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Original Article

Prediction of epidermal growth factor receptor (EGFR) mutation 
status in lung adenocarcinoma patients on computed tomography 
(CT) images using 3-dimensional (3D) convolutional neural 
network
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Background: Noninvasively detecting epidermal growth factor receptor (EGFR) mutation status in 
lung adenocarcinoma patients before targeted therapy remains a challenge. This study aimed to develop 
a 3-dimensional (3D) convolutional neural network (CNN)-based deep learning model to predict EGFR 
mutation status using computed tomography (CT) images.
Methods: We retrospectively collected 660 patients from 2 large medical centers. The patients were divided 
into training (n=528) and external test (n=132) sets according to hospital source. The CNN model was trained 
in a supervised end-to-end manner, and its performance was evaluated using an external test set. To compare 
the performance of the CNN model, we constructed 1 clinical and 3 radiomics models. Furthermore, we 
constructed a comprehensive model combining the highest-performing radiomics and CNN models. The 
receiver operating characteristic (ROC) curves were used as primary measures of performance for each model. 
Delong test was used to compare performance differences between different models.
Results: Compared with the clinical [training set, area under the curve (AUC) =69.6%, 95% confidence 
interval (CI), 0.661–0.732; test set, AUC =68.4%, 95% CI, 0.609–0.752] and the highest-performing 
radiomics models (training set, AUC =84.3%, 95% CI, 0.812–0.873; test set, AUC =72.4%, 95% CI, 0.653–
0.794) models, the CNN model (training set, AUC =94.3%, 95% CI, 0.920–0.961; test set, AUC =94.7%, 
95% CI, 0.894–0.978) had significantly better predictive performance for predicting EGFR mutation status. 
In addition, compared with the comprehensive model (training set, AUC =95.7%, 95% CI, 0.942–0.971; test 
set, AUC =87.4%, 95% CI, 0.820–0.924), the CNN model had better stability.
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Introduction

Lung cancer is the second most common cancer and the 
leading cause of cancer death worldwide (1). Non-small 
cell lung cancer (NSCLC) accounts for 80–85% of all lung 
cancer cases, among which lung adenocarcinoma is the 
most common histological type (2). With the continuous 
in-depth exploration of the field of molecular pathology, 
a series of oncogenic driver genes have been discovered in 
patients with NSCLC, transitioning the treatment of lung 
cancer from traditional chemotherapy to targeted therapy 
for specific molecules (3). In particular, the introduction 
of tyrosine kinase inhibitors (TKI) for epidermal growth 
factor receptor (EGFR) mutations has made targeted 
therapy possible. Compared with patients receiving 
standard chemotherapy, patients receiving EGFR TKI 
have a better objective remission rate, markedly longer 
progression-free survival, and experience effectively lower 
toxic effects (4,5). Therefore, determining the EGFR 
mutation status before treatment is a prerequisite for 
receiving EGFR TKI.

Currently, the detection of EGFR mutation status 
mainly relies on biopsy or post-operative tissue specimens; 
however, these methods have some limitations. First, 
NSCLC is a heterogeneous disease, and a small portion of 
tissue obtained from tissue specimens does not reflect intra-
tumor or inter-tumor heterogeneity (6). Second, needle 
biopsy increases the risk of potential cancer metastasis (7). 
Finally, this is an invasive process that cannot be tolerated 
by some elderly or frail patients (8). In this case, a non-
invasive method to predict EGFR mutation status is 
necessary to supplement the shortcomings of tissue sample 
analysis.

Computed tomography (CT) is the preferred imaging 
method for lung cancer screening, diagnosis, and prognosis 
assessment (2). Recently, some studies have used CT 
radiomics to predict EGFR mutation status and achieved 
varying degrees of success (6,9-11). However, the extraction 

