
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Nonlinear and Non-local Molecular Electrodynamics in Nano-optical fields

Permalink
https://escholarship.org/uc/item/5zs328q0

Author
Saurabh, Prasoon

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zs328q0
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Nonlinear and Non-local Molecular Electrodynamics in Nano-optical fields

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTERS OF SCIENCE

in Chemistry

by

Prasoon Saurabh

Dissertation Committee:
Professor Shaul Mukamel, Chair

Professor Craig Martens
Associate Professor Eric Potma

2017



Chapter 1-2 c© 2015 American Institute of Physics
All other materials c© 2017 Prasoon Saurabh



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

CURRICULUM VITAE iv

ABSTRACT OF THE DISSERTATION v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Nonlinear nonlocal molecular electrodynamics 7
2.1 The Matter/Field Energy Exchange Rate . . . . . . . . . . . . . . . . . . . . 7
2.2 Recovering the Dipole Approximation . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Heterodyne Detected Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Bibliography 25

Bibliography 25

A Lamb discrepancy of (−iωα0/ω)2 28

ii



ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Shaul Mukamel for introducing me to a beautiful and
systematic way of understanding of physical reality. It has been a privilege to learn under
his tutelage. I would also like to thank the rest of my committee members, Professors Craig
Martens and Eric Potma, for the very valuable encouragements and their valuable time.

For this thesis, I would like to thank Professor. Vladimir Chernyak for his major contribution
as well as letting me see the physical reality with more mathematica rigor. Furthermore, I
would like to extend my acknowledgement to incredibly hard working and great scientists and
friends I have gotten chance to know while working in the Mukamel group: Dr. Benjamin
Fingerhut, Dr. Daniel Healion, Dr. Yu Zhang, Dr. Konstantin Dorfman, Dr. Weijie Hua,
Dr. Frank Schlawin, Dr. Bijay Aggrawalla, Dr. Arunagshu Debnath, Dr. Swapna Lekkala,
Dr. Jason Biggs, Dr. Hideo Ando, Dr. Rachel Glenn, Dr. Markus Kowalewski, Dr. Jeremy
Rouxel, Dr. Kochise Bennet, Dr. Zhedong Zhang and Dr. Daeheum Cho.

I would also like to thank all my friends, I have made over years, who have been pivotal in
my time at UC-Irvine. Finally, my sincerest of thanks to my parents, my siblings and family
for their everlasting love and support without which none of this would be possible.

I would also gratefully acknowledge the support of National Science Foundation (Grants No.
CHE-1361516 and CHE-1111350) and the Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

Chapters 1, 2 and appendix adapted with permission from J. Chem. Phys. 143(16), 164107.
c© 2015 American Institute of Physics

iii



CURRICULUM VITAE

Prasoon Saurabh

EDUCATION

Doctor of Philosophy in Chemistry 2017
University of California-Irvine Irvine, CA

Master in Chemistry 2017
University of California-Irvine Irvine, CA

Bachelor of Science in Math 2010
Budapest University of Technology and Economics (BME) Budapest, Hungary

Ripon College Ripon, Wisconsin

Bachelor of Science in Physics 2011
Ripon College Ripon, Wisconsin

Bachelor of Science in Chemistry 2011
Ripon College Ripon, Wisconsin

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2017
University of California-Irvine Irvine, CA

TEACHING EXPERIENCE

Teaching Assistant-General Chemistry Labs Summer 2013 – 2017
University of California-Irvine Irvine, CA

Teaching Assistant-Graduate Molecular Spectroscopy Spring 2014–2017
University of California-Irvine Irvine, CA

Teaching Assistant-Graduate Applications of Quantum Mechanics Winter 2015–2017
University of California-Irvine Irvine, CA

Teaching Assistant-Upper Div. Undergraduate Physical Chemistry 2012–2016
University of California-Irvine Irvine, CA

iv



ABSTRACT OF THE DISSERTATION

Nonlinear and Non-local Molecular Electrodynamics in Nano-optical fields

By

Prasoon Saurabh

Masters of Science in Chemistry

University of California, Irvine, 2017

Professor Shaul Mukamel, Chair

The interaction of optical fields sculpted on the nano-scale with matter may not be described

by the dipole approximation since the fields vary appreciably across the molecular length

scale. Rather than incrementally adding higher multipoles it is advantageous and more

physically transparent to describe the optical process using non-local response functions

that intrinsically include all multipoles. We present a semi-classical approach to the non-

linear response functions based on the minimal coupling Hamiltonian. The first, second

and third order non-local response functions are expressed in terms of correlation functions

of the charge and the current densities. This approach is based on the gauge invariant

current rather than the polarization, and on the vector potential rather than the electric and

magnetic fields.

v



Chapter 1

Introduction

Entirety of this thesis is based on Ref. [1].

