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Abstract

Theorizing Hidden Chemical and Magnetic Order in Alloys

By

Flynn Walsh

Doctor of Philosophy in Applied Science & Technology

University of California, Berkeley

Professor Mark Asta, Chair

The popularization of concentrated solid-solution alloys has prompted a renewed search
for atomic-scale chemical order among elements that appear randomly distributed within
crystal lattices. However, confounding signals in electron diffraction experiments necessitate
an immediate reliance on indirect measurements for detecting local order in compositionally
complex alloys, as may be interpreted through computer simulations. For instance, both the
structure and magnetization of the CrCoNi model system notably contradict ab initio theory
for random alloys, but could be reconciled by the widespread presence of chemical short-range
order. These simulations additionally find significant magnetic interactions in materials that
are often assumed only paramagnetic, motivating further predictions of antiferromagnetism
in binary Cr-Ni alloys, which are conventionally understood to have nonmagnetic ground
states. This result indicates either the failure of standard theories or, as suggested by
anomalous historical measurements, the existence of previously overlooked magnetic order
that could persist well above ambient temperatures. In order to realistically model magnetic
thermodynamics, a new Monte Carlo approach is developed and found to provide insight
into the origin and prevalence of magnetic short-range order.
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Chapter 1

Overview of the dissertation

Most of the work described in this dissertation was carried out as part of the Damage-
Tolerance in Structural Materials program in the Materials Sciences Division of Lawrence
Berkeley National Laboratory, although a fellowship allowed me to explore some more funda-
mental aspects of modeling magnetism. Our program seeks to understand the origins of the
unprecedented combinations of strength and toughness observed in certain complex concen-
trated alloys (CCAs), with my work focusing on face-centered cubic (fcc) systems consisting
of several 3d transition metals.

While many mechanical properties are ultimately dictated by mesoscale phenomena, we
have been developing a hypothesis that the remarkable postyield damage-tolerance of this
class of nominally disordered materials originates from a sequence of deformation mechanisms
that is affected by atomic-scale chemical order among the constituent elements. This form of
chemical rearrangement can be challenging to detect, inviting a tantalizing search for elusive
short-range order (SRO) in ostensibly “high-entropy” environments.

As an introduction, Ch. 2 reviews some of the basic principles of chemical SRO from
a historical perspective. This work will be published as the first half of Ref. [1]. Ch. 3
addresses recent attempts to characterize SRO by transmission electron microscopy (TEM),
which, unfortunately, appear to have been measuring something else instead. This chapter
will be published as Ref. [2].

As these TEM studies constitute the majority of contemporary characterization efforts,
their refutation leaves an immediate lack of experimental clarity on conventionally processed
material. Ch. 2 discusses how the presence of SROmay still be inferred by comparing indirect
measurements to theoretical predictions. In this manner, Ch. 4 chronicles an investigation
of SRO in the CrCoNi model system using spin-polarized density-functional theory (DFT),
based on work published in Ref. [3], with discussion drawing from Ref. [1]. It is argued
that a significant degree of SRO may be ubiquitous in this system and other related alloys
containing concentrated Cr or V.

Intriguingly, magnetism was found to play a role in ground-state calculations of ordering
in CrCoNi, although it is unclear if this prediction is physically reasonable. As the pos-
sibility of magnetic order in many-component alloys is complicated by uncertain chemical
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structures, Ch. 4 explores the basic predictions of the theory in related but considerably
better studied binary Cr-Ni alloys, which are traditionally considered to be only paramag-
netic. Remarkably, conventional DFT is found to consistently predict antiferromagnetism
in at least the chemically ordered phases of the system. Although this result could indicate
a failure of the theory, it is proposed that the presence of hidden antiferromagnetic order
could be consistent with a number of anomalous historical measurements, motivating future
experiments. This chapter was published as Ref. [4].

While these works only consider magnetic ground states, proper treatment of magnetism
requires the simulation of finite-temperature ensembles, which are commonly parameterized
by classical Heisenberg models. However, widely employed classical sampling procedures
poorly describe magnetic phenomena due to the quantum nature of spins. Addressing this
problem, Ch. 6 describes a new method for sampling spin states that provides accuracy
comparable to existing workarounds with significantly improved generality and convenience,
as published in Ref. [5].
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Chapter 2

Introduction to short-range order

2.1 Binary alloys

Before considering chemical short-range order (SRO) in many-component systems, it is help-
ful to review the physics of chemical rearrangement in binary solid solutions, of which there
are two distinct forms. In the first, two elements may simply segregate, or “cluster,” forming
separate phases in the long-range limit. Alternatively, attractive interactions between unlike
atomic species may lead to the formation of various periodic lattice decorations, or orderings.

In either case, atomic distributions are traditionally described in terms of the frequencies
of chemical pairs. The likelihood of finding elements i and j at neighbor separation rp is

expressed by the Warren-Cowley (WC) parameter α
(p)
ij . In a random solution, the probability

of finding j at a site rp from i is simply the fractional concentration of j, cj = 1 − ci. For
actual probability Pp(j | i), the WC parameter may be defined for any1 i and j as

α
(p)
ij = α

(p)
ji = 1− Pp(j | i)

cj
. (2.1)

Negative α
(p)
ij values indicate more ij-type p-pairs than in a random alloy, in which all

α
(p)
ij = 0, while positive values mean the opposite. Considering unlike nearest-neighbor

pairs, α
(1)
ij > 0 suggests clustering, while α

(1)
ij < 0 typically indicates ordering.

The magnitude of rp at which α
(p)
ij becomes indistinguishable from zero may be termed the

correlation distance, which is arbitrarily large in the case of long-range order (LRO) or phase

separation. SRO has by definition a measurably finite correlation distance, although α
(p)
ij

typically decays slowly enough that it is more convenient to represent ordering in reciprocal
space via the Fourier transformation of WC parameters. In this picture, mean chemical
distributions are described in terms of wave vectors, k, associated with amplitudes that may

1Some popular definitions of the parameter [6] define α
(p)
ii differently, inverting the meaning of the sign

relative to α
(p)
i ̸=j .
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be defined2 as
Qij(k) =

ci
ci − δij

∑
p

α
(p)
ij exp (-ik · rp) . (2.2)

For the binary alloy depicted in Fig. 2.1(b), panel (c) shows Qij for the (001) plane.
While somewhat less immediately intuitive, the reciprocal-space view is attractive be-

cause binary Qij(k) is closely related to measurable diffuse scattering intensity, as will be
discussed later. Many structures may also be succinctly described by a small number of wave
vectors. Clustering, for instance, is associated with k approaching (000), which corresponds
to perfect phase separation.

Nonzero values of k represent ordering, which may be interpreted in terms of concentra-
tion waves expressing the average chemical environment of a crystal. For a site at r, the
probability of finding either element is a superposition of waves ∼eik·r with weights related
to Qij(k) [7–9]. While SRO necessarily involves many periodicities, specific wave vectors
associated with LRO structures are generally dominant.

2.2 Many-component alloys

This method of binary pair analysis may be applied to many-component systems, at the
expense of some elegance; Qij(k) is no longer directly measurable and the complete determi-
nation of ordering waves requires system-specific analysis [10]. Still, the theoretical SRO of
M -component CCAs is often described in terms of M(M − 1)/2 correlations between unlike

pairs, in real (α
(p)
ij ) or reciprocal (Qij(k)) space.

In many systems, however, it may be simpler and more intuitive to first consider M
(or even M − 1) like-pair terms, i.e. αii or Qii. In contrast to unlike pairs, the average
distribution of individual element i may still be interpreted in terms of a superposition
of concentration waves3 with weights related to Qii(k). These values are also simpler to
determine experimentally [6].

Despite greater compositional complexity, the ordering of many recently studied CCAs
appears to primarily involve segregation or sublattice formation by a single element. A
system may exhibit multiple such processes, including the formation of complex LRO from
the sequential development of sublattices, but individual ordering reactions are often, though
by no means always, associated with one chemical species. As a hypothetical example, a
model CCA containing both ordering and clustering elements is depicted in Fig. 2.1(d).

Due to the interdependence of pair correlations, the clustering or ordering of a single ele-
ment is redundantly reflected in many separate pair parameters. For example, the formation
of a Cr sublattice in CrFeCoNi is similarly apparent in the Cr-Fe, Cr-Co, and Cr-Ni pair
correlations [11], but could be approximately described by the distribution of Cr-Cr pairs.

2The prefactor, which cancels for i ̸= j, recovers the standard expression for Qij [6] for the definition of
αij in Eq. (2.1).

3Albeit, without the phase that indicates the distribution relative to other species.
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Figure 2.1: (a) Phase diagram of a model binary ordering alloy. A hypothetical chemical
structure from the highlighted region is depicted in (b), with WC parameters determined
from Eq. (2.1). (c) The same ordering represented in the (001) plane of reciprocal space
via Eq. (2.2). (d) Real- and (e) reciprocal-space representation of equilibrium SRO/C in a
model quaternary alloy. Element A (dark blue) exhibits ordering tendencies associated with
the wave vector k = (11

2
0), while element D (light blue) appears to cluster (k → (000));

elements B (gold) and C (red) are more randomly distributed.

The theoretical SRO of nearest neighbors in CrCoNi appears similarly determined by the
frequency of Cr-Cr bonds; Ni-Ni and Co-Co correlations remain small and remaining values
largely conserve probability [3, 12].

Of course, specific CCAs will likely display novel ordering phenomena that may require
the full picture of concentration waves [9, 10] or even many-body WC parameters [13]. The
interpretability of all mean-field descriptions can also be compromised by the formation of
local compositional heterogeneity in complex alloys. Nonetheless, the analysis of individ-
ual species in the binary formalism provides an intuitable starting point that invites the
application of various historical results.
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2.3 Phase transitions

At some sufficiently low temperature, Ttr, the interactions driving ordering or clustering in-
duce a phase transition, below which the equilibrium correlation distance becomes arbitrarily
long-ranged. Below Ttr, equilibrated clustering becomes phase separation and SRO gives way
to LRO. The microstructure of real alloys, however, often corresponds not to an equilibrium
configuration, but rather an arrested phase transition, such as partial phase separation into
intermediate-sized clusters. In many popular 3d systems, LRO develops very slowly and in
some cases appears practically limited to nanoscale antiphase domains [14]. While this form
of order remains fundamentally short-ranged, it may also be considered incomplete LRO to
distinguish from the equilibrium SRO found above Ttr.

Incomplete LRO, which is often controllable through heat treatments, has been the focus
of most historical [15–17] and many recent [11, 18, 19] studies on SRO. While tuning order
in this manner could in principle enable the tailoring of material properties, most alloys are
not processed in any way intended to promote ordering. Equilibrium short-range order or
clustering (SRO/C) may nonetheless form as samples are cooled from high temperatures, e.g.
in the region of the phase diagram highlighted in Fig. 2.1(a). The prevalence of this type
of SRO, which may be further enhanced upon initial cooling below Ttr [20], is considered in
Ch. 4.

It should be noted that the structure approached by the SRO forming above Ttr can
differ from the LRO found below Ttr, even though the interactions driving chemical rear-
rangement are typically equivalent. As dictated by Landau’s theory of phase transitions,
crystallographic considerations require that many LRO structures form by first-order phase
transitions, which generally involve nucleation and growth processes that impose energy bar-
riers on the initial stages of ordering. For these structures, the incomplete forms of order
that could occur above Ttr may be energetically unfavorable [8, 21].

Certain other decorations can form without any such barriers by continuous (second-
order) phase transitions. In the picture of concentration waves, the SRO forming above Ttr
may be associated with the wave vectors of these structures, even if their long-ranged forms
are never realized. Of course, high-temperature SRO typically shares key features with the
LRO ground state, such as the minimization of same-species nearest neighbors. The Cr-Ni
system clearly demonstrates this phenomenon; CrNi2 alloys can form MoPt2-type LRO below
863K, but SRO measured above Ttr [22] resembles a concentration wave with k = (11

2
0),

which is associated with distinct structures such as the Al3Ti prototype.

2.4 Theoretical overview of 3d CCAs

The Cr-Ni system in fact appears to provide a template for the ordering of many fcc CCAs
containing concentrated Cr, namely the derivatives of CrMnFeCoNi. These alloys consis-
tently exhibit a ∼900K phase transition that calorimetrically resembles the onset of MoPt2-
type CrNi2 in Cr-Ni alloys [23]. Compositionally comparable CrCoNi is predicted to form a



CHAPTER 2. INTRODUCTION TO SHORT-RANGE ORDER 7

Ref. system j xj conditions T (K) T/Ttr α
(1)
ij α

(1)
jj

[16] Cr-Ni Cr 0.213 annealed 480 h 741 0.86 -0.1061 0.392
Cr-Ni Cr 0.201 annealed 320 h 828 0.96 -0.0990 0.394
Cr-Ni Cr 0.206 annealed 2.5 h 973 1.13 -0.0819 0.316

[17] Cr-Ni Cr 0.199 annealed 480 h 744 0.86 -0.1119 0.449
[22] Cr-Ni Cr 1

4
in situ 833 0.97 -0.0874 0.262

Cr-Ni Cr 1
4

in situ 993 1.15 -0.0674 0.202
Cr-Ni Cr 1

3
in situ 923 1.07 -0.0997 0.199

Cr-Ni Cr 1
3

in situ 1073 1.24 -0.080 0.160
V-Ni V 1

4
in situ 1373 1.04 -0.131 0.393

V-Ni V 1
3

in situ 1228 1.03 -0.1217 0.243
V-Ni V 1

3
in situ 1248 1.04 -0.1201 0.240

V-Ni V 1
3

in situ 1343 1.12 -0.1115 0.223
V-Ni V 1

3
in situ 1413 1.18 -0.1045 0.209

[15] Cr-Fe-Ni Cr 0.2085 annealed 10h 773 -0.148 0.091

Table 2.1: Nearest-neighbor WC parameters (α
(1)
ij and α

(1)
jj ) calculated from diffuse scat-

tering experiments for 3d alloys containing xj of “ordering element” j = Cr,V. Annealed
samples were quenched after annealing at T , while in situ experiments were performed at
T . Ttr represents the order-disorder transition temperature of the nearest stoichiometric
ordering. For Refs. [15, 17], one value of α

(1)
ij was selected from several similar calculations.

