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Abstract

Purpose:  In this work we present tomographic simulations of a new hardware concept for X-ray phase-

contrast interferometry wherein the phase gratings are replaced with an array of Fresnel bi-prisms, and

Moiré fringe analysis is used instead of “phase stepping” popular with grating-based setups. 

Methods: Projections of a phantom consisting of four layers of parallel carbon microfibers is simulated

using wave optics representation of X-ray electromagnetic waves. Simulated projections of a phantom with

preferential scatter perpendicular to the direction of the fibers are performed to analyze the extraction of

small angle scatter from dark field projections for: 1) bi-prism interferometry using Moiré fringe analysis;

2) grating interferometry using phase stepping with 8 grating steps; and 3) grating interferometry using

Moiré fringe analysis. Dark field projections are modeled as projections of voxel intensities represented by

a fixed finite  vector  basis  set  of  scattering  directions.  From the simulated  projection  data,  an iterative

MLEM  algorithm  reconstructs  the  coefficients  of  a  fixed  set  of  seven  basis  vectors  at  each  voxel

representing the small angle scatter distribution.

Results: Results of reconstructed vector coefficients are shown comparing the three simulated imaging

models. The single-exposure Moiré fringe analysis shows increase in noise because of 1/8th the number of

projection samples but also is obtained with less dose and faster acquisition times. Furthermore, replacing

grating interferometry with bi-prism interferometry provides better CNR. 

Conclusion: The simulations demonstrate the feasibility of the reconstruction of dark-field data acquired

with a bi-prism interferometry system. With the potential of higher fringe visibility, bi-prism interferometry

with Moiré fringe analysis might provide equal or better image quality to that of phase stepping methods

with less imaging time and lower dose. 
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1. INTRODUCTION

Interferometry-based X-ray imaging has shown to provide  excellent soft-tissue contrast of attenuation,

phase, and small angle scatter. This requires developing imaging systems with highly resolved X-rays with

fine, spatially-modulated intensity, which is feasible even with a conventional X-ray tube by using either a

Talbot–Lau interferometer with  diffraction gratings,1 or an interferometer  with refractive bi-prisms2,3 in

which there are no optics in the X-ray beam between the sample and the detector.4 Accurately modelling

the physics of these imaging systems are a vital part of advancing X-ray phase contrast tomography as it

has been fundamental for the advancement of X-ray CT applications.

   The first X-ray interferometer was built in the 1960s;5 but it wasn’t until 30 years later that the use of

grating interferometry without X-ray lenses was first proposed by Clauser and Reinsch in 1992.6 The first

Talbot interferometer for hard X-rays was reported by Momose et al. in 2003.7 Up until this time, Moiré

patterns were used to extract the signal instead of phase stepping.8-10 However, in 2005 Weitkamp et al.11

introduced the phase stepping technique.  Then in 2006 Pfeiffer  et al.12 was the first  to use Talbot-Lau

interferometry with gratings in combination with hard X-rays from an ordinary X-ray tube at a laboratory

setup. Since then, significant advancements in hardware concepts and data processing methodology have

advanced the technology of X-ray phase contrast imaging.

   Our simulations  investigate  an X-ray interferometer  (Fig.  1) wherein an array of Fresnel  bi-prisms

produces interference fringes with X-rays from a source grating (G0). The source grating G0 forms multiple

mutually-incoherent sources of X-ray illumination. Rays from such a source thus formed refract through

each element of a bi-prism and overlap as if proceeding from two slightly separated virtual sources of

coherent rays. In our simulations, we rotate an  analyzing  grating G2 to produce a Moiré pattern13 with a

period twice the resolution of the detector; much like previous gratings-based experiments. We compare the

bi-prism interferometry system with the conventional  grating system including a binary grating G1 and

phase stepping grating G2; and a grating system with the same binary grading G1 but the phase stepping
3
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grating G2 is replaced with the same rotated grating G2 used in the bi-prism simulations. In the simulations,

the object to be imaged is rotated through the specified angles to capture tomographic angular views needed

for reconstructing and analyzing the X-ray scattering resulting from the sample’s internal microstructure.