1.1 Background

Quantum optics is commonly formulated by making the semiclassical approximation whereby

the fields are treated classically and matter is treated quantum mechanically [2, 3, 4]. The

radiation-matter coupling may be described by the minimal coupling Hamiltonian where

the electromagnetic fields are represented by vector potential A(r, t) [5] and the matter

properties enter through the current ĵ(r, t) and charge density σ̂(r, t) matrix elements of

the desired transitions [6]. Alternatively, the multipolar hamiltonian is used where the

electromagnetic field is represented by the electric and magnetic fields and matter is expanded

in electric and magnetic multipoles. In most applications, including the theory of the laser

[3], the lowest order of this multipolar expansion, known as the dipole (long wavelength)

approximation is sufficient to account for experimental observations [7].
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In recent years, however, there has been rapid developments [8, 9, 10, 11, 12], both the-

oretical and experimental, in the field of nanooptics [13]. Notable for spectroscopy are,

nanoantenna [8], nanoplasmonic [9, 10, 14] and associated spatial and temporal resolutions

of optical spectra resulting in attosecond local-field enhanced (× 10 − 102) spectroscopy

[15, 16, 17, 18, 19]. This is possible because of the nano-scale field confinement (∼ 10nm)

[8], as in case of nanoantenne, and spectral bandwith of plasmonic spectra (850−2200 THz)

[9]. Nano-optical fields are spatially confined fields which show appreciable position (r)-

dependence on the molecular length scale [20, 21, 13, 22, 23]. Combination of a nanoan-

tenna in tip of the probe [13, 24] and utilizing their nanoplasmonic properties has pushed

the boundaries of spectral resolution of optical spectroscopy, for example, surface- and tip-

enhanced absorptions and Raman spectroscopy upto single molecule level [18, 15, 16, 11].

Non-linear optical manipulations of nano-particles have been reported as well [25, 26]. When

the field confinement is comparable to quantum confinement of molecular orbitals, the dipole

approximation may not be adequate and higher multipoles are required [27, 8].

In this thesis, we calculate matter/field energy exchange and heterodyne detected optical

signals [Eq. 2.4, Eq. (2.38)] using non-local response functions that take all multipoles into

account. Using the minimal coupling Hamiltonian for the interaction of nanoscale confined

optical fields with molecules we can fully describe the radiation by a single field (the vector

potential or the electric field or the magnetic field) and we do not need to use both the electric

with magnetic fields. Starting with minimal coupling Hamiltonian [Eq. (1.1)] [2, 28, 29], we

write the radiation field Hamiltonian in second quantized modes of optical field [Eq. (1.2)]

and radiation-matter interaction Hamiltonian using gauge-invariant current density Ĵ(r, t)

[Eq. (1.11)] [29]. The material properties enter via correlation functions of the current density

operator ĵ(r) and the charge density operators σ̂(r) [Eqs. (1.8) and (1.9)].

The non-local response approach is particularly suitable for describing the interaction with

nano-optical fields [13, 9]. Low order multipoles are adequate when the field varies slowly

2



on the molecular scale. Which is not the case in nanooptics [8]. Coupling the microscopic

Schrödinger equation with the macroscopic Maxwells equations [30, 31] then is simply an

approximate. The non-local response provides a natural exact link for computing optical

signals.

We work with gauge-dependent quantities, such as the vectorA(r, t) and the scalar potentials

A0(r, t), making sure that all observables, are gauge invariant. Gauge-invariant systems are

most naturally formulated within the Lagrange formalism that involves path integrals. The

Hamiltonian formalism is a bit more tricky, since gauge invariance leads to the constraint

∇ ·E − 4πσ = 0, and the gauge-invariant formalism requires restricting the space of states

to the physical subspace on which the constraints are satisfied. Alternatively one can fix

the gauge by imposing a set of conditions on the potentials. The most suitable gauge for

doing quantum calculations within the Hamilton approach is known as the Coulomb (or

sometimes Hamiltonian) gauge, and is defined by the condition ∇ · A(r, t) = 0. In this

gauge the field variables are represented by a transverse vector potential, the longitudinal

field is represented by the Coulomb potential created by the charges and therefore becomes a

material, rather than field variable, whereas the total Hamiltonian H of a system interacting

with the electromagnetic field is given by [2, 29],

Ĥ = Ĥ0 + Ĥrad + Ĥint = Ĥm + Ĥc + Ĥrad = Ĥm + Ĥf ,

Ĥm = Ĥ0 − Ĥc + Ĥint, Ĥf = Hrad + Ĥc, (1.1)

where Ĥ0 is the material Hamiltonian that includes the kinetic energy of the charges, as well

as the Coulomb interaction between them, Ĥrad represents the (transverse) radiation field

and can be written as Eq. (1.2) in second quantized form as [29, 32],
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Ĥrad =
∑
qλ

h̄ωqλb̂
†
qλb̂qλ

=
1

8π

∫
dr
(
Ê2

T(r) + (∇× Â(r))2
)
, (1.2)

with,

[b̂qλ, b̂
†
q′λ′ ] = δq,q′δλ,λ′ . (1.3)

Where bqλ and b†qλ are the annihilation and creation operators, respectively for the photon

modes with wavevector q and polarization λ, while ÊT(r) is the operator of the transverse

electric field; Hint is the radiation-matter interaction Hamiltonian [29],

Ĥint = −
∫
dr

(
ĵ(r) · Â(r)− e2

2mc
σ̂(r)Â2(r)

)
. (1.4)

This can be recast as,

Ĥint = −
∫
drĴint(r) · Â(r), (1.5)

where,

Ĵint(r) = ĵ(r)− e2

2mc
Â(r)σ̂(r). (1.6)
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is the effective interaction current. The second and the third partitions of the system Hamil-

tonian Ĥ in Eq. (1.1) involve the matter Hamiltonian Ĥm, that includes the kinetic energy of

the electrons and their interactions with the transverse electromagnetic field; Ĥc represents

the Coulomb interactions between electrons that, as is well known [33], can be interpreted

as the energy of the longitudinal electromagnetic field (in particular the longitudinal field in

the Coulomb gauge is a purely material variable), so that Ĥf represents the total energy of

the electromagnetic field.