For Ref. [15], α
(1)
ij represents the dominant unlike-pair correlation, α

(1)
CrNi.

similar phase with an effectively random Co-Ni solution in place of Ni [12,24], while systems
such as CrFeCoNi may prefer an AlNi3-type (L12) Cr sublattice [11].

Both structures minimize Cr nearest neighbors, as may be largely explained by electro-
static interactions arising from charge transfer among electronegatively distinct elements,
e.g. Cr to Ni [25–27]. Ch. 4 explores how first-principles calculations suggest that magnetic
interactions can also affect chemical ordering [11,28], although Ch. 5 shows that our under-
standing of the magnetism of Cr in concentrated fcc alloys is incomplete; either standard
theory is incorrect or the presence of significant antiferromagnetic order has been overlooked.

Nonmagnetic V displays similar but stronger ordering tendencies, with VCoNi appearing
to form AlNi3-type LRO [29] that is consistent with theoretical predictions [30]. Mn is also
understood to promote ordering in some conditions, although its behavior is comparatively
less well studied. A CuAu-type (L10) MnNi phase is found among the decomposition of
CrMnFeCoNi [31] and has been further examined in FeMnNi [32]; more complex orderings
have also been theorized, though not experimentally validated, for Cr-Mn-Ni and Cr-Mn-
Fe-Ni alloys [28]. Cu is expected to cluster in FeCoNiCu alloys [33], just as in Ni-Cu [34].
Chemically distinct elements, such as Al, may also more readily cluster or form LRO [10].
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While some recently studied CCAs appear approximately pseudobinary, the underlying
physics of chemical rearrangement may nonetheless differ from their binary counterparts.
For instance, the ordering of CrCoNi closely resembles that of CrNi2 with a ten percent
higher transition temperature [23], but the magnitude of its theoretical ordering energy [12]
is several times larger, implying significant entropic differences. Conversely, the calculations
of Ref. [11] suggest that the formation of a Cr sublattice in CrFeCoNi is associated with
a relatively minor entropy reduction given the configurational freedom of the remaining
elements; some more systematic study of these effects could prove insightful.

Of course, all previously referenced predictions were made under the assumption of ther-
modynamic equilibrium and comparatively fewer studies have tackled the formidable problem
of CCA kinetics. Perhaps most notably, Du et al. [24] explored the evolution of SRO in Cr-
CoNi via the discrete hopping of vacancies in kinetic Monte Carlo simulations parameterized
using a carefully developed interatomic potential. Although necessarily involving significant
approximation, their calculations suggest that SRO will at least initially form far faster than
typical quenching rates. As an alternative approach, simpler mean-field kinetic models [35]
may also prove useful for many-component systems, provided relevant thermodynamic and
mobility data are available.

2.5 Diffraction

Several decades ago, the SRO/C of single-crystal binary alloys was routinely characterized
using the diffuse scattering of monochromatic X-rays or neutrons, that is the intensity in
the Brillouin zone not due to the underlying lattice or multiple-scattering events. After
accounting for contributions from static lattice displacements, the elastic intensity scattered
at wave vector k can be related to the Qij(k) described by Eq. (2.2) [7,36]. WC parameters

α
(p)
ij , and hence α

(p)
jj , may be subsequently obtained.

Table 2.1 summarizes a number of historical measurements of SRO in Cr-Ni and V-Ni
alloys subject to various thermal histories in terms of the nearest-neighbor WC parameter,
α
(1)
CrCr or α

(1)
VV. Many of the considered samples contained similar fractions of Cr or V as

CCAs of current interest and, while entropic considerations may differ, the basic picture
of ordering is expected to be similar. Long-term annealing below Ttr increases the degree
of order, but, for a given composition, the difference between the least and most ordered
measurements is less than that between the least order and complete disorder (α

(p)
ij = 0).

Additionally, many of the least ordered values were obtained at elevated temperatures and
SRO may further develop during cooling. These results, which are comparable to those for
other binary systems, clearly indicate that perfect atomic-scale randomness should never be
assumed, even in quenched samples.

Unfortunately, interpreting diffuse scattering becomes rapidly more challenging with in-
creasing compositional complexity, as the intensity measured in many-component alloys si-
multaneously represents all interspecies correlations. Specific Qij may nonetheless be ex-
tracted from multiple measurements obtained under distinct scattering conditions. For in-
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stance, Cenedese et al. [15] characterized SRO in a concentrated Cr-Fe-Ni alloy by analyzing
diffuse neutron scattering from three samples with varying isotopic content, as included in
Table 2.1. This said, few comparable studies exist.

Distinct scattering measurements may also be obtained from “resonant” X-ray energies
corresponding to the absorption edges of individual alloy elements [7]. In this manner,
Schönfeld et al. [11] investigated the diffuse scattering of CrFeCoNi, providing perhaps the
most complete characterization of SRO in a CCA since the popularization of high-entropy
alloys. While not determining specific pair correlations, they used complementary electronic
structure calculations to deduce the partial formation of an AlNi3-type (L12) Cr sublattice
in a sample aged at approximately 0.8Ttr. Comparable data are not available for differently
processed samples—in fact, I am aware of no other experiment of this type.

Many recent studies have instead favored TEM, which is discussed in Ch. 3. While
various other phenomena can cause extra reflections that have been widely interpreted as
ordering, the electron scattering contrast among 3d elements appears insufficient to detect
SRO in many systems of interest [2,19]. (Clustering, LRO, and even SRO involving distinct
chemical species, such as Al or Pd in a 3d alloy, may be more readily visible.)

Most remaining evidence for SRO in CCAs is thus indirect, as is examined in Ch. 4.
Some spectroscopy appears to support the presence of ordering [37–39], although these mea-
surements may vary extremely subtly with SRO and also require comparison with simulated
configurations, the accuracy of which has been questioned [40]. As another approach, atom-
probe tomography may qualitatively reveal real-space concentration waves along one sample
dimension [18].
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Chapter 3

Reinterpreting electron diffraction

Historically established methods for measuring chemical SRO were briefly discussed in Ch. 2,
but most recent attempts to characterize the phenomenon have instead favored TEM-based
techniques that do not require a beamline facility or single-crystal samples. In electron
diffraction patterns obtained from a variety of fcc CCAs, diffuse intensities at superlattice
positions have been widely, though not universally, attributed to the presence of local order.
Many of these samples were subject to minimal thermal processing beyond high-temperature
homogenization, seemingly supporting the argument that ångström-scale order could play
an important role in a wide range of properties.

Perhaps most prominently, the observation of SRO in VCoNi was proposed [29] on the
basis of diffuse intensities at 1

2
{311} superlattice sites in reciprocal space while imaging in

the [1̄12] zone axis (ZA), which indicates the crystallographic direction of electron incidence.
An equivalent electron diffraction pattern is shown in Fig. 3.1. Additional 1

3
{422} intensities

were later reported in the [1̄11] ZA [42]. Similar observations have been at various points
attribtued to SRO in CrCoNi [41,43], CrMnFeCoNi [44], VFeCoNi [45], a Cr-Ni-based alloy
[46], and Mn-Fe-based alloys [47–50], The same features have also been reported without the
assumption of SRO [19,51–54].

Some of these reflections are consistent with the partial formation of a CuPt-type (L11)
concentration wave involving the compositional enrichment and depletion of alternating
{111} (and simultaneously {311}) planes, as illustrated in Fig. 3.2(a). Diffuse intensities in
VCoNi and CrCoNi have been interpreted to reflect modulations of V or Cr concentrations
in this manner [29,42,43], largely on the basis of electronic structure calculations indicating
repulsive interactions between V-V and Cr-Cr neighbors, although CuPt-type ordering has
the same nearest-neighbor pair frequencies as a random alloy. Some effort has been made
to support this theory with atomic-scale composition mapping [29, 43, 45], but, in contrast
to the diffuse intensities themselves, these measurements are noisy and susceptible to local
fluctuations, making it difficult to draw statistical conclusions.

Regardless of chemical specifics, the presence of superlattice reflections should not be
regarded as incontrovertible evidence for ordering. In fact, widespread interpretations of
SRO are questionable on several accounts, such as the absence of additional expected peaks.
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5 nm-1

�

Figure 3.1: Electron diffraction of CrCoNi in the [1̄12] ZA. This pattern, which is based on
experimental data from a previous study [41], is representative of literature results for alloys
discussed in the text. Diffuse intensities at 1

2
{311} superlattice positions are marked with

arrows, but there are no peaks at 1
2
{111} sites, as highlighted by the dotted circles.

By the symmetry of the fcc lattice, a CuPt-type decoration can equivalently occur in four
rotational variants, corresponding to order on the (1̄11), (111), (111̄), or (11̄1) planes, with
four additional antiphase structures that are redundant for purposes of diffraction. The four
rotational variants are illustrated in the top row of Fig. 3.3 from the perspective of the [1̄12]
ZA, with atomic columns shaded by composition; the reciprocal-space intensities expected
from each variant are shown below for the same ZA. (Reflections were determined from the
basic diffraction criterion for concentration waves [8], as restricted by the two-dimensional
nature of TEM, and verified through simulations.)

As illustrated in Fig. 3.3(a), the 1
2
{311} peaks visible in Fig. 3.1 are associated only

with the (1̄11) variant. While the variants on the (111) and (111̄) planes are not expected
to produce additional reflections in this orientation, the (11̄1)-based variant depicted in Fig.
3.3(d) should be readily visible, as it would involve composition modulation across the (11̄1)
planes that form the rows of atomic columns viewed in TEM. Nonetheless, the associated
1
2
(11̄1) peaks are missing from all experimental characterizations of the [1̄12] ZA, through

either electron diffraction or the Fourier transformation of dark-field images [19, 29, 41–52].
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Figure 3.2: Schematics of CuPt- and AlNi3-type orderings. (a) The CuPt-type (L11)
decoration of an fcc lattice. SRO based on this structure has been proposed for VCoNi and
CrCoNi with V or Cr-rich • sites and complementarily depleted ◦ sites on alternating (111)
planes. (b) Similarly, an AlNi3-type (L12) unit cell. First-principles calculations suggest
that this general form of ordering, in which V or Cr-rich • sites form a sublattice that
minimizes nearest neighbors, should be far more energetically favorable [24], if not the ground
state [11, 30], in these systems.

Locations where additional reflections would be expected are circled in Fig. 3.1 and marked
in Fig. 3.3(d). Given the quantity of material sampled across numerous studies, the absence
of a variant is not statistically conceivable.

One could attempt to construct an alternative structure giving rise to only 1
2
{311} inten-

sities, but every 1
2
{311} peak is related to a 1

2
{111} spot by a {200} reciprocal lattice vector,

e.g. 1
2
(131) − (020) = 1

2
(11̄1), as is the case of Fig. 3.3(d). Since the diffraction criterion

for concentration waves is independent of reciprocal lattice translations [8], any ordering
that produces 1

2
{311} peaks should also effect 1

2
{111} intensities as long as all variants are

present.
Furthermore, 1

3
{422} and 1

2
{311} reflections have very recently been reported in pure

Cu [19]; 1
3
{422} reflections were also previously observed in pure Ni [52]. Evidently, super-

lattice intensities in pure elements cannot represent chemical ordering and require another
explanation, of which there are in fact several.

One is the presence of nanoscale planar defects. Forbidden reflections expected from
stacking faults or nanotwins in an fcc lattice [55] are listed in Table 3.1. Remarkably, these
are the exact features that have been reported in the [011], [1̄12], [1̄11], and [013] ZAs of con-
centrated alloys, offering an alternative explanation for the experimental findings described
above. As structural defects break the symmetry of the reciprocal lattice, it is possible
for 1

2
{311} peaks to appear without 1

2
{111} counterparts. Of course, the obvious objection

to this hypothesis is that most imaged samples appeared to contain no such imperfections
in the examined regions. Considering that stacking faults and related structures are usu-
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Figure 3.3: Diffraction of CuPt-type ordering in the [1̄12] ZA. (a-d) The four rotational
variants of a CuPt-type structure, consisting of ordering on the denoted planes. In the
top row, structures are drawn from the perspective of the [1̄12] ZA, with columns of atoms
shaded according to the average composition. (In CuPt, types 1 and 2 would represent Cu
and Pt; in recently proposed SRO, they correspond to Cr or V enrichment and depletion as
in Fig. 3.2.) The reciprocal-space signatures of the four variants are shown below for the
same ZA. Only reflections associated with variant (a) have been reported in the discussed
alloys, questioning the existence of this form of order.

Table 3.1: Extra reflections from fcc planar defects. The reciprocal-space features expected
from planar defects [55] match recent experimental observations in concentrated alloys, as
noted for each ZA. In most cases, the intensities were originally attributed to SRO.

ZA Extra reflections Observations
[011] streaking [46,50,51,56]
[1̄11] 1

3
{422} [19, 42,46,49,51–54]

[1̄12] 1
2
{311} [19, 29,41–52]

[013] 1
2
{311} [49, 52]
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ally quite visible under TEM, some explanation of how presumably nanoscale planar defects
could otherwise escape detection would be required to prove their generation of the discussed
features.

