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Abstract
Background—Startle inhibition by weak prepulses (PPI) is studied to understand the biology of
information processing in schizophrenia patients and healthy comparison subjects (HCS). The
Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and
single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage
analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family
study. These findings are being extended in a 5-site “COGS-2” study of 1800 patients and 1200
unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2
PPI data.

Methods—Eyeblink startle was measured in carefully screened HCS and schizophrenia patients
(n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test
site, PPI-modifying effects of medications and smoking, and relationships between PPI and
neurocognitive measures.

Results—884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of
diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis × test site interaction. HCS >
schizophrenia PPI differences were greatest among patients not taking 2nd generation
antipsychotics, and were independent of smoking status. Modest but significant relationships were
detected between PPI and performance in specific neurocognitive measures.

Discussion—The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in
single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and
other neurocognitive measures. Site differences were detected and explored. The target COGS-2
schizophrenia “endophenotype” of reduced PPI should prove valuable for identifying and
confirming schizophrenia risk genes in future analyses.

Keywords
endophenotype; genetics; multi-site; prepulse inhibition; schizophrenia; startle

1. Introduction
The inhibition of startle by weak lead stimuli (“prepulse inhibition”: PPI) is a heritable
quantitative phenotype (Greenwood et al., 2007) that is deficient in several neuropsychiatric
disorders, including schizophrenia (SZ) (Braff et al., 1978; Swerdlow et al., 2008).
Forebrain circuitry regulating PPI (Swerdlow et al., 2001) and genes associated with PPI in
patients and healthy comparison subjects (HCS) have been identified (Greenwood et al.,
2011, 2012). The NIMH Consortium on the Genetics of Schizophrenia (COGS) has pursued
multi-site genetic studies of PPI and other SZ endophenotypes, first in a family study of SZ
probands and unaffected family members and HCS (COGS-1 (Calkins et al., 2007)) and
more recently in a larger study of patients and unrelated HCS (COGS-2). COGS-2 was
designed to study the genetics of COGS-1 identified heritable endophenotypes in a large,
well-characterized cohort.

Sample demands of these genetic analyses require the use of multiple, geographically
dispersed data collection sites. This approach presents challenges for studies of complex
phenotypes like PPI, because differences in sample demographics, methodologies or test
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conditions across sites introduce uncontrolled variance into experimental measures. By
testing a more heterogeneous sample, multi-site studies also increase the likelihood that
findings will be generalizable rather than site-specific. We reported on our efforts to
carefully standardize PPI acquisition across multiple sites in studies of 196 “COGS-1” HCS
(Swerdlow et al., 2007), and we now describe the outcome of this multi-site approach using
measures of PPI from a planned mid-point analysis in data collection from 3000 COGS-2
subjects.

In this analysis, we characterized the ability of the COGS-2 multi-site platform to detect
patterns of PPI and its deficiency in SZ patients which were previously detected in single-
site studies. First, we examined the “yield” of usable data obtained from a large cohort
(n=1500) representing the first 50% of the planned COGS-2 sample, to understand
correctable sources of data loss. Second, we determined whether the present data collected at
5 sites reproduce findings detected in large, single-site studies within laboratories that
“specialize” in PPI acquisition. Specifically, we reported (Swerdlow et al., 2006a) the
impact of important moderating variables on PPI and its deficits in SZ patients, including
prepulse interval (deficits at 60 ms, but not 30 or 120 ms), sex (male PPI > female PPI),
medications (deficits blunted by 2nd generation antipsychotics (“SGAPs”)) and smoking
(associated with higher PPI levels in patients). Each of these variables have been reported to
moderate PPI or its deficits by other groups in single-site studies (Hong et al., 2008; Kumari
et al., 1999, 2004; Swerdlow et al., 2006a; Weike et al., 2000). Third, we assessed the
variability in these findings across the 5 sites, and attempted to identify factors contributing
to this variability. Fourth, we tested for significant relationships between PPI and specific
neurocognitive measures – including measures of working memory – previously detected in
single-site studies of HCS and SZ patients (Bitsios and Giakoumaki, 2005; Greenwood et
al., 2012; Jurado-Barba et al., 2011; Light et al., 2007, 2012; Rabin et al., 2009; Wynn et al.,
2005).