Fig. 1. Schematic diagram of the X-ray bi-prism interferometry system used in our simulations. An X-ray
tube produces multiple  X-rays passing through a source grating G0.  The source grating forms multiple
coherent but mutually incoherent sources of X-rays. These refract or diffract through the G1 grating (either
bi-prism or binary grating in our simulations) and are scattered by the object. The resultant X-rays pass
through an analyzing grating G2 (either phase stepping grating or a rotated grating for Moiré fringe analysis
in our simulations).  In Section 2.B, we present the imaging model.  For this  model,  the following unit
vectors: ϵ̂1 , ϵ̂2 , ϵ̂3∈ R3 are scattering directions [in our simulations we used 7 scattering directions(K=7)],
l̂ j ∈ R3 is the direction of the incoming X-ray beam, and  t̂ j ∈ R3 is the sensitivity direction parallel to the
detector surface.

The bi-prism is a different approach from gratings to produce refracted interference fringes for extracting

the properties of X-ray interactions and is well suited for dark-field (small angle scatter) imaging of large

areas. The bi-prism array interferometer provides spatially modulated intensity of a non-periodic visibility

pattern (Fig. 2a), different from the Talbot interference pattern common with the use of gratings (Fig. 2b),

across a wide field as each center fringe, thus produced, falls in a resonant position at the detector. An

advantage is found in improved fringe visibility with broad X-ray spectra in that an X-ray bi-prism material
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has widely varied refracting power relative to wavelength and thus the separation of the virtual sources also

varies with X-ray wavelength.  Bi-prisms have had many applications in the optical regime.2 Most of the

investigations in X-ray bi-prism applications has been using hard X-rays generated in synchrotrons.3,14-17

However,  it  has  also  found  application  to  illustrate  the  wave-particle  behaviour  in  the  single-photon

regime18,19 and have also been used in interference electron microscopy.20  

(a)                                                            (b)

Fig. 2. (a) Density plot of a fringe visibility pattern for 25-point sources with 1 bi-prism. The amplification of the interference
pattern is repeated at non-periodic distances away from the plane of the bi-prism. For the calculation we set λ=7.1×10−11m
(17.5 keV), I p=1 /∆2, ∆=7.00 ×10−7, α=δ tan( χ),  δ=1.57 ×10−6 (silicon), χ=82 ° ,  η=0.4 m, and x0=36.7 μm.
(b)  Talbot-Lau carpet.  Illuminating plane wave passes through a grating producing a fringe pattern with  replicating amplified
fringe patterns at regular distances from the sources produced by the grating. At zT /2 there is a secondary Talbot image and at
zT  a replication of the original Talbot image that emerged from the grating. At  zT /4 there is a double frequency fractional
image  and  increased  frequency  of  images  at  less  fractional  distances.  (Modified  from  Wikipedia:
https://en.wikipedia.org/wiki/Talbot_effect.)

Until 2005, only Moiré fringe analysis produced by grating interferometry were used for extracting the

properties of X-rays before mechanical phase stepping techniques.7-10 Since then work has continued in the

processing of  Moiré fringe  patterns through improved mathematics and Fourier analysis in combination
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with single shot scanning systems.21-25 An interesting paper10 used continuous wavelet transforms to extract

the phase information from Moiré interferograms. A cost function is introduced for the adaptive selection

of the ridge of the two-dimensional continuous wavelet transforms, and a dynamic programming algorithm

is implemented to optimize the cost function. In other work24 a two-dimensional checkerboard  grating is

placed at the first Talbot position beyond the object being imaged.  Differential phase-contrast image and

absorption image are obtained by Fourier analysis of Moiré fringe patterns generated by the grating on the

X-ray  detector.  In  two other  papers,23,25 three  gratings:  a  source  grating  (G0),  phase  grating  (G1),  and

analyzing grating (G2), is used to produce a Moiré pattern for extraction of the phase information without

phase  stepping. In  the  one  paper23 a  continuous  helical  sample  rotation  is  implemented  as  routinely

performed in clinical CT systems. The authors claim their proposed helical fringe-scanning procedure was

the first to perform a phase-contrast CT scan with stationary gratings that delivers the complete sample

information without any spatial interpolation. In our simulations we produce a Moiré pattern with a period

twice the resolution of the detector by rotating an analyzing grating G2; however, in our future design we

propose to use a detector/scintillator with small hexagonal elements to provide the Moiré pattern.26, 27 

In addition to hardware developments, significant advancements have been made in the development of

algorithms for the reconstruction of phase contrast projections. In our work we use the model28-31 developed

by Pfeiffer’s group for the projection of the small angle scatter.  The model involves the reconstruction of

coefficients of a fixed set of vector basis for each voxel which can be transformed to a tensor representation

by fitting the vector basis to an ellipsoidal representation. (See Malecki thesis for an excellent description of

the theory behind the model.31) The coefficients are reconstructed using an iterative MLEM algorithm.