Gauge invariance is most conveniently formulated using the electron field creation ψ̂†(r) and

annihilation ψ̂(r) operators which satisfy the Fermi commutation relations

{ψ̂(r), ψ̂†(r′)} = δ(r − r′) (1.7)

the “naive”, i.e., in the absence of the electromagnetic field, current ĵ(r) and charge density

σ̂(r) operators are given by

ĵ(r) =
eh̄

2mi

(
ψ̂†(r)∇ψ̂(r)− (∇ψ̂†(r))ψ̂(r)

)
(1.8)

σ̂(r) = eψ̂†(r)ψ̂(r). (1.9)

All observables should be invariant to the following gauge transformation,

ψ̂(r) 7→ eiϕ(r)ψ̂(r), ψ̂†(r) 7→ e−iϕ(r)ψ̂†(r),

Â(r) 7→ Â(r) +
e

c
∇ϕ(r). (1.10)

5



A straightforward inspection shows that the following current Ĵ(r) operator [29],

Ĵ(r) = ĵ(r)− e2

mc
Â(r)σ̂(r), (1.11)

as well as the Hamiltonian Ĥ [Eq. (1.1)], with Ĥint defined by Eq. (1.5), [Eq. (1.11)], and

the Hamiltonians Ĥm, Ĥc, Ĥrad, and Ĥf are preserved by the gauge transformations. Ĵ(r)

will naturally appear below when calculating the matter/field energy exchange rate.
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Chapter 2

Nonlinear nonlocal molecular

electrodynamics

2.1 The Matter/Field Energy Exchange Rate

The optical response will be calculated via the matter-field energy exchange. To that end

we define the energy of system j as,

Wj(t) = Tr
(
Ĥj%(t)

)
, (2.1)

with j = m, c, rad, f, or without a subscript, stand for the energy of matter, Coulomb (longi-

tudinal field), transverse field, total field, and total energy, respectively. Energy conservation

impliesẆ (t) ≡ dW (t)/dt = 0. At equilibrium, %̇(t) = 0 and we further have Ẇj(t) = 0 for

all j, so that there is no energy exchange between the field and the matter. When the sys-

tem is driven out of equilibrium, say by external fields or currents, the field-matter energy
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exchange rate becomes a measure of how strongly the external field drives the system out of

its equilibrium. We will refer to Ẇf = −Ẇm as the energy exchange rate between matter and

field, where the field energy includes its longitudinal component. Another approach would

be to consider the energy exchange rate Ẇrad = −Ẇm− Ẇc between the transverse field and

the system; in this second approach, the Coulomb energy, which is equal to the longitudinal

field energy is included into the system.

The energy exchange rates can be evaluated by starting with Eq. (2.1)

Ẇj(t) = Tr
(
Ĥj %̇(t)

)
= − i

h̄
Tr
(
Ĥj[Ĥ, %(t)]

)
= − i

h̄
Tr
(

[Ĥj, Ĥ]%(t)]
)

= − i
h̄

〈
[Ĥj, Ĥ]

〉
, (2.2)

the commutators [Ĥj, Ĥ] are calculated using the electron operator commutation relations

[Eq. (1.7)], as well as the commutation relations between the field operators [32]. This gives,

Ẇf(t) = −1

2

∫
dr
〈
Ê(r) · Ĵ(r) + Ĵ(r) · Ê(r)

〉
= −1

2

∫
drTr

((
Ê(r) · Ĵ(r) + Ĵ(r) · Ê(r)

)
%(t)

)
, (2.3)

where Ê(r) = ÊT(r) + ÊL(r), with ÊL(r) being the (purely material) longitudinal electric

field operator that represents the Coulomb field created by the charge density. The expres-

sions for Ẇc(t) and Ẇrad(t) have a form of Eq. (2.3) with Ê(r) replaced by ÊL(r) and ÊT(r),

respectively.

Note that three different current operators appear naturally in the present description: (a)

ĵ(r) [Eq. (1.8)] is the naive gauge-dependent current density operator and does not represent

physical observable; (b) Ĵint [Eq. (1.6)] is an effective interaction current operator that assures
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the gauge-invariance of the interaction Hamiltonian in Eq. (1.5); and (c) Ĵ(r) [Eq. (1.11)] is

the gauge-invariant current density operator which naturally appears in Eq. (2.3) when the

energy exchange is calculated. Since the energy exchange rate is an observable, and therefore

must be expressed in terms of gauge-invariant quantities.

We next consider the field-matter energy exchange rate in a system driven by and external

field/current within the semiclassical approximation which neglects spontaneous processes.

This boils down to replacing in Eq. (2.3) the electric field Ê(r) and the vector potential

Â(r), that enters Ĵ(r) via Eq. (1.11), with their classical counterparts, represented by the

external (driving) field. This results in

Ẇf(t) = −
∫
drE(r, t) · J(r, t) (2.4)

where,

J(r, t) =
〈
Ĵ(r, t)

〉
= Tr

(
Ĵ(r)%̂(t)

)
(2.5)

is the expectation value of the gauge-invariant current density, evaluated at the density

matrix %̂(t) of the driven system. The formal arguments in support of the intuitively natural

procedure, we are using in this manuscript, as well as a way of calculating the radiative

corrections will be addressed elsewhere.

