

an average of 132 lbs per flight. Moreover, the SD of over/under burn is 940 lbs. Figure 5.1 

presents the distributions of over/under burn for eight selected OD pairs. This figure reveals 

                                                           
18

 https://en.wikipedia.org/wiki/LaMia_Flight_2933 
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significant heterogeneity across different OD pairs in terms of the performance of FPS fuel burn 

prediction. For OD segment SFO-JFK, the median over/under burn value is about 1500 lbs, 

whereas for DEN-LGA the median value is -400 lbs. The large discrepancy across different OD 

pairs is partly due to route-specific directional effects (e.g. wind and regional congestion effects). 

This difference also suggests that a global fuel burn prediction model might not perform as well 

as one that includes some OD specificity. Therefore, we segment flights into different clusters 

based on OD airports and develop cluster-specific fuel burn prediction models
19

. Clustering 

based on airports’ geographic location has several advantages. One advantage is that it allows us 

to build a cluster-specific model tuned to capture unique directional patterns for the flights within 

the same cluster. Another advantage is the clustering results are interpretable and can be applied 

in airline practice. In this study, we performed K-means clustering based on the coordinates 

(latitude, longitude) of the OD airports. We refer to these clusters as OD clusters (origin-

destination clusters). 

 

 
Figure 5.1 Over/under burn distributions across selected OD pairs 

 

One challenge of using K-means clustering is deciding the optimal number of clusters. To 

tackle this issue, we implemented the stability-based K-means clustering algorithm proposed by 

Benhur et al. (2002). The basic idea of stability-based clustering is that true clusters should be 

insensitive to data perturbation. Thus, if we randomly select two subsamples of original data (for 

instance each accounts for 80% of original sample size) and perform K-means on each 

subsample, we will be able to assess how stable the clustering assignments are for the 

observations that are shared by both subsamples. Concretely, we can express the clustering labels 

L of data X using a matrix C with components: 

 

                                                           
19

 The performance of a global model is also tested compared to cluster-specific models. It is shown that cluster-

specific models outperform the global model. The results are shown in Appendix.  
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Let L1 corresponds to the labels from the first subsample of data (accounting for 80% of the 

original data) with matrix representation C
1
, and let L2 correspond to the second subsample with 

matrix representation C
2
 (another 80% random sample of the original data). The dot product 
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2121,  computes the number of pairs of points clustered together in subsample 1 

and subsample 2. Then we can define two similarity measures. The first one is correlation 

similarity measure: 
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The second one is called the Jaccard coefficient defined as: 
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Both metrics are based on how well entries of the two matrices agree and the values of metrics 

vary between 0 and 1. A higher metric value indicates more stable clustering assignments, thus 

helping us identify “true” clusters. We perform the above mentioned resample and K-means 

algorithm 100 times, with k, the number of clusters, ranging from 2 to 15. The distribution of 

corresponding similarity measures is shown in Figure 5.2. The most stable number of clusters is 

3 since its stability measures are close to 1 according to both metrics. After determining the 

optimal number of clusters, we run K-means 100 times and select the cluster assignment that 

corresponds to the lowest total within cluster sum of squares to reduce the influence of random 

initialization of K-means algorithm. The resulting OD clusters are shown in Figures 5.3-5.5. For 

ease of demonstration, we present the origin airports (green dots) and destination airports (red 

dots) in two separate graphs. The three clusters generally correspond to east-bound, west-bound, 

and eastern short-haul traffic. This clustering allows us to separate flights into groups with 

similar directional patterns. 
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Figure 5.2 Stability-based clustering results 
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Figure 5.3 OD cluster 1 (Green dots denote origin airports, red dots denote destination airports) 
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Figure 5.4 OD cluster 2 (Green dots denote origin airports, red dots denote destination airports) 
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Figure 5.5 OD cluster 3 (Green dots denote origin airports, red dots denote destination airports) 

 

 

 

Next, cluster-specific fuel burn prediction models are developed. In Section 5.2, we 

describe an ensemble learning framework that has been shown to significantly improve upon 

current popular machine learning algorithms on flight fuel burn prediction. 
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5.2 Ensemble Learning 

Besides safety concerns, fuel burn prediction also effects the quality and validity of many other 

aircraft parameter predictions (such as gross weight, center of gravity position, maximal altitude, 

flight distance) as well as trajectory computations and optimizations (including altitudes, flight 

times, and costs) (Dancila et al., 2013). The equations describing the instantaneous fuel burn rate 

are complex and dependent on the particular aircraft-engine configuration. Therefore, 

traditionally due to limited computing power, many airlines’ FPS (including that of our study 

airline) use a simplified fuel burn performance description model based on linear interpolation 

tables (Liden, 1992). With the enhanced computing power and emerging machine learning 

algorithms, many researchers have demonstrated promising results for applying machine 

learning algorithms for flight fuel burn prediction. For instance, popular algorithms applied in 

this field include decision tree (Chati and Balakrishnan, 2016), random forests, boosting tree, and 

neural network (Horiguchi et al., 2017). 

 A natural question to ask is: How much can we improve prediction accuracy by using an 

ensemble of machine learning methods compared to using a single method? In this section, we 

discuss an ensemble learning framework that can be used to combine the prediction results of 

different machine learning algorithms and yield more accurate prediction results. 

Ensemble learning methods are often used when the true prediction function is not easily 

approximated by a single algorithm (Hastie et al., 2009; LeDell, 2015). The idea is to build a 

prediction model by combining the strengths of several base learning algorithms or base learners. 

Commonly used ensemble machine learning methods include Bagging (Breiman, 1996a) and 

Boosting (Freund and Schapire, 1997). Bagging (also known as Bootstrap aggregation) averages 

prediction results over a collection of bootstrap samples. One popular variant of Bagging is the 

Random Forest (Breiman, 2001). Boosting, on the other hand, starts with building weak base 

learners and iteratively adds them together.  

Another powerful ensemble learning method proposed by Wolpert (1992) is called 

stacking. Stacking combines multiple base learners into a single prediction function through a 

second layer of training called meta-learning. It seeks an optimal linear combination of different 

base learners (not necessarily weak learners as required in Boosting) to give improved prediction 

accuracy (Wolpert 1992; Brieman 1996b; Leblanc and Tibshirani, 1996; van der Laan et al., 

2007). Van der Laan et al. (2007) provide the theory for stacking and show that stacking (they 

call it “Super Learner”, but it is essentially stacking) performs asymptotically as well as the best 

possible weighted combination of the base learners. In some sense, stacking provides a more 

general framework of ensemble learning in which it can also incorporate Boosting and Bagging 

as its base learners. From a Bayesian perspective, one can also average a large number of base 

learners with respect to the posterior probabilities of models. This algorithm is called Bayesian 

Model Averaging (Raftery, 1995). It has been shown that if the true prediction function is 

contained within the base learner library, BMA is never worse than stacking. However, if the 

true prediction function is not well approximated by the base learner library, then stacking will 

significantly outperform BMA (Clarke and Yu, 2003). In this chapter, we will focus on the 

stacking algorithm and designing meta-learning algorithms that work well for the airline fuel 

burn prediction. 



51 
 

5.2.1 Stacking  

By leveraging the strengths of different base learners (such as linear regression, boosting, 

random forests, support vector machine, neural network), one can achieve prediction accuracy 

improvement. The idea is to perform K-fold cross-validation on the original dataset (also known 

as level zero data) using each base learner, then stack the cross-validated predictions from each 

learner to form a new set of features (also known as level-one data) and perform another layer of 

training based on level-one data.   

Suppose we have selected L learners )(),(1 XfXf L  of a response variable y in terms of 

a vector of X on the same training set },1),,{( NiXyS ii  . Instead of following the winner-

takes-all strategy by selecting a single learner based on lowest cross validation error (e.g. squared 

loss error), we can stack the prediction output from different learners to form a new design 

matrix and combine them in the following form (Wolpert 1992; Brieman 1996b): 
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where ST stands for stacking and l  are the weights associated with each base learner. Given the 

training set },1),,{( NiXy ii  , we can choose { l } to minimize: 
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{ l } can be estimated through ordinary least squares. However, as Brieman (1996) pointed out, 

if the level-one data is constructed using training set S, and the { l } are also selected by 

minimizing squared error over S, then the resulting { l } will overfit the data and suffer from 

high prediction inaccuracy on a test set. As a remedy to this problem, Wolpert (1992) suggests 

using leave-one-out cross-validation (CV) to generate leave-one-out prediction )(Xf LOOCV
l  and 

Breiman (1996) proposed to the use K-fold CV to generate cross-validated prediction )(Xf CV
l  to 

save computational costs. The K-fold CV algorithm works in the following way (LeDell, 2015): 

 

− Randomly divide the original training set (level-zero data) into K folds with roughly 

equal size: )()1( ,..., KXX ; 

− For each base learner lf in the library, train a model using K-1 folds data and make 

prediction on the hold-out fold data. Repeat the process K times, where in each a 

different fold of the data is used as the hold-out data 

 

For each base learner, this algorithm will generate an n-dimensional vector of cross-validated 

predictions with the same size as the original training data. Then we can stack the cross-validated 

prediction output of L base learners to form a level-one design matrix Z with dimension Ln . 