of radiomics features requires the accurate delineation of the 
tumor area of interest, which is extremely time-consuming 
and costly (12). In addition, radiomics features may be 
affected by different scanning equipment and parameters, 
resulting in poor repeatability of feature extraction (13). In 
clinical practice, CT imaging is suitable for deep learning 
because similar large data sets are available (14). Deep 
learning technology based on convolutional neural network 
(CNN) has recently attracted wide attention from researchers 
in the medical field, particularly in medical image analysis 
(15-17). Some studies have used deep learning to predict 
EGFR mutation status and have shown strong promise  
(8,18-20). For example, Wang et al. (19) used a deep learning 
model to predict EGFR mutation status, and the areas under 
the curve (AUCs) in the training and validation sets were 
0.85 and 0.81, respectively. Zhao et al. (18) constructed a 
DenseNets model using CT images of 579 patients to predict 
EGFR mutation status, and the AUC in the test set was 
0.75. Although the predictive performance of these research 
results needs to be further improved, these initial successes 
have raised expectations for the implementation of high-
performance artificial intelligence in daily clinical practice.

This study aimed to establish a fully automated deep 
learning model to evaluate whether a CT images-based 
CNN model can improve the performance of predicting 
EGFR mutation status. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
qims.amegroups.com/article/view/10.21037/qims-24-33/rc).

Methods

Study design

This study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This retrospective study 
was approved by the Institutional Review Boards of Sichuan 
Provincial People’s Hospital (Chengdu, China) (No. 2022-
254) and Lanzhou University Second Hospital (Lanzhou, 

Conclusions: The CNN model has excellent performance in non-invasively predicting EGFR mutation 
status in patients with lung adenocarcinoma and is expected to become an auxiliary tool for clinicians.
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China) (No. 2020A-180). The requirement for written 
informed consent was waived because the data were 
analyzed retrospectively and anonymously. Patients were 
included in this study if they (I) had a histological type of 
lung adenocarcinoma according to the 2021 World Health 
Organization classification of lung tumors, (II) underwent 
a thin-slice CT scan before biopsy or surgical treatment, 
(III) had no lung cancer-related treatment before the CT 
scan, and (IV) had complete clinical data, including sex, 
age, smoking history, and carcinoembryonic antigen (CEA). 
Patients were excluded in this study if they (I) had poor 
image quality due to severe motion artifacts, foreign body 
artifacts in vitro, or other technical deficiencies, (II) the 
interval between CT examination and biopsy or surgery was 
greater than 14 days, and (III) were less than 18 years old. 
All CT image data were obtained from the picture archiving 
and communication system, and clinical data were obtained 
from medical records.

In total, 528 patients (including 260 EGFR mutant and 
268 EGFR wild-type patients) from Sichuan Provincial 
People’s Hospital from January 2018 to December 2020 
were included in the training set, and 132 patients (including 
65 EGFR mutant and 67 EGFR wild-type patients) from 
Lanzhou University Second Hospital from January 2019 
to March 2020 were included in the external test set. The 
training and external test sets were used to develop and 
validate the CNN model, respectively.

CT image acquisition

Chest CT scans were performed by using one of three 
spiral CT systems (Philips iCT 256, Philips Medical 
Systems, Best, the Netherlands; Discovery CT750 HD, GE 
Healthcare, Milwaukee, WI, USA; Somatom Sensation 64, 
Siemens, Erlangen, Germany). (I) For 64-detector scanner, 
tube voltage, 120 kVp; tube current, 375 mA. (II) for the 
other 2 scanners, tube voltage, 120 kVp; tube current,  
150–200 mA. For all scanners, reconstruction thicknesses 
and intervals were both 1.25 mm, and scan range, from the 
tip of the lung to the bottom of the lung.

Detection of EGFR mutation status

Drug target-associated mutations on EGFR exons 18, 19, 
20, and 21 were detected by pathologists on histological 
specimens. EGFR mutation status was detected using a 
polymerase chain reaction (PCR)-based amplification 
refractory mutation system (ARMS) with human EGFR 

gene detection kit (Beijing SinoMD Gene Detection 
Technology Co., Ltd., Beijing, China; Amoy Diagnostics, 
Xiamen, China). If any mutation in exons 18 to 21 was 
detected, the tumor was identified as EGFR-mutant; 
otherwise, the tumor was identified as EGFR-wild type.

