Title
Search for CP violation in the decays D0 --> K- K+ and D0 --> pi- pi+.

Permalink
https://escholarship.org/uc/item/5zw4195n

Journal
Physical review letters, 100(6)

ISSN
0031-9007

Authors
Aubert, B
Bona, M
Boutigny, D
et al.

Publication Date
2008-02-15

DOI
10.1103/physrevlett.100.061803

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Search for CP Violation in the Decays $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$

We measure time-integrated CP-violating asymmetries of neutral charmed mesons in the modes $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ with the highest precision to date by using $D^0 \rightarrow K^- \pi^+$ decays to correct detector asymmetries. An analysis of 385.8 fb$^{-1}$ of data collected with the BABAR detector yields values of $a_{\text{CP}}^{K K} = (0.00 \pm 0.34 \text{(stat)} \pm 0.13 \text{(syst))\%}$ and $a_{\text{CP}}^{\pi \pi} = (-0.24 \pm 0.52 \text{(stat)} \pm 0.22 \text{(syst))\%}$, which agree with standard model predictions.

DOI: 10.1103/PhysRevLett.100.061803

PACS numbers: 13.25.Ft, 11.30.Er, 14.40.Lb
Evidence for quantum-mechanical oscillations in neutral charmed mesons has recently been reported [1,2], increasing the importance of understanding the relative behaviors in this particle-antiparticle system. Unknown processes could contribute significantly to these oscillations, and there are many theoretical scenarios in which particle-antiparticle asymmetries are also expected. Charge-parity (CP) violation in time-integrated decay rates of charmed mesons at levels as large as 1% has not yet been experimentally ruled out [3], and at this level would be evidence of unknown physical phenomena [4,5]. The CP-even decays $D^0 \to K^- \pi^+$ and $D^0 \to \pi^- \pi^+$ [6] are Cabibbo suppressed, with the two neutral charmed mesons, D^0 and \bar{D}^0, sharing the final states. CP-violating asymmetries in these modes are predicted to be $O(0.001\% - 0.01\%)$ in the standard model of particle physics [7], yet have not been measured precisely due to limited sample sizes and relatively large systematic effects [8].

We search for CP violation in decays of charmed mesons produced from charm-quark pairs in the reaction $e^+e^- \to c\bar{c}$ by measuring the asymmetries in the partial decay widths Γ,

$$a^{KK}_{CP} = \frac{\Gamma(D^0 \to K^- \pi^+) - \Gamma(\bar{D}^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+) + \Gamma(\bar{D}^0 \to K^+ \pi^-)},$$

$$a^{\pi\pi}_{CP} = \frac{\Gamma(D^0 \to \pi^- \pi^+) - \Gamma(\bar{D}^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to \pi^- \pi^+) + \Gamma(\bar{D}^0 \to \pi^+ \pi^-)}.$$

In this construction, a^{hh}_{CP}, $h = K, \pi$, includes all CP violating contributions, direct and indirect [4]. The presence of direct CP violation in one or both modes would be signaled by a nonvanishing difference between the modes, $a^{KK}_{CP} - a^{\pi\pi}_{CP} \neq 0$. Indirect CP-violating asymmetries in these modes arising from D^0, \bar{D}^0 oscillations have been measured in analyses of decay-time distributions [9], most recently with a precision of 0.30% [2].

Precise quantification of asymmetry in D^0-flavor assignment, called tagging, has long been considered the primary experimental challenge in these measurements. We develop a new technique for measuring and correcting this asymmetry using only the recorded data. However, forward-backward (FB) asymmetry in $c\bar{c}$ production may be more significant at the center-of-mass energy of e^+e^- collisions in BABAR, $\sqrt{s} = 10.6$ GeV. This production asymmetry will create a difference in the numbers of reconstructed D^0 and \bar{D}^0 events due to the FB detection asymmetries coming from the boost of the center-of-mass system (c.m.s.) relative to the laboratory.