2. Methods
Participants were recruited and tested at 5 sites: Mount Sinai School of Medicine, University
of California Los Angeles, University of California San Diego, University of Pennsylvania
and University of Washington. Participants were 18–65 years old and fluent in English.
Inclusion and exclusion criteria for COGS-2 subjects are seen in Supplemental Tables
1S-2S, including criteria designed to exclude individuals whose PPI data was likely to be
confounded by interfering factors in the acquisition or analysis of the startle signal (e.g. high
electrode impedance, hearing impairment, “non-responder” to startle stimuli), or whose PPI
may have been altered by factors unrelated to SZ per se (e.g. recent recreational drug use or
history of electroconvulsive therapy). Local IRB boards of each testing site approved the
study, and all participants provided signed informed consent before study participation
(UCSD HRPP #080435). All participants underwent diagnostic and clinical assessments
(Andreasen, 1984a, 1984b; Faraone et al., 1999; First et al., 1995, 1996; Hall, 1995) by
diagnosticians trained according to a standardized procedure, as described in Supplemental
Materials. An overview of clinical and neurocognitive instruments used to characterize
participants was reported previously (Calkins et al., 2007).

Startle testing was initiated after completion of a specific set of diagnostic or experimental
measures (Table 3S). Among the final sample for PPI analysis, testing was divided over 2
days in 86 subjects (69 of whom were from test site 2), but the test sequence was
maintained. Testing methods followed previous reports (Braff et al., 2001, 2005; Swerdlow
et al., 2007) to measure the eyeblink component of the acoustic startle response using an
EMG system that recorded 250 1-ms epochs, starting with startle stimulus onset. The startle
session included 74 active and 18 blank stimulus (“nostim”) trials (interspersed throughout
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the session), and lasted 23.5-min, beginning with a 5-min acclimation period with 70-dB(A)
SPL noise that continued throughout the session. Startle stimuli were 40-ms 115-dB(A) SPL
noise bursts (near-instantaneous rise time, est. 1 ms). Prepulses were 20 ms noise bursts 15-
dB above a 70-dB(A) SPL noise background, with prepulse onset 30, 60 or 120 ms prior to
pulse onset; using slightly more intense 16 dB prepulses with this startle system, prepulse-
associated EMG activity is <0.5% of startle stimulus-induced levels (Swerdlow et al.,
2006b). Five startle stimuli were presented at the beginning (Block 1) and end of the session
(Block 4) to assess habituation. In Blocks 2–3, pulse alone and each of the 3 prepulse trial
types was pseudo-randomly intermixed (9 trials per condition per blocks; inter-trial intervals
11–19 s (mean=15 s)). In 18 “nostim” trials, data were recorded without stimulus
presentation, to assess basal EMG activity. Filters, amplification, calibration, scoring and
training procedures were described previously (Braff et al., 1992; Calkins et al., 2007;
Graham, 1975; Swerdlow et al., 2007).

Of the 1544 subjects for whom startle data were uploaded to the COGS-2 database, 1451
had any scorable startle data (i.e., in 93 subjects, waveforms were unscorable or testing was
stopped mid-session at subjects’ request or testers’ discretion), and 1402 had sufficient
startle data to allow calculation of the key dependent measure (60 ms PPI). Of these
subjects, 884 (438 HCS, 446 patients; Table 1) met the stringent inclusion criteria for
acceptable startle magnitude (mean startle magnitude for both PPI blocks ≥ 10 digital units
(1.31 uV/unit)) and other inclusion criteria listed in Tables 1S-2S.

Experimental measures (startle magnitude, habituation, latency and PPI) were analyzed
using repeated measures ANOVAs and post-hoc comparisons with test site, sex and
diagnosis as between-subject factors for main analyses, and other characteristics
(medication, smoking status, etc.) as between-subject factors for planned analyses. %PPI
was calculated as 100×(1−(magnitude of startle to pulse preceded by prepulse)/magnitude of
startle to pulse without a preceding prepulse)). For PPI, the primary dependent variable was
% inhibition with 60 ms prepulse intervals, which is known to differ significantly between
HCS vs. samples including both medicated and unmedicated SZ patients (Swerdlow et al.,
2006a), and which has been the primary dependent measure in previous studies of PPI and
genetics by COGS-1 (Greenwood et al., 2007, 2011) and individual laboratories
(Greenwood et al., 2012; Light et al., 2012; Swerdlow et al., 2006a, 2006b). Subsequent
ANOVAs assessed the temporal characteristics of PPI and its deficits in this sample, using
interval (30, 60 or 120 ms) as a within-subject variable. Analyses also compared measures
of startle magnitude during PPI testing, reflex habituation (startle magnitude reduction in
trial block 4 vs. 1), peak reflex latency, and latency facilitation (latency reduction on trials
with a prepulse followed by pulse vs. pulse alone trials). All variables were compared across
testing sites, and for simplicity given the large number of variables and factors, were
collapsed across right and left eyes. Alpha for all comparisons was 0.05. Effect sizes
(Cohen’s d (1988)) are reported where appropriate.

