
UC Irvine
ICS Technical Reports

Title
Constraints for predicate invention

Permalink
https://escholarship.org/uc/item/5zv521c7

Authors
Wirth, Ruediger
O'Rorke, Paul

Publication Date
1991-07-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5zv521c7
https://escholarship.org
http://www.cdlib.org/

Constraints for Predicate Invention
.______ F'=--., ;

Ruediger Wirth
wirth@ics.uci.ed~
Paul O'Rorke

ororke@ics.uci.edu

Technical Report 91-23

February 28, 1991
Revised July 17, 1991

Notice: This Material
may be protected
by Copyright Law
(Title 17 __ U.S.C.)

This is a revised and expanded version of Wirth, R., & O'Rorke, P. (1991), Constraints on
predicate invention. In L. A. Birnbaum & G. C. Collins (Eds.), The Eighth lnternational
Workshop on Machine Learning (pp. 457-461). Evanston, 11: Morgan Kaufmann. Research
supported in part by National Science Foundation Grant Number IRl-8813048, Douglas Air
craft Company, and the University of California Microelectronics Innovation and Computer
Research Opportunities Program.

We thank Mike Pazzani; Dennis Kibler and the graduate students ofthe Al & ML community
at U CI for discussions of the ideas expressed in the paper and for discussions on related
systems such as FOIL and FOCL. Thanks also to Yousri El Fattah, who participated in the
initial stages of this research.

Constraints f or Predicate Invention 1

Ruediger Wirth
Paul O'Rorke

Department of Information and Computer Science
University of California, Irvine, CA 92717

U nited States of America

Abstract

This chapter describes an inductive learning method that derives logic programs
and invents predicates when needed. The basic idea is to form the least common
anti-instance (LCA) of selected seed examples. If the LCA is too general it forms the
starting poínt of a gneral-to-specific search which is guided by various constraints on
argument dependencies and critica! terms. A distinguishing feature of the method
is its ability to introduce new predicates. Predicate invention involves three steps.
First, the need for a new predicate is discovered and the arguments of the new
predicate are determíned using the same constraints that guide the search. In the
second step, instances of the new predicate are abductively inferred. These instances
form the input for the last step where the definition of the new predicate is induced
by recursively applying the method again. We also outline how such a system could
be more tightly integrated with an abductive learning system.

1This is a revised and expanded version of Wirth, R., & O'Rorke, P. (1991) Constraints on predicate
invention. In L. A. Birnbaum, & G. C. Collins (Eds.), The Eighth lnternational Workshop on Machine
Learning (pp. 457-461). Evanston, IL: Margan Kaufmann. Research supported in part by National Sci
ence Foundation Grant Number IRI-8813048, Douglas Aircraft Company, and the University ofCalifornia
Microelectronics Innovation and Computer Research Opportunities Program.

Contents

List of Figures

1 Introduction

2 Integrating Abduction and lnduction
2.1 Learning Specific Facts by Synthesis.
2.2 Learning General Facts by Anti-Synthesis.
2.3 Learning New Clauses

3 The Method
3 .1 The Task: Learning N ew Clauses
3.2 Strict Constraints on New Clauses . . .
3.3 Heuristic Constraints on New Clauses .
3.4 Algorithm

4 Exarnples
4.1 Learning append/ 3
4.2 Learning reverse/2 . . .
4.3 Learning DeMorgan's Law

5 Related work

6 Current Status, Limitations, and Future Work

7 Conclusion

Acknowledgments

References

1

2

2
3
3
3

4
4
4
6
9

11
11
12
14

15

16

18

18

19

List of Figures

1 Dependencies in reverse/2 . 7
2 Dependencies in merge_sort/2 . 7
3 Argument dependency graphs. The boxes represent literals where the

root is the head of the clause. The arrows indicate the dependencies be-
tween these literals. . . . 8

4 Pseudo-code for SIERES 21
5 Learning reverse/2 . . 22

ii

1 Introduction

In recent years there has been increasing interest in systems that induce first order logic
programs. The approach of inverting resolution (Muggleton & Buntine, 1988; Rouveirol
& Puget, 1989; Wirth, 1989) is particularly interesting because it offers a way to extend
the vocabulary by inventing new predicates. However, the first implementations were too
inefficient to be useful for larger applications.

Quinlan's FOIL (Quinlan, 1990) was an advance towards more e:fficient induction
algorithms for first order languages. Subsequently, Muggleton & Feng (Muggleton &
Feng, 1990) presented a new system, called GOLEM, which is based on inverse resolution
and which is also able to process large numbers of examples. But, despite their e:fficiency
these two systems are highly dependent on the vocabulary and the form of examples that
are given in advance. They cannot extend their vocabulary.