Accordingly, the original training data is often referred to as the level-zero data with dimension

pn , where n is the number of observations and p is the number of predictors. The { l } are 

then chosen to minimize: 
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Along this line, Leblanc and Tibshirani (1996) also compare CV-based level-one data generation 

with a bootstrap-based method. In some cases, bootstrap-based level-one data generation works 

slightly better than the CV-based method, but it is computationally more expensive.   

 

5.2.2 Meta-learning 

After obtaining level-one data, the question remaining is how to estimate { l }. This process is 

called meta-learning with the objective of finding the optimal linear combination of L base 

learners. Breiman (1996) found that when the coefficients in equation 5.6 were constrained to be 

nonnegative and 1 l , stacking showed better prediction error than any of the base learner

)(xlf . However, the solution for Equation 5.6 obtained using nonnegative least squares (Lawson 

and Hanson, 1987) might be too restrictive in finding optimal solutions. Hence, a data-adaptive 

meta-learning approach is needed. Since all the base learners are predicting the same y, their CV-

predictions will be highly correlated, thus regularization-based meta-learning via lasso 

(Friedman and Popescu, 2003) is preferable. Lasso can help shrink the weights of “unnecessary” 

learners to zero and select “useful” learners. Now the minimization problem becomes the 

following: 
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or equivalently  
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The regularization parameter   can be selected using validation set or K-fold cross-validation in 

the training set. Note that there will be no intercept term in the meta-learning process. 

Broadly speaking, meta-learning can also be viewed as a typical function approximation 

or learning task in which one can apply any type of parametric or nonparametric algorithm to 

level-one data and learn a meta-learner g using a bounded loss function (LeDell, 2015). For 

instance, one can train random forests on level-one data and use K-fold cross-validation or 

validation to tune model parameters. 
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However, in general, complicated meta-learning algorithms suffer from overfitting issue. Thus, it 

is common to estimate an optimal linear combination of the base learners. 
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Note that the stacking framework can be applied to any user-defined loss function. In the 

case of fuel burn prediction, a squared error loss is used in both base learners training and meta-

learning. As shown in Chapter 6, we can also apply stacking to quantile error loss in the setting 

of quantile regression. Details can be found later. 

It must be mentioned that from a practical point of view, the stacking framework also 

enjoys another advantage. Recall that we use the CV-prediction results of L base learners to form 

level-one data for meta-learning. These L base learners are not restricted to the best-tuned base 

learners. We can incorporate all the training efforts into the level-one data. For instance, in the 

typical model training of gradient boosting, one may specify a different number of trees for 

boosting (say 1,000, 2,000, or 3,000). In this case, L is 3 instead of 1. 

5.3 Prediction Uncertainty 

From a dispatcher’s perspective, a point prediction of trip fuel burn from a machine learning 

model might not be adequate. It is desired to construct prediction intervals (PIs) associated with 

point prediction so that dispatchers can evaluate model results and make fuel loading decisions 

with a high level of confidence. Furthermore, the development of PI can also be used to replace 

discretionary fuel loading.  

In linear regression models, one can derive closed-form expression for PIs assuming 

model errors follow independent normal distributions (Wonnacott and Wonnacott, 1996). 

However, for many non-linear models, there are no closed form expressions for model errors and 

one has to analyze the statistical properties of the model error which is a non-trivial task for most 

machine learning algorithms (Chryssoloiuris et al., 1996). Another method is to use simulation 

and re-sampling.  However, this method is often computationally intensive. Other non-

probabilistic approaches such as the fuzzy set approach (Maskey et al., 2004), require better 

understanding of the uncertainty associated with model predictors. 

Since historical residuals (defined as the observed differences between observed data and 

predicted values) are the best indicators of future prediction errors, in this study we follow the 

procedure described by Shrestha and Solomatine (2006) to construct PIs for test set flights based 

on the empirical distributions of residuals in the validation set. The main idea is to partition the 

input space (model predictors) into different clusters having similar model errors (relaxing the 

constant error assumption) using clustering techniques. Then PI is constructed for each cluster. 

In the case of hard-clustering (e.g. K-means), for a flight in the test set belonging to cluster A, its 

corresponding 100)1(  percent PI can be computed by finding the 100)2/(  and 

100)2/1(  percentile values from the empirical distribution of residuals in validation set 

with the same cluster assignment. However, in the case of soft-clustering (e.g. Gaussian mixture) 

where the clustering assignment is not deterministic, but rather a flight belongs to more than one 

cluster with corresponding membership probabilities, we need to consider membership 

probabilities in the PI construction as well. 

To be more specific, we first need to sort flights in the validation set with respect to the 

residuals (prediction errors) in ascending order. Let ijp  denote the membership probability of 

flight j belonging to cluster i, je to indicate the residual of flight j (sorted), and n to denote the 

total number of observations in the validation set. Then, Lo
iPIC , the lower PI for cluster i is je

where j is the maximum value that satisfies the following inequality: 
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Similarly, Up
iPIC , the upper PI for cluster i is he where h is the maximum value of it that satisfies 

the following inequality: 
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Once we have computed upper and lower PI for each cluster, the PI for a flight j is the weighted 

average of the PI of each cluster: 

 

                                                           


c

i

Lo
iij

L
j PICpPI

1

                                                         (5.14) 

                                                           


c

i

Up
iij

U
j PICpPI

1

                                                        (5.15) 

 

where L
jPI and U

jPI are the lower and upper PI for flight j, respectively. The constructed PI can 

be gauged using the coverage probability which is the percentage of flights in the test set with 

actual fuel burn values falling into the constructed PI plus fuel prediction.  

5.4 Model Performance 

In this section, we evaluate the performance of stacking-ensemble learning and clustering-based 

PI construction using the airline data. The airline data described in Chapter 2 (368,607 flights 

with no missing weather information) is randomly divided into three categories: 60% training set, 

20% validation set, and 20% test set. Prediction performance was evaluated based on test set, and 

PIs were constructed using validation set. Table 5.4 shows the number of flights in each OD 

cluster 

 

Table 5.1 Sample summary 

Number of flights Training set Validation set Test set 

OD Cluster 1 158,733 52,911 52,911 

OD Cluster 2 36,519 12,174 12,174 

OD Cluster 3 25,911 8,637 8,637 

5.4.1 Prediction Performance  

In terms of base learners, we want a library that covers the function space well in places where 

they are needed and base learners sufficiently different from each other for the meta-learning to 

be effective (Hastie et al., 2009). To this end, we used the following base learners: lasso, ridge, 

random forests (RF), gradient boosting machine (GBM), k-nearest neighbor (KNN), and 

multivariate adaptive polynomial spline regression (MARS) to capture both linear and non-linear 

functional forms. Table 5.5 presents the features used in the prediction model development. The 
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selected features include terminal weather forecasts, historical airborne time distribution, and 

flight characteristics such as aircraft type. Since we do not have en route weather and traffic 

forest information, we incorporate FPS planned fuel burn and planned trip time as proxies for the 

missing information.  

 

Table 5.2 Summary of predictors 

Weather-related predictors 

Forecasted visibility for 

destination airports 

Forecasted ceiling for 

destination airports 

Forecasted thunder storm 

conditions for destination 

airports 

Forecasted snow 

conditions for destination 

airports 

Requirement for 1
st
 

alternative airports 

Requirement for 1
st
 

alternative airports 
Planned alternate fuel Month (seasonality) 

Predictability-related predictors 

Mean airborne time Median airborne time 
75

th
 percentile of airborne 

time 

80
th

 percentile of 

airborne time 

85
th

 percentile of 

airborne time 

90
th

 percentile of airborne 

time 

95
th

 percentile of airborne 

time 

Standard deviation of 

airborne time 

Max airborne time 
Median deviation from the 

median of airborne time 

Mean deviation from flight 

plan 

Median deviation from 

flight plan 

75
th

 percentile of 

deviation from flight plan 

80
th

 percentile of deviation 

from flight plan 

85
th

 percentile of deviation 

from flight plan 

90
th

 percentile of 

deviation from flight plan 

95
th

 percentile of 

deviation from flight plan 

Standard deviation of 

deviation from flight plan 

Max deviation from flight 

plan 

Median deviation from 

the median of deviation 

from flight plan 

Flight characteristics 

Coordinates of OD Planned trip time Aircraft type Flight distance 

Fuel capacity Hub airport indicators FPS planned trip fuel  

 