While clearly visible stacking faults produce sharp superlattice reflections [55], the dif-
fuseness of the discussed intensities could imply the presence of smaller, less readily detected
defects, just as SRO causes faint reflections compared to the sharp superlattice peaks result-
ing from long-range order (LRO). Both faulted (Frank) loops and stacking fault tetrahedra
should produce the extra reflections listed in Table 3.1 and, if small enough, could plausibly
escape direct recognition. In many recent studies, superlattice intensities have been asso-
ciated with tiny localized features, which could correspond to defect structures. Moreover,
two recent investigations have connected the enhancement of diffuse intensities to mechanical
deformation [50] and irradiation [44], while brighter reflections have been found near a crack
tip [46]. Both deformation and irradiation are well known to induce planar defects at the
expense of chemical order, supporting this hypothesis—in fact, the intensity of some peaks
has been directly correlated the density of planar defects [50].

Most observations in the [011] ZA support the absence of detectable SRO—CuPt-type
ordering should produce additional superlattice reflections in this ZA, which are generally
not observed [29, 43, 56]. (Faint intensities at 1

2
{111} positions were suggested by Ref. [42],

but the signal in this region seems comparable to the background noise level. Clearer 1
2
{111}

intensities in the [011] ZA have been proposed following the application of a novel post pro-
cessing algorithm [57], although this technique may require further discussion of a technical
nature beyond the scope of this chapter.) Several studies have instead reported streaking in
this ZA [46,50,51,56], which would also be consistent with planar defects [55]. Others have
found no extra features, but the absence of observation in specific instances would hardly
be surprising given variation in sample preparation and the inherently local nature of the
proposed defects.

Another theory is that the extra reflections are merely artifacts caused by “relrod spiking”
from higher-order Laue zone (HOLZ) diffraction [19], which could in principle account for the
locations of most reported peaks, although the HOLZ intensities predicted by kinematical
theory are negligible [52]. While dynamical scattering could theoretically contribute to for-
bidden reflections, it is not immediately clear how this would occur in the sample geometries
used in the literature, which were too thin to even produce Kikuchi diffraction. Streaking in
the [011] ZA [46,50,51,56] and the specific peaks observed in the [013] ZA [49,52] may also
be more consistent with faulting [55].

It has been additionally suggested that surface steps could produce the extra reflections
[19, 52], as has been demonstrated for 1

3
{422} intensities in the [1̄11] ZA [58]. However, it

is less clear if this mechanism is consistent with observations in other ZAs. Additionally,
surface-step reflections have been primarily observed in deposited thin films with clear step
contours, which are not apparent in recent observations of differently processed samples.

Somewhat before recent interest, 1
2
{311} reflections in the [1̄12] ZA of an Al0.5CrFeCoNiCu

alloy were suggested to possibly originate from thermal diffuse scattering [51]. However, it
has also been shown that at least 1

3
{422} reflections remain essentially unchanged at liquid
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nitrogen temperatures [52]. Alternatively, scattering from static lattice displacements has
been proposed as another potential source of extra intensities [53,54]. This phenomenon can
break the symmetry of the reciprocal lattice [59], although a specific mechanism by which
it could produce the discussed observations has not been established. Like SRO, static
displacement scattering also could not explain the intensities observed in pure elements.

While the connection between the extra reflections and SRO is questionable on a purely
experimental basis, the proposed structures are also largely inconsistent with the bonding
principles predicted by standard density-functional theory, either directly or through param-
eterized interatomic potentials. As previously noted [24, 43], CuPt-type ordering is clearly
energetically unfavorable in otherwise similar V-Ni and Cr-Ni alloys. In these systems, ex-
perimental SRO has been primarily interpreted in terms of AlNi3-type (L12, see Fig. 3.2)
or Al3Ti-type (DO22) concentration waves [16, 17, 22, 60], both of which minimize nearest
neighbors among the ordering solute.

First-principles calculations consistently indicate that VCoNi and CrCoNi should order
similarly to the aforementioned binaries, with VCoNi clearly favoring an AlNi3-type V sub-
lattice [30] and similar, though not identical, preferences noted for CrCoNi [3,12,24]. While
SRO may differ from the LRO ground state [8], the underlying interactions are expected to
be comparable and there is essentially no indication of any energetic driving force for the
formation of CuPt-type ordering.

In practice, the basic predictions of electronic structure calculations are largely supported
by diffuse X-ray scattering in CrFeCoNi, which reveals an incipient AlNi3-type Cr sublattice
[11] after long-term aging below the order-disorder transition temperature. Moreover, VCoNi
alloys readily form fully ordered AlNi3-type domains (see Fig. 3.2), which were observed
alongside the nominally disordered regions characterized by Ref. [29]. It would be unexpected
for this material to host SRO corresponding to an unrelated structure immediately adjacent
to the theoretically predicted LRO.

A few studies have nonetheless tried to reconcile experimental observations with theoret-
ical predictions. In particular, local instances of ordering on 1

2
{311} planes were identified

in high-temperature thermodynamic simulations of CrCoNi parameterized by a carefully de-
veloped “neural network” interatomic potential [24]. However, the CuPt-type structure was
noted to be energetically unfavorable and it is unclear if these regions represent anything
beyond random fluctuations. Their equilibrium frequency does not vary with temperature
above the order-disorder transition and equivalent instances of theoretically favorable {100}
and {110}-based motifs are consistently more prevalent, even though their associated peaks
are not found experimentally.

Clearer agreement has been found between experimental diffraction patterns and simu-
lations [57] for certain previously generated theoretical structures [3]. These, however, were
selected from a large collection of tiny configurations that were created to statistically explore
highly speculative ordering principles rather than represent realistic chemical environments.
Consequently, individual structures likely contained configurational fluctuations that, given
the small cell size, could lead to various extra reflections.

Altogether, there seems to be little theoretical basis for any form of SRO consistent with
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the electron diffraction of VCoNi, CrCoNi, and other similar alloys, while reported features
consistently match those expected from symmetry-breaking effects such as changes in the
stacking sequence. This is not to say that any experimental sample necessarily lacked SRO,
simply that it may not be definitively detected by the employed techniques.
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Chapter 4

Chemical and magnetic order in
CrCoNi

4.1 Introduction

As seen in Ch. 3, the SRO of CrCoNi has received particular attention in the study of
ordering in 3d CCAs. This alloy is considered a model system and is noteworthy for its
cryogenic damage tolerance and general mechanical superiority to the five-component CrM-
nFeCoNi [61–63]. Theoretical aspects of ordering in this system were briefly mentioned in
Chs. 2 & 3, but the previously discussed experimental situation motivates a closer exami-
nation of simulation results.

Chemical SRO in CrCoNi was theoretically first examined by Tamm et al. [64] through
Monte Carlo (MC) optimization of on-lattice density-functional theory (DFT) simulations;
similar calculations were later performed by Ding et al. [65]. The results of both studies are
summarized in Table 4.1 in terms of nearest-neighbor Warren-Cowley (WC) SRO parameters
[36] (see Eq. (2.1)). Although extremely limited in statistical sampling, these computations
suggest a general trend of additional Cr-Co and Cr-Ni neighbors at the expense of Cr-Cr
pairs that is qualitatively supported by analysis of X-ray absorption fine structure [66].
SRO of this form has been predicted to appreciably affect properties ranging from magnetic
moment [64] to stacking-fault energy [65], but the nature of the more than 40 meV per atom
driving force (i.e., reduction in energy) observed in MC simulations had not been thoroughly
explained.

In this chapter, further application of spin-polarized DFT reveals how the dominant
bonding preferences of the CrCoNi system are, at least in ground state electronic structure
calculations, closely coupled to magnetic interactions. Chief among these is the frustration
of antiferromagnetic Cr, which can be greatly relieved by the minimization of Cr-Cr nearest
neighbors. Indeed, the frequency of these bonds is shown to fully account for the energies
of structures containing previously reported nearest-neighbor ordering. Calculations fur-
ther indicate that magnetically aligned, but not magnetically opposed, Co-Cr pairs are also
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repulsive.
This result is, especially in retrospect, quite surprising, given the uncertain nature of mag-

netic order in the system. While some related alloys possess ferromagnetic ground states
that disorder well below ambient temperature [67], no such transition has been reported in
CrCoNi. Like the Cr-Ni alloys considered in Ch. 5, CrCoNi is often considered paramag-
netic, although paramagnetism, while possibly arising from longitudinal spin fluctuations, is
not an electronic ground state. Standard theory predicts that random solutions of CrCoNi
are ferromagnetic at 0K, but spontaneous moment is generally not observed, at least above
5K [68]. Some have consequently assumed that the system magnetically disorders at lower
temperatures [12, 67], but this resolution is hardly satisfactory from a theoretical perspec-
tive, as the calculated magnetic energies would imply a much higher magnetic order-disorder
transition temperature. As more rigorously examined in Ch. 5, it is entirely possible that the
employed theory, which is described in detail in Ref. [3], is simply inaccurate, although this
would represent a rather spectacular failure of methods that otherwise seem to satisfactorily
describe the magnetism of 3d transition metal alloys. In light of this situation, consider-
ing a role for magnetism in the ordering of this system is extremely speculative, perhaps
irresponsibly so, but given the findings of Ch. 5, I do not think immediately dismissable.

This line of analysis was originally inspired by some comments made in prior works,
e.g., Tamm et al. [64] raised the possibility of magnetic frustration in CrCoNi. A role
for magnetism had also been previously proposed in a CrFeCoNi alloy, in which the an-
tiferromagnetism of Cr was attributed to the promotion of a CuPt-type Cr sublattice, as
possible given xCr = 0.25 [69]. In this chapter, CrCoNi is found to favor a reminiscent sub-
lattice of magnetically aligned second-nearest neighbor Cr atoms. While all these studies
have similarly relied on ground state electronic structure calculations, simulations assuming
paramagnetism via the disordered local moment approximation consistently underestimate
the experimental order-disorder transition temperature, whereas higher degrees of magnetic
order significantly improve predictions [11]. It thus does not seem entirely unreasonable to
consider a role for at least magnetic short-range order, which, as discussed in Ch. 6, is a gen-
erally underappreciated phenomenon in pure elements, to say nothing of many-component
alloys.

While these observations do not directly address thermodynamic aspects of chemical or
magnetic order, classical simulations using cluster expansions [70] and the embedded-atom
method [71] had suggested that significant degrees of SRO may exist even at high tempera-
tures. However, although some progress has been made since this work was performed [24],
the kinetics of the system remain largely uncertain. Yin et al. [40] questioned the impact or
even existence of SRO in these materials, suggesting that the DFT calculations supporting its
existence may be erroneous. Indeed, computational predictions for random solid solutions of
CrCoNi notably contradict experimental measurements of spontaneous magnetization [68,72]
and partial molar volumes [40] in ostensibly disordered samples. Addressing these apparent
anomalies, the previously identified ordering principles are applied to nonstoichiometric Cr-
Co-Ni compositions in order to replicate the scenarios studied by Refs. [40,68]. The inclusion
of SRO in DFT calculations is shown to, at least in principle, theoretically reproduce exper-
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Table 4.1: WC SRO parameters (Eq. (2.1)) reported by two previous DFT-MC studies
(second and third columns), compared to a simple structural model (fourth column)

Neighbor
Pair

Tamm et al. [64]
DFT-MC
500 K

Ding et al. [65]
DFT-MC
500 K

Simple
structural
model

Cr-Cr 0.42 0.40 αCrCr

Co-Cr -0.16 -0.25 -αCrCr/2
Ni-Cr -0.27 -0.15 -αCrCr/2
Ni-Co 0.15 0.19 αCrCr/2
Co-Co 0.01 0.06 0.0
Ni-Ni 0.12 -0.04 0.0

Co

Cr

Ni

i. ii.

iii.

a. i. ii.

iii.

b. i. ii.

iii.

c.

Figure 4.1: An analysis of apparent magnetic frustration in (a) quasirandom, (b) Cr-Cr
neighbor-minimized (αCrCr = 0.5 in the simple structural model), and (c) “spin-ordered”
CrCoNi. For each ordering model, (i) an example simulation cell is shown alongside (ii) WC
values (Eq. (2.1)) for chemical (αCrCr), opposite-spin (αCr↑↓), and same-spin (αCr↑↑) Cr pairs.
In (iii), the Cr atoms from (i) are colored by magnetic moment, with nearest-neighbor Cr-Cr
bonds drawn. Error bars indicate SD from 20 configurations.

imental measurements, offering the possibility that previously examined material contained
significant degrees of order. This interpretation suggests that SRO is not only critical for a
wide range of properties, but also is widely prevalent under standard processing conditions.
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4.2 Results

The magnetic exchange interactions of disordered CrCoNi appear highly frustrated, as ex-
emplified by the quasirandom [73] configuration depicted in Fig. 4.1(a)(i). This said, the
traditional notion of frustration, as pioneered in highly localized magnets, may be less
straightforward in metals such as Ni or Cr in which magnetism is highly itinerant, prac-
tically meaning that the formation of local moment is inherently unfavorable and stabilized
only by energy reductions caused by exchange interactions. The fundamental itineracy of
magnetism in transition metal alloys is further discussed in Ch. 5. For the supercell depicted
in Fig. 4.1(a)(i), panel (iii) shows the local magnetic moments of Cr atoms calculated using
spin-polarized DFT, with nearest-neighbor Cr-Cr bonds identified. Frustration appears to
suppress the local moments of Cr atoms that are bonded to several other Cr nearest neigh-
bors. In contrast, Cr atoms with fewer Cr neighbors resolve into a network of alternating
spins. Simplistically assigning Cr atoms “up” and “down” states from the sign of their
local moment enables the calculation of magnetic WC values (Eq. (2.1)), as described in
Ref. [3]. Considering 20 quasirandom configurations, the WC value for same-spin Cr (de-
noted αCr↑↑) is 0.65 ± 0.04, while opposite-spin pairs are commensurately more likely with
αCr↑↓ = −0.37 ± 0.08, as graphed in Fig. 4.1(a)(ii). Although not accounting for moment
magnitudes, these numbers highlight the unfavorability of magnetically aligned Cr pairs.