This paper describes an attempt to overcome this limitation. We propose a new way
to construct a first-order theory which allows for natural incorporation of background
knowledge and the invention of new predicates. The method, implemented in a system
called SIERES, is based on a general-to-specific search guided by constraints on the form
of clauses.

Unlike FOIL, which searches in a very unconstrained space, SIERES iteratively in
creases the space by looking at increasingly complex clauses. lf it cannot construct a
clause that covers the training instances in the current restricted space using known pred
icates only, SIERES tries to invent a new predicate. There are sorne strict and heuristic
conditions on the new predicate. lf the predicate can be constructed, SIERES continues
to learn a general definition for it, abductively deriving new instances.

Existing methods for inventing new predicates, for instance in the framework or inverse
resolution like CIGOL (Muggleton & Buntine, 1988) or LFP2 (Wirth,1989) invent new
predicates in order to reformulate a given set of clauses aiming at a more compact or a
more comprehensible representation. Compaction is used for two purposes, compressing
the theory and generalizing it. While there is a close connection between data compression
and generalization, we claim that in the case of predicate invention it is beneficia! to keep
them apart. Compaction remains an important criterion for evaluating hypotheses but
for predicate invention it should not be the dominating one.

2 Integrating Abduction and Induction

This paper describes a novel learning method that integrates abduction and induction.
Abduction is used to complete explanations and infer specific missing facts. Induction is
used to invent clauses and predicates in order to extend the general theory and improve
its explanatory power.

1

2.1 Learning Specific Facts by Synthesis

Existing abductive learning methods learn while using general theories to construct ex
planations of specific observations (O'Rorke, Morris & Schulenburg, 1990). The learning
method is a form of abductive inference. Queries that do not ground out in known facts
are treated as more or less plausible hypotheses on the grounds that if they were true
they would complete explanations of the observations.

A simple abductive learning method called "synthesis" was proposed by Pople (Pople,
1973). Technically, the method works as follows. Given an observation and a theory
expressed as Horn clauses, backward chain in search of a proof justifying the literals of
the observation. If two queries are generated that are unifiable, unify them and assume
that the resulting literal is true. Since it enables one to explain two observations with
the same hypothesis, Pople justified this operation in terms of Occam's Razor. Note that
Pople's synthesis operation is non-deductive, so this method of abductive learning is a
form of knowledge-level learning. In other words, if a literal is added to the theory by
synthesis, it enlarges the deductive closure of the theory.

2. 2 Learning General Facts by Anti-Synthesis

Least general generalization LGG (Plotkin, 1970), or least common anti-instance LCA
(Lassez, Maher & Marriot, 1988),2 can be used in an abductive framework to learn in
teresting new literals that are generalizations rather than specializations of literals that
appear in existing rules. Assuming that Q1 and Q2 are two queries that arise in explana
tions of the same or different cases, Q = LCA(Qi, Q2) is a hypothesis that would explain
Q1 and Q2 .

This is a dual to Pople's synthesis operator; call it anti-synthesis. In synthesis, the
queries Q1 and Q2 have to be unifiable. This is not necessary in anti-synthesis. The
queries Q1 and Q2 could be ground literals involving the same predicate symbol but
different arguments. In synthesis, the queries unify to a new literal (their most general
common instance). The queries both subsume this new literal. In anti-synthesis, the
new literal Q is the least general common anti-instance of Q1 and Q2 • It subsumes Q1

and Q2 but different substitutions might be used to get each instance. Like synthesis,
anti-synthesis leads to new literals that improve the coherence of explanations.

2.3 Learning New Clauses

The LCA of abductive hypotheses serves as the initial candidate in our search for a clause
that would enable us to complete an explanation. Assuming that the missing clause is

2Plotkin's least general generalization is equivalent to L~ et al's least common anti-instance. Here
we use the tenn LCA because it captures the meaning more precisely.

2

applicable to a set of abductive hypotheses, the head of the clause must be unifiable
with each hypothesis, so it must be a generalization of these hypotheses. Unfortunately,
the LC A of the abductive hypotheses is often overly general. During the generalization
process important connections between input and output arguments are often lost. In
this case, we specialize the learned clause by adding literals to its body such that the
missing connections are restored. This enables us to acquire missing clauses other than
unit clauses.

There are different ways to specialize a clause (e.g. Kietz & Wrobel, 1991; Quinlan,
1990; Shapiro, 1983) and different ways to constrain the search. In the next section we
describe a method using a novel combination of constraints.

3 The Method

In the following description of the learning task and our method, we use the terminology
of logic programming (Lloyd, 1987).