The base learners were tuned using 5-fold cross validation to find optimal hyper-

parameter settings, such as maximum tree depth in random forest, number of trees in gradient 

boosting, and so forth. The cross-validation error and test set error using various algorithms can 

be found in the Appendix. Since KNN performed unexpectedly worse than the FPS, its test set 

prediction results are not presented in the following figures (see Appendix for details). Figures 

5.6 to 5.8 display the model prediction results (measured in mean-squared prediction error) on 

the test set for each OD cluster. The best base learner was found to be gradient boosting, 

followed closely by random forests. It is shown that by applying machine learning techniques, 

the test error can be reduced by about 50% compared to our study airline’s FPS. Using ensemble 

learning, we can achieve about 2–5% error reduction compared to the best base learner. The 

lasso-based meta-learner is also found to yield better prediction performance than non-negative-

least-squares (NNLS)-based meta-learner. This comparative superiority results from lasso 

providing flexibility in finding the optimal weights of different base learners.  
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Figure 5.6 Mean squared error on test set (in lbs

2
) for OD cluster 1 

 
Figure 5.7 Mean squared error on test set (in lbs

2
) for OD cluster 2 

864,677 

495,788 495,691 
450,574 432,988 426,879 415,529 404,073 

0

200,000

400,000

600,000

800,000

1,000,000

FPS Ridge Lasso MARS Random

Forests

Gradient

Boosting

Stacking

with NNLS

Stacking

with Lasso

Shrinkage

825,180 

481,593 481,548 481,438 480,756 457,287 452,223 450,808 

0

200,000

400,000

600,000

800,000

1,000,000

FPS MARS Lasso Ridge Random

Forests

Gradient

Boosting

Stacking

with NNLS

Stacking

with Lasso

Shrinkage



57 
 

 
Figure 5.8 Mean squared error on test set (in lbs

2
) for OD cluster 3 

 

Prediction errors on test sets based on stacking with lasso shrinkage for each OD cluster 

are presented in Table 5.6. It can be seen that ensemble learning yields more reliable prediction 

results compared to the airline FPS in the sense of reduced variability and bias (zero-centered 

means). This bias-variance reduction results in smaller mean squared error shown in Figures 5.6 

to 5.8. Since ensemble learning does not provide variable importance measures, to get a rough 

idea of which predictors are more important, we use the scaled importance measure generated by 

the random forests algorithm. Variable importance is determined by whether that variable was 

selected during splitting in the tree building process in random forests training and how much the 

squared error (over all trees) improved as a result. Then a variable’s importance measure is 

scaled with respect to the most important feature.  In other words, the most important feature has 

a scaled relative importance of 1, and all the other variables are measured relative to the most 

important feature. The top 10 features are presented for each OD cluster. It can be found that 

FPS planned fuel burn and planned trip times are the top two important features. Different 

quantiles of historical airborne time distribution and aircraft type are also found to be important 

in improving prediction performance.  

It is not surprising that airline FPS planned fuel burn and trip time are the most important 

features. They are the best from the FPS based on airline aircraft performance model and en 

route weather and traffic forecasts that are only available to the study airline. Here, we use them 

as best the proxies for the missing en route forecast information. The feature importance result 

also suggests that system predictability (measured by historical flight time distribution) plays an 

important role in flight fuel burn prediction. This indicates that besides airlines’ efforts, the FAA 

can help achieve fuel cost reduction by improving system predictability. This finding is 

consistent with the results from Hao et al. (2016b). 
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Table 5.3 Prediction error and variable importance 

Test set Prediction error (lbs) Variable Importance (based on random forests)  
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5.4.2 Prediction Interval  

In order to achieve more accurate PI construction, within each OD cluster (Layer 1), we perform 

another layer of clustering based on individual flight characteristics, including historical 

distribution of airborne times, planned trip time and trip fuel burn, and forecasted weather 

conditions at the destination airports. For Layer 2 clustering, we apply Gaussian mixture models 

by assuming that our input features follow multivariate Gaussian distributions with full 

covariance structure. Compared to K-means, Gaussian mixture clustering is a soft-version 

clustering technique as it estimates the probabilities of each flight belonging to a Gaussian 

distribution. This soft version clustering allows us to utilize information from all sub-clusters in 

constructing PI (see details later). 

The optimal number of Gaussian distributions (sub-clusters) per OD cluster is determined 

based on Bayesian Information Criterion (BIC), an indicator of model fit, where lower BIC 

indicate a better fit. Shown in the BIC plots (Figure 5.9), as we increase the number of sub-

clusters, the BIC decreases. However, after certain numbers, the marginal decrease becomes 

negligible. Therefore we stop at the position where subsequent improvement in model fit is 

insignificant and pick the corresponding number as our optimal number of sub-clusters. One 

reason for adopting this early stopping is that we generally prefer a simple model to complicated 

models. In the end, we found two sub-clusters for OD cluster 1, two sub-clusters for OD cluster 2, 

and three sub-clusters for OD cluster 3. For each of the 10 sub-clusters, we constructed a PI 

based on the prediction residuals in the validation set. Then, for each OD cluster, the PI was a 

weighted average of its sub-clusters’ PIs.  

As expected, the PIs developed based on the validation set provide consistent coverage 

probability in the test set. Take OD cluster 1 as an example, as shown in Table 5.7, using a 95% 

PI developed based on OD cluster 1’s validation set and applying to OD cluster 1’s test set, for 

95.1% of flights, the differences between actual fuel burn and predicted fuel burn are within the 

constructed PIs. 
 

Table 5.4 Coverage performance on test set 

Test set 

performance 
Coverage probability using 95% PI Coverage probability using 99% PI 

OD cluster 1 95.1% 99.0% 

OD cluster 2 95.5% 99.0% 

OD cluster 3 94.8% 98.9% 
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Figure 5.9 Sub-clustering results 
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5.5 Safety Check and Cost-to-Carry Analysis 

In this analysis, we assume dispatchers trust proposed discretionary fuel and perform 

discretionary fuel loading accordingly. The upper PI (calculated by Equation 5.15) serves as a 

good candidate for discretionary fuel loading quantity. Next, we need to evaluate whether the 

proposed discretionary fuel can reduce fuel cost while maintain a same safety level as before? In 

light of airline practice, we test both the upper 95% PI and upper 99% PI. The selection of these 

two quantiles are consistent with airline’s practice of using SCF95 and SCF99 (refer to Section 

1.2 and Chapter 6 for more details about SCF). 

As shown in Table 5.9, in the test set 0.03% of flights in OD cluster 1 landed with reserve 

fuel being used, and 0 flights in OD cluster 2 and 3 used reserve fuel based on original dispatcher 

discretionary fuel loading. If we use the upper 95% PI and upper 99% PI as discretionary fuel, 

we can achieve similar safety performance (though slightly worse) in terms of number of flights 

using reserve fuel. This is because dispatcher discretionary fuel loading is always higher than our 

proposed discretionary fuel (e.g. upper 95% and 99% PI) which results in safe, but over-

conservative fuel loading. 

The difference between dispatcher discretionary fuel and our proposed discretionary fuel 

defines the opportunity for fuel saving. As we mentioned before, there is a CTC extra weight on 

a flight. Hence, if we can reduce discretionary fuel loading, then the CTC discretionary fuel 

would also decrease. Recall cost-to-carry factor is defined as the pounds of fuel consumed per 

pound of fuel carried per mile, and it varies across aircraft types and flight distance. Then, using 

Equation 3.4, we can estimate fuel savings due to carrying less discretionary fuel. 

Column 2, in both Table 5.11 and Table 5.12, presents average CTC fuel saving per test 

set flight if we use the upper 95% and 99% PI as discretionary fuel. We also consider the 

breakdown of terminal weather conditions. A weather-impacted flight is defined as a flight with 

the following TAF weather forecast at destination airport: forecasted ceiling below 2,000 feet, or 

visibility below 3 miles, or forecasted thunderstorm presence. After obtaining per-flight-basis 

fuel saving, by extrapolating back to the original size of the data, we can obtain an estimate of 

airline-wide total savings. The extrapolation is performed in the following way: First, compute 

fuel savings in the test set. Since test set is a 20% random sample of the airline weather-matched 

data, we can multiply test set savings by 5. As mentioned in Chapter 2, weather-matched flights 

represent about half of the original dataset over 14 months of operation, and we further multiply 

the benefit by 2 to find airline-wide fuel savings. More careful extrapolation differentiating 

aircraft types or airports, would make for an interesting future research topic; however, such 

specificity is not the focus of this study, which concentrates on the flight-level impact.  

In addition to monetary savings, we also utilize the U.S. Environmental Protection 

Agency conversion factor for jet fuel (Environmental Protection Agency, 2013) to translate fuel 

savings into reduction in CO2 emission in kilograms. Our study shows that airline can save $76.1 

million and 530 million kg of CO2 emissions if applying the upper 95% PI as discretionary fuel 

and $60.4 million and 421 million kg of CO2 emissions if applying upper 99% PI as 

discretionary fuel (assuming $3/gallon as jet fuel price). The upper 99% PI is, of course, always 

higher than upper 95% PI, resulting in somewhat smaller savings, but the difference is not very 

large.  