In a ternary fcc solid solution of equimolar composition, local chemical ordering can re-
duce the mean number of same-species nearest neighbors to as low as two (αCrCr = 0.5),
offering significant relief from frustration. In what follows, the effect of Cr neighbor reduc-
tion is studied through supercells following a simple structural model in which αCrCr is the
dominant ordering term and other values are nonzero only by conservation of probability
(see the fourth column of Table 4.1).

Energy and magnetization for configurations with αCrCr = 0.3, 0.4, 0.45, 0.5 (plus the
quasirandom case of αCrCr = 0) are plotted in Fig. 4.2, alongside those of supercells match-
ing the nearest-neighbor WC parameters of Tamm et al. [64] and Ding et al. [65] reproduced
in Table 4.1. It should be emphasized that these are not exact replicas of those studies’ con-
figurations; Tamm et al. [64] report a formation energy of 43.7 meV per atom, substantially
lower than the 62.2 ± 2.7 meV per atom recalculated presently. Nevertheless, the results
displayed in Fig. 4.2 indicate that, within the margin of error, the energy and magnetization
of all these configurations closely follow αCrCr and that other chemical ordering terms, inso-
far as they are represented by nearest-neighbor WC parameters, are much less energetically
relevant. In the extreme case of αCrCr = 0.5, formation energy and net moment are 52.0±3.5
meV per atom and 0.054± 0.04 µB per atom, respectively, reduced from 88.0± 3.3 meV per
atom and 0.28± 0.04 µB per atom for a quasirandom solution.

Accounting for higher-order effects

The discrepancy between the formation energy determined by Tamm et al. [64] and the
value recalculated on the basis of their reported WC parameters suggests the existence of
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Figure 4.2: Formation energy and magnetization for various models of SRO in CrCoNi as a
function of the Cr-Cr nearest-neighbor WC SRO parameter (Eq. (2.1)). Hollow hexagonal
markers represent the model of the corresponding color applied to hcp lattices. Each datum
is the average of 20 configurations; error bars indicate SD.

order beyond what can be understood in terms of chemical nearest neighbors. Furthermore,
the range of Co and Cr atomic moments obtained under the simple structural model for
αCrCr = 0.5, presented in Fig. 4.3, indicates that some degree of frustration persists in this
regime. Comparing these values to the moments of neighboring elements reveals trends that
offer clues to the underlying magnetic interactions.

Specifically, Fig. 4.3 shows how Co atoms favor moments antiparallel to those of imme-
diately adjacent Cr. While Ni atoms possess negligible local moment under all degrees of
order, most Co align ferromagnetically, the direction of which will define a reference spin
“up” state, to which Cr atoms are either aligned (Cr↑) or opposed (Cr↓). The preferred
antialignment of Cr and Co moments is reflected in Figs. 4.1 and 4.3 (as well as Tamm et
al. [64]), where Cr↓ outnumber Cr↑ by a factor of three. Of course, the presence of Cr↑ is
required to minimize the possibility of like-spin Cr pairs; xCr↓ = 1

4
is the maximum possi-

ble concentration that can exist on an fcc lattice without same-species nearest neighbors.
Consequently, the minimum fraction of Cr↑ is xCr↑ = xCr − xCr↓ =

1
12
.

The magnitude of a Cr↓ moment most strongly depends on none of its nearest neighbors,
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Figure 4.3: Atomic moments of Co and Cr atoms from 20 configurations minimizing adjacent
Cr in the simple structural model (αCrCr = 0.5). Co and Cr moments are plotted against
the cumulative moments of their nearest-neighbor and second-nearest-neighbor Cr atoms,
respectively.

but rather the magnetization of its Cr second-nearest neighbors, as plotted in Fig. 4.3. In
particular, these data indicate that second-nearest-neighbor sublattices of Cr↓ (i.e., Cr↓ with
six Cr↓ second-nearest neighbors) consistently display local moments in the vicinity of -2 µB.

These preferences motivate a new “spin-ordered” model that reduces Cr↑-Cr↑, Cr↓-Cr↓,
and Co-Cr↑ nearest neighbors while maximizing Cr↓-Cr↓ second-nearest neighbors (see Ref.
[3] for a full description). The average formation energy and net moment for 20 of these
supercells are 38.9 ± 2.0 meV per atom and 0.015 ± 0.01 µB per atom, respectively. These
values, included in Fig. 4.2, are not only substantially lower than in the simple structural
model, but also display minimal spread, implying that the remaining configurational degrees
of freedom are not energetically significant.

Interestingly, both models of SRO appear similarly applicable to hexagonal close-packed
(hcp) lattices, which 0K DFT predicts to be lower in energy under all degrees of order.
This trend can be seen in Fig. 4.2, which includes the formation energy of quasirandom,
αCrCr = 0.5, and spin-ordered hcp configurations at 80.3±2.3, 35.0±3.7, and 29.6±2.3 meV
per atom, respectively. These values are all below those of the corresponding fcc structures,
by a margin ranging from 7.7 meV per atom in the quasirandom case to 17.0 meV per atom
for the simple structural model. The net magnetizations of hcp configurations containing
SRO, however, are higher than their fcc counterparts as the local moments of hcp Cr↓ atoms
do not realize the same magnitudes, especially in the spin-ordered structures. In fact, the
relatively small energy difference between simple structural and spin-ordered hcp models
suggests that the latter’s non-L12 sublattice lacks the effect of its fcc counterpart.
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Figure 4.4: Zero-field and temperature magnetization calculated under several different
ordering models for a range of xCr, where xCo = xNi = (1− xCr)/2, compared to 5-K experi-
mental measurements from Ref. [68]. “S.S.M.” and “S.-O.” indicate the (αCrCr = 0.5) simple
structural and spin-ordered models, respectively. Data points average five configurations,
except the equimolar composition, which uses data from Fig. 4.2. Error bars indicate SD.

Reproducing magnetization measurements

Chemical and magnetic ordering phenomena have been shown to reduce formation energy,
but their realization in real samples of CrCoNi is not well understood. Indeed, SRO originates
from a multitude of thermodynamic and kinetic factors competing throughout a sample’s
thermal history, which are extremely challenging to model collectively. Given the comparable
level of difficulty faced in the experimental characterization of SRO among these elements,
considering indirect evidence for its presence can prove insightful. In what follows, simu-
lations of structures containing varying degrees of configurational and magnetic order, as
described above, provide a potential resolution to discrepancies between magnetization and
volume measurements at odds with DFT predictions for random alloys.

One such anomaly was found by Sales et al. [68, 72], in which spontaneous magnetiza-
tion was measured at 5K for samples of fcc CrxCo(1−x)/2Ni(1−x)/2 with 0.2 ≤ x ≤ 0.355.
Anomalous magnetic measurements has been connected to local chemical rearrangement for
decades; e.g., Ref. [74] inferred the presence of clustering in Ni-Cu alloys using a simple an-
alytical model of local moments depending on neighbor frequencies. In the low-temperature
limit, experimental magnetization is generally comparable to the predictions of electronic
structure calculations, which quantitatively describe the magnetic ground states of many
alloys such as FeCoNi [67], which is not known to host significant SRO/C.

Experimental values for CrCoNi from Ref. [68] are reproduced in Fig. 4.4, alongside com-
putational results they obtained using the multiple-scattering method of Korringa, Kohn,
and Rostocker (KKR) with the coherent-potential approximation (CPA) [75], which assumes
complete compositional disorder. The KKR-CPA results agree well with present calculations
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Figure 4.5: (a) Total alloy volume (per atom) for several ordering models applied to CrCoNi,
Cr10Co13Ni13, Cr13Co10Ni13, and Cr13Co13Ni10, following Ref. [40]. Planes illustrate fits of
Eq. (4.1) to various models. (b) Partial molar volumes regressed from ordering models shown
in (a) or a combination thereof, compared to the experiments of Ref. [40]. “qrnd.” refers to
quasirandom configurations, “S.S.M.” stands for the (αCrCr = 0.5) simple structural model,
and “S.-O.” denotes spin-ordered. “min.” and “max.” respectively indicate minimum and
maximum. The “hybrid” model considers different ordering models at compositions based
on previous results. As in Ref. [40], error bars indicate the 95% CI.

for quasirandom configurations, as shown in Fig. 4.4, but both methods predict magnetiza-
tions significantly larger than experimental measurements.

Two further sets of simulation results, each representing a different model of SRO, are
included in Fig. 4.4. The first dataset (gold squares) applies the simple structural model
of maximally eliminating Cr nearest neighbors to additional compositions. In a similar
manner, the second approach (magenta diamonds) uses the chemical and magnetic principles
of the spin-ordered state. Interestingly, the spin-ordered model appears slightly closer to
experiment around the equimolar composition, the simple structural model’s trend better
describes the behavior of lower Cr concentrations. The difference, however, is fairly small and
certainly within the overall margin of error. Still, the possibility that distinct compositions
could lead to different degrees of order is crucial for the next set of calculations, in which
measurements concerning partial molar volumes are analogously reproduced using SRO.
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Reproducing volume measurements

In order to assess lattice misfit and predict yield strength, Yin et al. [40] regressed par-
tial molar volumes of individual chemical species (VCr, VCo, and VNi) from the measured
total volume (Valloy) of several samples in close compositional proximity. Specifically, they
determined VCr, VCo, and VNi from four measurements of Valloy by fitting to the relation

Valloy = VCrxCr + VCoxCo + VNixNi. (4.1)

Following their approach, structural relaxations were performed for several ordering models
applied to CrCoNi, Cr10Co13Ni13, Cr13Co10Ni13, Cr13Co13Ni10. Resulting Valloy values are
plotted in the composition space of Fig. 4.5(a). In addition to the aforementioned simple
structural and spin-ordered models, two variants of the spin-ordered state were also consid-
ered, containing either minimal or maximal ordering of Co atoms (see Ref. [3] for details).

Several planes representing distinct fits of Eq. (4.1) are drawn in Fig. 4.5(a), includ-
ing one for quasirandom structures (blue, dashed edges), which were also computationally
examined by Yin et al. [40]. For a given ordering model, compositionally disproportionate
volume change can tilt the plane of Eq. (4.1) relative to the random state, yielding different
partial molar volumes. While the simple structural model only modestly affects total vol-
ume relative to the quasirandom state, the formation of a Cr↓ sublattice and corresponding
growth of those moments (as in Fig. 4.3) leads to significant volumetric dilation, especially
at higher Cr concentrations. The most extreme shift occurs under maximal spin-ordering,
corresponding to the orange plane with a dotted border in Fig. 4.5.

Fig. 4.5(b) contains partial molar volumes determined from the different models of order
considered in Fig. 4.5(a). Results for quasirandom configurations, or even those containing
simple structural (αCrCr = 0.5) SRO, are not far from the (quasirandom) computational
predictions of Ref. [40]. Volume increases under further degrees of order, however, shift
VNi and VCr toward the experimental results of Yin et al. [40], although some discrepancies
remain, particularly for VCo [40].

As demonstrated in the previous subsection, composition-dependent ordering should be
considered; while this opens many possibilities, the analysis of magnetization offers some
guidance. Specifically, the data from Fig. 4.4 suggest that the spin-ordered model could
explain the equiatomic point well, while a sample with approximately xCr < 0.3 is better
represented by the simple structural model. If the configurations with reduced Co similarly
contain less ordering of Co (min. spin-order), then a “hybrid” fit can be constructed, as
graphed in Fig. 4.5(a) (green, dot-dashed border). More explicitly, the hybrid model assumes
simple structural order at Cr10Co13Ni13, spin-order for CrCoNi and Cr13Co13Ni10, and “min.
spin-order” at Cr13Co10Ni13. Fitting to this combination of models predicts partial molar
volumes, shown on the right of Fig. 4.5(b), that reproduce experiments within established
levels of error for this type of calculation [40].

While it is important to note the possibility of significant magnetovolume coupling, it is
admittedly difficult to imagine this exact scenario occurring physically. Nonetheless, these
results raise the possibility that other magnetic phenomena, such as temperature-induced
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longitudinal spin fluctuations, could tilt the volume-composition in a manner consistent with
experiment, and that the anomalies of Ref. [40] do not disprove the accuracy of ground state
DFT.

4.3 Discussion

It should be emphasized that the proposed ordering principles largely hold in hcp structures,
as shown in Fig. 4.2. Thus, the positive stacking-fault energy determined in Ref. [65]
arises simply from the disruption of fcc SRO by the imposition of hcp stacking. As seen in
elemental Co and the calculations of Ref. [76], fcc CrCoNi is only stable at high temperatures,
suggesting that the phase’s low-temperature persistence could be supported by retained
ordering. SRO of this nature could also explain why deforming CrCoNi induces thin layers
of hcp stacking along twin boundaries [77], where local ordering has been broken, but not
any larger regions of the theoretically more stable phase. In Ref. [78], we further speculated
how the remarkable low-temperature work hardening of CrCoNi could in part originate from
the ordering-limited formation of planar defects, which were observed at a scale that could
possibly impede dislocation motion, but not one that would meaningfully reduce ductility.
This behavior is contrasted by certain non-ordering Co-Ni alloys, which similarly retain
a metastable fcc phase after quenching, but exhibit both spontaneous and deformation-
induced martensitic phase transformations [79]. Both the nature of deformation in CrCoNi,
and it apparent invariance to thermal treatment [18,19], could be interpreted to support the
presence of comparably significant SRO in all experimentally tested samples.

In any case, the creation of simple and transferable ordering models can greatly facilitate
the study of such scenarios, as demonstrated by the simulation of experiments concerning
spontaneous magnetization and partial molar volumes. The ability of SRO to reproduce
these otherwise unexplained measurements offers the possibility that the experimental sam-
ples contained order following, to various extents, the previously discussed principles. This
hypothesis may seem striking given that none of the experimental samples were annealed in
a manner intended to promote the development of order. However, SRO in CrCoNi has a
large energetic driving force [64, 65], requires a very short diffusion length, and is predicted
to persist at high temperatures by multiple models [70, 71]. In light of these factors, and
the historical meausrements discussed in Ch. 2, an extremely rapid onset of SRO during the
cooling of samples is not unimaginable.