3. Results
Site differences in subject characteristics

Demographic and clinical characteristics of subjects across the 5 test sites are seen in Tables
1A-B. HCS were predominantly female in 4 out of 5 sites and predominantly male in the 5th

site, and patients were predominantly male across all sites. While patient age was roughly
comparable across the 5 sites, HCS age diverged across sites, with 15.6 years separating
sites 2 vs. 3. Another clear site difference was evident in racial stratification: for example,
the proportion of patients whose race was African American at each site ranged from 17.2%
(site 5) to 66.7% (site 3). When the distribution of the 3 major single-race categories (Asian,
African American, Caucasian) was compared across the 5 sites, significant site differences

Swerdlow et al. Page 4

Schizophr Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were detected for all subjects, and separately for HCS and patients (all p’s<0.0001). HCS
clinical characteristics also differed across sites (Table 1A); for example, rates of past Major
Depressive Disorders and/or Substance Abuse disorders among HCS ranged from 4.7% (site
3) to 29% (site 5) (p<0.0005). Among patients (Table 1B), significant site differences were
evident in smoking status (current vs. never), current smoking levels (self-reported), SANS,
SAPS and SOF scores. Site differences in both HCS and patients were evident in education,
GAF scores and MMSE scores.

Startle magnitude
Startle reflex data from the final sample of 884 subjects are seen in Figures 1-2. ANOVA of
startle magnitude (Figure 1A and B) revealed a significant effect of diagnosis (HCS>SZ;
F=7.23, df 1,864, p<0.008), test site (F=7.58, df 1,864, p<0.0001) and trial block (F=528.28,
df 1,864, p<0.0001), and significant interactions of diagnosis × block (F=6.46, df 1,864,
p<0.015) and site × block (F=5.42, df 1,864, p<0.0005), but no other significant main or
interaction effects. Inspection revealed substantially higher startle magnitude at test site 5 in
both HCS and patients (significantly greater than sites 1-4, p’s<0.0008–0.0001), with the
remaining 4 sites showing more comparable levels. Racial stratification may have
contributed significantly to this site effect: when race (Asian, African American, Caucasian)
was entered into the ANOVA model, startle magnitude showed a significant effect of race
(F=19.99, df 2,758, p<0.0001), but not significant effects of test site or race × site
interaction. Statistical descriptions of EMG activity on “no stim” trials, reflex habituation
(Figure 1A,B), peak reflex latency and latency facilitation (Figure 2) are found in
Supplemental Materials.