The above results suggest significant benefits of using improved fuel burn prediction in 

discretionary fuel calculation. However, from airline’s perspective, the percentage of flights 

landing with reserve fuel being used based on proposed discretionary fuel still seems high (see 
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Table 5.9 column 3 and 5). To address this safety concern, we propose to add a safety buffer to 

PI-based discretionary fuel, which can help achieve the same safety performance as the current 

practice for our study airline. In this case, we estimate a scaling factor   and the new 

discretionary fuel quantity for flight j becomes U
jPI . Scaling factor  can be learned for each 

OD cluster based on its validation set.  
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Using a constrained optimization formulation, we can find a minimum scaling factor   that 

achieves a given threshold safety  . In formula 5.16, I is an indicator function. jAF denotes 

actual fuel burn for flight j, and jPF denotes planned fuel burn.  

Take OD cluster 1 as an example, as shown in Table 5.10, for good weather flights in the 

validation set, 0.03% of flights landed with reserve fuel being used according to dispatcher 

discretionary fuel loading, whereas using the upper 99% PI as discretionary fuel would result in 

0.3%. Using line search, we find that if we multiple PI-based discretionary fuel for each flight by 

1.09, we can also achieve 0.03% in the validation set. Similar scaling factor estimation is carried 

out for other OD clusters. By applying the learned scaling factor to the test set, we can achieve 

$71.7 million fuel saving over 14 months (or $61.5 million per year) if using the scaled upper 95% 

PI and $56.4 million fuel saving over 14 months (or $48.3 million per year) if using the scaled 

upper 99% PI with the same safety level as the current practice of our study airline (see column 5 

of Table 5.11 and Table 5.12). 

 

 
 

Table 5.5 Safety check on test set 

 Percentage of flights landing using reserve fuel 

Test set 

performance Use original 

discretionary 

fuel 

Use upper 95% PI 

as discretionary fuel 

Use upper 95% 

PI with scaling 

factor as 

discretionary 

fuel 

Use upper 99% PI as 

discretionary fuel 

Use upper 99% 

PI with scaling 

factor as 

discretionary fuel 

OD cluster 1 

(52911 

flights) 

0.03% 1.7%  0.02% 0.3%  0.02% 

OD cluster 2 

(12174 

flights) 

0% 2.0% 0% 0.4%  0% 

OD cluster 3 

(8637 

flights) 

0% 1.7% 0.01% 0.3%  0.01% 
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Table 5.6 Safety check on validation set  

Validation set 

performance 

Percentage of 

flights 

landing using 

reserve fuel 

Percentage of 

flights landing 

using reserve 

fuel if use upper 

99% PI as 

discretionary 

fuel 

Scaling 

factor for 

SCF99 

Percentage of 

flights landing 

using reserve 

fuel if use upper 

95% PI as 

discretionary 

fuel 

Scaling factor

 for SCF95 

OD cluster 1 
Good WX 0.03% 0.3% 1.12 2.1% 1.20 

Bad WX 0.01% 0% 1.00 0.05% 1.02 

OD cluster 2 
Good WX 0% 0.5% 1.11 2.4% 1.18 

Bad WX 0% 0% 1.00 0.2% 1.02 

OD cluster 3 
Good WX 0% 0.5% 1.03 2.3% 1.07 

Bad WX 0% 0.08% 1.05 0.08% 1.05 

 

 

Table 5.7 Cost-to-carry saving using 95% PI as discretionary fuel 

 
Use upper 95% PI as discretionary fuel 

Use upper 95% PI with scaling factor as 

discretionary fuel  

Test set 

performance 
Mean CTC 

fuel savings 

(in lbs) per 

flight  

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg)  

Mean CTC 

fuel savings 

(in lbs) per 

flight 

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg)  

OD 

cluster 1 

(52911 

flights) 

Weather 

impacted 

flights 

232 

70161.7   
80130.5   

230 

70117.7   
80199.4   

Non-

weather 

impacted 

flights 

192 177 

OD 

cluster 2 

(12174 

flights) 

Weather 

impacted 

flights 

172 169 

Non-

weather 

impacted 

flights 

271 249 

OD 

cluster 3 

(8637 

flights) 

Weather 

impacted 

flights 

431 422 

Non-

weather 

impacted 

flights 

404 394 
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Table 5.8 Cost-to-carry saving using 99% PI as discretionary fuel 

 
Use upper 99% PI as discretionary fuel 

Use upper 99% PI with scaling factor as 

discretionary fuel  

Test set 

performance 
Mean CTC 

fuel savings 

(in lbs) per 

flight 

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg) 

Mean CTC 

fuel savings 

(in lbs) per 

flight 

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg) 

OD 

cluster 1 

(52911 

flights) 

Weather 

impacted 

flights 

177 

70104.6   
80121.4   

177 

70164.5   
80192.3   

Non-

weather 

impacted 

flights 

152 138 

OD 

cluster 2 

(12174 

flights) 

Weather 

impacted 

flights 

95 95 

Non-

weather 

impacted 

flights 

213 193 

OD 

cluster 3 

(8637 

flights) 

Weather 

impacted 

flights 

344 330 

Non-

weather 

impacted 

flights 

341 334 

 

5.6 Summary 

Having accurate fuel burn predictions is critical for airlines. Loading too much fuel will result in 

additional CTC. Loading too little fuel, on the other hand, can lead to in-air fuel emergencies. 

Both cases are harmful and costly to airlines. The current FPS planned trip fuel predictions are 

subject to errors, the size of which affects the amount of discretionary fuel that dispatchers load. 

In this study, we have shown how ensemble learning techniques can be used to build more 

accurate fuel prediction models. The lasso-based stacking is found to reduce the mean squared 

prediction error by 50% over the current FPS and by 2-5% over the best base learners. So far, we 

have considered only six base learners. However as we increase library size by incorporating 

other powerful algorithms in base learners (e.g. neural network, SVM, etc.), we would expect to 

generate an even more powerful predictions.  

Besides more accurate predictions, we also construct PI with 95% and 99% coverage 

probabilities using a Gaussian mixture clustering idea. We propose to use upper 95% PI and 99% 

PI as discretionary fuel. By assuming dispatchers trust the proposed discretionary fuel and load 

discretionary accordingly, we find that our study airline can save roughly $61.5 million and 428 

million kg annually with the same safety performance, as measured by the risk of using reserve 

fuel, is realized under current practice. 

To summarize, this chapter provides a good example of applying ensemble learning in 

improving flight trip fuel burn prediction. Moreover, PI-based discretionary fuel is found to be a 
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good alternative to replace dispatcher discretionary fuel with significant fuel savings and CO2 

reduction. In the next chapter, we provide another approach to tackling the question of how to 

reduce unnecessary discretionary fuel loading while maintain the same safety level.  
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6 SCF Estimation Improvement  

The underlying goal of Chapters 5 and 6 is to provide airline dispatchers with reliable and 

accurate recommendations on discretionary fuel loading so that unnecessary fuel loading can be 

reduced. Unlike Chapter 5, which is established on improved fuel burn prediction models, this 

chapter studies another approach in estimating discretionary fuel loading. If airlines do not want 

to improve the FPSs fuel prediction (due to system upgrading costs, etc.), we can still rely on 

current FPS to estimate discretionary fuel and achieve significant fuel savings. This supposition 

leads to a discussion of SCF. Recall that in airline fuel-loading practice, SCF is commonly used to 

provide dispatchers with discretionary fuel recommendations. However, due to limitations in the 

current SCF estimation procedure, dispatchers have low confidence in applying SCF values (e.g. 

SCF95) and generally load more discretionary fuel than the recommended numbers. Therefore, 

in this chapter, we propose a new approach to improve the estimation of SCF. We show that the 

improved SCF outperforms the current FPS SCF. We also estimate the benefit of using new SCF 

as discretionary fuel compared to current discretionary fuel loading by dispatchers using a 

similar CTC analysis as the one described in Section 5.5. 

6.1 Motivation 

To provide consistent and objective fuel planning, some FPSs provide recommended contingency 

fuel numbers based on a statistical analysis of historical fuel consumption for similar flights. 

Carriers usually term this Statistical Contingency Fuel (SCF) (Karisch et al., 2012). When a 

dispatcher plans a flight (about two hours prior to departure), the FPS pulls historical data (for 

some number of years as chosen by the airline) of all flights with the same OD pair that were 

scheduled to depart in the same “hour bank” or time window specified by the airline. As we 

discussed in Section 1.2, for each historical (non-diverted) flight, the difference between the 

actual trip fuel consumption and the planned mission fuel consumption is calculated (over/under-

burn value). The FPS converts the over/under burn value in pounds to minutes and estimates a 

normal approximation of the distribution of this excess required fuel burn. The 95th and 99th 

percentiles of the distribution, which are also called the SCF95 and the SCF99, are provided to 

dispatchers by the FPS as guidelines for contingency fuel loading. The interpretation of SCF95 

(SCF 99) is that based on historical fuel consumption, loading the quantity of contingency fuel 

specified by SCF95 (SCF99) would result in a flight being able to land without dipping into any 

reserve fuel (or alternate) 95% (99%) of the time.  