The production asymmetry has two physical components. Interference in $e^+e^- \to c\bar{c}$ as mediated by either a virtual γ or a virtual Z^0 contributes at the percent level at this energy, and is well understood. In addition, asymmetries induced by higher-order QED effects are expected to have polar-angle dependence and to peak sharply in the forward and backward directions [10]. Although well considered for μ-pair production [11], the precise shape of this contribution for D production is not known.

We use a data sample corresponding to an integrated luminosity of 385.8 fb$^{-1}$ collected with the BABAR detector [12] at the PEP-II e^+e^- collider at SLAC. The production vertices of charged particles are measured with a silicon-strip detector (SVT), and their momenta are measured by the SVT and a drift chamber (DCH) in a 1.5 T magnetic field. Information from a Cherenkov-radiation detector, along with energy-deposition measurements from the SVT and DCH, provide $K-\pi$ discrimination.

We analyze neutral D mesons produced from $D^+ \to D^0 \pi^+$; the charge of the π^+, a low-momentum (soft) pion, indicates the flavor of the D^0 at production. To correct for asymmetry in this flavor tag, we measure the relative detection efficiency for soft pions in recorded data using the decay $D^0 \to K^- \pi^+$ with (tagged) and without (non-tagged) soft-pion flavor tagging. The only detector asymmetry present in reconstruction of the signal modes is due to the tagging π^+, since the CP final states are reconstructed identically for D^0 and \bar{D}^0.

We reconstruct the four decay chains $D^0 \to K^- \pi^+$; $D^+ \to D^0 \pi^+$, $D^0 \to K^- \pi^+$; $D^+ \to D^0 \pi^+$, $D^0 \to K^- \pi^+$; and $D^+ \to D^0 \pi^+$, $D^0 \to \pi^- \pi^+$. We require D^0 candidates to have center-of-mass momenta greater than 2.4 GeV/c, which removes almost all B decays. Each D^0 daughter must satisfy a likelihood-based particle-identification selection and must have at least two position measurements in each of the z and ϕ coordinates of the SVT. We require π^+ candidates to have a lab momentum greater than 100 MeV/c and at least six position measurements in the SVT.

For $h = K, \pi$, we accept candidates with an invariant mass $1.79 < m_{hh} < 1.93$ GeV/c2 and, for final states with a π^+, an invariant mass difference $0.140 < \Delta m < 0.152$ GeV/c2, where $\Delta m \equiv m_{h\pi^+} - m_{hh}$. For each D^0 candidate, we constrain the h^+h^- tracks to originate from a common vertex; for applicable final states, we also require the D^0 and π^+ to originate from a common vertex within the e^+e^- interaction region. We select candidates for which the χ^2 probability of the vertex fit of the two D^0 daughters is greater than 0.005. For the KK and $\pi\pi$ modes, final asymmetries are calculated using events for which the polar angle of the D^0 momentum in the c.m.s. with respect to the beam axis satisfies $|\cos \theta^{m_{D^0}}_{h\pi^+}| < 0.8$.

We statistically separate signal from background in the selected events by calculating signal weights based on an optimized likelihood function [13]. The likelihood function is composed of probability density functions (PDFs) that are fitted to the mass distributions using the maximum likelihood technique. For the non-tagged sample, a one-dimensional PDF is fitted to the $m_{kk\pi}$ distribution; for the tagged samples, two-dimensional PDFs are fitted to the m_{hh} and Δm distributions. Two-dimensional PDFs are used
for the tagged samples to account for possible asymmetries in the background from correctly reconstructed D^0 decays with a misassociated π^+ candidate; this background category peaks in m_{hh} but does not peak in Δm. The PDFs in this analysis are nearly identical to those used in an analysis of the decay $D^0 \rightarrow K^+\pi^-$ [1], since the signal shapes and background sources are very similar. Although the PDFs are motivated by studies of simulated events, all of the shape parameters are varied in the fits to recorded data. Our selection of PDFs is treated as a source of systematic uncertainty. Because the signal shape is indistinguishable in the soft-pion asymmetry.