3.1 The Task: Learning New Clauses

Given:

• background knowledge P and

• a set of initial goals (training instances) E = {E1, ···,En} that follow fróm an
unknown target program Ptarget:::) P, but not from P

the learning goal is to construct a set of gefinite clauses Ctarget such that

PU Ctarget f-sLD E.

In other words, we want to extend a given theory to cover new examples.

3.2 Strict Constraints on New Clauses

Let us assume we are in a state with goals { Ei, · · · , En }3 where none of the clauses of the
current program P is applicable to any of the Ei. We have to generate a new clause in
order to complete the proof.

Assuming that there is exactly one clause missing, there are two strict constraints on
this new clause:

3These goals could be either abductive hypotheses as described in the previous section or teacher
provided training instances as in the usual inductive learning situation.

3

• Its head has to be unifiable with ali the Ei.

• The clause has to produce the proper bindings for the output variables.

These two strict constraints form the basis of our method. Since the head of the clause
must be unifiable with all the instances it must be a common anti-instance and must be at
least as general as the least common anti-instance (LCA). Often, the LCA is too general.
The only way to specialize it is to view it as a unit clause and specialize this unit clause
by adding literals.

Usually, overgeneralizations are discovered using negative examples. But there is a
syntactic way to identify sorne important cases of overgeneralization which is is related
to the second constraint above. If the input/output behavior of the target predicate is
given, for example in the form of mode declarations (Shapiro, 1983), unbound output
variables indicate overgeneralization and, even more importantly, provide guidance to the
specialization process.
Example: reverse/2. Let us assume we have a mode declaration reverse (+ ,-) specify
ing that the first argument is an input while the second argument is the output.4 Now, let
us look at the following three unit clauses, which could be the LCAs of sets of instances.

reverse([A],[A]).
reverse([A,B],[B,A]).
reverse([AIB],[CID]).

The first two are correct according to the intended meaning of reverse/2. For any input
list containing one or two elements these two unit clause generate the correct reversed
lists. The third one is overly general. In it, there is no connection between the input
and output arguments at all. This predicate would be true for any two lists. If we view
this unit clause as a procedure with the inode declaration specified above, the output
variables would remain unbound because they do not also appear as input variables.
These unbound output variables indicate overgeneralization. The need to bind them
in the body of a clause provides guidance to the specialization process. The following
definition of critical terms tries to capture this.

Definition: Critical terms of the head of a clause are

• output variables that do not appear in the input argumenta

• input variables that do not appear in the output arguments

• terms whose arguments are critica! variables

4We use this notation throughout the paper.

4

Example: Given mode declaration reverse (+, -) , the critical terms of reverse([AIB], [CID])
are the members of the set {[AIB], A, B, [CID], c, D}.

Critica! terms provide a focus of attention while searching for a literal to add to the
clause and are used to determine arguments of the newly invented predicate.

3.3 Heuristic Constraints on New Clauses

In addition to these relatively strict constraints, we employ heuristic constraints, in other
words a representational bias, on the types of clauses that are to be learned. These
additional constraints serve to prune the search space and provide information necessary
for the invention of new predicates.

In meaningful clauses, the literals in the body are usually not independent of each
other but share at least sorne variables. This dependency can be used to partially order
the literals in a clause.

Definition: A literal L2 depends on a literal L1 if

• they share a variable V where

• V is an output variable in L1 and

• V is an input variable of L2 .

Example: In a form of reverse/2 defined:

reverse([AIB] ,[CID]):
reverse(:B,E),
add.-1ast(E,A,[CID]).

with the mode declarations reverse(+, -) , add.-1ast (+, +, -) the dependencies are as
shown in figure l. The tail of the input list in the head is passed to the first literal of
the body as an input. The output of this recursive call is passed as an input to the final
literal of the body. This literal also takes the first element of the initial input to the head
and its output is passed back to the head as the output computed by the clause.
Example: In the form of merge sort defined:

merge_sort([AIB],[CID]) :
split([AIB] ,E,F),
merge_sort(E,G).
merge_sort (F, H) ,
merge(G,H,[CID]).

5

reverse([AIB], [CID])

\
add_last(E, A, [CID])

Figure 1: Dependencies in reverse/2

merge7L, SL)

split(L, L1, L~

merge_sort(L 1 , SL 1) merge_sort(L2, SL2)

merge(SL 1, SL2, SL)

Figure 2: Dependencies in merge_sort/2

6

Figure 3: Argument dependency graphs. The boxes represent literals where the root
is the head of the clause. The arrows indicate the dependencies between these literals.

7

with the mode declarations merge_sort (+, -) , spli t (+, -) , merge (+, +, -) the depen
dencies are as shown in figure 2.