SCF has been widely used in the airline industry. According to one survey (Schiefer and 

Samuel, 2011), many airlines have SCF estimation functionalities (as described above) embedded 

in their FPSs. These include Air India, British Midland International, United Airlines, Virgin 

America, Virgin Atlantic, SAS Group of Airlines, to name a few. In the case of our study airline 

(a major U.S.-based network carrier), the SCF values are calculated based on the set of historical 

flights took place over the previous year with the same OD and scheduled hour of departure.  

However, there are several limitations to the current SCF estimation procedure. First of 

all, from a statistical perspective, the procedure assumes that under/over-burn is normally 

distributed, which may not be the case. Second, unless the sample is quite large, the estimate of a 

95
th

 or 99
th

 percentile based on the sample mean and SD is subject to considerable sampling error. 

Likewise, it is of course impossible to calculate SCF values in the case of serving a new OD 

market with no similar historical flights. Thirdly, although the SCF calculation has implicitly 
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accounted for weather and other events in history by using actual fuel consumption information, 

dispatchers might still have low confidence in applying those numbers due to oversimplified 

grouping criterion (e.g. OD-hour). For example, aircraft type is missing from the grouping 

criterion, even though the aircraft performance models used for different aircraft types may have 

varying predictive performance. Additionally, in order to increase the confidence level of 

dispatchers in SCF values, weather forecasts should also be explicitly taken into account. While 

the high percentiles used to calculate SCF are intended to account for adverse weather, 

dispatchers are reluctant to trust SCF values in such conditions.  

A previous analysis based on the same study airline reveals that dispatchers would almost 

always load extra fuel above recommended SCF values (Ryerson et al., 2015). As a result, it has 

been found that 4% of the fuel consumed by an average flight is due to carrying unused fuel. 

Similar behavior has also been observed in other airlines. For instance, based on a survey of 50 

U.S. pilots and dispatchers about their fuel-loading practices, Trujillo (1996) finds that airline 

dispatchers and pilots always load contingency fuel above the suggested contingency value by the 

airline. A recent study (Hao et al., 2016b) finds that discretionary fuel loading is related to 

weather uncertainty and aviation-system predictability. These results suggest that since 

contingency fuel reflects a dispatcher’s assessment of flight uncertainty, improving system 

predictability can lead to reduction in discretionary fuel loading.  

The objective of this chapter is to provide reliable SCF values that dispatchers are more 

likely to believe. Ideally, their faith in these values would be such that they would generally 

adhere to them in setting discretionary fuel. To overcome the limitations of the widely used SCF 

estimation method described above, we propose a new SCF estimation procedure that relies on 

quantile regression models, focusing on SCF95 and SCF99. A quantile regression model has 

several desirable properties: (1) it models a given quantile of over/under-burn value directly rather 

than employing simplified grouping criterion and assuming a normal distribution; (2) it allows 

covariates to be added into the estimation function so that characteristics such as weather and 

traffic can be explicitly controlled for; (3) this method also allows us to estimate SCF values for 

flights where the old method cannot be used because there is not an adequate sample of similar 

flights. 

To get a sense of the relationship between discretionary fuel loading and the SCF value for 

our study airline, we plot the distribution of discretionary fuel over its corresponding SCF value. 

In Figure 6.1 and 6.2, the diagonal line represents SCF value. For each SCF category (SCF 95 and 

SCF99), its corresponding discretionary fuel in general varies considerably and is found to be 

systematically higher than SCF (boxplot is in general above the diagonal line). This is consistent 

with the findings from Ryerson et al. (2015) that dispatchers seldom trust SCF values and always 

load more discretionary fuel than recommended. Table 6.1 presents the mean, SD, 95
th

 and 99
th

 

percentile of over/under-burn statistics for eight aircraft types. It can be observed that fuel 

performance differs across aircraft types. This variance also suggests the need to incorporate 

aircraft type into SCF estimation, which is missed in the airline’s SCF estimation. It is also noted 

that the SD of the over/under-burn distributions for different aircraft types remain relatively 

constant. 
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Figure 6.1 Relationship between discretionary fuel and SCF95 

 

 
Figure 6.2 Relationship between discretionary fuel and SCF99 
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Table 6.1 Under/over-burn summary (in minutes) 

Aircraft type 
Mean 

Standard 

Deviation 
95

th
 percentile 99

th
 percentile 

A319 -9.8 9.3 5.7 16.0 

A320 -7.8 9.5 7.7 18.9 

B737-800 -4.2 9.6 12.4 21.9 

B757-300 3.2 8.4 16.9 24.2 

B757-200 4.6 9.3 20.1 29.6 

DC9 6.5 7.4 18.8 26.1 

MD88 6.9 8.5 21.2 29.2 

MD90 1.3 7.5 13.7 21.3 

 

6.2 Methodological Approach 

In this section, we introduce our SCF estimation procedure based on quantile regression method. 

The response variable Y is the under/over-burn value (in minutes). The covariates X  include 

terminal area weather forests, historical traffic conditions, aircraft types, departure hour window, 

departure month, and dummies for major airports.  

We focus on three techniques: (1) parametric quantile regression (QR); (2) gradient 

boosting machine (GBM) based quantile regression tree; (3) random quantile forests (RQF). Just 

as a standard linear regression models conditional mean functions )|( XYE , a quantile regression 

is used to model conditional quantiles of Y : )|( XYQq , where q denotes a specific quantile. It can 

be shown that the quantile regression estimator for q-th quantile minimizes the following loss 

function (Koenker, 2005): 

 

                                               


N

i
iiqq xfyJ
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)),(()(                                           (6.1) 

 

where )()( )0(  tq qtt  and I is an indicator function. In our case, we choose q to be 0.95 and 

0.99. If we specify  ii xxf ),( , minimizing Equation 6.1 with respect to  would produce 

parameter estimates of the q-th conditional quantile function. Sometimes, in order to achieve 

better prediction performance, we could also leverage machine learning algorithms like gradient 

boosting machine (GBM) to estimate ),( ixf in a non-parametric manner (Friedman, 2001). 

GBM is an ensemble learning algorithm which combines different weak learners in a sequential 

fashion and gradually improves model fit (see Equation 6.2). 

 

                                    )(ˆˆ
1

k
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The main idea of applying GBM in the quantile regression setting is to iteratively add simple 

quantile regression tree models )( k
t xh  to existing models 1

ˆ
tf , so that the updated model tf̂ can 

further reduce the quantile loss function specified in Equation 6.1. Here, )( k
t xh  is constructed 

based on a splitting variable kx , which reduces the loss function the most at iteration t.   is 
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called the learning rate and it is usually set at a small value. We use   = 0.005 in this paper. The 

number of iterations is a tuning parameter that we need to determine. If we set iteration to be a 

large number, we will be likely to overfit the data. Algorithm details could be found in Ridgeway 

(2007). 

Another powerful learning algorithm comprises the random forests (RF) which has been 

widely used in the area of conditional mean prediction. The idea of RF is to average the prediction 

outputs from a large number of decision trees (Breiman, 2001). For conditional mean, the 

prediction of a single decision tree for a new data point X = x is the mean response of Y in a 

particular leaf that contains X = x. Then, RF computes a final prediction by averaging predictions 

from all trees. Drawing an analogy with conditional mean, when it comes to predicting 

conditional quantiles, instead of using mean response of Y in a leaf, we can report q-th empirical 

quantiles of Y in that leaf and then average the obtained quantiles across all trees. This algorithm 

is called random quantile forests (RQF) which has been proposed by Meinshausen (2006). The 

tuning parameter for RQF is the minimum node size, which is related to how deep we should 

grow a decision tree. If we set the minimum node size to be a small number, then we obtain a 

deep tree which is very likely to overfit the data.   

In order to improve upon the above suggested individual learners, stacking is applied in 

the quantile loss setting. Recall that in the meta-learning of stacking, after obtaining validated or 

cross-validated-prediction results, we can perform another layer of training in seeking the optimal 

linear combinations of all base learners. Similarly, lasso-based meta-learning can be applied with 

a quantile loss function.   
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Using K-fold CV, we can tune regularization parameter   and find the best set of { l } that gives 

better prediction performance compared to the best individual learner.  

To test the prediction performance of the four proposed quantile regression-based models 

(QR, GBM, RQF, lasso-based stacking), we look at a loss function-based goodness-of-fit measure 

(Koenker and Machado, 1999): 
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where ))(( fJ q  is the value of loss function on test set using SCF95 estimation function )(f . 