Data preprocessing

The spacing of CT images was first resampled to 
1×1×1 mm3 by third-order spline interpolation to avoid 
the image distortion. Then, the 3-dimensional (3D) 
target lesions were manually segmented slice by slice 
by the radiologists using the medical image processing 
software ITK-SNAP 3.8.0 (https://www.itksnap.org), 
and subsequently confirmed by an experienced physician. 
After the segmentation, the volumes of interest (VOIs) 
were exported in NII format for further analysis. Region 
of interest (ROI) segmentation is described in Appendix 1 
(Methods). Before feeding into the models, the VOIs were 
normalized according to the following methods: (I) the 
CT VOIs were automatically cropped to show only the 
lesion of interest using code written in the programming 
language Python 3.8.0 (Python Software Foundation; 
https://www.python.org/), (II) we then rotated the volumes 
by 90° to fix the orientation, (III) to minimize bias field 
effects, cropped images, with a threshold between −1,000 
and 400 Hounsfield units, were commonly used to 
normalize CT VOIs to be between 0 and 1, and (IV) we 
resized width, height and depth to 64×64×32. 

CNN architecture

A 17-layer 3D CNN comprised 4 3D convolutional (Conv) 
layers with layers consisting of 32, 64, 128, and 256 filters all 
with a kernel size of 3×3×3. Each Conv layer was followed 
by a max-pooling (MAXPOOL) layer with a stride of 2 and 
rectified linear unit (ReLU) activation, which ends with 
a batch normalization (BN) layer. Essentially, our feature 
extraction block consists of 4 Conv-MAXPOOL-BN 
modules. The final output from the feature extraction block 
was flattened and passed through a fully connected layer with 
512 neurons. The output was then carried to a dense layer of 
2 neurons with softmax activation for the binary classification 
problem. The network architecture is shown in Figure 1. We 
considered keeping the network relatively simple to avoid 
overparameterization problems with only 1,297,090 learnable 
parameters. This was also motivated by the fewer number 
of training samples and memory challenges associated with 

https://www.itksnap.org
https://cdn.amegroups.cn/static/public/QIMS-24-33-Supplementary.pdf
https://www.python.org/
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Figure 1 17-layer 3D CNN architecture. Conv, convolutional; 3D, 3-dimensional; CNN, convolutional neural network. 

it. All training was conducted on the GeForce GTX 1060 
(NVIDIA, Santa Clara, CA, USA) graphics processing unit 
and completed in 20 hours of wall-clock time using 1 GPU. 
The model was built using Python 3.8.0 and Keras 2.2 
(https://keras.io/) running on a Tensorflow backend (Google, 
https://www.tensorflow.org/). The architecture of the 3D 
CNN used in this example was based on a previous study by 
Zunair et al. (21).

Performance comparison of CNN model with radiomics 
and clinical models

In our previous study, clinical characteristics (7) and 
radiomics features (9) were used to predict EGFR mutation 
status. Therefore, we built a clinical model and 3 radiomics 
models to compare with the proposed CNN model. The 
clinical model was established using logistic regression (LR), 
which was characterized by sex and smoking history. The 
radiomics model automatically extracted 1,727 radiomics 
features from the 3D VOIs of each patient using the Python 
3.8.0 open-source software package PyRadiomics 3.0.1. 
Details of radiomics features are included in the Appendix 1.  
The Mann-Whitney U test, Spearman correlation analysis, 
least absolute shrinkage and selection operator (LASSO) 
regression and univariate LR were used to reduce the 
dimensionality of the radiomics features, and 13 radiomics 
features were screened (Figure S1). Subsequently, 3 radiomics 
models were constructed to predict the EGFR mutation status 
using LR, support vector machine (SVM), and naïve Bayes 
(Bayes) classifiers, respectively. These classifiers have been 
shown to perform well in radiomics analysis (9,22). Finally, 
we used the radiomics model with the highest diagnostic 
performance combined with the CNN model to build a 
comprehensive model both in training and test sets.

Visualization of the deep learning model

Deep learning is an end-to-end process, and its reasoning 
process cannot be intuitively understood. To further 
understand the reasoning process of the CNN model, we 
used the Gradient-weighted Class Activation Mapping 
(Grad-CAM) technique to visualize the features learned 
by the CNN model. Grad-CAM measures the importance 
of each pixel to the prediction result by calculating 
the gradient of the model output (prediction category) 
relative to the middle Conv layer. Through Grad-CAM 
visualization, we can know which regions in the image 
the model focuses on during prediction are important for 
making the prediction, which helps us understand the black 
box of the CNN model (23). The architecture explaining 
the Grad-CAM technology is shown in Figure 2. The 
weight calculation formula for Grad-CAM is provided in 
the Appendix 1.