SIERES is provided with a set of argument dependency graphs (figure 3), a kind of
schemata. These argument dependency graphs are not detailed templates for the clauses,
as for instance the rule models of (Kietz & Wrobel, 1991), but specify the dependency
relationships that are allowed. Input terms of literals in the body must be subterms of
input terms of the head or subterms of output terms of previous body literals. At least
one input argument of each body literal must be a subterm of one output argument of
the immediately preceding body literal. The output arguments of the last literal must
bind all output variables in the head that are not yet bound. The restriction to subterms
of previous terms serves to avoid an infinite set of possible terms.

These dependencies are used to guide the general-to-specific search. Muggleton &
Feng (1990) use such dependencies for detecting relevant literals in a specific-to-general
search.

3.4 Algorithm

As mentioned in the description of the task, the algorithm is given as input background
knowledge and training examples. In addition, the algorithm is given mode declarations
of all known predicates and a sequence of argument dependency graphs. The output of
the algorithm is a set of clauses C such that the examples follow from the new clauses
and the background knowledge.

The basic idea of the method (figure 4) is as follows. First, the LCA of the training
instances is formed. If this is too general, a search for more specific clauses is conducted,
subject to constraints that prevent the search from getting out of hand. New predicates
are introduced as needed.

The current implementation of SIERES constrains search using mode declarations and
a limited sequence of argument dependency graphs. Critical output variables provide a
focus of attention while searching for a specialization of an overly general unit clausé.
The main goal of the search is to find a body that binds the critical output variables.

The first step in the algorithm is to select a subset of the examples such that this
subset will be covered by just one clause. 5 From this subset, SIERES selects a few
examples which serve as a seed for the remainder.

Then, SIERES selects an argument dependency graph. These graphs are ordered
according to their complexity. SIERES starts with the simplest argument dependency
graph and tries to find a clause that obeys the constraints of this graph. If such a clause
cannot be found then a more complex dependency graph will be used for the next attempt.

5Currently, this part is limited to splitting simple recursive predicates into instances of the base case
and of the recursíve case.

8

SIERES keeps track of severa! copies of the argument dependency graph selected,
one for the general clause which is supposed to be learned and one for each of the seed
examples. The heads of all the clauses that are tried are the same regardless of the
graph selected. The heads of the specific clauses are the seed examples, the head of the
general clause is the LCA of the seed examples. The body of the specific clauses consist of
facts from the background knowledge only. The general clause is the LCA of the specific
clauses. 6 While constructing the body of the clauses there is a close interaction between
the general and the specific clauses and information from both tlíe general and the specific
graphs is exploited.

At each step SIERES searches for ea.ch specific graph for a fa.et such that the con
straints of the argument dependency graph are fulfilled and that the general clause, the
LCA of the specific clauses, is legal, i.e. none of the literals has been generalized to a
variable. Recall that input terms of literals in the body must be subterms of input terms
of the head or subterms of output terms of previous body literals. Since this property
must hold for both the general and the specific clauses in a coherent way, the general
clause is used as a basis for determining potential input terms for the specific clause. The
search space is considerably smaller this way. This interaction will become clearer in the
example discussed in the following section.

If a general clause can be found that fulfills all the constraints, the algorithm termi
nates. If all but the last literal of the clause could be constructed, SIERES tries to invent
a new predicate. The first problem is to determine the arguments of this predicate. As
for the other body literals information from both the general and the specific clauses are
used. The output terms of the new predicate are the critica! output terms that are not
yet instantiated in the general clause. The input arguments are determined using the
critica! input terms and the constraints from the argument dependency graphs. Critica!
input terms that have not yet been used in the general clause constructed so far are taken
as input arguments. This can be justified by an Occam's razor argument. If these input
terms were not used there would be no reason to provide them. More input arguments are
derived from the literals directly preceding the last literal in the argument dependency
graph. The longest output terms of the literal that share all their constants with the
output terms of the new predicate are also taken as input arguments.

The next step is to find a definition for this new predicate. This is done in two
steps. First, instances of the new predica.te are generated. Second, these instances are
given as input to a recursive call to SIERES. If a definition for this new predicate can
be constructed, the algorithm will stop. Otherwise, it will backtrack and try alternative
solutions.

60f course, the LCA is not defined for clauses. But this is only a minor technical problem which can
be overcome by viewing the specific clauses as terms. Then, the LCA is defined and the result can in
turn be interpreted as a clause.

9

In arder to construct instances of the new predicate, SIERES takes the general clause,
applies it to all the known instances of th.e target predicate, and abductively infers in
stances of the new predicate to complete the proofs. The next section describes examples
of learning sessions with SIERES.