It follows from Eqs. (2.4) and (2.5) that the semiclassical matter-field energy exchange rate for

a driven system may be expressed in terms of the expectation value of the gauge-invariant

current density J(r, t). It is thus natural to define the optical response functions as the

expansion of the latter in powers of the driving field.
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This can be represented in a compact form by introducing the following notation for Liouville

space (tetradic) operators. With any Hilbert space operator Q̂ we associate the following

four Liouville space operators: left Q̂L, right Q̂R, plus Q+, and minus Q−, defined by its’

action on another operator X̂ [34],

Q̂L(X̂) ≡ Q̂X̂, Q̂R(X̂) ≡ X̂Q̂,

Q+ ≡ 1

2
(Q̂L + Q̂R), Q̂− = Q̂L − Q̂R. (2.6)

Adopting the interaction picture (with time parameter τ) in Liouville space, we arrive at

J(r, t;A;A0) =

〈(
ĵ+(r, t)− e

mc
A(r, t)σ̂+(r, t)

)
× T exp

(
− ih̄−1

∫ t

−∞
dτĤ−int(A, A0; τ)

)〉
(2.7)

Ĥ−int(A, A0; τ) = −
∫
dr

(
A(r) · ĵ−(r, τ)− e

2mc
A2(r)σ̂−(r, τ)

+ A0(r)σ̂−(r, τ)

)
, (2.8)

the third term in the r.h.s. of Eq. (2.7) describes the interaction of the system’s charge

density with the longitudinal component of the driving field; in the Coulomb gauge, adopted

here, it originates from the Coulomb interaction between the system and external charge
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density, the latter together with the external current density is responsible for creating the

external (driving) field. The interaction Hamiltonian in Eq. 1.5 does not have a scalar

potential component, since the contribution of the scalar potential is included in the Hc of

Eq. 1.1. The reason of explicitly including the scalar potential in Eq. 2.8 will be explained

below.

Eq. (2.4) together with Eqs. (2.7), and (2.8) constitute the main formal result of this paper.

A crucial feature of J(r, t;A;A0) [Eq. (2.7)] is it’s invariance with respect to time-dependent

gauge transformations of the potentials

A(r, t) 7→ A(r, t) +
e

c
∇ϕ(r, t), A0(r, t) 7→ A0(r, t) +

e

c

∂ϕ(r, t)

∂t
. (2.9)

This property can be rationalized by noting that the transformation [Eq. (2.9)] in Eq. (2.7)

is equivalent to performing the gauge transformation to the fermion fields in the interaction

picture, which is given by Eq. (1.10), but with a time-dependent ϕ(r, τ). This can be verified

directly. The gauge invariance of the current J(r, t;A;A0) then follows from the fact that the

gauge transformation applied to the fermion operators does not change their commutation

relations. Also, the gauge invariance of the expectation value of the gauge-invariant current

is intuitively clear, since any legitimate, i.e., gauge-invariant, observable should not change

upon a gauge transformation of the external (driving) field.

Gauge invariance considerably simplifies the expressions for the optical response functions,

presented below. Note that Eq. (2.7) has been derived, in the Coulomb gauge, so that

the third term in the r.h.s. of the expression for Ĥint [Eq. (2.8)] is absolutely necessary.

However, the gauge invariance of the optical response allows to use any gauge; for the sake

of minimizing the number of terms in the expressions for the response functions we adopt the

gauge A0(r) = 0. Then the third term in the expression for Ĥint should be dropped whereas
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the transverse vector potential should be replaced with gauge invariant potential Ainv(r, t),

Ainv(r, t) =

∫ t

−∞
dτE(r, τ) = A(r, t)−

∫ t

−∞
dτ∇A0(r, τ), (2.10)

since, in the A0(r) = 0 gauge we have Ȧ = E. Note that the A0(r) = 0 gauge provides an

explicitly gauge-invariant picture of the optical response, which is expressed it in terms of

the external electric field, or equivalently Ainv, both are gauge invariant.

The optical response functions are defined by an expansion of the current J(r, t;A;A0) =

J(r, t;Ainv; 0) in powers of n driving field Ainv

Jk(r, t) =
∑
k1

∫ t

−∞
dτ1

∫
dr1ζ

(1)
kk1

(r, t; r1, τ1)A
inv
k1

(r1, τ1)

+
∞∑
n=2

1

n!

∑
k1...kn

∫
dτ1dr1 . . . dτndrn

× ζ
(n)
kk1...kn

(r, t; r1, τ1, . . . rn, τn)Ainv
k1

(r1, τ1) . . . A
inv
kn (r1, τn),

(2.11)

where k, k1, . . . , kn = 1, 2, 3.