Statistical analysis

All statistical analyses were performed using IBM SPSS 
Statistics for Windows 23.0 (IBM Corp., Armonk, NY, 
USA). The chi-square or Fisher’s exact tests were used 
to evaluate the differences in categorical data between 
the EGFR mutant and EGFR wild-type groups and is 
expressed as a percentage. The independent sample t-test 
or Mann-Whitney U-test were used to assess differences 
in continuous data and is expressed as mean ± standard 
deviation (SD). A P value <0.05 was considered statistically 
significant. AUC, sensitivity, specificity, and accuracy were 
used as primary measures of performance for each model. 
The DeLong test was used to evaluate the differences in 
AUC values between the various models. 

https://keras.io/
https://www.tensorflow.org/
https://cdn.amegroups.cn/static/public/QIMS-24-33-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-33-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-33-Supplementary.pdf
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Figure 2 Grad-CAM architecture example diagram. Grad-CAM, Gradient-weighted Class Activation Mapping; CNN, convolutional neural 
network; Conv, convolutional; FC, fully connected; EGFR, epidermal growth factor receptor; ReLU, rectified linear unit.

Results

Clinical characteristics

A total of 660 patients from 2 hospitals were included in 
this study. The mean age (± SD) for the entire dataset was 
57.64±9.30 years, 52.27% (345/660) of patients were male, 
and 63.79% (421/660) of the patients were non-smokers.

There were no significant differences in age (P=0.448), 
CEA (P=0.341), tumor location (P=0.330), and stage 
(P=0.234) between the EGFR mutant and wild-type 
groups. Sex (P<0.001) and smoking history (P<0.001) were 
statistically different between the 2 groups; therefore, these 
characteristics were used to establish a clinical model. The 
clinical characteristics of the patients are summarized in 
Table 1.

Diagnostic performance of the CNN model

The prediction performance of the CNN model is shown 
in Table 2 and Figure 3. In the training set, the CNN model 
showed good prediction performance (AUC and accuracy 
were 94.3% and 93.4%, respectively), which was confirmed 
in further independent test sets (AUC and accuracy were 
94.7% and 93.8%, respectively). Figure 4 shows the loss and 
accuracy curves of the CNN model for predicting EGFR 
mutation status. 

Figure 5 shows the decision curve of the CNN model. 
This curve indicated that if the threshold probability was 
between 0.14 and 0.97, the CNN model had more benefits 
than other single models in predicting EGFR mutation status.

Model comparison

Although clinical [training set: AUC, 0.696; 95% confidence 
interval (CI), 0.661–0.732; test set: AUC, 0.684; 95% CI, 
0.609–0.752] and radiomics [SVM (training set: AUC, 0.843; 
95% CI, 0.812–0.873), (test set: AUC, 0.724; 95% CI, 0.653–
0.794)] models could predict EGFR mutation status, their 
performance was inferior to that of the CNN model (Figure 3,  
Table 2). Decision curves confirmed this finding. Overall, 
using a CNN model for decision-making is a more robust 
approach than using clinical or radiomics models (Figure 5).  
Delong’s test showed statistically significant AUC values 
between the CNN model and the clinical model and the 3 
radiomics models in both the training and test sets (all P<0.05;  
Figure S2). Although the comprehensive model performed 
better than the CNN model in the training set (AUC, 
0.957; 95% CI, 0.942–0.971), there was no statistical 
difference between the 2 models (Figure S2). However, the 
comprehensive model performed poorly on the test set (AUC, 
0.874; 95% CI, 0.820–0.924) (Figure 3, Table 2). 