PPI
PPI data are seen in Figure 3. ANOVA of the key dependent measure - %PPI at 60 ms
intervals – revealed a significant effect of diagnosis (HCS>patient; F=12.37, df 1,864,
p=0.0005; d=0.15) (Figure 3A) and sex (male>female; F=10.11, df 1,864, p<0.002), and a
significant interaction of diagnosis × test site (F=3.50, df 4,864, p<0.008) (Figure 3D).
Including trial block (2 vs. 3) as a within-subject factor did not change these outcomes,
though the overall effect size of group differences was somewhat greater in Block 2 vs. 3
(d=0.20 vs. 0.07) (Figure 3A). While there was no significant sex × diagnosis interaction,
the estimated effect size for diagnostic differences in PPI was larger in women vs. men
(d=0.30 vs. 0.13). Effects of diagnosis on PPI were independent of group differences in
startle magnitude: a similar pattern of PPI findings was generated using subgroups of HCS
and patients matched for startle magnitude by excluding the highest startling 5% of HCS and
the lowest startling 5% of patients (mean amplitudes HCS vs. patients = 45.71 vs. 45.13):
analysis of PPI in these matched groups confirmed main effects of diagnosis (p<0.002) and
sex (p<0.0008), and a significant diagnosis × test site interaction (p<0.015)). A similar
analysis confirmed that effects of diagnosis on PPI were independent of group differences in
no stim levels. Effects of diagnosis on PPI were also independent of age differences: a
similar pattern of PPI findings was generated using subgroups of HCS and patients matched
for age by excluding the youngest 20% of HCS and the oldest 20% of patients (mean age
HCS vs. patients = 40.66 y vs. 40.19 y; PPI: main effects of diagnosis (p<0.007) and sex
(p<0.006), and significant interaction of diagnosis × test site (p<0.025)). Across individual
sites, HCS>patient PPI levels reached statistical significance for site 1 (group: F=6.60, df
1,219, p=0.01; sex: F=4.30, df 1,219, p<0.04; group × sex: ns), site 3 (group: F=12.42, df
1,85, p<0.0008; sex: ns; group × sex: ns) and site 4 (group: F=3.78, df 1,88, p=0.053; sex:
F=10.62, df 1,188, p<0.002; group × sex: F=3.63, df 1,188, p=0.058; group × block: F=4.51,
df 1,188, p<0.035; block 1 group: F=6.72, df 1,188, p=0.01), but not for sites 2 or 5.
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Inspection of data from all subjects meeting inclusion criteria revealed a substantial range of
effect sizes for patients vs. HCS %PPI levels across the 5 test sites, ranging from negative
(higher PPI in patients vs. HCS, site 5: d=-0.16) to large and positive (higher PPI in HCS vs.
patients, site 3: d=0.69), with a mean overall effect size of 0.15 (Figure 3B). Site differences
were evident for PPI among patients (range: 34.75% (site 3) - 52.86% (site 2); site 3 was
lower than the other 4 sites, p’s<0.002–0.03) and among HCS (range sites 1-4:
52.72%-54.86%; site 5=46.21%; site 5 was lower than the other 4 sites at or near
significance levels, p’s<0.02-0.055). Based on findings with startle magnitude and no stim
levels, we assessed whether racial stratification may have contributed significantly to this
site effect on %PPI. Using subjects from the 3 major single-race categories, ANOVA of
%PPI revealed a significant effect of race (F=3.55, df 2,758, p<0.04), but no significant
effect of test site or race × site interaction. While it was not possible to complete this
analysis using diagnosis as a grouping factor due to the absence of any Asian patients at site
3, ANOVA of %PPI using race, diagnosis and sex (but not test site) as grouping factors
revealed a significant effect of diagnosis (F=4.03, df 1,761, p<0.05), but not race (F=1.14, df
2,761, ns) or sex (F=2.38, df 1,761, ns), and no 2- or 3-way interactions. In other words,
racial stratification appears to contribute to differences across test sites, but not across
diagnostic groups.

Analyses that included the wider temporal window of 30–120 ms prepulse intervals
confirmed maximal deficits in SZ patients at 60 ms intervals (Figure 3C). ANOVA yielded a
significant interaction of diagnosis × prepulse interval (F=15.43, df 2,1728, p<0.0001), with
no significant diagnostic differences for 30 or 120 ms intervals. For 30 ms PPI, there were
significant effects of test site (F=3.27, df 4,864, p<0.015) and sex (F=5.73, df 1,864,
p<0.02), while for 120 ms PPI, site effects reached marginal significance (p=0.05), while
those for sex did not.

It is worth noting that the finding of HCS>patient PPI was reproduced very closely when
data were included from all subjects who completed startle testing (n=1402), independent of
exclusion criteria (Figure 3D). Thus, ANOVA of 60 ms PPI from these 1402 subjects
revealed a significant main effect of diagnosis (F=12.83, df 1,1382, p<0.0005; d=0.16), with
a larger effect size detected in the first half of PPI testing (F=19.078, df 1,1399, p<0.0001;
d=0.24) and a comparable temporal pattern to that seen in the “cleaner” sample of 884
subjects, but greater group separation at the 120 ms interval.

Moderating effects of medications and smoking
Potential moderating effects of medications on group differences in PPI were assessed
(Figure 4). Significant PPI deficits were detected among subgroups of patients who, by self-
report: 1) were not taking any antipsychotic medications (n=52; F=5.61, df 1,488, p<0.02;
d=0.35); 2) were not taking 2nd generation antipsychotics (SGAPs) (n=80; F=4.78, df 1,514,
p<0.03; d=0.23); and 3) were taking SGAPs (Table 2) (n=366; F=7.58, df 1,800, p<0.007;
d=0.13). Effect sizes for each of these subgroups were larger during the first half of PPI
testing (d’s=0.47, 0.32 and 0.17, respectively). Among SGAPs taken by more than 5
patients, PPI rankings (mean %PPI) were: clozapine (54.82) > ziprasidone (51.27) >
olanzapine (48.16) > quetiapine (47.33) > risperidone (46.58) > aripiprazole (45.14). Dose
effects were not readily assessed because many subjects were taking multiple different 1st

and 2nd generation antipsychotics. Nonetheless, median splits based on the primary SGAP
for each subject revealed that subjects taking higher doses exhibited numerically (but not
statistically) greater levels of PPI, compared to subjects taking lower doses. Site differences
in self-reported antipsychotic usage and dosing are seen in Table 2. No clear patterns of site-
differences in antipsychotic use were detected, though the mean dose of clozapine – the
SGAP most associated with “normalized” PPI in SZ patients (Kumari et al., 1999; Weike et

Swerdlow et al. Page 6

Schizophr Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



al., 2000) – was approximately 30-90% greater at site 5, compared to the other 4 sites.
Temporal patterns of PPI deficits were comparable among patients not taking antipsychotics
vs. other medication-based subgroups, though -- as described above -- the magnitude of the
deficit at 60 ms intervals was somewhat larger among unmedicated patients (Figure 4).