The total energy exchange evaluated at time t in Eq. (2.4) can now be expanded order

by order in driving fields. Note that time ordering is built into the response functions

ζ(n)(r, t; rn, τn...; r1, τ1). The first order energy loss rate is calculated using Eqs. (2.4)−(2.11),

∆Ẇ (1)(t) = −
∑
kk1

∫
dr

∫
dr1

∫ t

−∞
dτ1Ek(r, t)A

inv
k1

(r1, τ1)

× ζ
(1)
kk1

(r, t; r1, τ1). (2.12)
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The first-order non-local response function is given by,

ζ
(1)
kk1

(r, t; r1, τ1) = −ih̄−1
〈
ĵ+k (r, t)ĵ−k1(r1, τ1)

〉
− e

mc
δkk1

〈
σ̂+(r, t)

〉
δ(t− τ1)δ(r − r1). (2.13)

This can be recast using ordinary Hilbert space operators as,

ζ
(1)
kk1

(r, t; r1, τ1) = −ih̄−1
〈

[ĵk(r, t), ĵk1(r1, τ1)]
〉

− e

mc
δkk1 〈σ̂(r, t)〉 δ(t− τ1)δ(r − r1). (2.14)

Superoperators are a convenient book-keeping device but at the end we can switch to ordinary

operators. Now we turn to the non-linear matter/field energy exchange. Expanding Eq. (2.4)

to second order gives,

∆Ẇ (2)(t) = −
∑
k,k1k2

∫
dr

∫
dr1

∫
dr2

∫ t

−∞
dτ1

∫ t

−∞
dτ2Ek(r, t)

× Ainv
k1

(r1, τ1)A
inv
k2

(r2, τ2)ζ
(2)
kk1k1

(rt; r1τ1, r2τ2) (2.15)
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where, the second order non-local response function, ζ
(2)
kk2k1

(rt; r2τ2, r1τ1) is,

= −1

2
(ih̄−1)2

〈
ĵ+k (r, t)ĵ−k2(r2, τ2)ĵ

−
k1

(r1, τ1)
〉

+ ih̄−1
e

2mc

(
δk1k2

〈
ĵ+k (r, t)σ̂−(r1, τ1)

〉
δ(r2 − r1)δ(τ2 − τ1) + 2δkk1δ(r − r1)

δ(t− τ1)
〈
σ̂+(r, t)σ̂−(r1, τ1)

〉)
, (2.16)

which in Hilbert space becomes,

= −1

2
(ih̄−1)2

〈
[[ĵk(r, t), ĵk2(r2, τ2)], ĵk1(r1, τ1)]

〉
+ ih̄−1

e

2mc

(
δk1k2

〈
[ĵk(r, t), σ̂(r1, τ1)]

〉
δ(r2 − r1)δ(τ2 − τ1) + 2δkk1δ(r − r1)

δ(t− τ1) 〈[σ̂(r, t), σ̂(r1, τ1)]〉
)
. (2.17)

Finally, the third order energy energy exchange,

∆Ẇ (3)(t) = −
∑

k,k1k2k3

∫
dr

∫
dr1· · ·

∫
dr3

∫ t

−∞
dτ1· · ·

∫ t

−∞
dτ3

× Ek(r, t)A
inv
k1

(r1, τ1)A
inv
k2

(r2, τ2)A
inv
k3

(r3, τ3)

× ζ
(3)
kk3k2k1

(r, t; r3τ3, r2τ2, r1τ1). (2.18)
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Where, the third order non-local response function, ζ
(3)
kk3k2k1

(rt; r3τ3, r2τ2, r1τ1), is given by,

= −1

6
(ih̄−1)3

〈
ĵ+k (r, t)ĵ−k3(r3, τ3)ĵ

−
k2

(r2, τ2)ĵ
−
k1

(r1, τ1)

〉
+ (ih̄−1)2

e

4mc

{
δk3k2

〈
ĵ+k (r, t)ĵ−k2(r2, τ2)σ̂

−(r1, τ1)

〉
δ(r3 − r2)δ(τ3 − τ2)

+ δk3k2

〈
ĵ+k (r, t)σ̂−(r2, τ2)ĵ

−
k1

(r1, τ1)
〉
δ(r2 − r1)δ(τ2 − τ1)

+ 2δkk1

〈
σ̂+(r, t)ĵ−k2(r2, τ2)ĵ

−
k1

(r1, τ1)
〉
δ(r − r1)δ(t− τ1)

}
− (ih̄)

e2

2mc2
δkk1

〈
σ̂+(r, t)σ̂−(r1, τ1)

〉
δ(r3 − r2)

δ(r − r1)δ(τ3 − τ2)δ(t− τ1). (2.19)

In Hilbert space it is given by,

= −1

6
(ih̄−1)3

〈
[[[ĵk(r, t), ĵk3(r3, τ3)], ĵk2(r2, τ2)], ĵk1(r1, τ1)]

〉
+ (ih̄−1)2

e

4mc

{
δk3k2

〈
[[ĵk(r, t), ĵk2(r2, τ2)], σ̂(r1, τ1)]

〉
δ(r3 − r2)δ(τ3 − τ2)

+ δk3k2

〈
[[ĵk(r, t), σ̂(r2, τ2)], ĵk1(r1, τ1)]

〉
δ(r2 − r1)δ(τ2 − τ1)

+ 2δkk1

〈
[[σ̂+(r, t), ĵk2(r2, τ2)], ĵk1(r1, τ1)]

〉
δ(r − r1)δ(t− τ1)

}
− (ih̄)

e2

2mc2
δkk1 〈[σ̂(r, t), σ̂(r1, τ1)]〉

δ(r3 − r2)δ(r − r1)δ(τ3 − τ2)δ(t− τ1). (2.20)

Eqs. (2.14),(2.17) and (2.20) constitute our final exact expressions for the non-local response

functions, given by correlation functions of the charge density (σ̂(r, t)) and the current
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density operator (ĵ(r, t)). The current and charge densities in Eqs. (2.14),(2.17) and (2.20)

can be computed using the standard output of quantum chemistry packages, like Molpro [35],

by calculating the relevant molecular orbitals, then explicitly evaluating transition current

and charge densities Eqs. (1.8 and 1.9), and, expressing them in terms of superoperators using

Eqs. (2.6). Note that in the non-local representation magnetic and electric contributions need

not be treated separately which greatly simplifies the analysis.