Limited experimental evidence corroborates this picture [80]; for instance, the ferromag-
netism predicted for random solid solutions has been observed in some thin films, which
may be less prone to ordering at low deposition temperatures [81]. Severely deformed Cr-
CoNi samples containing hcp martensite also exhibit some ferromagnetism [82], although the
precise origin of the small reported moment is unclear. The magnetic properties of CrMnFe-
CoNi appear similarly sensitive to cold working and heat treatment [83], which could be at
least partially explained by the effects of these processes on SRO. Some further investigation
of this topic seems merited, although the study of alloys containing V in place of Cr may
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prove more immediately enlightening given the previously mentioned questions regarding the
magnetism of Cr [4].



28

Chapter 5

Theoretical antiferromagnetism of
Cr-Ni

Copyright Notice

This section was published as Ref. [4], which is ©2022 by the American Physical Society.

5.1 Introduction

Ni-rich Cr-Ni alloys have been studied for over a century on account of their extensive
applications and intriguing process of chemical ordering. While elemental Cr forms body-
centered cubic (bcc) crystals, about 36 at.% Cr is soluble in face-centered cubic (fcc) Ni.
CrNi2, the system’s only experimentally observed intermetallic phase, emerges from these
solid solutions as a MoPt2-type lattice decoration—see Fig. 5.1(a)—below ∼863K [84]. This
relatively low ordering temperature kinetically limits the realization of CrNi2, which forms
nanoscale antiphase domains that slowly grow over thousands of hours of annealing [85]. Still,
the structure has been observed in alloys with ∼25–36 at.% Cr [14, 84], with indications of
a similar phase found in commercial Ni-based alloys [85, 86] and fcc medium/high-entropy
alloys [23,24] of current interest.

The gradual formation of CrNi2 is associated with well studied “K-state” phenomena,
including significant increases in hardness and resistivity, as well as lattice contraction [14,85,
87]. Its magnetic properties, however, have largely escaped scrutiny. While elemental Ni is
ferromagnetic (FM) below 631K [88], the addition of Cr rapidly decreases both spontaneous
magnetization and Curie temperature, resulting in a “quantum critical point” at about
11 at.% Cr [89, 90]. Alloys with greater concentrations of Cr are generally regarded as
paramagnetic at all temperatures [91,92], although evidence for a more nuanced picture will
be discussed later.

Regardless of finite-temperature behavior, paramagnetism is not an electronic ground
state and likely originates at least in part from thermally induced spin fluctuations, as
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Ni
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Cr↑

Cr↓

Figure 5.1: (a) The conventional unit cell of CrNi2. Dashed lines and coordinate axes
indicate the conventional fcc unit cell. (b) Proposed AFM ground state of CrNi2, drawn
on the same structure. Arbitrarily oriented “up” and “down” Cr moments are respectively
represented using • and ◦ markers. The actual tiling supercell is larger and an extension of
the central (1̄10) plane is included to fully depict the ordering.
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have been theorized in chemically similar alloys [26, 93–95]. Many previous studies [28, 96–
99], including high-throughput databases [100, 101], have predicted that CrNi2 is nonmag-
netic (NM) at 0K; given the apparent lack of magnetic order (and desire to model high-
temperature conditions), others have neglected spin-polarization entirely [102]. However,
while standard techniques can easily simulate ferromagnetism, the convergence of antiferro-
magnetic (AFM) electronic structures requires the input of a specific magnetic symmetry,
including a commensurate simulation supercell. (This is generally accomplished through
qualitative initialization of local magnetic moments on atomic sites.) Both the primitive
and conventional unit cells of CrNi2 (see Fig. 5.1) consider all nearest-neighbor Cr pairs to
be symmetrically equivalent, imposing identical magnetic states that preclude the realization
of the simplest forms of antiferromagnetism. It is not clear whether any prior computational
study of CrNi2 investigated supercells compatible with AFM order, let alone seeded rea-
sonable magnetic structures, motivating a revisitation of magnetism in Cr-Ni alloys under
conventional electronic structure methods (see Sec. 5.2).

Section 5.3 details how previously overlooked AFM states theoretically exist for ordered
Cr-Ni structures across a range of compositions. The antiferromagnetism of CrNi2 is then
further characterized in terms of a Heisenberg model with longitudinal spin fluctuations
(LSFs). While the nature of magnetism at finite temperature remains unclear, the next
section attempts to explain the ground state predictions in light of experimental findings,
although it is concluded that further measurements are necessary.

5.2 Methods

For the first two parts of Sec. 5.3, collinearly spin-polarized density-functional theory (DFT)
structure optimizations were performed using the Vienna Ab initio Simulation Package
(VASP) [103]. (None of the considered structures contained geometric frustration that could
be expected to elicit noncollinear moments and spin-orbit coupling is negligible at the energy
scale of ordering.) Electronic states were represented in terms of plane-waves [104,105] with
a 520 eV cutoff and a linear k-point density of 0.15 Å. State occupancies were smeared to a
width of 0.1 eV using a first-order Methfessel-Paxton method [106]. Atomic moments were
conservatively integrated within 1 Å spheres so that all magnetization was contained within
the Cr Bader surface [107]; more rigorous methods for determining local moments, such as
the complete integration of Bader volumes, were complicated by the subsequent imposition
of spin spirals. Cr sites were assigned initial moments of ±2µB; Ni sites were also initialized
with 1µB moments, but expectedly demagnetized during the convergence of calculations
unless specifically noted.

The treatment of electronic exchange and correlation (XC) requires some investigation.
Section 5.3 considers both the local spin-density approximation (LSDA) and the generalized-
gradient approximation (GGA), the former using Perdew and Zunger’s [108] parametrization
of Ceperley and Alder’s [109] correlation energies and the latter according to Perdew, Burke,
and Ernzerhof, either in the original formulation (PBE) [110] or as revised for solids (PBEsol)
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[111]. Correlation energies were interpolated using the method of Vosko, Wilk, and Nusair
[112]. For calculations at the experiment lattice parameter, PBE structures were scaled using
values of 3.5240 Å for Ni, 2.8848 Å for Cr [113], and 3.562 Å for CrNi2 [92].

On the basis of the results presented in Sec. 5.3, PBE was selected for all further calcula-
tions; this choice is largely motivated by results for elemental Cr, which require some further
discussion. Namely, it must be noted that semilocal DFT fails to reproduce the experimen-
tal ground state of bcc Cr [114], which is a structurally incommensurate spin-density wave
described by the wave vector q ∼ 0.95b1 [115], where b1 is the cubic reciprocal lattice vector.
Still, the observed spin-density wave only slightly differs from the simple AFM structure
predicted by DFT (q = b1), corresponding to an energy difference of a few meV per atom
in the present calculations. Absent further failures, DFT may still reasonably approximate
the magnetic ground state of Cr, which provides an experimental benchmark for assessing
predictions of antiferromagnetism in Cr-Ni alloys.

In order to better characterize the magnetism of CrNi2, spin-wave calculations were per-
formed in Sec. 5.3. In these simulations, noncollinear AFM structures were represented as
plane waves of local magnetization density lying within the first Brillouin zone of a struc-
turally minimal unit cell [116], as implemented in VASP. CrNi2 was modeled using a static
primitive lattice with a1 = 1

2
[110], a2 = 1

2
[1̄21], and a3 = [001] and, in reciprocal space,

b1 = 1
3
(420), b2 = 1

3
(2̄20), and b3 = 1

3
(11̄3). (The exact structure was determined from

the collinear ground state, restricting magnetovolume coupling and slightly exaggerating
the magnetization energy; cf. Table 5.1.) Under this convention, the AFM configuration
depicted in Fig. 5.1(b) corresponds to a (1

2
00) wave vector, with additional structures de-

termined from modulations of this state; e.g., AFM decoration along [001] is represented
by the wave vector (1

2
01
2
). The longitudinal degree of Cr magnetization was allowed to re-

lax in all calculations. Altogether, 111 wave vectors were chosen by interpolating among
high-symmetry points near the region of AFM stability within the Brillouin zone.

5.3 Results

Magnetic ground state of CrNi2

Metallic magnetism is typically understood in terms of two-site exchange couplings gov-
erned by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, which decay according to
the third power of distance in the long-range limit [117, 118]. Assuming AFM alignment
of nearest-neighbor Cr spins, the MoPt2-type structure of CrNi2 can accommodate several
distinct magnetic orderings depending on the nature of longer-range exchange interactions.
As depicted in Fig. 5.1(a), Cr atoms occupy every third plane in the (1̄10) direction; these
planes are offset such that, if nearest-neighboring Cr are AFM, every Cr-Cr bond between
adjacent planes is balanced by an equidistant, opposite-spin counterpart (e.g., 1

2
[1̄21] and

1
2
[2̄11]), preventing pairwise interactions between immediately neighboring planes from af-

fecting the magnetic ground state. It is thus assumed that the type of exchange interaction
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Table 5.1: Several possible magnetic configurations of CrNi2 with AFM nearest
(
1
2
[110]

)
neighbors, according to several XC functionals. The first two columns indicate the type
of magnetic ordering along the specified crystal direction. The third and fourth columns
respectively give the average local moment magnitude and formation energy, while the last
value is the change in energy relative to the NM structure. Calculations for AFM bcc Cr
and NM CrNi2 are provided for comparison.

[001] 1
2 [3̄30] |mCr| (µB) Eform.

(
meV
atom

)
Emag.

(
meV
Cr

)
GGA-PBE/self-consistent lattice

AFM AFM 1.16 -26.7 -24.1
AFM FM 1.20 -28.5 -29.4
FM FM 1.29 -30.8 -36.4
FM AFM 1.31 -31.9 -39.6

NM CrNi2 — -18.7 —
bcc Cr 0.98 0.0 -15.9

GGA-PBEsol/self-consistent lattice

AFM AFM 0.45 -41.7 -1.0
AFM FM 0.56 -42.3 -2.7
FM FM 0.74 -42.8 -4.4
FM AFM 0.79 -43.0 -4.9

NM CrNi2 — -41.4 —
bcc Cr 0.34 0.0 -0.6

LSDA/experimental lattice parameter

AFM AFM 0.75 -40.0 -2.1
AFM FM 0.83 -40.8 -4.7
FM FM 0.92 -41.9 -7.9
FM AFM 0.97 -42.4 -9.3

NM CrNi2 — -39.3 —
bcc Cr 0.64 0.0 -2.5

GGA-PBE/experimental lattice parameter

AFM AFM 1.30 -25.4 -41.8
AFM FM 1.33 -27.4 -47.9
FM FM 1.40 -30.0 -55.8
FM AFM 1.41 -31.0 -58.7

NM CrNi2 — -11.4 —
bcc Cr 1.09 0.0 -28.3

GGA-PBEsol/experimental lattice parameter

AFM AFM 1.17 -31.3 -25.6
AFM FM 1.21 -33.1 -30.8
FM FM 1.28 -35.3 -37.4
FM AFM 1.29 -36.1 -40.0

NM CrNi2 — -22.8 —
bcc Cr 0.97 0.0 -17.8



CHAPTER 5. THEORETICAL ANTIFERROMAGNETISM OF CR-NI 33

between second-nearest [001] neighbors fixes the ordering of a given (1̄10) plane. The rela-
tive order of the next-nearest (1̄10) planes then allows two possible magnetic structures for a
given planar ordering, corresponding to either FM or AFM coupling between tenth-nearest
1
2
[3̄30] neighbors.
Altogether, these considerations allow four unique AFM structures, which are described

in the first two columns of Table 5.1 in terms of [001] and 1
2
[3̄30] exchange couplings. The

local moments and energies of these structures were calculated using several XC functionals
and are tabulated in subsequent columns. Both formation energies (Eform), relative to AFM
bcc Cr and FM fcc Ni, and magnetization energies (Emag), relative to NM structures, are
given; the latter are normalized per Cr atom as Ni sites are NM under all of the considered
scenarios. Calculations for NM CrNi2 and elemental Cr are also provided.

Under the LSDA, the equilibrium lattice of CrNi2 is NM, but this is hardly surprising as
the theory also fails to self-consistently reproduce the antiferromagnetism of bcc Cr, to say
nothing of its inaccuracy for Ni. Imposing the experimental lattice parameter stabilizes mag-
netic order in both Cr and CrNi2, although, at least in the former case, the magnetization
energy is unphysically small [114]. The calculated formation energies, on the other hand, are
somewhat larger than expected from the relatively low experimental order-disorder transition
temperature [102,119]. In contrast, the PBE-based calculations predict a reasonable magne-
tization energy for Cr and even stronger magnetism in CrNi2. (It should be noted that the
PBE local moments of bcc Cr appear somewhat larger than experiment [114,120], although
assigning AFM moments is somewhat less straightforward than determining FM magneti-
zation.) Using PBEsol leads to unrealistically weak antiferromagnetism in Cr, although the
magnetization energy of CrNi2 remains several times larger and PBEsol calculations at the
experimental lattice parameter resemble equilibrium PBE.