Discover suspicious area with Grad-CAM

Grad-CAM visually interprets the area (suspicious area) 
that the CNN model focuses on when making predictions  
(Figure 6). For each tumor, the CNN model generated 
an attention map, and different colors represented the 
importance of the CNN model’s attention. The dark red 
area is the area that attracts the highest attention of the 
CNN model, and it also represents the suspicious area 
found by the CNN model. In the bottom row of Figure 6A, 

https://cdn.amegroups.cn/static/public/QIMS-24-33-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-33-Supplementary.pdf
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Table 1 Demographics and clinical characteristics of patients 

Characteristics Total (n=660) EGFR wild-type (n =335) EGFR mutant (n =325) P value

Age (years) (mean ± SD) 57.64±9.30 57.91±9.39 57.36±9.22 0.448

Sex, n (%) <0.001

Male 345 (52.27) 227 (67.76) 118 (36.31)

Female 315 (47.73) 108 (32.24) 207 (63.69)

Smoking history, n (%)* <0.001

Smoker 239 (36.21) 176 (52.54) 63 (19.38)

Non-smoker 421 (63.79) 159 (47.46) 262 (80.62)

CEA, n (%) 0.341

Normal 262 (39.70) 127 (37.91) 135 (41.54)

High 398 (60.30) 208 (62.09) 190 (58.46)

Lobe location, n (%) 0.330

Right upper 226 (34.24) 113 (33.73) 113 (34.77)

Right middle 41 (6.21) 15 (4.48) 26 (8.00)

Right lower 150 (22.73) 83 (24.78) 67 (20.62)

Left upper 147 (22.27) 75 (22.39) 72 (22.15)

Left lower 96 (14.55) 49 (14.63) 47 (14.46)

Stage, n (%) 0.234

I 337 (51.06) 176 (52.54) 161 (49.54)

II 91 (13.79) 49 (14.63) 42 (12.92)

III 99 (15.00) 53 (15.82) 46 (14.15)

IV 133 (20.15) 57 (17.01) 76 (23.38)

*, smoking history is defined as follows: smoker, former and current smokers; non-smoker, never smoked. EGFR, epidermal growth factor 
receptor; SD, standard deviation; CEA, carcinoembryonic antigen. 

Table 2 Predictive performance of clinical, radiomics, and deep learning models 

Models
Training set (n=528) Test set (n=132)

AUC (95% CI) Sen Spe Acc AUC (95% CI) Sen Spe Acc

LR 0.706 (0.669–0.744) 0.688 0.653 0.670 0.685 (0.608–0.755) 0.708 0.567 0.636

SVM 0.843 (0.812–0.873) 0.854 0.769 0.811 0.724 (0.653–0.794) 0.785 0.567 0.674

Bayes 0.690 (0.652–0.727) 0.769 0.519 0.642 0.658 (0.583–0.733) 0.754 0.478 0.614

Clinical 0.696 (0.661–0.732) 0.642 0.687 0.665 0.684 (0.609–0.752) 0.538 0.746 0.644

CNN 0.943 (0.920–0.961) 0.934 0.951 0.934 0.947 (0.894–0.978) 0.938 0.955 0.938

Com 0.957 (0.942–0.971) 0.827 0.959 0.894 0.874 (0.820–0.924) 0.754 0.896 0.826

AUC, area under the curve; CI, confidence interval; Sen, sensitivity; Spe, specificity; Acc, accuracy; LR, logistic regression; SVM, support 
vector machine; Bayes, naïve Bayes; CNN, convolutional neural network; Com, comprehensive model. 
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Figure 4 Loss (A) and accuracy (B) curves for the CNN model with epochs. As the number of epochs increases, the loss in the training 
dataset decreases, indicating that the trained model converges. Simultaneously, as the number of epochs increases, the accuracy of the 
training dataset increases. The best training loss occurred at 80 epochs. At that epoch, the training loss and accuracy were 0.0505 and 94.1%, 
respectively. CNN, convolutional neural network.

Figure 3 ROC curves of different models in the training (A) and test (B) sets were used to predict the mutation status of EGFR molecular 
subtypes. LR, logistic regression; SVM, support vector machine; Bayes, naïve Bayes; CNN, convolutional neural network; ROC, receiver 
operating characteristic; EGFR, epidermal growth factor receptor. 

the suspicious areas for all tumors were almost inside the 
tumors, and based on these observations, the deep learning 
model considered these 3 tumors EGFR-mutant tumors. In 
contrast, in the bottom row of Figure 6B, the cavity area of 
the tumor in the first 2 images caught the attention of the 
deep learning model and regarded it as an EGFR wild-type 
tumor. In the last image in the bottom row of Figure 6B,  
the area between the tumor and pleura was brought to 
the attention of the deep learning model, which similarly 
identified it as an EGFR wild-type tumor.