2.2 Recovering the Dipole Approximation

Formally, the minimal coupling and the multipolar Hamiltonians are connected by the Power-

Zienau transformation in the joint space of matter and field degrees of freedom [36]. However,

some discrepancies arise when the two Hamiltonians are applied in practice. A known ex-

ample is an extra pre-factor of (ωα/Ω)2 with material frequency (ωα) and field frequency (Ω)

in the absorption lineshape [37] [See Appendix A]. The issue was resolved by making the

canonical transformation between the two Hamiltonians. The non-locality of the response

implies that a field acting at one point includes a charge or current at a different point, sug-

gesting an induced electronic coherence. While the multipolar expansion is computationally

convenient, it hides this interesting non-local physical picture. The non-local response func-

tions avoid the tedious canonical transformation to the multipolar Hamiltonian [37]. And

show no discrepancy between the dipole and minimal coupling absorption lineshapes.

As a consistency check, here we show how the dipole approximation for the linear response

is recovered for the nonlinear minimal coupling response in agreement with the multipolar

Hamiltonian. We consider a system of the size, small compared to the field wavelength,

which allows us to drop the r-dependence in the fields E and Ainv and recast Eq. (2.12) in
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a form

∆Ẇ
(1)
d = ih̄−1E(t) · u(t) +

Ne2

mc
E(t) ·Ainv(t), (2.21)

where N is the number of electrons,

u(t) =
∑
k,s

∫ t

−∞
dt′
〈
û+k (t)û−s (t′)

〉
Ainv
s (t′), (2.22)

k, s = 1, 2, 3 and

û(t) =

∫
drĵ(r, t) = −

∫
drr

(
∇ · ĵ(r, t)

)
=
dµ̂(t)

dt
, (2.23)

with µ̂ being the dipole operator. The above expressions can be interpreted as follows: the

operator û is the integral over the space of the naive (i.e., in the absence of the field) current

density operator, the second equality in Eq. (2.23) is due to the Stokes formula, whereas the

last equality follows from the continuity equation

∇ · ĵ(r, t) +
dσ̂(r, t)

dt
= 0 (2.24)

in the non-driven system that holds on the operator level, combined with the well-known

definition of the dipole operator µ̂. As a result û can be viewed as the time derivative of

the dipole. The variable u(t) is the expectation value of û(t) in the linearly driven system;
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Eq. (2.21) is obtained by integration over r and r′ in Eq. (2.12) under the assumption that

the fields do not depend on r.

Substituting the expression for û(t) as the time derivative of the dipole [Eq. (2.23)] into

Eq. (2.22), followed by substituting the latter into Eq. (2.21), and further integrating over

t′ by parts, as well as taking the derivative with respect to t out of the integral over t′ we

arrive at

∆Ẇ
(1)
d = −ih̄−1

∑
ks

Ek(t)
d

dt

∫ t

−∞
dt′
〈
µ̂+
k (t)µ̂−s (t′)

〉
Ȧinv
s (t′)

+ ih̄−1
∑
ks

Ek(t)
d

dt

(〈
µ̂+
k (t)µ̂−s (t− 0)

〉)
Ainv
s (t)

− ih̄−1
∑
ks

Ek(t)
〈
µ̂+
k (t)û−s (t− 0)

〉
Ainv
s (t)

+
Ne2

mc
E(t) ·Ainv(t), (2.25)

where the second term in the r.h.s. of Eq. (2.25) is a contact (boundary) contribution in the

by parts integration over t′, whereas the third term compensates for the contact (boundary

contribution) that occurs in the time derivative with respect to t of an integral, whose upper

limit is t-dependant. These two terms can be computed using the fact that for any two

operators X̂ and Ŷ , we have 〈X̂+(t)Ŷ −(t− 0)〉 = 〈[X̂(t), Ŷ (t)]〉. This implies that the first

contact term vanishes, whereas the second one is obtained using the well-known commutation

relation (that can also be verified directly using a simple and straightforward calculation)

[ĵk(r
′), σ̂(r)] =

ie2h̄

mc

∂

∂rk
δ(r − r′). (2.26)
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After some simple and straightforward transformations, we obtain,

[µ̂k, ûs] = −ih̄Ne
2

mc
δks (2.27)

The third and fourth terms in the r.h.s. of Eq. (2.25) now cancel each other. Recalling the

standard definition of the time-domain linear response function in the dipole approximation

χ
(1)
ks (t) = ih̄−1

〈
µ̂+
k (t)µ̂−s (t)

〉
, (2.28)

and the fact that Ȧinv(t) = E(t), we arrive at

∆Ẇ
(1)
d = −

∑
ks

Ek(t)
d

dt

∫ t

−∞
dt′χ

(1)
ks (t− t′)Es(t′) (2.29)

that recovers the dipole approximation for the energy exchange rate in terms of the standard

response function χ
(1)
ks (t).