Regardless of the specific XC functional, the relative hierarchy of magnetic interactions
is clear: [001] neighbors align ferromagnetically, as expected from RKKY theory, while inter-
planar 1

2
[3̄30] neighbors slightly favor AFM coupling, as depicted in Fig. 5.1(b). Moreover,

in all physically plausible scenarios in which Cr is correctly AFM, the magnetization energy
of CrNi2 is more than twice that of bcc Cr on a per Cr basis; the local moments of CrNi2
are also consistently larger. Quantitatively, PBE clearly provides the most reasonable de-
scription of Cr and is used for the remainder of the study. While PBE produces the largest
absolute magnetization energies, the predicted ratio of ECrNi2

mag to ECr
mag is comparable to or

significantly less than other calculation schemes. Its formation energies also seem reason-
able [102, 119], although these values are notably affected by magnetic order; the formation
energy of the optimized magnetic structure (−31.9meV/atom) is 70% larger in magnitude
than the NM equivalent (−18.7meV/atom). All PBE formation energies are plotted in Fig.
5.2.

Magnetism of other fcc orderings

While only MoPt2-type ordering has been observed in fcc Cr-Ni, the possibility of additional
phases has received some prior attention. Regardless of composition, the system’s high-
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Figure 5.2: Calculated formation energies of various orderings discussed in the text as a
function of composition. Annotations provide the prototype of each structure, with markers
indicating the type of simulation cell and converged magnetic order. (A “unit cell” may be
primitive or conventional.) The dotted and solid lines represent the convex hulls of stable
structures based, respectively, on nonmagnetic and magnetic CrNi2.

temperature chemical short-range order maximizes diffuse scattering intensity at the (1
2
10)

special point in reciprocal space rather than the (2
3
2
3
0) point expected for MoPt2 [16, 17,22,

121], as can be explained by nucleation considerations [21]. Maxima at (1
2
10) are instead

associated with the NiMo (A2B2), Al3Ti (D022/A3B), and MnCu3 (D060) [102] prototypes,
which have been considered by a number of previous studies.

As for CrNi2, the AFM ground states of other structures appear to have been overlooked
with significant energetic consequences. For example, the NM calculations of Ref. [102]
suggest that MnCu3 and Ni4Mo-type (D1a) orderings could occur at low temperatures. The
introduction of antiferromagnetism, however, not only further stabilizes CrNi2, but also
inverts the relative favorability of MnCu3 and otherwise high-energy Al3Ti, as shown in
Fig. 5.2 (relative to AFM bcc Cr and FM fcc Ni). Figure 5.3 depicts the AFM ground
states predicted for the (a) Al3Ti and (b) MnCu3 prototypes, which were identified through
a process similar to that for CrNi2. AFM decorations of the Ni4Mo-type structure were also
examined, although with minimal energetic effect.

Reference [28] additionally calculated that a TiPt8-type [122] ordering of CrNi8 was stable
relative to NM CrNi2 and FM Ni. At this composition, Ni atoms retain FM magnetization
that induces opposite moments in distantly spaced Cr sites, leaving little opportunity for
other forms of antiferromagnetism. As shown in Fig. 5.2, this structure was found to
be slightly higher energy than in Ref. [28], although the disagreement is within the range



CHAPTER 5. THEORETICAL ANTIFERROMAGNETISM OF CR-NI 35

a.

b.

[100]

[010]

[001]

[010]
[100]

Figure 5.3: Proposed AFM ground states for the (a) Al3Ti-type and (b) MnCu3-type
orderings of CrNi3, illustrated in the manner of Fig. 5.1(b). The perspective of (b) is along
[001], in which Cr moments are AFM. Atomic sites are drawn with different sizes to illustrate
alternating (001) and (002) planes. While MnCu3-type order is electronically more favorable,
exchange interactions render Al3Ti-type order lower energy, although neither is expected to
be stable.
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Figure 5.4: (a-c) Open circles : DFT energies of spin spirals representing modulations of the
AFM ground state along the reciprocal lattice vectors of CrNi2, as indicated with fractional
coordinates—the structure in Fig. 5.1(b) corresponds to (q1q2q3) =

(
1
2
00
)
. Solid lines :

equivalent values determined using Eq. (5.1) and Table 5.2. (d-f) As above, relaxed Cr
moments from the same calculations and minimum energy values according to the effective
Hamiltonian. (g) The energies of all considered spin spirals, as determined from the Hamil-
tonian vs. as calculated with DFT. (h) Energy contribution from the longitudinal term of
Eq. (5.1) as a function of local moment.

expected from differences in simulation parameters.

Magnetic parametrization of CrNi2

The introduction of AFM order further stabilizes CrNi2, confirming the unique importance of
this phase. Its theoretical magnetic structure can be more completely characterized in terms
of a Heisenberg model of exchange interactions. The inconstant local moment recorded in
Table 5.1, as well as instability of FM CrNi2, indicates that the magnitude of Cr local moment
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Table 5.2: Effective Cr-Cr exchange parameters of Eq. (5.1) fit to DFT calculations for spin-
spirals in ordered CrNi2. The longitudinal energy is fully accounted for by J2 = 31.95meV.
Neighbor directions (Rij) are expressed in terms of the fcc lattice parameter (a) for the
structure depicted in Fig. 5.1. The square of each neighbor distance is provided to simplify
notation.

Rij (a) R2
ij (a

2) degeneracy Jij (meV)

1
2
[110] 1/2 2 -18.6
[001] 1 2 0.71

1
2
[112] 3/2 4 -0.36

1
2
[1̄21] 3/2 8 —
[110] 2 2 14.91

1
2
[3̄01] 5/2 8 —
[111] 3 4 —

1
2
[1̄23] 7/2 8 —
[002] 4 2 —

1
2
[3̄30] 9/2 4 -0.45

1
2
[033] 9/2 8 —

1
2
[114] 9/2 4 -0.57

1
2
[141] 9/2 8 1.43
[1̄20] 5 4 —

1
2
[332] 11/2 4 —

1
2
[3̄32] 11/2 4 -0.99

is an important variable, as previously noted in austenitic stainless steels [26]. Changes in
energy associated with such longitudinal spin fluctuations (LSFs) were accounted for by a
phenomenological Landau-type expression, i.e. an energetic term proportional to the first
few even powers of per site local moment [123–126]. Given the subjectivity inherent in
localizing AFM moments, it is helpful to define a dimensionless effective spin S = m/m0,
where m are classical magnetic moments (i.e., quantum expectation values) computed from
density-functional theory (DFT) and m0 refers to the ground state structure (1.31µB per
Table 5.1). For Cr sites indexed by i and j, the model Hamiltonian takes the form

H =
∑
i

pmax∑
p=1

Jp S2p
i −

∑
i,j

Jij Si · Sj (5.1)

where Jp parametrize single-site LSFs and Jij describe exchange between Cr atoms at sites
i and j.

Jp and Jij were fitted to reproduce the energies of magnetic structures represented by spin
spirals, which can be efficiently computed using Bloch’s theorem; see Sec. 5.2 for details.
As an illustrative example, Fig. 5.4 shows the energies (a-c) and local moments (d-f) of
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spirals representing modulations of the ground state along the reciprocal lattice vectors of
the primitive unit cell.

Consideration of the sixteen nearest Cr-Cr interactions, which are described in the first
three columns of Table 5.2, was required to reasonably represent all the magnetic configura-
tions, although only eight distinct instances of Jij were determined to be nonzero. The AFM
1
2
[110] interaction is expectedly the largest, although, interestingly, FM coupling between

[110] neighbors in the same direction appears nearly as strong. All other exchange pairs are
individually weaker by an order of magnitude, although they are more frequent (see the third
column) and still significantly affect energies. The LSFs of Cr appear well described by a
single S4 term with J2 = 31.95meV, which is plotted in Fig. 5.4(h). For spin-Hamiltonian
calculations, the optimum local moment of a given spin wave was analytically determined
from the fitted parameters. Both DFT energies and magnetic moments are replicated by the
model, as shown in Fig. 5.4; since local moments are at no point explicitly fitted, faithful
reproduction of these values suggests that the relevant physics are largely captured.

The exchange parameters calculated for CrNi2 are at least qualitatively applicable to the
other considered structures, the magnetization energies of which can be largely explained by
the frequency of the two strongest Cr-Cr exchange pairs, 1

2
[110] and [110]. In the MnCu3

structure depicted in Fig. 5.3(b), for instance, Cr have one 1
2
[110] and zero [110] Cr neighbors

and consequently exhibit weak AFM coupling. In contrast, the (100) planar ordering of Cr in
Al3Ti provides four [110] Cr neighbors per Cr atom, effecting a several times larger magnetic
ordering energy. Lacking Cr nearest neighbors, the Al3Ti structure also accommodates a
previously theorized [101] FM structure that abuts the convex hull of NM CrNi2 in Fig. 5.2;
this result illustrates how the partial consideration of spin polarization can be misleading
even if, largely by happenstance, the qualitative picture of ground state phase stability in
Cr-Ni remains unchanged.

Unfortunately, this simple model is likely not sophisticated enough to quantitatively
predict the finite-temperature behavior of CrNi2, even if the DFT results are largely physical.
While the fitted parametrization accurately describes periodic deviations from the ground
state, the effective exchange parameters of less ordered configurations can greatly differ [127]
and Hamiltonians fitted exclusively to ordered configurations are known to poorly estimate
Néel temperatures [93]. It is also less obvious how to model the majority element of Ni, which
is NM in all ground state calculations, but may play a significant role at temperature due to
LSFs, if to an unclear end. Perfectly disordered Ni moments should, on average, contribute
zero net exchange to Cr sites, although it is easy to imagine random fluctuations locally
destabilizing AFM order. Further, simulations of highly itinerant Cr moments should be
validated in the pure element and I was unable to construct an equivalent model that could
satisfactorily describe the antiferromagnetism of bcc Cr. (This is not entirely surprising, as
the nominal disordering of bcc Cr hardly resembles a classical phase transition [128].)
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5.4 Discussion

Even without finite-temperature calculations, the basic prediction of antiferromagnetism in
CrNi2 can be assessed in light of existing experimental data. If CrNi2 is not in fact AFM
at 0K, the calculations of Sec. 5.3 would represent a fairly spectacular failure of a theory
that otherwise reasonably describes the magnetism of 3d transition metals and would be
an important finding in of itself. Such an error could originate from an overestimation of
exchange interactions by the GGA, which has been previously postulated for Cr [114, 129].
Sill, even if the employed methods involved significant systematic error, all calculations found
that the magnetic subsystem of CrNi2 was significantly stronger than that of pure Cr. Given
that bcc Cr has a nominal Néel temperature of 311K [120], it seems plausible that magnetic
order in CrNi2 could persist well above ambient temperatures; naively scaling TCr

N according
to the ratio of PBE magnetization energies would suggest TCrNi2

N ∼ 775K.
There has been some recent interest in the role of magnetic interactions—particularly

those of Cr—in the chemical ordering of both steels [26,98] and medium/high-entropy alloys
[3, 11, 28, 69, 130], largely on the basis of DFT computations that have been called into
question by some [40, 68]. (This is to say nothing of how disordered moments can affect
properties such as stacking fault energies at finite temperatures [95,131,132].) CrNi2 should
provide a representative, experimentally accessible benchmark to test theoretical predictions
concerning the role of magnetism in transition metal alloys that are not simple ferromagnets.

If CrNi2 is indeed AFM at 0K, the corresponding magnetic order-disorder transition
should be detectable under calorimetry and magnetometry, although the Néel temperature
is very much uncertain. Unfortunately, the experimental characterization of ordered CrNi2
is incomplete; the fully formed intermetallic phase is of little practical interest given the
deleterious effects of ordering on mechanical properties, to say nothing of its sluggish for-
mation. Perhaps most relevantly, Ref. [92] measured the heat capacity of samples that were
quenched after annealing at 773K for up to 2900 hours. They reported specific heat values
from 573 to 1073K, observing a single peak at the ∼863K chemical order-disorder transition
that increased in magnitude with annealing; Refs. [23,133,134] provide similar results within
this temperature range. The absence of lower-temperature calorimetry seemingly allows the
possibility that a Néel transition below ∼550K has simply escaped detection. While the
oversight of a magnetic transition in such a well studied system would be surprising, it does
not seem out of the question, particularly if antiferromagnetism is restricted to the fully or-
dered phase. Alternatively, it is interesting to consider the possibility of AFM order coupling
to the well known chemical order-disorder transition at ∼863K.

Limited experimental data actually support the possibility of AFM order in Cr-Ni alloys,
which was in fact first theorized by Ref. [135] on the basis of neutron scattering in nominally
disordered alloys with 5.98 at.% and 8.26 at.% Cr. At these compositions, the observed
magnetism was interpreted as Cr moments collectively aligning antiparallel to otherwise FM
Ni. These measurements are corroborated by the observation of heat capacity peaks in 6.72
and 8.94 at.% alloys at, respectively, 492K and 675K [136]. The temperature and magnitude
of these features grows with Cr concentration, presumably merging with the aforementioned
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structural transition occurring below 863K in alloys with >20 at.% Cr [23], as is widely
understood to represent chemical disordering. Indeed, Ref. [84] attributed the anomalies of
Ref. [136] to a chemical SRO transition, although 492K (219 ◦C) would be an extremely
low temperature to detect chemical rearrangement given the experimental heating rate of
100K/hour. Moreover, the specific heat curve of Ref. [136] appears to diverge in a manner
that is far more consistent with long-range magnetic ordering than SRO. If Ref. [136] indeed
detected antiferromagnetism at low Cr concentrations, it seems likely that some form of
magnetic order persists up to the chemical order-disorder transition in CrNi2.

Reference [137] appears to further corroborate this picture of magnetism, reporting sus-
ceptibility features consistent with an AFM transition in the range of 200–300K for alloys
with 8.75 at.% and 11.1 at.% Cr. After 8 hours of annealing at 900K, the presumed de-
velopment of chemical SRO raised the apparent magnetic transitions to about 500–600K.
Curiously, Ref. [91] failed to reproduce the observations of Ref. [137], but instead found
anomalies in the magnetic susceptibility of alloys with 16.6, 22.0, and 25.0 at.% Cr in the
vicinity of the chemical ordering temperature. Reference [91] in fact attributed these features
to CrNi2, although it is unclear whether the measurements indirectly reflect a chemical SRO
transformation or possibly reveal an explicitly magnetic transition. In related commercial al-
loys, the formation of CrNi2-based phases has also been noted to affect magnetic properties,
although an exact mechanism has not been proposed [86,138].