Self-reported smoking status did not moderate group differences in PPI in this sample.
When smoking status (never vs. current; excluding non-cigarette tobacco use) was included
as a grouping factor, ANOVA of PPI confirmed main effects of diagnosis and sex, but no
main effect of smoking (F<1) or significant 2- or 3-way interactions. Compared to all HCS,
PPI was deficient in SZ patients who never smoked (p<0.008) and in those who currently
smoked (p<0.01). Among patients who currently smoked, there was a trend for higher PPI to
be associated with higher smoking levels (mean %PPI: <0.5 packs/day = 45.65; 0.5–1.0
packs/day = 49.81; >1 pack/day = 55.60), but this relationship was not statistically
significant.

Demographic, clinical and neurocognitive correlates
Effects of sex and race on PPI are described above; the relationships of PPI to other
demographic variables, including those related to family structure and SZ history, are seen
in Table 3, and are generally weak or absent. This was also true when PPI values were used
from the first half of startle testing, where schizophrenia-linked deficits were greatest.
Similarly, PPI was not significantly related to a number of clinical variables, including age
of illness onset, number of hospitalizations, symptoms severity or functional impairment;
PPI also did not distinguish groups based on the presence or absence of past diagnoses of
mood or substance disorders. PPI was modestly related to global mental status (MMSE:
r=0.08, p<0.02) and to working memory performance in the LNS (reorder) (r=0.11,
p<0.0015), and these relationships were even weaker when analyses were limited to patients,
due to limited range of MMSE and LNS scores. The large sample size allowed meaningful
comparisons of the SZ patients whose PPI levels were in the lowest vs. highest quartiles of
the SZ sample. These quartile comparisons revealed no significant group differences on any
of the above demographic, functional or neurocognitive measures, except for LNS reorder
score, which was significantly greater among patients in the highest vs. lowest PPI quartile
(F=8.92, df 1,220, p<0.004) (Table 3). Importantly, this was not meant to be a
comprehensive analysis of neurocognitive correlates of PPI in this sample, but rather was
conducted as an interim assessment of the degree to which the present multi-site findings
reproduce patterns described in existing reports of single-site studies. Correlates of startle
magnitude and reflex latency are described in Supplemental Materials.

4. Discussion
The major finding of this interim analysis is that the COGS-2 multi-site platform is capable
of detecting the key schizophrenia PPI endophenotype – reduced PPI with 60 ms prepulse
intervals. The moderating impact of several factors on PPI and its reduction in SZ patients
was also detected. That such findings can emerge from a multi-site platform is important
because genetic analyses for which this endophenotype will be used require large samples
that are feasible only in multi-site designs; were these designs to add uncontrolled variance
(i.e. due to site-specific idiosyncrasies in testing) or other confounding effects that prevented
detection of the endophenotype, this might greatly diminish the scientific value of such an
undertaking. The present findings support the utility and fidelity of the COGS-2 multi-site
platform, because the general pattern of results with PPI and its moderating factors have
been detected in single-site studies by a number of different investigative groups (Aggernaes
et al., 2010; Braff et al., 1978, 1999, 2001; Csomor et al., 2009; Hammer et al., 2011, 2013;
Hong et al., 2007; Kishi et al., 2012; Kumari et al., 1999, 2007; Kunugi et al., 2007; Light et
al., 2012; Ludewig et al., 2003; Mackeprang et al., 2002; Martinez-Gras et al., 2009;
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Meincke et al., 2004; Molina et al., 2011; Moriwaki et al., 2009; Oranje and Glenthoj, 2013;
Preuss et al., 2011; Quednow et al., 2006; Rabin et al., 2009; Takahashi et al., 2008; Wang
et al., 2013; Weike et al., 2000; Xue et al., 2012), one of which (UCSD) is represented in
this study (see reference data from UCSD, Figure 5).