4 Examples

In this section, we illustrate the method with examples. We give detailed descriptions of
how SIERES learns append/3, reverse/2, and DeMorgan's law.

4.1 Learning append/3

Let us assume that we want to learn the definition of append/3 with the mode declaration
append (+, +, -) . 7 At the beginning we have a set of training examples including

append([s] , [t], [s, t])
append([], [t], [t])
append([d,e,f],[g,h],[d,e,f,g,h])
append([e,f],[g,h],[e,f,g,h])

The seed examples may be append([s], [t], [s, t]) and append([d ,e, f] , [g,h] , [d ,e, f ,g,h]
SIERES starts out by forming the LCA of the seed examples

append([AIB],[CID],[AIE])

but this clause is not acceptable because it does not produce the correct answers when ap
plied to the initial goals. The query append([s], [t] ,X) yields append([s], [t], [s 1 E])
and the query append ([d, e, f] , [g, h] , X) yields append ([d, e, f] , [g, h] , [d 1 E]) . These
answers are overly general because they contain unbound output variables. Any instanti
ations ofthese variables would make the goals true, e.g. append([s], [t], [s,applepie,
honeypot]) would be provable. All the variables in the clause except A are critica!. The
critica! output variable E is especially important.

SIERES searches for a specialization of the clause, starting with the next simplest
argument dependency graph consisting of two literals. It initializes a general explana
tion and two specific explanations for the training instances. SIERES assumes that the
output argument of the body literal has to be the critica! output term E in the general
graph and its corresponding instantiations in the specific graphs. Furthermore, the input
arguments for the body literal have to be selected from the subterms of [A 1 B] and [C 1 D]

7If we also want to consider append in different modes, we could simply add the corresponding mode
declarations. SIERES would treat the different versions of append/3 as different predicates.

10

and their instantiations. Next, SIERES searches for predicates that could fit into these
explanations under these constraints. In the background knowledge, it finds the facts
append ([] , [t] , [t]) and append ([e, f] , [g, h] , [e, f, g, h]), which would complete the
specific clauses. By forming the LCA of these clauses SIERES finally obtains the clause

append([AIB],[CID],[AIE]):
append(B,[CID],E).

4.2 Learning reverse/2

This example employs abductive inference andrequires the invention of a new predicate.
Let us assume that we are given a set of instances of reverse/2 including

reverse([1,2,3],[3,2,1])
reverse([2,3] ,[3,2])
reverse([a] ,[a])
reverse ([] , [])

and that the seed examples are reverse ((1, 2, 3] , [3, 2, 1]) and reverse ([a] , [a]).
The LCA of the seed examples is reverse ([A 1 B] , [C 1 O]) with the critical input terms
{[A 1 B] , A, B} and with the critical output terms {[e 1 O] , e, O}.

SIERES starts with the simplest argument dependency graph consisting of two literals
but cannot find a body literal that forms a legal solution. If it picked reverse it would
produce a useless recursion where the recursive call were identical to the head. If it
introduced a new predicate the arguIIients would be the same as for reverse and therefore
no gain.

Next, SIERES tries to find a clause consisting of three literals (see figure 5). The head
of the clause is again reverse ([A 1 B] , [C 1 O]). The input arguments of the first literal of
the body of the general clause ha ve to be selected from the set { [A 1 B] , A, B}. SIERES
looks up the substitutions for [A 1 B] for the seed examples and looks for facts that unify
with reverse ((1, 2, 3] , X) , reverse ([a] , Y). Such facts could form the first body literal
of the specific clauses. The only facts it can find are the same as the heads and thus not
suitable. Then it tries the substitutions for A but cannot find any because they are not
of the proper type.

Finally SIERES tries the substitutions for B and looks for facts that unify with
reverse ([2, 3] , X) and reverse ([] , Y). This time the search is successful and SIERES
augments the specific clauses to

reverse([1,2,3],[3,2,1]) :
reverse([2,3], (3,2]),
???

11

and

reverse([a],[a]) :
reverse ([] • []) •
???

The general clause is adapted by forming the LCA

reverse([AIB] ,[CID]) :
reverse(B,E),
???

The argument dependency graph requires that one input argument of the last literal
must be E and its instantiations. SIERES might find two facts for reverse/2 with these
input argument but their output arguments would not meet the additional requirement
of binding all critica! output terms. Thus, no known predicate fits and SIERES invokes
he invention procedure.

The output arguments for the new predicate are the critica! output terms that are not
yet bound, i.e. [C 1 D] . The input arguments are the output terms of the preceding literals,
i.e. E and all critica! input terms that have not yet been used, i.e. A. In our example this
leads to the clause

reverse([AIB],[CID] :
reverse(B,E),
new(A,E, [CID]).