We first note that, the simple expression for the dipole approximation [Eq. (2.29)] was

obtained by the cancellation of the last two terms in Eq. (2.25), which would be impossible

if the second (local) term in the expression for the linear response [Eq. (2.12)] was omitted.

The derivation, presented in this section thus does not show the “extra pre-factor of (ω/Ω)2”

in absorption spectra [38, 37]. Second, if we define

µ̂ =

∫
drP̂ (r), Ĵ(r, t) = −dP̂ (r, t)

dt
, (2.30)

19



as is done in the multipolar Hamiltonian formalism with the magnetic terms neglected, one

immediately obtains from Eq. (2.29)

∆Ẇ
(1)
d = −E(t) ·

∫
drJ(r, t), (2.31)

thereby recovering the long wavelength limit of Eq. (2.4). Third, an attempt to compute

the dipole approximation for the energy exchange rate, starting with the “standard” dipole

approximation Hamiltonian

Ĥd
int = −µ̂ ·E(t), (2.32)

will result in an expression, different from Eq. (2.29). This can be explained as follows. The

dipole Hamiltonian [Eq. (2.32)] is naturally obtained from the multipolar formalism that

can be described as using a multipolar gauge which is different from the Coulomb gauge,

or equivalently doing a canonical transformation that redistributes the energy between the

matter and the field. Therefore, a calculation based on Eq. (2.32) addresses an exchange

between energies, different from the ones, used in our calculations.

2.3 Heterodyne Detected Signals

Heterodyne detection measures the energy exchange with a given wavevector component

of the field rather than the entire field. The heterodyne detected signal can be recovered

from the energy exchange rate [34]. We start with the (transverse) vector potential operator
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Â(r, t) expanded in modes qλ is,

Â(r) =
∑
qλ

c
εqλ
ωq

eqλ

(
b̂†qλe

−iq·r + b̂qλe
iq·r
)

(2.33)

where c is speed of light, εqλ = (2πh̄ωq/V )1/2 and eqλ is the polarization vector, while V

is the quantization volume. The transverse nature of the photon field manifest itself in the

relation q · eqλ = 0.

The heterodyne detected signal Shet can be defined as the rate of change of the photon

number N̂s = b̂†qsλs b̂qsλs in mode s [34],

Shet(s) =
d〈N̂s〉
dt

=
i

h̄

[
Ĥ, N̂s

]
(2.34)

where the expectation value 〈N̂s〉 is taken with respect to material density matrix. More

precisely, the heterodyne detected signal is the cross-component obtained by mixing the

signal field (i.e., generated by the currents induced in the material by the driving field) with

the heterodyne counterpart. Evaluating the commutations gives,

Shet(s) =
dB∗qsλs
dt

bqsλs +B∗qsλs ḃqsλs + c.c. ḃqsλs =
dbqsλs
dt

(2.35)

with

Bqsλs =
〈
b̂qsλs

〉
het
, bqsλs =

〈
b̂qsλs

〉
= Tr

(
b̂qsλs

ˆ%(t)
)
,

(2.36)
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so that Bqsλs(t) = B̄qsλs(t)e
−iωqs t is a classical field that represents the heterodyne and is

linear combination of gauge-invariant electric and transverse vector potential with temporal

envelops (Ē(t)) and (Ā(t)) at the same mode qs, i.e., Bqsλs(t) = (Ēqsλs(t)± Āqsλs(t))e
−iωqs t

where Āqsλs(t) is the temporal envelop of vector potential. Whereas bqsλs(t) is the expectation

value of the photon annihilation operator, evaluated at the density matrix %̂(t) of the driven

system. The latter can be evaluated using the Heisenberg equation of motion

ḃqsλs = − i
h̄

〈
[Ĥ, b̂qsλs ]

〉
= −iωqsbqsλs +

i

h̄

∫
dr
〈
Ĵ(r) ·

[
b̂qsλs , Â(r)

]〉
= −iωqsbqsλs +

icεqsλs
h̄ωqs

∫
dre−iqs·reqsλs · J(r, t).

(2.37)

The second equality is obtained by an explicit computation of the commutator, in J(r, t)

as given in Eq. (2.5). Summary: It follows from Eqs. (2.35), (2.36), (2.37), and (2.5) that

the heterodyne signal, introduced earlier in a fully quantum way and in terms of the field

variables, can be expressed in terms of the expectation value of the gauge-invariant current

density operator Ĵ(r). This result is exact, and in particular can be considered as a starting

point for calculating the radiative corrections to the signals. The latter, however goes beyond

the scope of this letter, and will be addressed elsewhere.
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The heterodyne signal has the form,

Shet(s) = ( ˙̄E∗qsλs(t)±
˙̄A∗qsλs(t))

icεqsλs
h̄ωqs

∫ t

−∞
dt

∫
dreiωqs t−iqs·reqsλs · J(r, t)

+ (Ē∗qsλs(t)± Ā
∗
qsλs(t))

icεqsλs
h̄ωqs

∫
dreiωqs t−iqs·reqsλs · J(r, t) + c.c.

(2.38)

Under the semi-classical approximation the interaction picture expansion of this expectation

value in orders of incoming n vector fields are done in Eqs. (2.7) − (2.11). The heterodyne

signal is thus given by the same response functions introduced for the energy exchange.