Reduced PPI in SZ patients was not detected at all COGS sites. Analyses across test sites
revealed that patients’ PPI at site 3 was lower, and HCSs’ PPI at site 5 was lower, compared
to corresponding groups at other test sites. Among the 5 COGS sites, site 5 HCS and
patients also exhibited significantly higher startle magnitude than the others, and site 3
patients exhibited significantly higher “no stim” values compared to patients at the other 4
sites. In our previous report of startle and PPI across COGS-1 test sites, levels of PPI, startle
magnitude and “no stim” activity from HCS in sites 3 and 5 did not deviate significantly
from those of the other sites. A well-trained “mock subject” was tested at each test site as
part of our COGS-wide quality assurance process, but did not note any deviations in
protocol at sites 3 or 5 that might explain the observed differences in startle measures.
Conceivably, some unique characteristics of site 3 patients or site 5 subjects might account
for their disparate startle values. These sites were “outliers” compared to the other 4 sites in
demographic variables such as age and sex. For example, site 3 was the only site at which
the sex distribution in patients (M:F=50:26) and HCS (45:22) was comparable. Site 5 HCS
more often had histories of mood or substance disorders, and had the lowest GAF scores
among the 5 sites; patients from sites 3 and 5 differed from those at other sites in some
clinical variables (e.g. highest clozapine use at site 5), but the “direction” of these
differences (suggesting more or less clinical severity) was not always consistent (Table 1).

One contributor to site differences in startle variables may have been site differences in
racial stratification. We previously reported racial differences in both startle magnitude and
%PPI in a single-site study (Swerdlow et al., 2005), noting that Asian vs. Caucasian
differences in %PPI were obviated by matching groups for comparable startle magnitude. A
full accounting for contributions of race to site differences in COGS-2 is complicated by the
fact that among the 3 major race groups – Asian, African American and Caucasian – not all
were represented among both HCS and patient groups at each of the 5 test sites.
Nonetheless, separate ANOVAs revealed that significant HCS>patient differences in PPI
remained after inclusion of race as a grouping factor, while site differences in PPI did not.
Certainly, site differences in racial stratification is an important issue facing multi-site
studies of SZ (Tamminga et al., 2013).

Since publication of our first multi-site COGS-1 study of PPI in HCS in 2007, at least 18
single-site Medline-listed reports of PPI deficits in SZ or prodromal (Quednow et al., 2008;
Ziermans et al., 2011, 2012) patients have been published, including studies from 10
different countries. This brings the total number of published reports of such deficits to over
40. Among these recent (post-2007) single-site reports of SZ-linked PPI deficits, moderating
effects prepulse interval (Csomor et al., 2009), atypical antipsychotic medications
(Aggernaes et al., 2010; Wynn et al., 2007), smoking (Rabin et al., 2009; Woznica et al.,
2009) and sex (Takahashi et al., 2008), and significant correlates with clinical symptoms
(Martinez-Gras et al., 2009; Wang et al., 2013) and neuropsychological performance (Rabin
et al., 2009) were detected in some, but not all studies. While other negative findings may
have gone unpublished, one recent group reported a failure to detect reduced PPI using 120
ms prepulse intervals in a large sample of SZ patients (Ivleva et al., 2013). Such a result
would be consistent with our present findings (Figure 3C and 3D), and predicted by our
large, single-site studies (Light et al., 2012; Swerdlow et al., 2006a; see Figure 5) as well as
other reports in medicated SZ cohorts, which demonstrated SZ-linked PPI deficits with 60
ms but not 120 ms prepulse intervals (Csomor et al., 2009; Hammer et al., 2011; Ludewig et
al., 2003; Wang et al., 2013). We previously discussed the potential importance in
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schizophrenia of inhibitory processes active 60 ms after a lead stimulus to the flow of
preconscious information into conscious awareness (Grobstein, 2005; Kanabus et al., 2002;
Libet et al., 1979, 1985; Swerdlow et al., 2006a). The insensitivity of 120 ms PPI to any
moderating variables (see Supplemental Materials) raises the possibility that inhibition at
this interval may have reached a physiological “ceiling” in both HCS and SZ groups in this
particular study, that obscured detection of group differences. Of note, PPI deficits in SZ
patients have been reported by other groups using 120 ms prepulse intervals (Kumari et al.,
2007; Kunugi et al., 2007; Mackeprang et al., 2002; Martinez-Gras et al., 2009; Preuss et al.,
2011; Quednow et al., 2006, 2010; Xue et al., 2012).