Iterative approaches have advantages in addition to modeling noise, to provide constraints on the solution.

Investigations  along  this  line  were  pursued  by  Brendel  et  al.32 who  proposed  a  cost  function  with

regularization  to  iteratively  reconstruct  simultaneously  attenuation,  phase,  and  scatter  images  (with
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independent  penalty functions) from differential  phase contrast  acquisitions,  without the need of phase

retrieval. 

We use wave optics,33,34 to simulate the absorption, phase, and scatter of X-rays through the object being

imaged,35-39 in  evaluating  our  algorithm  development  for  our  bi-prism interferometry  system.  For  the

forward model, we use the scalar wave equation with the first-order Rytov approximation.36  The bi-prism

array generates straight interference fringes on the second grating, as a phase grating does in an existing

grating-based system, with an additional advantage of modest chromatic aberration. Thus, we assume a

monoenergetic  source  of  X-rays  and  model  the  bi-prism array  as  a  binary  phase  grating.  The  phase-

modulated  X-ray  wave  is  propagated  to  the  second  grating  using  the  angular-spectrum  scalar  wave

theory.33,34 The second grating is modeled as a binary amplitude grating, which is slightly rotated with

respect to the bi-prism array to produce a Moiré fringe pattern. The raw image is generated after integration

downsampling. Applying the Moiré fringe analysis to the raw image, we can extract the absorption, phase-

contrast,  and dark-field projection images.  The calculation is repeated for different sample orientations,

which provides the dataset for the tomographic reconstructions.  In this particular work, we focus on the

reconstruction of small angle scatter, but include the reconstruction of the linear attenuation coefficient, the

phase,  and  the  linear  diffusion  coefficient  from  the  bi-prism  simulated  projections.  The  simulated

projections of X-ray wave optics are reconstructed by modeling dark field projections of a finite set of fixed

scattering directions at each voxel in space.28-31 

In the sections that follow we present the Methods and Results in our simulation to evaluate bi-prism

interferometry. In the Materials and Methods, we describe: a) a full wave approach with expressions of the

refraction of X-rays passing through four layers of parallel carbon microfibers with preferential scattering

perpendicular to the direction the fibers; b) a wave optics approach to the formation of grating and bi-prism

dark field X-ray projections of small  angle scatter;  c) model of small  angle scatter  including a system

matrix for forming projections of small angle scatter; d) processing the acquired phase stepping and  Moiré
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projections;  and  e)  reconstruction  of  X-ray  attenuation,  phase,  small  angle  diffusion  attenuation,  and

coefficients  of  small  angle  scatter  basis  functions.  Results  are  presented  for  the  reconstruction  of

coefficients  for  a  basis  of  a  set  of  fixed 7-vector  directions  -  comparing  reconstructions  of  dark  field

projections  processed  with  phase  stepping  and  Moiré  fringe  analysis.  The  results  are  followed  by  a

discussion of the potential merits of bi-prism and phase stepping interferometry.
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2. MATERIALS AND METHODS

2.A. Full wave approach to simulate X-ray phase contrast projections 

In our previous paper,4 we developed analytical expressions of the irradiance distribution pattern for a bi-

prism interferometry system. This allowed us to study the non-periodic fringe pattern for various X-ray

energies and for bi-prisms with various materials and dimensions. In the following subsections, we use

wave optics to form X-ray phase contrast projections of a particular phantom designed to emphasize the

dark field projections of small angle scatter.