The above representation is gauge invariant, it allows to reduce the summations to purely

spatial values, and, finally provides a connection to the “standard” picture of optical re-

sponse. Introducing formally the polarization P by Ṗ = −J , we can interpret Eq. (2.7),

written in the A0 = 0 gauge, and combined with Eq. (2.10) as an expansion of the system

polarization in powers of the driving electric field. This is possible, despite the fact that

there is no simple polarization operator, and the material system interacts with the driving

field via the scalar and vector potentials, rather than the electric field. Introducing the po-

larization is not necessary in the present formalism and the comment was made to connect

with the standard formalism.
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2.4 Conclusions

We have shown that physical observables such as matter-field energy exchange and the

heterodyne detected optical signal in Eq. (2.35) depend on expectation value of the gauge-

invariant current density operator Ĵ(r, t;A). Note that σ+(r, t) in Eqs. (2.13), (2.16) and

(2.19) comes from the gauge-invariant current (Eq. (1.11)) whereas σ−(r, t) comes from Hint

in Eq. (1.4). We further presented a gauge-invariant non-local formal response function in

Liouville space to any order [Eq. (2.7)] and expanded it to first, second and third orders

[Eqs. (2.13), (2.16) and (2.19)], together with the corresponding Hilbert space representa-

tions [Eqs. (2.17), (2.17), and (2.20)]. The multipolar and minimal-coupling matter-field

interaction Hamiltonians are consistent as shown in Eqs. (2.21) − (2.31). The complexity of

the multipolar formalism grows rapidly for the non-linear optical response when using both

electric and magnetic multipoles in nano-shaped lights [13], which can be avoided in this for-

malism. The non-local response functions allow us to exactly calculate heterodyne detected

optical signals in the presence of strong fields and non-uniform nano optical fields [39, 13].

The formalism can be used to study non-adiabatic molecular current density dynamics [40].

Furthermore, it can be extended to cavity quantum electrodynamics (QED), or be used in

understanding field angular momentum [41].
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Appendix A

Lamb discrepancy of (−iωα0/ω)2

We present the frequency domain calculation of linear non-local field/matter energy ex-

change which recovers the discrepancy of (−iωα0/ω)2 in the linear absorption spectra when

using “naive” minimal coupling Hamiltonian and dipole approximation [37]. In the dipole

approximation the field/matter couplings is given by [2, 3],

Ĥd
int = −µ̂ ·E(t), (1)

where, µ̂ is dipole operator, E(t) is the electric field; in the dipole approximation r- depen-

dence of the electric field is ignored. Thus, standard response theory gives us,

∆W
(1)
d (t) = −ih̄−1

∫ t

−∞
dτĖ(t) ·

〈
µ̂+(t)µ̂−(τ)

〉
·E(τ)

(2)
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Or in frequency domain as,

∆W
(1)
d = ω

∫
dω|E(ω)|2Sd(ω),

Sd(ω) = −h̄−1
∫ ∞
0

dτ
〈
µ+(τ)µ−(0)

〉
exp(iωτ) (3)

Expressing Eq. (3) in sum over states and using E(ω) = 2πE0δ(ω − ω′), we can write,

∆W
(1)
d = −2|E0|2ωIm

{(
n0

h̄

∑
α

[P (α)− P (0)]

× |µα0|2

ω − ωα0 + iηα0

)}
(4)

Here, n0 is the total number of particles per unit volume and P (0), P (α) are the thermal

population of state |0〉 |α〉 respectively and are defined in usual way. µα0 and ωα0 are relevant

electric dipole elements and energy related to the electronic transition |0〉 → |α〉.

A “naive” application of the minimal coupling Hamiltonian neglects the A2(r, t) since it is

non-linear. This then gives,

∆W (1)
mc (t) = −ih̄−1

∫ t

−∞
dτ1Ä(t) ·

〈
ĵ+(t)ĵ−(τ1)

〉
·A(τ1).

(5)
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Or in frequency domain as,

∆W (1)
mc = ω

∫
dω|A(ω)|2Smc(ω),

Smc(ω) = −h̄−1
∫ ∞
0

dτ
〈
ĵ+(τ)ĵ−(0)

〉
exp(iωτ)

=

(
n0

h̄

∑
α

[P (α)− P (0)]
|jα0|2

ω − ωα0 + iηα0

)
. (6)

The current density elements for given transition, (say, |0〉 → |α〉), j0α = j∗α0 = 〈α|ĵ|0〉 is

related to transition dipole, µ0α(t) = µ0αexp(−iω0αt) by,

µ0α = −i(ω0α)−1j0α, (7)

since E(ω) = iωA(ω), the first order matter/radiation energy exchange in minimal coupling

thus becomes,

∆W (1)
mc =

(
−iωα0
ω

)2

∆W
(1)
d . (8)

As can be seen from Eqs. (3)-(8), the matter/field energy exchange differ by a factor of

(−iωα0/ω)2 in the minimal coupling (ignoring A2(r, t)) and dipole approximation. This

factor adds asymmetry to the absorption peak and was resolved by [37] using tedious canon-

ical transformation. This apparent discrepancy is caused by the ”naive“ use of the minimal

coupling Hamiltonian rather than gauge invariant interaction as shown in main text under

section Recovering Dipole Approximation.
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