While some groups have reported medium-to-large effect size deficits in PPI in SZ vs. HCS
cohorts (Braff et al., 1999; Kunugi et al., 2007; Martinez-Gras et al., 2009), our most recent
large single-site reports from UCSD have detected deficits with 60 ms prepulse intervals
with effect sizes that ranged from 0.24 (Swerdlow et al., 2006a) to 0.58 (Light et al., 2012),
consistent with the present COGS-2 findings at UCSD (d=0.28 overall, and 0.39 in Block 2).
The effect size from the most rigorously screened subjects (n=884) in the present study
(d≈0.15) is considerably lower than that from either of these recent studies, and it is
parsimonious to suggest that this smaller effect size in this multi-site study may have
resulted from between-site variability in either subject characteristics or data acquisition.
Factors contributing to “artificially” small PPI differences between HCS and SZ patients in
the present study are common to most recent reports: 1) women have lower PPI than do men
(Swerdlow et al., 1993), and HCS are predominantly (1.6:1) women, while SZ patients are
predominantly (2:1) men. At the one site with balanced sex distributions in the present study
(site 3), the PPI deficit in patients had an effect size of 0.69; 2) PPI is generally increased by
nicotine (Hong et al., 2008; Kumari et al., 2001), and smoking is both more common and
heavier among SZ patients vs. HCS (Table 1); PPI is higher in medicated vs. unmedicated
SZ patients, and especially in patients medicated with SGAPs (Csomor et al., 2009; Kumari
et al., 1999; Swerdlow et al., 2006a; Weike et al., 2000), and the prevalent use of any (88%)
or specifically SGAPs (82%) by SZ patients in the present study is representative of most
recent studies of PPI in SZ. While these known effects of sex, smoking and medications on
PPI diminish the magnitude of the measurable group difference between HCS and SZ
patients, it is even more important that they are not easily extricated from a subject’s PPI
value, and thereby complicate the signal provided by this endophenotype for identifying SZ
genes.

The present findings may provide guidance for enhancing the power of future genetic
studies utilizing PPI as an endophenotype. First, the PPI “signal” appears to be most robust
early in the test session, before startle magnitude has been further reduced by reflex
habituation. Second, use of a full temporal range of prepulse intervals may allow
investigators to select the PPI interval that provides the most robust group differences for
use as the primary endophenotype. It is clear that studies from different laboratories differ
slightly in the precise temporal “sweet spot” for this inhibitory deficit, and this might reflect
differences in stimulus characteristics or response acquisition hardware and/or software. For
this reason, using a modest range of intervals make sense vs. relying on a single interval.
Third, less restrictive exclusion criteria (e.g. startle magnitude, hearing threshold, history of
ECT) do not appear to weaken the PPI endophenotype, and greatly increase the number of
subjects eligible for genetic analyses. Whether it is preferable for genetic analyses to utilize
a smaller and “cleaner” sample vs. a larger and more confounded sample may depend
somewhat on the specific questions being asked and the types of genetic analyses being
pursued. However, the present findings suggest that a larger, more confounded sample does
not deflate the effect size of the PPI deficit in patients vs. HCS, and this may provide
investigators with options in their study design.
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Less consistent findings across recent single-site studies, as well as the present multi-site
study, include the relationship between smoking and the magnitude of PPI deficits among
SZ patients (Hong et al., 2008; Moriwaki et al., 2009), and the associations between PPI and
either clinical symptoms (Braff et al., 1999; Duncan et al., 2006; Light et al., 2012;
Martinez-Gras et al., 2009; Meincke et al., 2004; Quednow et al., 2010; Swerdlow et al.,
2006a; Wang et al., 2013; Xue et al., 2012) or neurocognitive measures (Bitsios and
Giakoumaki, 2005; Kishi et al., 2012) in SZ patients. Perhaps such variability should not be
surprising: studies vary widely in the precision with which nicotine use and levels are
documented, and many studies – including our own – use very blunt self-report measures of
current and lifetime smoking history. In contrast to the wide range of metrics that
characterize nicotine use across studies, clinical symptom scales and neurocognitive
measures should be relatively more standardized, and the variability in the relationship
between these measures and PPI across studies may reflect other factors, including site
differences in patient characteristics or PPI methodology, and the intrinsic heterogeneity of
SZ. In fact, the relative consistency of PPI deficits across numerous SZ cohorts should not
be interpreted as evidence of a single, common neuropathological process: PPI deficits
across different studies, and indeed across different patients, almost certainly reflect
pathology at different levels of limbic cortico-striato-pallido-thalamic and pontine circuitries
– any one of which contributes to the regulation of this complex phenotype, and which have
been reported to be among the many brain structures involved in the heterogeneous
neuropathology of the schizophrenias (cf. Swerdlow et al., 2008, 2011).