2.A.1. Scalar wave function assuming first-ordered Rytov approximation

The scalar  wave equation arrives from Maxwell’s  equation in free space for an electromagnet  wave

whose vector representation of the electric and magnetic disturbance can be represented by a scalar wave

function  with complex amplitude  Ψ ( x , y ; z ).33,34 (In the following we assume the square modulus  is  a

reasonable  approximation  for  the  intensity  of  the  irradiance  distribution.).  The  scalar  wave  equation

describes the interaction of X-rays with an object as a wave, and thus is appropriate to simulate the forward

model for phase-sensitive X-ray imaging: 

(∇2
+k ( r⃑ )

2
)Ψ ( r⃑ )=0   ,

k (r⃑ )=kn ( r⃑ ) , k=2 π / λ   ,

where λ is the wavelength in a vacuum and n ( x , y ; z )is the complex refractive index of the object. Note that

the  refractive  index  decrement  δ is  related  to  the  complex  refractive  index  n:

n(x , y , z )=1−δ ( x , y , z )+i β ( x , y , z ), where 1−δ ( x , y , z ) and β (x , y , z ) is a measure of dispersion and of

absorption, respectively.

Directly solving the wave equation, however, poses a great challenge because the wavelength is much

smaller than the size of the object typically imaged with the technique. To address this challenge, the first-
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order Born or Rytov approximation has been adopted,36 which greatly simplifies the solution for the scalar

wave equation. The first-order Rytov approximation is more appropriate for X-ray imaging, because the

imaged object is very thick (compared to the wavelength) but has a small refractive index difference (on the

order of 10-7). Using the first-order Rytov approximation, the complex amplitude  Ψ ( x , y ; z ) of the X-ray

wave function after the interaction with the object can be written as

Ψ ( x , y ; z )=Ψ 0 ( x , y ; z )exp [ ϕs ( x , y ; z ) ] ,                                     (1)

where  Ψ 0 ( x , y ;z ) is the X-ray’s complex amplitude assuming no object in the beam path, and  z is the

distance  from the  center  of  the  object.  The complex  scattered  phase  ϕ s (x , y ; z ) can  be  related  to  the

scattering potential of the object Q ( x , y ; z ) by 

~ϕs (k x , ky ; z )=[ i 4 π (k z+1/ λ ) ]
−1 exp ( i 2 π k z z )

~Q (k x , k y , k z ) ,                          (2)

where λ is the wavelength in vacuum,  kz is determined by kz=( (1/ λ )
2
−k x

2
−k y

2
)
1 /2

−1/ λ. ~ϕs (k x , ky ; z ) is the

2D Fourier transform of  ϕ s (x , y ; z ) with respect to  x  and  y.  ~Q ( k x , k y , k z ) is the 3D Fourier transform of

Q ( x , y , z ). The scattering potential Q ( x , y , z ) is given by the complex-valued refractive index n ( x , y , z ):

Q ( x , y , z )= (2 π / λ )
2

(1−n ( x , y , z )
2
) .                                     (3)

We  note  that  the  first-order  Rytov  approximation  used  for  this  derivation  has  been  validated  for

absorption and phase calculation using the Mie solution, which is the exact solution for the Maxwell’s

equations.36 In  dark-field  imaging,  the  image  contrast  originates  from  the  unresolved,  microscopic

variations of refractive index in the sample.40-42 Thus, for dark-field simulation, a forward model that can

handle  multiple  scattering  would  be  appropriate,  e.g.,  multi-slice  approaches  using  either  the  angular-

spectrum scalar  wave theory43 or  the beam-propagation method.44 However,  the multi-slice approaches

require a voxelated phantom as an input, and thus are hard to be upscaled, because a grid size smaller than

the microstructure (e.g., microfibers generating the anisotropic dark-field signal) in the sample would be
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required. In contrast, the forward model we adopt can include such a microstructure much more efficiently.

For example, the complex scattered phase in Eq. (1), which is calculated by Eq. (2), is related to the Fourier

transform of the scattering potential as an input. As we have shown in previous work,37 we can calculate

~Q ( k x , k y , k z ) for a numerical phantom defined with NURBS. The NURBS surface, defined on a 2D grid,

can be refined much more efficiently than a 3D voxelated phantom. 

2.A.2. Scalar wave function for X-rays interacting with a phantom of parallel carbon fibers 

To evaluate our algorithms for the reconstruction of small angle scatter, we use a stack of microfibers as

an object to be imaged (Fig. 3). Within the limit of the first-order approximation, the complex amplitude

Ψ ( x , y ; z ) of X-rays after a stack of microfibers can be calculated as a sum of the complex amplitudes for

individual  microfibers.  Similarly,  ~Q ( k x , k y , k z ) for  the  entire  stack  can  be  represented  by  a  sum  of

~Qi ( k x , k y , k z ) for the individual microfibers. 