)(
~
f  is used to denote a model with the constant term only which is equivalent to using the 95

th
 

(or 99
th

) quantile of Y in the training set as prediction for every flight. Four proposed SCF 

estimation models plus airline FPS SCF will be measured against a constant-only model 

developed using the training set. Regarding tuning parameters, in order to achieve the best 

prediction performance on test set, we should avoid overfitting the training data. Therefore, we 

need to find the optimal number of iterations in GBM and the minimum node size in RQF using 

the validation set. Parameter tuning results are provided in later sections. We used the same 
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training, validation, and test sets described in Chapter 5, allowing us to compare the fuel-saving 

benefits across two approaches.  

6.3 Model Performance 

In this section, we present the estimation results and prediction performance of four proposed 

methods: QR, GBM, RQF, and stacking. The parametric QR model results afford easier 

interpretation compared to the machine learning models; thus, we focus on parameter estimates 

in the QR model. Prediction performance on the test set across four models will also be 

discussed. 

The estimation results for the parametric QR models with respect to SCF95 and SCF99 

are presented in Table 6.2. A positive parameter estimate means an increase in the variable 

results in higher SCF prediction and vice versa. Regarding aircraft type, the A319 is treated as 

baseline. The relative magnitudes of parameter estimates are consistent with Table 6.1 which 

suggests that heavy aircraft in general have higher SCF than smaller aircraft. Longer flights are 

also found to result in higher SCF, partly because longer flights are more subject to disturbances 

due to en route weather and traffic. The signs of parameter estimates for historical traffic 

condition variables are all positive across two SCF models except for the SD of historical 

airborne time in the SCF95 model which is statistically insignificant. Since we did not have en 

route weather forecast information, historical traffic predictability measures can serve as proxies 

for variability in weather and operations conditions that are related to OD, month, and hour of 

day. The estimation results suggest that if historical traffic conditions are less predictable than 

represented by large standard deviation of airborne time and large deviation between actual and 

planned airborne time, then SCF is higher. This also indicates that SCF could be reduced through 

enhanced ATM targeting on improving system predictability. Forecasted weather conditions for 

destination airports are found to have bigger impact than origin airports. Among terminal area 

weather forecasts, forecasted thunderstorm is found to have the biggest impact on SCF, followed 

by forecasted low-ceiling and low-visibility conditions. The construction of low-ceiling and low-

visibility variables is based on the adverse weather definition used in the FARs, which require a 

flight to carry enough fuel to travel to an alternate airport if the weather conditions are such that 

visibility is less than 3 miles and the ceiling at the destination airport is less than 2,000 feet at the 

flight’s estimated time of arrival plus/minus one hour. Forecasted thunderstorm indicators at 

origin airports also have positive impact on SCF. The monthly fixed effects are included in the 

models to capture seasonality influences not captured by the other variables. It can be found that 

SCF95 is higher in the winter season, possibly as the results of wind effects. The estimation 

results of the parametric QR model for SCF99 are also consistent with the SCF95 model with 

consistent signs of parameter estimates. The interpretation is also similar. 
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Table 6.2 Estimation results of quantile regression models 

Category Variable  SCF99 Model SCF95 Model 

Estimates T-stat Estimates T-stat 

-- Intercept 0.518 0.20 -7.829 * -19.29 

Aircraft 

type 

(Baseline is 

A319) 

A320 3.485 * 3.68 2.238 * 10.99 

B737-800 2.253 * 2.04 2.042 * 8.58 

B757-300 10.319 * 7.50 11.310 * 42.59 

B757-200 12.306 * 12.32 13.359 * 65.39 

DC9 13.777 * 8.85 15.869 * 59.19 

MD88 15.000 * 15.94 16.547 * 85.59 

MD90 7.538 * 7.13 9.322 * 45.15 

Distance  Flight distance (in nautical miles) 0.004 * 1.96 0.003 * 2.94 

Historical 

traffic 

condition 

Median of historical airborne time 0.015 0.97 0.026 * 3.84 

Standard deviation of historical 

airborne time 
0.012 0.06 -0.027 -1.05 

Median of difference between 

historical actual and planned airborne 

time 

0.171 * 5.08 0.137 * 10.85 

Standard deviation of difference 

between historical actual and planned 

airborne time 

0.328 * 5.01 0.211 * 8.59 

TAF 

weather 

forecast for 

destination 

airports  

Low visibility indicator (1-if lower 

than 3 miles, 0-otherwise) 
3.439 * 3.94 2.444 * 7.62 

Low ceiling indicator (1-if lower than 

2000 feet, 0-otherwise) 
6.405 * 16.77 5.052 * 34.60 

Thunderstorm indicator (1-if 

thunderstorm presents, 0-otherwise) 
13.268 * 17.14 6.485 * 17.46 

Snow indicator (1-if snow presents, 0-

otherwise) 
4.937 * 11.82 3.147 * 6.27 

TAF 

weather 

forecast for 

origin 

airports 

Low visibility indicator (1-if lower 

than 3 miles, 0-otherwise) 
0.303 0.69 0.151 0.93 

Low ceiling indicator (1-if lower than 

2000 feet, 0-otherwise) 
0.693 0.71 0.058 0.10 

Thunderstorm indicator (1-if 

thunderstorm presents, 0-otherwise) 
2.582 * 3.12 0.963 * 4.18 

Snow indicator (1-if snow presents, 0-

otherwise) 
0.202 0.41 -0.217 -0.85 

Month  

(Baseline is 

January) 

February -0.415 -0.69 0.221 1.04 

March -2.485 * -4.03 -1.328 * -6.96 

April -1.240 * -2.18 -0.493 * -2.75 

May -0.616 -1.04 0.006 0.03 

June -1.889 * -2.86 -1.034 * -4.89 

July -1.107 -1.72 -0.781 * -3.77 

August -0.971 -1.36 -0.672 * -3.12 

September -1.970 * -2.99 -1.290 * -6.64 

October -2.332 * -3.79 -0.981 * -5.02 

November -2.782 * -4.72 -1.284 * -6.59 

December -0.619 -0.99 -0.261 -1.18 

Number of 

observations 
221,163 

Note: 1) To save space, airport fixed effects and departure hour fixed effects estimates are not presented in this table. 

2) * denotes significant at 5% significance level. 
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Turning to GBM training results, we have tested the number of iterations ranging from 

5,000 to 20,000, and 19,000 iterations were found to produce the smallest loss value on the 

validation set for the SCF95 model, and 9,000 iterations for SCF99 model. Regarding the node 

size selection in RQF, 50 was found to achieve the smallest validation set error for SCF95 model, 

and 100 was selected based on the SCF99 model. In addition, 200 decision trees were trained in 

an RQF; 1e
-5

 was selected as the best regularization parameter for lass-based stacking for the 

SCF95 model. Similarly, 1e
-4

 was found to be the best regularization parameter for the lasso-

based stacking SCF99 model. 

Using the best model-tuning parameters, the goodness-of-fit measures of four proposed 

models on the test set are presented in Table 6.3. For the SCF95 estimation, among three 

individual learners - QR, GBM and RQF, RQF was found to perform slightly better than the other 

two. However, RQF performs the worst among three individual learners in SCF99 estimation. 

Lasso-based stacking was found to improve model prediction in both SCF95 and SCF99 

estimation. On the other hand, we observed that SCF estimated by the airline FPS was found to 

provide a poor fit on the test set. Thus, lasso-based stacking was found to be the best prediction 

model and is thus used in the following benefit assessment. 
 

Table 6.3 Goodness-of-fit measures 

Test set performance 
Goodness-of-fit measure 

SCF95 SCF99 

FPS
20

 0.076 -0.003 * 

QR 0.231 0.196 

GBM 0.237  0.200  

RQF 0.250  0.187  

Stacking 0.268  0.219  

Note *: we obtain a negative goodness-of-fit measure for SCF99 model using airline FPS as prediction. This indicates 

airline FPS SCF99 is performing worse than simply using sample 99
th
 quantile as prediction with respect to the 

quantile loss we are measuring.  

  

                                                           
20

 Based on flights with SCF values. 