If antiferromagnetism persists to high temperatures, its neglect would be expected to
cause errors in prior ordering theory. For instance, Refs. [17,22] derived pair potentials from
scattering experiments that notably underestimated the chemical ordering temperature of
CrNi2, suggesting neglected interactions and inviting speculation as to the missing physics.
However, lattice models fitted to NM [102] or mostly NM [119] DFT calculations slightly
overestimate the ordering temperature of CrNi2 after correcting incomplete pair potentials
with many-body interactions. Barring a fortuitous cancellation of errors, the relative ac-
curacy of these calculations implies that magnetism plays a negligible role in the ordering
of CrNi2. Still, it is worth noting that while the model of Ref. [102] largely reproduces the
chemical SRO of Ref. [16], which examined samples that were quenched after equilibration at
828K, it appears to overestimate the equivalent in situ measurements at 993K (25 at.% Cr)
and 1073K (33 at.% Cr) [22]. If, very speculatively, magnetic order affected the chemical
SRO of quenched samples and Ref. [102] overestimated electronic interactions in a manner
compensating the omission of magnetism, the apparent discrepancy could be explained.

5.5 Summary & Conclusion

A complete treatment of magnetic order greatly affects the ground state energetics of Cr-Ni
alloys under standard DFT, greatly increasing the stability of CrNi2, which remains the
only predicted ordered phase. The role of magnetism at temperature is less clear, with three
plausible scenarios. In the first, the prediction of antiferromagnetism is simply erroneous and
the application of the theory to similar systems should be reexamined. Alternatively, CrNi2
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could form an AFM structure at 0K that disorders below ∼550K with minimal impact on
chemical bonding, although it would still be interesting to assess whether AFM order existed
at ambient conditions. Most intriguingly, the experimental literature appears to offer the
possibility of a magnetic phase transition coupling to the chemical order-disorder transition
at 863K. Further thermodynamic and magnetic measurements seem needed to determine
the nature and role of magnetism in ordered CrNi2, with additional study likely required for
less ordered alloys of great practical interest.

This line of investigation motivated the next and final chapter, in which a method is devel-
oped for realistically and conveniently simulating the Heisenberg model at temperature. In
practice, however, the approach proved incompatible with the continuous, phenomenological
treatment of spin-fluctuations that was used to model the magnetism of Cr-Ni alloys.
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Chapter 6

Realistic magnetic thermodynamics

6.1 Introduction

The Heisenberg model has been widely studied as both a classical and quantum description
of crystal magnetism. In either interpretation, the Hamiltonian can be expressed as

H = −
∑
i,j

Jij Si · Sj (6.1)

where i and j sum over lattices sites and Jij is an interaction energy determined by the
relative positions of i and j. Classically, Si is a dimensionless spin vector proportional to
local magnetic moment. While atomic magnetism has fundamentally quantum origins, the
classical model largely accounts for the energies of static spin configurations, reproducing ex-
perimental magnon spectra and capturing magnetic contributions to the energies of electronic
structure calculations [118, 139]. It does not, however, accurately describe thermodynamic
properties below the magnetic disordering temperature [140,141] and, while alternatives have
been proposed [140–147], the efficient simulation of finite temperature magnetism remains
an outstanding problem in computational materials science.

The limited success of the classical Heisenberg model can be understood by regarding
classical moments as the quantum expectation values of spin operators, as is detailed in the
following section. With this perspective, the following section discusses Monte Carlo (MC)
simulation of the Heisenberg model, a popular approach to calculating thermodynamic prop-
erties by probabilistically sampling the spin-configuration space. The deficiency of classical
MC (CMC) methods is addressed and a more accurate, but similarly general, semiclassical
MC (SMC) sampling technique is proposed, demonstrated, and discussed.
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6.2 Results

Background and motivation

In the more physical quantum Heisenberg model, Si operates on spinor |χi⟩ to measure
the spin of lattice site i. N spins of quantum number s form a (2s + 1)N -dimensional
Hilbert space. A canonical system in thermal equilibrium is described by density operator
ρ = e−βH/Z, where partition function Z = tr(e−βH) and β is the reciprocal product of Boltz-
mann’s constant and temperature. Thermodynamic quantities corresponding to ensemble
averages, such as energy or magnetization, are determined from ρ as O = ⟨O⟩ = tr(ρO),
where O denotes the ensemble average and ⟨O⟩ indicates a quantum expectation value.

Density operators are typically expanded as sums over energy eigenstate projectors, al-
though the eigensystem of Eq. (6.1) is not generally solvable. Instead, states may be sampled
through quantum MC (QMC) techniques [148], although current methods appear numeri-
cally unstable for Hamiltonians containing competing interactions [149], such as geometric
frustration [150] or even values of Jij with opposing signs [151], as is often the case in real
materials. Compared to CMC, QMC is also far more conceptually and computationally
complex, with simulation time scaling nonlinearly with system size [152].

Fortunately, magnets that are not significantly entangled may not require a full quan-
tum treatment. Above some temperature, all equilibrium systems become unentangled, or
separable [153], meaning that ρ may be expressed as a sum over product states |ψp⟩ =
|χ1⟩ ⊗ |χ2⟩ · · · ⊗ |χN⟩. Entanglement phenomena have been primarily identified in one or
two-dimensional systems at low temperatures [154, 155], so it is assumed that separability
is at least a very a good approximation for conventional three-dimensional magnets above a
few degrees Kelvin.

Product states are attractive because their expectation values distribute across compo-
nents of the tensor product [156], enabling effectively classical evaluation of the Heisenberg
Hamiltonian. For product state |ψp⟩, energy Ep can be determined as

⟨H⟩p = −
∑
i,j

Jij ⟨Si · Sj⟩p = −
∑
i,j

Jij ⟨Si⟩p · ⟨Sj⟩p , (6.2)

where ⟨O⟩p denotes ⟨ψp|O|ψp⟩. Equation (6.2) explains the success of the classical Heisenberg
model in evaluating the energies of given magnetic structures, if classical Si is understood
as quantum ⟨Si⟩p.

When ⟨Si⟩p is not prescribed, however—as is typically the case for thermodynamic
ensembles—classical methods are far less accurate as determining which values of ⟨Si⟩p to
consider requires significant approximation. Most notably, conventional CMC simulations
sample spin states continuously, which is only justified in the limit of an infinite spin quan-
tum number [157, 158]. Taking this limit provides the standard derivation of the classical
Heisenberg model and leads to a scaling relation between the quantum (Jij) and classical
(J∞

ij ) interaction energies for spin quantum number s:

s(s+ 1)Jij = s2J∞
ij . (6.3)
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Perhaps unsurprisingly, the assumption of infinite s causes unphysical thermodynamic be-
havior in not only CMC, but also classical spin dynamics simulations [159].

However, if ⟨Si⟩p were known for all the components of a separable representation, its
thermodynamic properties could be calculated with quantum accuracy and classical conve-
nience. For a separable ensemble that can be represented in terms of product states p, the
average of observable O may be expressed as a classical sum, i.e.

O =
1

Z

∑
p

e−βEp ⟨O⟩p , (6.4)

as detailed in Supplementary Note 1 of Ref. [5]. For the determination of E, Eq. (6.2) can
be substituted into Eq. (6.4) such that the ensemble average is expressed in terms of ⟨Si⟩p,
with a similar procedure possible for other thermodynamic properties. Of course, identifying
specific |ψp⟩ or ⟨Si⟩p is no easier than determining eigenstates, but it may be feasible to
approximate the density of product states more accurately than classical methods. Indeed,
representatively sampling states in a high-dimensional configuration space is the fundamental
purpose of MC simulations.

Previous efforts to improve the accuracy of classical simulations can be understood from
this perspective. For example, spin-wave excitations can be quantized using Planck statistics,
which reasonably describe magnetization behavior [139], although local updating methods
are generally far more efficient for atomistic simulations. Ref. [145] approximates a density
of states explicitly calculated using first-principles methods by introducing and adjusting
an effective simulation temperature. This approach, which can be applied in continuous
time spin dynamics as well as MC simulations [146], works well at low temperatures, but
requires parameterization and underestimates [145] (or overestimates [146]) magnetization at
intermediate temperatures. Somewhat similarly, Ref. [144] describes a method for empirically
determining effective temperatures, while Ref. [147] reproduces a Planck distribution through
careful control of a spin dynamics thermostat. It is also worth noting that the methods of
Refs. [140, 144–146] directly depend on the Curie temperature (TC), above which CMC is
performed.

Semiclassical sampling by local quantization

Alternatively, the separable density of states may be more directly estimated according to a
locally quantum approximation of state evolution. In the simplest form of CMC, a new state
is trialed by mutating the (expected) spin of randomly selected site k, while the spins of all
other sites i ̸= k are fixed. Trial ⟨Sk⟩ is traditionally chosen with uniform probability for
all directions, as is classically allowed. However, it is possible to introduce an approximate
quantization by treating this ultimately fictitious permutation as a quantum problem.

In this approach, Eq. (6.1) can be reframed as a single-spin quantum Hamiltonian for
site k,

Hk = Ei ̸=k − Sk · 2
∑
j

Jkj ⟨Sj⟩ , (6.5)



CHAPTER 6. REALISTIC MAGNETIC THERMODYNAMICS 45

accessible states ⟨Sk⟩
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local spins ⟨Si⟩

kk

Figure 6.1: MC trial states allowed by local quantization. An illustration of the semiclassical
spin sampling procedure on a bcc lattice with s = 2. Site k is randomly selected and the
effective local field Bk is determined from the fixed spins of neighboring sites ⟨Sj⟩ and the
interaction energies Jkj. A new trial value of ⟨Sk⟩ is randomly selected from the illustrated
quantizations along Bk.

where ⟨Sj⟩ is the fixed spin of neighboring site j. (The factor of two originates from the
double summation in Eq. (6.1)). As Ei ̸=k is constant, Eq. (6.5) has the elementary solutions
of a spin in the magnetic field Bk = 2

∑
j Jkj ⟨Sj⟩. Specifically, Sk is quantized along Bk

with quantum number ms = −s,−s + 1, . . . , s; its orthogonal components are inherently
uncertain, but their expectation values precess around Bk in time.

The solutions of Eq. (6.5) can be statistically sampled according to the following semi-
classical MC (SMC) procedure, which is illustrated in Fig. 6.1. For each MC step, site k
is randomly selected and Bk is computed. A trial quantization along Bk (corresponding
to some ms) is chosen at random, defining the component of ⟨Sk⟩ along Bk; any remaining
perpendicular component is then randomly chosen to account for continuous precession. The
accessible trial states ⟨Sk⟩ for a hypothetical scenario are drawn as rings around Bk in Fig.
6.1. The trial energy is computed and acceptance or rejection is determined according to the
standard Metropolis criteria, after which a new k is chosen for the next step. In practice,
SMC requires only marginally more effort than CMC, with spin quantum number s being
the only additional parameter.

While the impact of multiple-spin interactions on quantization has been neglected, these
solutions should still estimate the true distribution of product states better than purely
classical methods, although the extent of the improvement is not immediately clear as sep-
arable solutions of large ensembles are generally intractable. In practice, the results are
notably more accurate—indeed, the remainder of this paper demonstrates how locally quan-
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Figure 6.2: Spontaneous magnetization of iron. Spontaneous magnetization of elemental
(bcc) Fe as a function of temperature, determined using CMC and SMC sampling for several
spin quantum numbers s and experiment [88].

tized SMC reasonably describes thermodynamic properties across a wide temperature range,
albeit with several caveats.

Magnetization of Fe

The zero-field spontaneous magnetization of body-centered cubic (bcc) Fe provides a classic
benchmark for finite temperature magnetic predictions. Figure 6.2 shows measurements
from Ref. [88] alongside notably differing CMC calculations (see Sec. 6.4 for details). The
experimental ground state moment of 2.2µB/atom implies a quantum number of s = 1.1,
neglecting orbital contributions that are suppressed under the system’s cubic symmetry.
As a transition metal, the itinerant magnetism of Fe is less than perfectly described by
a collection of atomic spinors, but the standard Heisenberg model appears to provide a
passable approximation [93]. Previous studies have modeled Fe by interpolating results for
s = 1 and s = 3/2 [140], but for the purpose of demonstration, Fig. 6.2 shows distinct SMC
magnetization curves for s = 1, 3/2, and 2.

All the quantized calculations greatly improve upon CMC, although no single value of s
exactly replicates experiment. Using s = 1, as is closest to the experimentally implied value,
provides the best results near TC, but not at lower temperatures, where s = 3/2 appears
slightly more accurate. The next highest value of s = 2 is generally further from experiment,
expectedly approaching the classical limit of infinite s—the gradual convergence of CMC
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Figure 6.3: Heat capacity of a model ferromagnet for several spin quantum numbers.
Heat capacity of a bcc nearest-neighbor ferromagnets for varying spin quantum number s,
calculated via CMC, QMC (adapted from Ref. [140]), and SMC according to Eq. (6.6)
Nearest-neighbor interaction energies are determined from classical J∞ by Eq. (6.3).

and SMC is further shown in Supplementary Fig. 2 of Ref. [5]. Critical magnetization
behavior is also examined in Supplementary Fig. 3 of Ref. [5]. Some remaining inaccuracies
are discussed later, but the overall dramatic improvement clearly shows the potential of
semiclassical local quantization.