This definition is not complete because new/3 is not yet defined. SIERES takes the
rule above and applies it to ali the known instances of reverse/2. Assuming that these
instances are provable using this clause, SIERES abductively infers instances of new/3 to
complete the proofs. These instances will then be used to derive a definition of the new
predica te.

Using the same mechanism as described above, SIERES derives the following definition
for new/3:

new(A. [].[A])
new(A,[BIC],[BID]) :

new(A,C,D).

12

4.3 Learning DeMorgan's Law

This example also requires the invention of a new predicate and illustrates the role of
critica! terms in a slightly different context. The goal is to learn the definition of a
predicate equiv/2 which implements DeMorgan's law for an arbitrary number of terms.
The first argument of equiv/2 is the input argument and is a negated conjunction. This
expression is to be transformed into an equivalent disjunction of negations.

We start out with the following instances.

equiv(not(and([a])),or([not(a)]))
equiv(not(and([a,b])),or([not(a),not(b)]))
equiv(not(and([c,d,e])),or([not(c),not(d),not(e)])

The LCA is equiv(not (and([A 1 B])), or([not (A) 1 C])) but it is too general so SIERES
seeks to specialize it using the next simplest argument dependency graph. SIERES ini
tializes general and specific clauses as in the previous examples. The critical terms are
B and C. Note that for the definition of equiv/2 there is no need to consider A or the
function symbols and, or and not. The definition of critical terms takes care of this into
account.

SIERES is unable to complete these clauses using existing predicates so it invents
a new predicate with the critica! terms as the arguments. SIERES then completes the
special explanations by assuming the following-.

new13([], [])
new13([b], [not(b)])
new13([d,e],[nÓt(d), not(e)])

The general clause corresponding to tnese specific clauses is

equiv(not(and([AIB])),or([not(A) IC])) ·
new13(B,C).

This clause is acceptable provided that SIERES can construct a general definition for
new13/2 that also helps explain additional instances of equiv/2.

In order to learn a definition for new13/2, SIERES first needs to construct more
instances. This can be done by applying the definition of equi v /2 to different instances,
e.g. equiv(not (and([d, e])), or([not (d) ,not (e)])). This way, SIERES automatically
constructs a training set for the new predicate, which can be used to learn its general

· definition.
Ultimately, SIERES learns the following program.

13

equiv(not(and([AIB])),or([not(A)IC])):
new13(B,C).

new13([], []).
new13([AIB],[not(A)IC]):

new13(B,C).

5 Related work

SIERES is similar to FOIL (Quinlan, 1990) in that both construct clauses by searching
for the best additions to the body of a partially constructed clause. FOIL, however,
performs a search based solely on information theoretic heuristics. FOCL (Pazzani et
al. 1991), an extension of FOIL, uses (possibly incorrect) background knowledge as a
hint which predicates might be related to each other and to support the information
gain heuristic's choice of the relevent predicates. Disjunctive definitions follow naturally
from FOIL's and FOCL's control structure. FOIL and FOCL differ from SIERES in
their restriction to function free clauses and their inability to extend the vocabulary
automatically. Additionally, FOCL has serious problems with recursive definitions.

Our method is also related to RDT (Kietz & Wrobel, 1991), which also performs the
general-to-specific search considering more and more complex clauses. RDT uses rule
models to specify the shape of the clauses. Rule modela are much more specific than
argument dependency graphs in that they specify exactly the variables of the lit~rals.
There is no handle for predicate invention. Argument dependency graphs are more flexible
because the dependencies between literals are expressed at a more abstract level which
provides the constraints for the arguments of the new predicates.

GOLEM (Muggleton & Feng, 1990) constructs a least generalization with background
knowledge and reduces this potentially huge clause according to severa! restrictions of the
hypothesis space. Mode declarations and argument dependencies are used to generalize
clauses. All literals that do not fit in a graph structure are deleted. GOLEM tries to
avoid the overgeneralization problem with LC A by taking background knowledge into
account and uses the RLGG (Muggleton & Feng, · 1990). SIERES recovers from the
overgeneral.ization of the LCA by using the background knowledge to special.ize it.

Both FOIL and GOLEM as developed so far, have no real handle for inventing new
predicates. FOIL has no notion about the processing of the terms of the clauses. All
terms, i.e. variables in FOIL's case, are equal. Consequently, there is no criterion for
choosing which variables to use in a new predicate. The information gain heuristics does
not apply because nothing is known about the predicate to be invented.