Our selection of PDFs is treated as a source of systematic uncertainty. Because the signal shape is indistinguishable from that of the background, our analysis is insensitive to the exact forms of the PDFs. This analysis is sensitive only to ratios of D^0-signal yields to D^0-signal yields, and not to absolute yields, so the final results are relatively insensitive to the exact forms of the PDFs.

The decay $D^0 \rightarrow K^-\pi^+$ is chosen as a calibration mode because it provides an easily reconstructed independent sample with high statistics. However, detector asymmetries in reconstruction of the D^0 final state cannot be ignored [see Figs. 2(a) and 2(b)]. These must be corrected to isolate the soft-pion asymmetry.

Using the nontagged $K\pi$ sample, we produce a map of the relative reconstruction efficiency between D^0 and \bar{D}^0 in this final state in terms of the momenta of both D^0 daughters, shown by components in Figs. 2(a) and 2(b). For each D^0 daughter, we consider the momentum magnitude and polar angle in the lab with respect to the beam axis; these components are correlated. The daughters are, however, factorizable from one another. By considering the normalized product of the K and π efficiency-map components, we obtain a four-dimensional relative-efficiency map for correcting $D^0 \rightarrow K^-\pi^+$ relative to $\bar{D}^0 \rightarrow K^+\pi^-$. The presence of prompt D^0 decays not originating from a D^{*+} in the nontagged sample extends the kinematic boundaries of the map but does not otherwise affect it.

This $K\pi$ map is used to weight the D^0 candidates in the slow-pion tagged $K\pi$ sample, eliminating asymmetries due to the D^0/\bar{D}^0 daughters. Because all charm production is subject to the same production asymmetries, these are simultaneously removed from the tagged $K\pi$ sample by this correction. After the weights have been applied, the remaining asymmetry in the sample is due to the relative soft-pion efficiency.

We produce a map of the relative soft-pion efficiency in terms of the pion-momentum magnitude and polar angle in the lab [Fig. 2(c)]. Charm production is azimuthally uniform, and ϕ is found to be uncorrelated with other momentum variables. Therefore, the ϕ dependence is accounted for by an integrated scale factor. The uncertainties shown [Fig. 2(d)] are due to the statistical uncertainties in the sample yields. Signal-mode D^0 yields are weighted with this π_s map to correct for the soft-pion tagging.

FIG. 1. Invariant mass distributions of the KK final state tagged as (a) D^0 and (b) \bar{D}^0, and the $\pi\pi$ final state tagged as (c) D^0 and (d) \bar{D}^0. Distributions of data (points with error bars) in the signal region $0.1434 < \Delta m < 0.1474 \text{ GeV}/c^2$ are overlaid with fitted PDFs (dashed line, shaded areas). The white regions under the central peaks represent signal events, the light gray misassociated π^+ events, and the dark gray remaining nonpeaking background. The data are shown over ranges extended beyond the fitted regions to illustrate the physical background shapes.

FIG. 2. $K\pi$ efficiency-map components obtained from the nontagged D^0 daughters (a) K and (b) π, and (c) π_s, efficiency map with (d) statistical errors from the tagged $K\pi$ sample. Maps are produced from the ratios of candidate numbers of D^0 to \bar{D}^0.

PRL 100, 061803 (2008) PHYSICAL REVIEW LETTERS week ending 15 FEBRUARY 2008
The signal yields in reconstructed modes. Listed uncertainties are statistical only. Corrections are applied only to D^0 samples, but all postcorrection samples are restricted to the phase space of the correction map.

<table>
<thead>
<tr>
<th>Final state</th>
<th>D^0</th>
<th>\bar{D}^0</th>
<th>Corr. used</th>
<th>Postcorrection yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K\pi$</td>
<td>3 363 000 ± 6000</td>
<td>3 368 000 ± 6000</td>
<td>None</td>
<td>D^0</td>
</tr>
<tr>
<td>$K\pi\pi_s$</td>
<td>705 100 ± 1000</td>
<td>703 500 ± 1000</td>
<td>$K\pi$ Map</td>
<td>D^0</td>
</tr>
<tr>
<td>$KK\pi_s$</td>
<td>65 730 ± 340</td>
<td>63 740 ± 330</td>
<td>π_s Map</td>
<td>D^0</td>
</tr>
<tr>
<td>$\pi\pi\pi_s$</td>
<td>32 210 ± 310</td>
<td>31 930 ± 310</td>
<td>π_s Map</td>
<td>D^0</td>
</tr>
</tbody>
</table>