Discussion

In this study, we presented a 3D CNN-based deep learning 

method for non-invasively predicting of EGFR mutation 
status in patients with lung adenocarcinoma. The proposed 
CNN was successfully trained and tested using a manually 
segmented multicenter dataset. Compared with clinical, 
traditional radiomics, and comprehensive models, the 
CNN model showed superior performance in the training 
set (AUC =94.3%) and perfect performance in the further 
independent test set (AUC =94.7%). Furthermore, we used 
the Grad-CAM visualization technique to visually explain 
the prediction process of the CNN model, which helps us 
to better understand the black box of the CNN model.

Previous studies have shown that EGFR mutation status 
can be predicted based on clinical characteristics and 
radiomics features of patients with lung adenocarcinoma 
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(24,25). This finding was confirmed in our previous 
studies (7,9,26). In this study, a clinical model and  
3 radiomics models were constructed for comparison with 
the proposed CNN model. The clinical model achieved 
an acceptable performance on the training and testing 
sets (AUCs of 69.6% and 68.4%, respectively). However, 
clinical characteristics reflect little information at the tumor 
pathology level. Moreover, the diagnostic performance 
of the model needs to be further improved. In contrast, 
radiomics utilizes computers to extract a large amount of 
biological and prognostic information from medical images 
that are unrecognizable to the human eye, and this hidden 
information in images has the potential to reflect tumor 
phenotypes (27). In this study, we constructed 3 radiomics 
models based on 3 classifiers (LR, SVM, and Bayes). 
Among them, the radiomics model based on SVM had the 
highest prediction performance, with AUCs of 84.3% and 
72.4% in the training and test sets, respectively. Although 
radiomics models have evident advantages over a clinical 
model in predicting EGFR mutation status, in the face 
of massive medical image data, delineating tumor VOIs 
not only is time-consuming and labor-intensive but also 

differs between different delineators. In addition, radiomics 
involves complex processes, such as feature extraction and 
screening (12). In this study, although the performance of 
the comprehensive model was improved in the training set, 
there was no statistical difference between the performance 
of the combined and CNN models. Simultaneously, the 
performance of the combined model in the test set did not 
increase, and over-fitting occurred. It can be seen that our 
proposed CNN model shows better prediction performance 
compared to the other models.

Recently, researchers have used deep learning methods 
to predict EGFR mutation status with encouraging results 
(18-20). However, the predictive performance of these 
studies varied between 75% and 81%. Compared with these 
studies, the prediction performance obtained in this study 
is currently the highest, with AUCs of 94.3% and 94.7% 
in the training and test sets, respectively. The superior 
performance of our CNN model may be attributed to the 
high-quality labeled data obtained. In this study, in order 
to prevent the loss of important volume information and 
avoid additional information interference, all VOIs were 
manually delineated layer-by-layer on CT slices. Wang  
et al. (19) and Zhao et al. (18) manually selected a cubic VOI 
that contained the entire tumor. Although this approach 
saves time and effort, it results in the inclusion of tissues 
other than the tumor, which increases the difficulty of 
training the model, particularly for datasets with relatively 
small sample sizes. Wang et al. (28) proposed a semi-
supervised learning framework for 2-dimensional (2D) 
semantic segmentation technology in 3D CT segmentation, 
which not only reduces the requirement of high-level 
computational resources, but also improves the efficiency 
of manual annotation, as it only requires annotation on a 
small number of slices. However, the performance of this 
framework in medical image segmentation is still unknown. 
Another important factor may be related to our selection of 
network architecture that is relatively easy to train. In this 
study, we selected a 3D CNN with 17 layers, which includes 
4 3D Conv layers consisting of 32, 64, 128, and 256 filters. 
3D CNN models are widely used for object classification 
and detection under different data patterns, and CNN 
models with different network backbones can lead to 
different results. For example, Wang et al. (29) attempted 
for the first time to extend CNN to the classification and 
detection of prohibited items, and the results showed that 
the Voxception ResNet model has comparable performance 
in classification tasks compared to other networks such as 
Faster R-CNN and RetinaNet, but still needs improvement 
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Figure 5 Decision curves for different models in the training 
set. The X-axis represents threshold probability, and the Y-axis 
represents net income. The gray line represents the hypothesis that 
all patients have EGFR mutations, and the black line represents 
the hypothesis that no patients have EGFR mutations. LR, logistic 
regression; SVM, support vector machine; Bayes, naïve Bayes; 
CNN, convolutional neural network; EGFR, epidermal growth 
factor receptor.
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Figure 6 Using the Grad-CAM technique to find tumor suspicious areas. (A) EGFR-mutant; (B) EGFR-wild type. The first column is the 
original CT image. The second column is the attention map for classifying EGFR mutation status. The third column is the fused image 
generated by fusing the original image and the attention map to find suspicious regions of the tumor. EGFR, epidermal growth factor 
receptor; Grad-CAM, Gradient-weighted Class Activation Mapping; CT, computed tomography.
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in detection tasks. Currently, many neural networks tend 
to be larger and deeper; however, deeper networks can 
be more difficult to train and can lead to performance 
degradation and increased training error (30-32). Wang  
et al. (19) performed transfer learning using the ImageNet 
dataset, which has recently emerged as a potentially 
effective method for alleviating data requirements. 
However, ImageNet is a dataset of relatively low-resolution 
2D color photographs. Network applications of transfer 
learning are limited for processing volumetric images with 
higher resolution in radiology (33). Therefore, choosing an 
appropriate network architecture is crucial to improve the 
performance of the model.