GOLEM inverts a whole sequence of resolution steps. Hit would start considering
new predi cates at each step without any hint what they are supposed to be good for, the

14

. !

search space would explode.
The main advantage of SIERES compared to GOLEM or FOIL and FOCL is its ability

to invent new predicates. In this respect, SIERES adds aspects from CIGOL (Muggleton
& Buntine, 1988) and LFP2 (Wirth, 1989). However, the reason for introducing new
predicates is different. In CIGOL and LFP2 the new predicates are introduced to compress
the program. Both systems essentially check the knowledge base whether the introduction
of a new predicate could result in a more compact representation. The invention procedure
is not constrained by what the new predicate is supposed to be good for. Experience with
LFP2 showed that this method leads to situations where a definition of an invented
predicate was not general enough and had to be "re-invented" in a slightly different way.
At the same time many interesting and useful predicates which could have been suggested
by the operators did not pass the compaction filter.

CLINT-CIA (De Raedt & Bruynooghe, 1989) uses second order clause schemata to
suggest useful new concepts to the user. These new concepts are not needed to prove
anything new. Their purpose is to make theories more comprehensible and to allow the
system to use a simpler learning bias. In this respect, CLINT-CIA is similar to LFP2 but
different from SIERES.

The invention procedure in SIERES is goal-directed or demand-driven (Wrobel, 1988).
This goal direction provides the context for the invention. The argument dependency
relations and the critica! terms both focus the search and specify what the new predicate
is supposed to do.

Another distinguishing feature of SIERES is that it <loes not rely on a human oracle to
evaluate the invented predicates as CIGOL, LFP2, and CLINT-CIA do. It only requires
that the new predicate must allow the instances of the target predicate to be proved.

6 Current Status, Limitations, and Future Work

The ideas described in this paper have been implemented in an experimental system which
has been tested on several logic programs including reverse/2, append/3, DeMorgan's
law, and the following definition of merge sort.

merge_sort([AIB],[CID]) :
split([AIB],E,F),
merge_sort (E, G),
merge_sort (F ,H),
merge(G,H,[CID]).

As a consequence of the current relatively tight argument dependency constraints,
quick sort and reverse/2 as defined below are not learnable. In both clauses the

15

second argument of append is a term constructed from terms stemming from different
literals.

quick_sort([HIT],Sorted) ·
partition(H,T,L1,L2),
quick_sort(L1,SL1),
quick_sort(L2,SL2),
append(SL1,[HISL2],Sorted).

reverse([AIB],[CID]) :
reverse(B,E),
append(E,[A],[CID]).

This suggests that the current constraints may be too restrictive. So one of our aims is
to explore variations on the constraints looking to improve the space of learnable concepts
while avoiding combinatorially explosive search.

More important research issues include the following. The current method learns one
clause at a time and is not yet capable of learning arbitrary disjunctive definitions. Stahl
(1991) developed a method for splitting the training set such that each subset is very
likely to be covered by just one clause. The next implementation of SIERES will incor
porate this technique. It will also abandon the fixed sequence of argument dependency
graphs and employ a more flexible, heuristic general-to-specific search. Together, these
two improvements are expected to overcome this current limitation.

The use of LCA as a basis for learning raises important questions about the quality of
the seed examples. LCA is very susceptiple to chance regularities such as coincidentally
having the same constant at the same position of the terms that are to be generalized. It
is not yet fully understood what makes good examples for LCA but sorne heuristic criteria
are available. One heuristic is to avoid having the same constants in different examples
whenever possible. If the examples contain recursive data structures as terms good seed
examples should have terms of different depths and should have both shallow and deep
terms. Ling (1991) discusses the problem of good examples and representative data sets
from a different perspective.

So far the system is mostly inductive. Abduction is restricted to assuming new facts
about the new predicate to be invented. This is fairly safe because the system itself defines
the meaning of the predicate and it can assume whatever it wants as long as the target
predicate is correctly defined. However, the abductive aspects could be strengthened at
various points. Currently, SIERES makes a closed world assumption while constructing
the specific clauses.8 This assumption is not always justified, especially if SIERES is

8This closed world assumption does not extend to the meaning of the target predicate. As in any

16

integrated with an abductive system as outlined in section 2. Relaxing the closed world
assumption would allow SIERES to assume new facts for the target predicate.

We believe that SIERES provides a good framework for exploring interactions between
inductive and abductive learning. So far we touched only a small part of this vast area.
Further investigations have to reveal its true potential.

7 Conclusion

We have described a learning method, implemented in a system called SIERES. The
method integrates abduction and induction in a natural way and provides a good starting
point for further investigations Constraints provided by syntactic least common anti
instance, critica! terms, and argument dependency graphs focus a general-to-specific
search for new clauses. These constraints are also exploited for predicate invention.