Each microfiber will have different lengths but same radius. Therefore, a homogeneous cylinder with

length L i, radius R, and refractive index n0, which is oriented along the x  direction, the scattering potential

Qi ( x , y , z ) for one microfiber is

Qi ( x , y , z )= (2 π / λ )
2
[1−n0

2 Π (2 [ y2
+z2 ] / R)Π ( x /L i ) ]    ,

where the rectangle function Π  is defined as  

Π ( x )={1if −
1
2 <x<

1
2

0otherwise

The 3D Fourier transform of Qi ( x , y , z ) can be written as

~Qi ( k x , k y , k z )=(Q 0 R L i/ ρ ) J 1 (2 πRρ ) sinc ( L i k x) ,                                  (4)

where  Q0=(k 0 )
2
(1−n0

2
),  ρ=(k y

2
+k z

2
)
1/2,  k0=2 π / λ,n0 is  the  complex  index  of  refraction  for  each

microfibers,  J 1 is  the  Bessel  function  of  the  first  kind  of  order  1,  and  sinc (x )=sin (x )/ x .  Under  the
11

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218



projection and paraxial approximations, the 2D Fourier transform of the complex scatter phase ~ϕsi
 for one

microfiber can be writer as 

~ϕsi (k x , k y ; z )=
λ

i 4 π exp [−iπλz (kx
2
+k y

2
) ]
~Qi (k x , ky , 0 ) .

Substituting for ~Qi ( k x , k y , 0 ) 

~ϕsi (k x , k y ; z )=
λ

i 4 π exp [−iπλz (kx
2
+k y

2
) ] (Q0 R L i /k y ) J 1 (2 πR k y) sinc ( L i k x ) ,

where ρ=k y. The Fourier transform of the total scattering potential ~Qt (k x , k y , kz ) is

~Qst (k x , k y , k z )=∑
i=1

N fibers

e−i 2 π ( k x x i+k y yi +k z zi )
(Q0 R L i / ρ ) J 1 (2 πRρ ) sinc ( Li k x )

where N fibers is the total number of fibers, which for our case N fibers = 4×71,000 = 284,000. 

   Now the 2D Fourier transform of the complex scattered phase for all layers is 

~ϕst (k x , ky ; z )=
λ

i 4 π exp [−iπλz (k x
2
+k y

2
) ]
~Q t (k x , k y ,0 ) .

Substituting for ~Qt (k x , k y , 0 ), 

~ϕst (k x , ky ; z )=
λ

i 4 π exp [−iπλz ( k x
2
+k y

2
) ] ∑

i=1

N fibers

e−i 2 π ( kx xi +k y yi )
(Q0 R Li /k y) J 1 (2 πR k y ) sinc ( Li k x ) .

Therefore, the complex amplitude Ψ 1 ( x , y ; z ) of X-rays after a stack of microfibers is 

Ψ 1 ( x , y ; z )=Ψ 0 ( x , y ;z ) exp [ϕst
( x , y ;z ) ] .                                                  (5)
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Fig.  3.  Phantom  used  in  the  simulations.  The  phantom  consisted  of  four  layers  of  parallel  carbon
microfibers to provide preferential scatter perpendicular to the direction of the fibers. The angles ϕ  and θ
show the rotation directions of the projections of the phantom.

2.A.3. Simulation of X-ray propagation through gratings 

In the following we follow the development in Sung et al.39 to arrive at an expression for the intensity at

the detector of the simulated projections of the phantom in Fig. 3. At a distance z from the phantom, the

complex amplitude Ψ 1 ( x , y ; z ) of X-rays in the transverse plane is given in Eq. (5).

Suppose that G1  is located at a distance  D1 from the center of the object (Fig. 4). Then the complex

amplitude right before the phase grating G1 is  Ψ 1 ( x , y ; D1 ). The complex amplitude right after the phase

grating G1 is 

Ψ 2 ( x , y )=Ψ 1 ( x , y ; D1 ) exp {i ∆ ϕ [ Π ( x / p )∗III ( x / p ) ] }     ,                             (6)

where ∆ ϕ  can be π  or π /2, p is the grating period, and III ( x )= ∑
m=−∞

m=∞

δ (x−m ).