74 
 

From Table 6.4 to Table 6.7, we plot predicted SCF95 (SCF99) values against airline’s 

FPS SCF95 (SCF99) values. We also consider the breakdown of terminal weather conditions. A 

weather impacted flight is defined as a flight for with the TAF weather forecast at the destination 

meets the following criteria: forecasted ceiling below 2,000 feet, or visibility below 3 miles, or 

forecasted thunderstorm presence. For weather-impacted flights, the quantile regression-based 

models tend to predict higher SCF values than the FPS, since terminal weather forecast have 

been explicitly taken into account in the SCF estimation process. This property is desirable for 

dispatchers because more confidence will be gained in making discretionary fuel decisions by 

controlling for weather and traffic variables. For non-weather-impacted flights, the proposed 

methods tend to predict lower SCF values than FPS. Again, by adding weather, traffic, aircraft 

type information into SCF estimation, dispatchers can also potentially load less discretionary fuel, 

which would lead to less fuel consumption. It is also noted that some SCF predictions are 

negative. In these few cases, the fuel burn predicted by the FPS will be higher than the actual 

fuel burns more than 95% of the time. In other words, for those flights, no discretionary fuel will 

be needed because FPS over-estimates fuel-burn predictions. However, in order to evaluate the 

potential fuel-savings of applying the new SCF95, we will follow our study airline’s SCF 

practice and set SCF95 values to be exactly 10 minutes if the corresponding prediction is less 

than 10. Similar patterns can also be found in SCF99 estimation. 
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Table 6.4 SCF95 prediction results for weather impacted flights 

Weather impacted flights in the test set 

QR GBM 

  
RQF Stacking 
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Table 6.5 SCF95 prediction results for non-weather impacted flights 

Non-weather impacted flights in the test set 

QR GBM 

  
RQF Stacking 
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Table 6.6 SCF99 prediction results for weather impacted flights 

Weather impacted flights in the test set 

QR GBM 

  
RQF Stacking 
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Table 6.7 SCF99 prediction results for non-weather impacted flights 

Non-weather impacted flights in the test set 

QR GBM 

  
RQF Stacking 
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6.4 Safety Check and Benefit Assessment 

In this section, we consider the possible fuel savings associated with implementing a new SCF-

estimation procedure. As suggested in Figures 6.1 and 6.2, dispatchers in general load more 

discretionary fuel than the SCF recommendation. Here we assume that because the SCF values 

obtained from our models are more believable (for example, by being higher when there is 

adverse weather), dispatchers will follow them. Thus, the difference between discretionary fuel 

loading and new SCF value defines our opportunity for fuel saving. If we reduce discretionary 

fuel loading, then the CTC discretionary fuel would also decrease. By assuming dispatchers 

follow new SCF recommendations perfectly in loading discretionary fuel, we can compute fuel 

savings in terms of CTC discretionary fuel reduction using the same CTC analysis mechanism 

described in Section 5.5. 

As shown in Tables 6.10 and 6.11, for weather-impacted flights in the test set, the per-

flight fuel saving is 243 lbs for SCF95 and 194 lbs for SCF99, using a lasso-based stacking 

model results as discretionary fuel. If we extrapolate back to the original dataset with operations 

over 14 months of operation for our study airline, we can further estimate an airline-wide total 

saving. By using $3/gallon as jet fuel price, we can estimate airline-wide monetary savings by 

flight count. The airline-wide benefits are about $75.6 million in fuel savings and 526 million kg 

in CO2 emissions reduction using the new SCF95 for discretionary fuel (or $64.8 million and 451 

million kg per year) and $64.1 million fuel saving and 446 million kg CO2 emissions reduction 

using new SCF99 as discretionary fuel (or $54.9 million and 382 million kg per year). Consistent 

with the findings in Section 5.5, using a lower percentile (SCF95 v.s. SCF99) can help to achieve 

higher fuel saving. Furthermore, weather-impacted flights are found to have higher fuel-savings 

opportunities. Dispatchers tend to load more discretionary fuel than necessary for weather-

impacted flights to overcome weather and traffic uncertainties. However, in the proposed SCF 

estimation procedure, weather and traffic-related information has already been taken into account 

explicitly. Hence, using improved SCF as discretionary fuel for weather-impacted flights would 

generate more fuel savings compared to dispatchers’ overloaded discretionary fuel. 

Safety is a dispatcher’s major consideration in discretionary fuel loading. As shown in 

Table 6.8, if we load discretionary fuel exactly as the proposed SCF values (either SCF95 or 

SCF99), we would still encounter a small proportion of flights using reserve fuel which might be 

undesirable to airlines. To better apply our proposed SCF estimation method in practice, we try 

to find a safe buffer on top of the proposed SCF to guarantee a similar safety margin for our 

study airline. The scaling factor idea, described in Section 5.5, is also applied here. We can learn 

scaling factors from the validation set and apply them to the test set. Again, we learn scaling 

factors for weather-impacted and non-weather-impacted flights separately. As shown in Table 

6.8 and 6.9, by using the learned scaling factors, we can achieve the same safety performance as 

the current practice of our study airline. Moreover, we can still achieve an airline-wide benefit of 

$19.6 million and $22.2 million in fuel savings over 14 months, respectively, by using proposed 

SCF95 and SCF99 for discretionary fuel. These benefits are roughly $16.8 million and $19.0 

million per year. Note that unlike fuel-saving estimates using unscaled SCF, we obtain higher 

fuel-savings using the scaled SCF99 model results. This is because in order to achieve a similar 

safety level, the learned scaling factor is 3.20 for SCF95 and 1.09 for SCF99 among non-weather 

impacted flights. The big scaling factor of SCF95 offsets the benefit, which results in slightly 

lower fuel savings comparing to scaled SCF99 model results. 
 



80 
 

Table 6.8 Safety check on test and validation sets using new SCF95 

 Percentage of flights landing using reserve fuel 

 

Original 

discretionary 

fuel 

Use QR SCF95 

as discretionary 

fuel 

Use RQF 

SCF95 as 

discretionary 

fuel 

Use GBM 

SCF95 as 

discretionary 

fuel 

Use Stacking 

SCF95 as 

discretionary 

fuel 

Use Stacking 

SCF95 with 

scaling as 

discretionary 

fuel  

Validation 

set 

performance 

0.02% 3.3% 3.0% 3.3% 3.2% 0.02% 

Test set 

performance 
0.02% 3.4% 3.2% 3.4% 3.2% 0.03% 

 

Table 6.9 Safety check on test and validation sets using new SCF99 

 Percentage of flights landing using reserve fuel 

 

Original 

discretionary 

fuel 

Use QR SCF99 

as discretionary 

fuel 

Use RQF 

SCF99 as 

discretionary 

fuel 

Use GBM 

SCF99 as 

discretionary 

fuel 

Use Stacking 

SCF99 as 

discretionary 

fuel 

Use Stacking 

SCF99 with 

scaling as 

discretionary 

fuel  

Validation 

set 

performance 

0.02% 0.85% 0.87% 0.84% 0.81% 0.03% 

Test set 

performance 
0.02% 0.85% 0.83% 0.85% 0.78% 0.03% 

 

Table 6.10 Cost-to-carry fuel saving using new SCF95 

 
Use stack SCF95 as discretionary fuel 

Use stack SCF95 with scaling factor as 

discretionary fuel  

Test set performance 
Mean CTC 

fuel savings 

(in lbs) per 

flight  

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg)  

Mean CTC 

fuel savings 

(in lbs) per 

flight 

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg)  

Weather impacted 

flights(10589 flights) 
243 

70156.7   
80126.5   

233 

70196.1   
80136.1   Non-weather 

impacted flights 

(63133 flights) 

230 31 

 

Table 6.11 Cost-to-carry fuel saving using new SCF99 

 
Use stack SCF99 as discretionary fuel 

Use stack SCF99 with scaling factor as 

discretionary fuel  

Test set performance 
Mean CTC 

fuel savings 

(in lbs) per 

flight  

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg)  

Mean CTC 

fuel savings 

(in lbs) per 

flight 

Airline-wide 

monetary 

savings ($) 

(assuming 

$3/gallon) 

Airline-

wide CO2 

reduction 

(kg)  

Weather impacted 

flights(10589 flights) 
194 

70141.6   
80146.4   

194 

70122.2   
80154.1   Non-weather 

impacted flights 

(63133 flights) 

197 47 
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6.5 Summary 

In this chapter, we have shown the possibility of reducing fuel consumption through an improved 

SCF estimation procedure. A quantile regression-based SCF estimation procedure has been 

proposed. Three estimation models including parametric quantile regression, gradient boosting 

machine, and random quantile forests have been found to substantially outperform the airline’s 

FPS in SCF estimation. Ensemble learning is also found to outperform three proposed models by 

combining them together. The new SCF-estimation procedure overcomes the limitations of the 

widely used SCF-estimation method, which relies on simplified grouping criterion and normal 

approximation. The proposed method can also incorporate terminal weather forecast and 

historical traffic conditions into the SCF estimation. 

With the help of CTC factors, we are also able to calculate the extra fuel burn to carry the 

difference between actual contingency fuel and new SCF value based on model prediction. The 

extra fuel burn then can be translated into monetary costs and CO2 emission. The estimated 

benefit pool for our study airline is in the magnitude of $75.6 million in fuel savings and 526 

million kg of CO2 emissions reduction over 14 months of operation (or roughly $64.8 million and 

451 million kilogram per year). We further investigate the impact of adding a practical safety 

buffer (multiplying by a scaling factor), which can help to achieve a similar safety level, as 

measured by the fraction of flights landing without their full 45 min fuel reserve, as is the current 

practice for our study airline. Even after applying scaling factors, the estimated benefits are still 

significant: $22.2 million in fuel savings and 154 million kg of CO2 emissions reduction using the 

SCF99 model (or roughly $19 million and 132 million kilogram per year). In addition, this study 

also builds a link between SCF95 estimation and aviation system predictability enabling the 

proposed models can also be used to predict benefits from reduced fuel-loading enabled by 

improved ATM. 