The method invents new predicates in three steps. In the first step, the need for
a new predicate is discovered and its arguments are determined. The second step uses
abduction to infer more instances of the new predicate. The third step uses these instances
for inducing a general definition of the new predicate.

Acknowledgments

We thank Mike Pazzani, Dennis Kibler and the graduate students of the Al & ML com
munity at UCI for discussions of the ideas expressed in the paper and for discussions on
related systems such as FOIL and FOCL. Thanks also to Yousri El Fattah, who partici
pated in the initial stages of this research.

inductive learner, the final definition of the target predicate typically covers facts that were not given as
training instances.

17

References

DeRaedt, L., Bruynooghe, M. {1989). Constructive lnduction by Analogy: A method to
learn how to learn? In K. Morik (Ed.), Proceedings of the Fourth European Working
Session on Learning (pp. 189-200). Montpellier: Pitman.

Kietz, J.-U., & Wrobel, S. (1991). Controlling the complexity of learning in logic through
syntactic and task-oriented models. This volume.

Lassez, J.-L., Maher, M. J., & Marriot, K. (1988). Unification revisited. In J. Minker
(Eds.), Foundations of deductive databases and logic programs (pp. 587-626). Los
Altos, CA: Morgan Kaufmann.

Ling, C.X. (1991). Logic Program Synthesis from Good Examples. This volume.

Lloyd, J. W. (1987). Foundations of logic programming (2nd ed.). Berlín: Springer
Verlag.

Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by
inverting resolution. Proceedings of the Fijth International Conference on Machine
Learning (pp. 256-269). Ann Arbor, MI: Morgan Kaufmann.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. Proceeedings
of the First Conference on Algorithmic Learning Theory (pp. 1-14). Tokyo, Japan:
Ohmsha.

O'Rorke, P., Morris, S., & Schulenburg, D. (1990). Theory formation by abduction: A
case study based on the chemical revolution. In J. Shrager, & P. Langley (Eds.),
Computational Models o/ Scientific Discovery and Theory Formation (pp. 197-224).
San Mateo, CA: Morgan Kaufmann.

Pazzani, M., Brunk, C., Silverstein, G. (1991). An information-based approach to com
bining inductive and explanation-based learning. This volume.

Plotkin, G. D. (1970). A note on inductive generalization. In B. Meltzer, & D. Michie
(Eds.), Machine Intelligence (pp. 153-163). Edinburgh: Edinburgh University
Press.

Pople, H. E. (1973). On the mechanization of abductive logic. Proceedings of the Inter
national Joint Conference on Artificial Intelligence (pp. 147-152). Stanford, CA:
Morgan Kaufmann.

18

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Leaming, 5,
239-266.

Rouveirol, C., & Puget, J. F. (1989). A Simple Solution for Inverting Resolution. In K.
Morik (Ed.), Proceedings of the Fourth European Working Session on Leaming (pp.
210-210). Montpellier: Pitman.

Shapiro, E. Y. (1983). Algorithmic Program Debugging. Cambridge, MA: The MIT
Press.

Stahl, l. (1991). Induktion von disjunktiven Konzepten. Diplomarbeit, University of
Stuttgart (in German)

Wirth, R. (1989). Completing logic programs by inverting resolution. In K. Morik (Ed.),
Proceedings of the Fourth European Working Session on Leaming (pp. 239-250).
Montpellier: Pitman.

Wrobel, S.(1988). Automatic representation adjustment in an observational discovery
system. In D. Sleeman (ed.). Proc. of the 3rd European Working Session on
Leaming (pp. 253-262). Glasgow: Pitman.

19

sieres(Predicate,Examples, Theory, ADGs):
Until Examples provable from Theory

Select Examples' ~ Examples
Select Seed ~ Examples'
Select an argument dependency graph ADG E ADGs
Let G be an instance of ADG
Set head(G) = lca(Seed)
For all E E Seed

Let SE be an instance of ADG
Set head(SE) =E

Subject to constraints associated with ADG
For all E E Seed

instantiate /Jody(SE) with facts from Theory
G = lca(SE)

If the last literal in body(G) remains uninstantiated
NewPred = new_predicate(G)
Examples" = generate_examples(NewPred, Examples, Theory, G)
sieres(N ewPred, Examples', Theory, ADGs)

Figure 4: Pseudo-code for SIERES

20

rev([AIBJ, [CID]) :- rev([AIBJ, [CID]) :·

rev(B, E),

.· .-

rev([2,3],[3,2D, rev([], []},

rev([AIBJ, [CID]) :-

rev(B, e),

new(E, A, [CID)).

Figure 5: Learning reverse/2

21

_,