   The propagation of X-rays between G1 and G2 can be calculated using the angular spectrum scalar wave

theory.34 The complex amplitude right before G2 is  

Ψ 3 (x , y )=F2
−1

{~Ψ 2 (u , v ) H (u , v ;D 2)}    ,                                           (7)
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where D2 is the distance between G1 and G2,  F2
−1 is the 2D inverse Fourier transform, ~Ψ 2 (u , v ) is the 2D

Fourier transform of Ψ 2 ( x , y ), and 

H (u , v ; D2 )=exp {i (2 π / λ ) D2 [1−( λu )
2
−( λv )

2
]
1 /2

} ,

is the transfer function for the light-field propagation between G1 and G2. 

The intensity before G2 is  I 3 (x , y )=|Ψ 3 ( x , y )|
2 and the intensity at the nth step after a phase stepping

grating G2 of N  steps is

I 4
(n )

(x , y ; n )=I 3 ( x , y ) [Π (
x
p )∗III (x / p−

n
N )] .                                  (8)

Assuming the camera has N × N  square pixels ∆ ×∆, the intensity at the (i , j) pixel can be written as

I 5 (i , j )= ∫
−Δ/2

Δ/2

∫
−Δ/2

Δ /2

I 4
n

( i ∆+ξ , j ∆+η ) dξdη.                                          (9)

   Fig. 4. Schematic diagram of the simulation geometry used in the simulation study. G1  and G2 are the
gratings  and the phantom is the four layers of fibers shown in Fig.  3.  D1 is  the distance between the
phantom and the first grating G1. D2 is the distance between the first grating and the second grating G2. The
numbers 1 through 5 in the circles refer to the planes where Eqs. (5)-(9) were calculated. For the phase
grating simulation, the phase grating G2 was shifted 8 positions in the y-direction over one period. For the
Moiré simulation G2 was rotated by 3°. (This figure was modified from Fig. 1 in Sung et al.39)
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2.A.4. Simulation of X-ray propagation through a bi-prism and a grating 

In the previous case, the first grating G1  was a binary grating. Suppose we want to replace the binary

grating with a bi-prism for which the phase after the bi-prism can be represented by e (iϕ (x) ), where ϕ (x) is

the projection of the bi-prism along the x-direction in Fig. 5. If we ignore scatter in the bi-prism material,

the complex amplitude of the scalar wave function right after the bi-prism array G1 is

Ψ 2 ( x , y )=Ψ 1 ( x , y ; L )exp {i ∆ ϕ [ (⋀ ( x / p )∗Π ( x / p ) )∗III ( x / p ) ] }    ,                            (10)

where ⋀ (x ) is the triangle function:

⋀ (x )={1−|x|if |x|<1
0 if |x|>1    .

   However, for our simulations of projections involving a bi-prism array, Eq. (10) was not used, but instead

to reduce the computational cost, we used a binary phase mask with a period of 5 μm and a phase delay of

ϕ ( x ). The phase delay ofϕ ( x ) was specified after the grating, which was equivalent to a bi-prism angle of

84.624°. No material property (refractive index and the thickness) needed to be specified.

   Fig. 5. Bi-prism replaces the binary grating in G1 for the simulations. This results in a trapezoidal phase
shift along the x-direction, which can be represented as ϕ ( x )=⋀ ( x )∗Π ( x ).
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2.B. Model of the projection of small angle scatter

   Using the previous expression for the pixel intensities in Eq. (9) one comes up with the projection values

of the intensity of the wave optics representation of the scatter potential. We show later that using these

projection values it is easy to calculate the projection of the X-ray phase, and attention and scatter diffusion

coefficients. However, the reconstruction of the small angle scatter distribution is more complex. Here we

follow the work by Pfeiffer’s group28-31 in developing a model for dark field projections as projections of a

finite set of fixed scattering directions characterizing the small angle scatter.  