Deep learning promises to be an adjunct to clinicians; 
therefore, visual interpretation of specific areas in images is 
critical to understanding these typical black-box models (30).  
This not only increases the confidence of clinical users in 
the system but also indirectly assesses the accuracy of the 
model. In this study, we used Grad-CAM technology for 
visual interpretation. Grad-CAM does not need to modify 
the structure of the original network, does not need to 
retrain the model, and can be applied to many different 
tasks (e.g., image classification, image captioning, and 
visual question answering) (23). Through visual analysis, 
it can intuitively show which area is the focus of the CNN 
model (Figure 6). Therefore, it may provide clinicians with 
an advantageous biopsy site to accurately detect EGFR 
mutation status and avoid missed diagnoses caused due to 
intra-tumor heterogeneity.

The potential clinical applications of the CNN model 
include the following: (I) the proposed CNN model is a 
non-invasive method for predicting EGFR mutation status; 
thus, it can effectively alleviate the pain of patients; (II) 
the CNN model directly uses the CT images of patients; 
therefore, this is effective in saving medical costs; (III) if 
the biopsy shows that the tumor is EGFR wild-type and 
the CNN model indicates EGFR mutation, the results may 
contain false negatives due to intra-tumor heterogeneity. In 
this case, clinicians may need to re-biopsy to avoid missed 
diagnosis (19,34); and (IV) the proposed CNN model can 
be reused in the diagnosis and treatment of lung cancer.

This study has some limitations. First, despite the 
superior performance of our CNN model in predicting 
EGFR mutation status, the study population was only 
from China. In future studies, we will include populations 
of different ethnicities and geographic areas to improve 
the generalizability of the model. Second, to truly reflect 
the tumor’s own information and avoid interference from 

surrounding tissues, we manually delineated the tumor 
boundary. However, in the face of massive medical data, 
delineating ROI more effectively, automatically, and 
accurately is a direction for future studies. Third, this 
study only predicted the mutation status of EGFR, and the 
mutation status of other driver genes of lung adenocarcinoma 
(such as ALK, KRAS, and ROS1) will be explored in future 
studies. Finally, due to possible sampling bias during the 
biopsy process, there may be false negative results in EGFR 
wild-type cases. Therefore, further prospective validation of 
this result is needed in future study.

Conclusions

The CNN model proposed in this study showed excellent 
performance in non-invasively predicting EGFR mutation 
status and is expected to become an auxiliary tool for 
clinicians. Furthermore, we provide a visual perspective 
explanation of the inference process of deep learning, 
which will help us understand typical black-box models and 
increase the confidence of clinical users in the system.
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