Heat capacity and magnetic short-range order

While demonstrative, direct comparison of computational predictions to experiments is com-
plicated by the many levels of approximation inherent in the theory. Fortunately, Ref. [140]
provides effectively exact QMC heat capacities for a small bcc ferromagnet with nearest-
neighbor Heisenberg interactions, which are shown in Fig. 6.3 for four spin quantum num-
bers in addition to infinite spin CMC (see Sec. 6.4 for details). Heat capacity is defined
as

C =
∂E

∂T
, (6.6)
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Figure 6.4: Energy of a model ferromagnet for several spin quantum numbers. Analogous
to Fig. 6.3, the energies of a bcc ferromagnet with varying quantum number s according to
CMC, QMC, and SMC. While SMC appears to reproduce the QMC of Ref. [140] below the
disordering point, higher temperature energies are overestimated due to missing short-range
order.

from which many other thermodynamic properties can be derived. Figure 6.3 shows that
direct calculation of SMC heat capacity according to Eq. (6.6) largely reproduces QMC at
lower temperatures, but results in significant errors around TC, with altogether less improve-
ment over CMC than seen in Fig. 6.2.

An explanation for excessive heat capacity in the critical region follows from Eq. (6.6);
overestimation of heat capacity implies that simulation energies increase too rapidly with
respect to temperature, which is explicitly shown in Fig. 6.4. Below TC, semiclassical
energies closely track QMC values, but magnetic disordering imparts a rapid increase in
energy, resulting in an overestimation of energy that only gradually disappears at higher
temperatures. Excess energies indicate that these simulations are less ordered than their
QMC counterparts—since the error only becomes significant as long-range order disappears,
it is apparent that locally quantized SMC systematically underestimates magnetic short-
range order (MSRO).

In contrast, Fig. 6.4 shows how CMC energies are correct in the high-temperature limit
despite significant error below TC. Nonetheless, CMC and SMC predict very similar degrees
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Figure 6.5: Magnetic short-range order in iron. Predictions of MSRO in bcc Fe
by several theories, represented by the normalized nearest-neighbor spin-spin correlation:
Si · Sj/

(
SiSj

)
for nearest neighbors i and j. Very similar CMC and SMC results are com-

pared to dynamic spin-fluctuation theory [160], which predicts significantly larger MSRO due
to quantization effects. The discrepancy can be mostly eliminated using the s+1

s
correction

factor deduced from comparison of QMC and CMC.

of order above TC, as demonstrated in Fig. 6.5 for nearest-neighbor spins in bcc Fe. These
two observations imply that accurate CMC energies (and related properties, such as heat
capacity) above TC originate from the s+1

s
energetic scaling that was introduced in Eq. (6.3).

Indeed, CMC has long been believed to underestimate MSRO on the basis of both experiment
[161, 162] and theory [160, 163–165]. As a reference, Fig. 6.5 includes the significantly
more ordered predictions [160] of dynamic spin-fluctuation theory [166], an advanced linear-
response technique that does not explicitly consider local moments.

The observation that scaling CMC interaction parameters, as is required to preserve the
Curie temperature, leads to accurate energies above TC implies that a similar correction factor
could recover realistic MSRO. This simple idea is tested in Fig. 6.5, which includes a version
of the CMC spin-spin correlations multiplied post hoc by s+1

s
(for s = 1.1) that favorably

compares to the theory of Ref. [160]. The remaining discrepancy may be attributable to
the neglect of longitudinal spin fluctuations, which, although relatively small in Fe, can
significantly affect MSRO [93], as well as the specific parameterization of the Hamiltonian.

The proposed scaling factor offers a path for correcting SMC, either post hoc or possi-
bly through scaling interaction parameters Jij as in CMC. With an optimized interpolation
scheme smoothly introducing the scaling factor across the critical region, SMC could con-
ceivably replicate QMC across across all temperatures in a manner reminiscent of previously
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Figure 6.6: Improved and benchmarked heat capacities of the model ferromagnet. The
QMC heat capacities from Fig. 6.3 (and ultimately Ref. [140]) compared to SMC calculations
using Eq. (6.7), which are significantly more accurate than those shown in Fig. 6.3. The
“rescaled” MC (RMC) results from Ref. [140], which provide a similar degree of accuracy,
are also shown.

employed techniques [140,144]. However, this approach would compromise much of the con-
venience of SMC and a somewhat more straightforward method for recovering accurate heat
capacities is explored in the following section.

Improved accuracy from fluctuations

Heat capacity may alternatively (and more conventionally) be calculated according to the
fluctuation-dissipation theorem, i.e.

C =
E2 − E

2

kBT 2
, (6.7)

which must equal Eq. (6.6) for a statistically valid ensemble. However, SMC heat capacities
determined in this manner, plotted in Fig. 6.6, notably differ from those previously calcu-
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lated in Fig. 6.3—in fact, the values obtained from the fluctuation-dissipation theorem are
significantly closer to the QMC of Ref. [140].

The disagreement between the heat capacities calculated from Eq. (6.6) and Eq. (6.7) can
be attributed to a violation of balance by the SMC sampling procedure. Local quantization
clearly does not satisfy detailed balance, as the local field at any site is frequently changed
as neighboring spins are reoriented. If a spin is re-quantized along an updated local field, it
is likely impossible to directly return to the prior state along the former quantization axis,
which is a fundamental requirement for detailed balance. It is less immediately obvious that
this procedure violates the statistically necessary condition of balance [167], but the difference
between the two methods of calculating heat capacity, which are formally equivalent for a
properly sampled ensemble, suggest an absence of balance. In contrast, if all spins are
quantized along a fixed axis, then (detailed) balance is recovered and both methods of
calculating heat capacity predict consistent values, which are similar to those of Fig. 6.3
(this is explicitly shown in Supplementary Fig. 1 of Ref. [5]). For local quantization, issues
of balance could be circumvented by performing non-Markovian MC such as Wang-Landau
sampling [168], which determines E2 from a sampled distribution of E such that Eq. (6.7)
reproduces Eq. (6.6).

However, the degree of accuracy shown in Fig. 6.6 suggests that the fluctuation-based
calculations are capturing more realistic physics. Despite excessive average energies due to
the underestimation of MSRO, the SMC calculations appear to sample realistic energetic
fluctuations. As shown in Fig. 6.3, the heat capacities of Eq. (6.6) are about as accurate as
the best existing methods for (non-quantum) magnetic thermodynamics, exemplified by the
“rescaled” MC (RMC) of Ref. [140], which applies an empirical correction factor to CMC
based on lattice-specific QMC for a model Hamiltonian. The fluctuation-based approach
thus seems very promising for practical calculations, although it would benefit from a more
rigorous explanation for the demonstrated accuracy.

Antiferromagnetic susceptibility of RbMnF3

While only ferromagnets have been considered up to this point, SMC sampling works sim-
ilarly well for antiferromagnets, of which RbMnF3 is one of the simplest examples. In this
compound, Mn ions form a simple cubic sublattice with s = 5/2 and effectively nearest-
neighbor exchange interactions [170]. Figure 6.2 shows the zero-field parallel susceptibility
(χ∥) of RbMnF3, both from experiment [169] and calculated with CMC and SMC via the
fluctuation-dissipation theorem:

χ∥ =
M2 −M

2

kBT
. (6.8)

Both axes have been scaled relative to TN values to ease comparison with experiment. SMC
is expectedly far more accurate than CMC below the disordering point, although χ∥ is
somewhat underestimated at very low temperatures. Classical χ∥ appears slightly closer to
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Figure 6.7: Antiferromagnetic susceptibility of RbMnF3. Parallel magnetic susceptibility
of the Heisenberg antiferromagnet RbMnF3 as a function of temperature, calculated using
CMC and SMC (s = 5/2). Experimental data is from Ref. [169]; all values are normalized
relative to the Néel point to ease comparison.

experiment above TN, likely reflecting the underestimation of MSRO by local quantization,
although the choice of scaling could also affect the alignment of these values.

6.3 Discussion

The use of fluctuations for thermodynamic calculations largely resolves the primary source
of error in SMC, but a few issues remain. In particular, local quantization systematically
undersamples low-temperature excitations, which can be seen across a range of properties
in Figs. 6.2, 6.6, and 6.7. Magnetization, for instance, should scale as an exponential of
temperature in the 0K limit, but it appears asymptotic in Fig. 6.2—as shown more clearly
in Supplementary Fig. 4 of Ref. [5], SMC magnetization does not significantly deviate from
the ferromagnetic state below ∼ TC/5. In reality, excitations in this region are dominated
by long-wavelength spin-waves, which, while theoretically compatible with SMC, do not
appear adequately sampled by local quantization. The omission of these excitations similarly
explains a slight underestimation of heat capacity and susceptibility at low temperatures, as
these properties reflect, respectively, energetic and magnetic fluctuations.

The absence of non-local quantizations may also be seen at higher temperatures. As
shown in Fig. 6.6, QMC predicts slightly lower critical temperatures for s = 1/2 and s = 1
than for higher spin simulations, an effect which is not captured by SMC. For these lower
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quantum numbers, the locally allowed quantizations are limited and higher in energy, leaving
room for lower energy, longer range excitations to play a role in the disordering transition,
slightly reducing TC from the classical values. Single-site quantization also appears to in-
adequately predict MSRO, as seen in Fig. 6.4, with the implication that quantum MSRO
originates from quantization states involving multiple spins.

Hopefully this work will motivate further study and development of semiclassical sam-
pling methods, including resolutions of these issues. One apparent next step would be the
simultaneous quantization of multiple neighboring spins, analogous to cluster flipping al-
gorithms employed in CMC simulations [171]. When permuting multiple spins, new states
could be drawn from the separable component of the local exact solution, which could be eas-
ily precomputed for small clusters. While extracting product states from these solutions may
be nontrivial, their inclusion could allow lower energy excitations that improve simulation
accuracy at low temperatures and promote high-temperature MSRO.

Opportunities for improvement notwithstanding, the simplest form of locally quantized
SMC appears to provide a physics-based, parameter-free method for calculating magnetic
contributions to thermodynamic properties that is at least as accurate as current methods
with increased convenience and generality.

6.4 Methods

Simulations of Fe (Figs. 6.2 and 6.5) used ten values of Jij from Ref. [118] for atomic
separations up to and including rij =

[
3
2
3
2
3
2

]
, which is associated with an energy several

times larger than that of any longer range interaction. The selected Jij predict a TC close
to the experimental value, although, given the limitations of the Heisenberg model [93],
inaccuracy of the local-density approximation used in parameterization [172], and neglect
of temperature scaling and phonon coupling [173, 174]—among other factors—the degree
of accuracy presumably involves some cancellation of errors. After an equivalent period of
equilibration, 105 MC passes were performed for 2.5 ·105 atoms over 1250 temperatures. For
Fig. 6.5, similar simulations were performed at intervals of 5K.

Simulations for Figs. 6.3, 6.4, and 6.6 considered 512 spins to match the QMC of Ref.
[140]; 5 · 106 MC passes were performed at 256 temperatures. Calculations of susceptibility
in RbMnF3 for Fig. 6.7 involved 106 passes for 1.25 · 105 magnetic sites.

In the case ofBk = 0, the local Hamiltonian of Eq. (6.5) imposes no specific quantization,
so trial Sk should be oriented randomly. While irrelevant for most simulations, this procedure
ensures that s = 1

2
SMC trajectories with initially collinear spins are not restricted to the

original quantization axis (i.e. an Ising model), as would otherwise occur. In practice, these
calculations were initialized with randomly oriented spins to avoid any such issues.
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[98] J. S. Wróbel et al., Phys. Rev. B 91, 024108
(2015).

[99] J. G. Goiri and A. Van der Ven, Acta Mater.
159, 257 (2018).

[100] S. Curtarolo et al., Comput. Mater. Sci. 58,
227 (2012).

[101] A. Jain et al., APL Mater. 1, 011002 (2013).

[102] M. Rahaman, B. Johansson, and A. V. Ruban,
Phys. Rev. B 89, 064103 (2014).

[103] G. Kresse and J. Hafner, Phys. Rev. B 47, 558
(1993).

[104] G. Kresse and J. Furthmüller, Phys. Rev. B 54,
11169 (1996).

[105] G. Kresse and J. Furthmüller, Comput. Mater.
Sci. 6, 15 (1996).

[106] M. Methfessel and A. T. Paxton, Phys. Rev. B
40, 3616 (1989).

[107] W. Tang, E. Sanville, and G. Henkelman, J.
Phys. Condens. Matter 21, 084204 (2009).

[108] J. P. Perdew and A. Zunger, Phys. Rev. B 23,
5048 (1981).

[109] D. M. Ceperley and B. J. Alder, Phys. Rev.
Lett. 45, 566 (1980).

[110] J. P. Perdew, K. Burke, and M. Ernzerhof,
Phys. Rev. Lett. 77, 3865 (1996).

[111] J. P. Perdew et al., Phys. Rev. Lett. 100,
136406 (2008).

[112] S. H. Vosko, L. Wilk, and M. Nusair, Can. J.
Phys. 58, 1200 (1980).

[113] Edited by W. M. Haynes, CRC Handbook of
Chemistry and Physics, 97th ed. (CRC, Boca
Raton, 2016).

[114] R. Hafner et al., Phys. Rev. B 65, 184432
(2002).

[115] E. Fawcett, Rev. Mod. Phys. 60, 209 (1988).

[116] L. M. Sandratskii, Adv. Phys. 47, 91 (1998).

[117] S. Blundell, Magnetism in Condensed Matter
(OUP, Oxford, 2001).

[118] I. Turek et al., Phil. Mag. 86, 1713 (2006).

[119] L. Barnard et al., Acta Mater. 81, 258 (2014).

[120] E. Fawcett et al., Rev. Mod. Phys. 66, 25
(1994).

[121] W. Schweika and H.-G. Haubold, Phys. Rev. B
37, 9240 (1988).

[122] P. Pietrokowsky, Nature 206, 291 (1965).

[123] K. K. Murata and S. Doniach, Phys. Rev. Lett.
29, 285 (1972).
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