Perhaps the bigger issue raised in this interim analysis is the relative cost and benefit of
acquiring and analyzing complex phenotypes like PPI using single- vs. multi-site designs.
Were it not for the need to achieve adequate power for genetic analyses, the present findings
might be interpreted to suggest that the costs exceed the benefits for multi-site studies of
PPI: the general patterns of findings in this multi-site study reproduce most reports from
single-site studies, have smaller effect sizes, and include added sources of uncontrolled
variance, even after substantial efforts were allocated towards careful multi-site training and
quality control. Despite these reduced effect sizes, the orderly and consistent findings
detected with this multi-site platform support optimism that COGS will continue to identify
PPI- and SZ-related genes upon completion of testing in the full sample of 3000 COGS-2
subjects.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Startle measures (± SEM) in the interim COGS-2 sample. A. Startle magnitude on pulse-
alone trials (PA), EMG activity during nostim trials (NS) and % startle habituation (%HAB),
based on % reduction in startle magnitude in block 4 vs. block 1. Data shown are from
aggregate group of N = 884 subjects. B. Same variables in “A”, shown by test site. (*)
statistically significant effect of group, see text. @ significantly greater than other 4 sites
(PA: site 5 HCS and patients > all other sites; NS: site 3 patients > all other sites).
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Figure 2.
Peak startle latency on PA and 30, 60 and 120 ms prepulse trials in the aggregate sample of
N = 884 subjects. B. Same variables in “A”, shown by test site. (*) statistically significant
effect of group, see text. Error bars are too small to be visible.
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Figure 3.
% PPI (± SEM). A. Primary dependent measure: %PPI with 60 ms prepulse intervals shown
across all trials (“ALL”) and divided by trial block (B2, B3), among 884 carefully screened
HCS and patients. B. Same variables in “A”, shown by test site (! p=0.01; !! p < 0.0008; # p
= 0.053; group × block p<0.035; block 1 p=0.01). C. %PPI across 30, 60 and 120 ms
prepulse intervals in 884 carefully screened subjects. D. Same variables in “C”, shown
across the inclusive COGS-2 interim sample (n=1402). (*) statistically significant effect of
group, see text.
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Figure 4.
Medication effects on %PPI (± SEM) in this interim COGS-2 sample. Data shown are %PPI
with 60 ms prepulse intervals in HCS vs. 3 subgroups of patients: those taking no
antipsychotics (“No Meds”), those taking no second generation antipsychotics (“No
SGAs”), and those taking SGA’s (“SGA’s”). (*) statistically significant effect of group, see
text.
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Figure 5.
Reference data (± SEM) on identical measures from published single-site study at UCSD
(Swerdlow et al., 2006a), N=169). A. Startle magnitude on PA trials (compare to Figure
1A). B. Peak startle latency (compare to Figure 2A). C. PPI across 30, 60 and 120 ms
prepulse intervals (compare to Figures 3C and 3D). (*) statistically significant effect of
group. At UCSD, d for 60 ms PPI, HCS vs. patients was 0.24 in (Swerdlow et al., 2006a)
and 0.28 in present study (0.39 in Block 2).
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Table 3

Relationships of PPI (60 ms) to demographic and clinical variables in SZ patients

Sex F = 9.65, df 1,444, p<0.003 (M>F)

Age (y) R = -0.10, n=446, p = 0.03

Ethnicity (Caucasian vs. African American) F = 1.08, df 1,371, NS

Known multiplex vs. known singleton F = 0.75, df 1,431, NS

Smokers:

Never vs. Current F = 0.55, df 1,423, NS

Current # cigarettes/d R = 0.07, n = 211, NS

Handedness (R vs. L) F = 0.98, df 1,432, NS

Education (y) R = 0.04, n = 446, NS

Past Mood DO F = 0.08, df 1,444, NS

Past Subst DO F = 2.33, df 1,444, NS

GAF R = -0.08, n=442, NS

MMSE score R = 0.07, n=434, NS

Age, symptom onset R = 0.04, n=438, NS

# Hospitalizations Rs = 0.02, n=445, NS

Global SANS R = 0.06, n=444, NS

Global SAPS R = 0.05, n=442, NS

SOF Total Score R = -0.03, n=441, NS

UPSA-B Score R = 0.05, n=441, NS

Letter Number Span (LNS), Forward R = 0.06, n=445, NS

LNS Forward, lowest vs. highest quartile PPI F = 1.38, df 1,220, NS

LNS, Reorder R = 0.09, n=445, p<0.055

LNS Reorder, lowest vs. highest quartile PPI F = 8.92, df 1,220, p<0.004
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