Based on the fuel-burn data obtained from a major U.S.-based airline, a significant benefit 

has been estimated by improving SCF estimation, assuming that dispatchers could be persuaded 

to follow the improved guidance. It is also likely that this benefit would scale if applied 

throughout the airline industry, both in the U.S. and abroad. Moreover, given the link between 

system predictability and SCF estimation, a system-wide fuel savings benefit due to improved 

ATM could also be assessed. 

7 Conclusions 

In this dissertation, we have investigated dispatcher discretionary fuel loading behavior and 

proposed two discretionary fuel estimation approaches to help dispatchers make better fuel 

loading decisions. The contributions of this dissertation are the following: 

1. We estimate fuel-burn cost due to carrying unnecessary fuel at an airline level. This 

broad view provides us a fuel-saving benefit benchmark and draws attention to a simple and 

well-tested fuel-saving approach: reducing unnecessary fuel loading. In Chapter 3, conservative 

fuel loading behavior is observed in six major U.S. airlines. This identifies opportunities in 

achieving significant fuel burn reduction by reducing unnecessary fuel loading in a system level. 

The benefit in 2012 (after removing the effect of reserve fuel) is estimated to range from $42 

million to $605 million for six airlines with a total of $1.16 billion. While it is not possible to 

attain all of these savings without causing unacceptable risk of fuel emergencies, they at least 

raise the possibility that an improved fuel loading practice could result in substantial savings 
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without compromising safety. The results also motivate us to further explore dispatcher fuel 

loading behavior.  

2. Dispatchers’ fuel loading behavior is modeled as decision under risk. Starting in 

Chapter 4, we begin to focus on fuel loading decisions from a major U.S.-based airline. With the 

help of this detailed flight level fuel burn and fuel loading data, we are able to estimate how 

dispatchers trade off safety concerns due to insufficient fuel loading and fuel costs due to 

carrying excess fuel. Using the newsvendor model formulation, we assume dispatchers make 

discretionary fuel loading decisions by minimizing the expected cost of under-loading 

(insufficient fuel loading) and over-loading (carry unnecessary fuel). The ratio between 

perceived safety costs and CTC excess fuel provides us with a quantified measure of the trade-

offs between safety and fuel cost. Across 96 dispatchers, on average, dispatchers are found to 

value reserve fuel 1,200 times more than other fuel. This underscores the focus on safety in 

dispatcher culture. By integrating a dispatcher survey in modeling dispatchers’ safety-cost trade-

offs, we find that dispatchers who are detail oriented and conservationists are likely to load less 

discretionary fuel. These findings provide two important implications for airlines. One is about 

screening for dispatchers. When airlines interview dispatchers, in addition to skill- and behavior-

based performance evaluations, it would be helpful to also test the detail-orientation of 

dispatchers, as well as their belief in conservation. This might help airlines to select dispatchers 

who are less likely to overload fuel resulting in potential fuel savings. Another implication is to 

target dispatchers for recurrent training. Add training topics on detail-orientation and 

conservation may also encourage dispatchers to load less unnecessary fuel. 

3. Two novel discretionary fuel estimation approaches are proposed to assist dispatchers 

with better discretionary fuel loading decisions. These two approaches are shown to generate 

reliable discretionary fuel recommendations for dispatchers. In Chapter 5, we propose to use a 

PI-based discretionary fuel estimation approach in which the idea is to improve flight fuel burn 

prediction using machine learning techniques and then use PI to capture the prediction 

uncertainty. Using upper 95% PI as discretionary fuel loading is found to achieve the highest 

benefit with $61.5 million in savings and 428 million kilogram of CO2 in emissions reduction per 

year. Another property of using this approach is that we can also maintain the same safety 

performance as in current practice. 

In Chapter 6, we explore another discretionary fuel estimation approach which is based 

on improving SCF estimation. Airlines can still use their FPS for fuel burn prediction without 

any dramatic change to the current FPS. The only change required is in the SCF estimation 

module. The proposed quantile regression-based SCF estimation approach is found to 

outperform current FPS. The estimated annual benefit of using the new SCF99 as discretionary 

fuel is found to be $19 million in fuel savings and 132 million kilogram of CO2 in emissions 

reduction. Although this approach provides less benefit than the PI-based approach, it still yields 

significant savings, given we are adhering to the airline (unimproved) FPS. A natural extension 

of this analysis is to combine improved fuel burn prediction models with quantile regression 

based on the SCF estimation procedure. This addition may lead to more accurate discretionary 

fuel estimation results and even greater fuel savings. 

 Reducing fuel consumption is a unifying goal across the aviation industry. To this end, a 

simple, well-tested, but commonly overlooked approach is to reduce unnecessary discretionary 

fuel loading. With small yet powerful changes in dispatchers’ discretionary fuel loading behavior, 

such as influencing their attitudes and providing them with more accurate information, we have 

shown that significant benefits cane be seized in terms of monetary savings and CO2 reduction 
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for our study airline. A similar analysis could be easily generalized to other airlines when such 

detailed airline fuel data becomes available. 
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Appendix 

Table A.1 Cluster1 model performance 

 5-fold MSE on 

training 

MSE on validation MSE on test 

FPS  866,229.2 853,987.4 864,676.7 

KNN (k=4) 996,344.3 944,664.4 925,123.4 

Lasso 

(lambda=0.01) 
504,899.4 494,201.0 495,690.8 

Ridge 

(lambda=0.001) 
504,899.9 494,230.9 495,787.7 

MARs 459,735.1 448,515.3 450,573.7 

Random Forests 

(depth=15) 
446,960.3 432,587.4 432,988.4 

Gradient Boosting 

(N=3500) 
438,284.6 426,686.8 426,878.6 

Stacking with NNLS -- 415,379.7 415,529.0 

Stacking with Lasso 

Shrinkage (lambda = 

10) 

-- 404,091.5 404,072.5 

 

Table A.2 Cluster2 model performance 

 5-fold MSE on 

training 

MSE on validation MSE on test 

FPS  815,295.9 827,276.5 825,179.9 

KNN (k=3) 2,034,886.4 1,943,307.9 1,832,740.2 

Lasso 

(lambda=0.01) 
469,923.5 490,394.4 481,547.7 

Ridge 

(lambda=0.0001) 
469,996.9 490,321.3 481,437.7 

MARs 466281.9 489,369.4 481,593.1 

Random Forests 

(depth=15) 
473,368.7 485,726.1 480,755.6 

Gradient Boosting 

(N=3500) 
454,910.6 471,026.9 457,287.1 

Stacking with NNLS -- 462,216.0 452,223.1 

Stacking with Lasso 

Shrinkage (lambda = 

1000) 

-- 459,627.3 450,808.1 
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Table A.3 Cluster3 model performance 

 5-fold MSE on 

training 
MSE on validation MSE on test 

FPS  1,238,647.9 1,239,857.2 1,282,738.9 

KNN (k=4) 2,071,680.9 1,959,904.3 2,054,702.4 

Lasso 

(lambda=0.1) 
621,848.1 603,089.0 640,428.2 

Ridge 

(lambda=0.0001) 
621,813.8 603,103.9 640,591.8 

MARs 617,125.2 599,522.6 639,353.0 

Random Forests 

(depth=15) 
615,483.1 583,157.6 620,425.0 

Gradient Boosting 

(N=3000) 
595,935.4 570,399.8 600,816.2 

Stacking with NNLS -- 557,961.2 593,723.8 

Stacking with Lasso 

Shrinkage (lambda = 

100) 

-- 555,620.5 591,321.6 

 

 

Table A.4 Full model performance 

 
5-fold MSE on 

training 

MSE on validation MSE on test 

FPS  901,450.8 894,783.6 907,133.1 

KNN (k=3) 1,431,021 1,341,977.8 1,339,982.2 

Lasso 

(lambda=0.01) 
531,421.6 524,703.2 529,007.0 

Ridge 

(lambda=0.00001) 
531,429.5 524,705.2 529,003.1 

MARs 573,902.9 484,335.9 491,195.4 

Random Forests 

(depth=15) 
471,456.0 460,510.5 463,678.5 

Gradient Boosting 

(N=4000) 
465,757.6 457,898.3 460,252.0 

Stacking with NNLS -- 446,726.9 449,572.3 

Stacking with Lasso 

Shrinkage (lambda = 

100) 

-- 438,485.6 441,442.7 

 

 