Another source is the binning choices made and dependences in the π_s-efficiency correction. We estimate the size of this uncertainty by varying the number of bins and the required number of events per bin in histograms used to calculate efficiencies, and by adding a ϕ dependence to the efficiency correction. We find the largest uncertainty here arises from the particular choice of binning in the π_s-efficiency map. Because the systematic uncertainty in applying the π_s-efficiency correction is the same for both modes, we evaluate its size using the larger signal sample. Finally, we consider the procedure for extracting a_{CP}. We vary the binning and the accepted range of $|\cos\theta|$; the largest uncertainty comes from the latter. All other sources of systematic uncertainty are highly suppressed because the final states are reconstructed identically for D^0 and \bar{D}^0.

We summarize the contributions to the total systematic uncertainty in Table II. The smaller $\pi\pi$ sample size influences the calculation of its systematic uncertainty.

For KK, we measure $a_{KK}^{CP} = (0.00 \pm 0.34(\text{stat}) \pm 0.13(\text{syst})\%)$. For $\pi\pi$, we measure $a_{\pi\pi}^{CP} = (-0.24 \pm 0.52(\text{stat}) \pm 0.22(\text{syst})\%)$. Statistical uncertainties of 20% are given for KK and $\pi\pi$ in Figs. 3(a) and (b). The dashed lines represent the central values and the hatched regions the 1σ intervals, obtained from χ^2 minimizations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Δa_{KK}^{CP}</th>
<th>$\Delta a_{\pi\pi}^{CP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Dim. PDF shapes</td>
<td>±0.04%</td>
<td>±0.05%</td>
</tr>
<tr>
<td>π_s correction</td>
<td>±0.08%</td>
<td>±0.08%</td>
</tr>
<tr>
<td>a_{CP} extraction</td>
<td>±0.09%</td>
<td>±0.20%</td>
</tr>
<tr>
<td>Quadrature sum</td>
<td>±0.13%</td>
<td>±0.22%</td>
</tr>
</tbody>
</table>

FIG. 3. CP-violating asymmetries in (a) KK and (b) $\pi\pi$, and forward-backward asymmetries in (c) KK and (d) $\pi\pi$. In (a) and (b), the dashed lines represent the central values and the hatched regions the 1σ intervals, obtained from χ^2 minimizations.
0.1% in the π_s correction have been included in the final statistical uncertainty values. The even and odd asymmetries for each mode as a function of $|\cos \theta|$ are shown in Fig. 3. We conclude from the χ^2 minimizations in Figs. 3(a) and 3(b) that there is no evidence of CP violation in either of the Cabibbo-suppressed two-body modes of D^0 decay. This result is in agreement with standard model predictions. It also provides a new constraint on theories beyond the standard model [5], some of which predict significant levels of CP violation in these modes. The asymmetries observed in Figs. 3(c) and 3(d) represent the two standard model asymmetries discussed. Although an exact prediction of these forward-backward asymmetries does not exist, the observed values do not contradict expectations. Thus, although we report both the most precise measurements of time-integrated CP asymmetries in charm decays and the first measurements of the FB asymmetry in charm-pair production at $\sqrt{s} = 10.6$ GeV, we do not report evidence of unknown phenomena at work in the neutral charmed meson system.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (U.K.). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

*Deceased.
†Now at Tel Aviv University, Tel Aviv, 69978, Israel.
‡Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
§Also with Università della Basilicata, Potenza, Italy.
¶Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain.
[6] Unless otherwise indicated, particle types and decay processes imply also their charge conjugates.
[10] Photon-box amplitudes interfering with the single-photon amplitude and Bremsstrahlung amplitudes interfering among themselves create a forward-backward asymmetry in $e^+e^- \rightarrow c\bar{c}$.