We  assume  that  an  X-ray  beam  (Fig.  1)  proceeds  from  a  spatially  incoherent  planar  source  and

illuminates  an  irradiance  distribution  projected  onto the object  of interest.  If  we assume a fixed finite

number of scattering directions ϵk=ζ k (x ) ϵ̂k ∈ R3, dark field projections of the image have the form29 

d j=exp [−∫L j

❑

∑
k

⟨|l̂ j ×ϵ̂k|ζ k ( x) ϵ̂k , t j ⟩
2
dx ]    ,                                   (11)

where l̂ j ∈ R3 is the direction of the incoming beam, L j is the line along this direction, and t j=|t j| t̂ j ∈ R3 is

the sensitivity direction parallel to the detector surface. The ❑̂ indicates a unit vector. One can show that

this reduces to 

d j=exp [−∑
k

νkj∫
L j

❑

ηk (x )dx ] ,

where   ηk (x )=ζ k (x )
2 and  νkj=|t j|

2|l̂ j× ϵ̂k|
2

⟨ϵ̂k , t̂ j ⟩
2.  The  ηk (x ) at  the  position  x  are  the  square  of  the

coefficients of the vector scattering directions ϵ̂k . 

Let’s parameterize the X-ray direction so that we replace j with  i , j ,θq , ϕ r, such that the capital letters

I , J , Q , R are the dimensions for  each coordinate. Defining the detector elements with coordinates  (i , j)

and the projection angles of the sample as θq , ϕr  as shown in Fig. 1, we have dark field measurements 

D (i , j , θq , ϕr )=exp [−∑
k

νkijqr ∫
L ijqr

❑

ηk ( x ) dx ] .                                      (12)
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We can form the reconstruction problem as the solution to a large system of linear equations

m=( mijqr )=¿

 where H= (D1 A , D2 A ,… , DK A) is a J × IK  matrix and

Dk=(
νk 1111 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ νkIJQR

)

is an IJQR× IJQRdiagonal matrix of weighting coefficients νkijqr, IJQR is the number of projection samples,

NMP is the number of voxels in the 3D array, K  is the number of scattering directions  ϵ̂k , and

ηT
= (η11 , η12 ,… , η1 NMP , η21 , η22 , …, η2NMP , ……,ηK 1 ,ηK 2 ,…, ηKNMP )

is a NMPK ×1 matrix of unknown coefficients to be determined. A is the system matrix of the tomographic

projections formed by the integral in Eq. (12). 

Writing the matrix formulation of the system of equations explicitly in terms of the unknown coefficients

η ij, we have

m=Hη=( D1 A , D2 A ,… DK A )⏞
IJQR× KNMP (

η11

¿ ⋮
η1 NMP

η21
η22
⋮

η2 NMP

⋮
ηK 1
ηK 2
⋮

ηKNMP

)
⏞

KNMP × 1

  .                                          (13)
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In the following we will  show how the pixel values with intensity  I 5 (i , j ) in Eq. (9) are related to the

measurements m of the small angle scatter.

2.C. Processing phase contrast projections

As described in  Section  2.A,  dark  field  projections  were  simulated  using  an  integrated  wave optics

framework33,34 to model X-ray-matter interaction and free-space propagation.  Our approach calculates X-

ray phase contrast images formed with sources of arbitrary shape (though a plane wave was used in our

simulations),  and  objects  of  preferential  scattering  directions.  The  forward  model  for  phase  contrast

imaging as described in the previous section formulates the inverse problem for the reconstruction of the

measured projections. 

X-ray projections were simulated for an asymmetric scattering phantom in Fig. 3 consisting of four layers

of parallel carbon microfibers. Each layer width was 0.5 mm and the diameter of the disk was 8 mm. The

layers each consisted of an array of 71,000 fibers of 15 μm diameter. All solid carbon fibers had the same

orientation along the x-axis providing preferential scatter along the y-axis perpendicular to the fibers. In our

comparison of gratings and bi-prisms, for one case we performed simulations with similar gratings G1 and

G2 both with a grating pattern width of 10.24 mm with an 8-pixel period width of 0.005 mm and grating

aperture of 0.0025 mm. In the second case the G1 and G2 gratings were the same but G2 was rotated by 3.6°

for Moiré analysis. In the third case G1 was replaced by an array of bi-prisms as describe in Section 2.A.4

and the G2 grating was the same rotated grating (by 3.6°) as in the previous case.

2.C.1. Phase Stepping

The projection of the irradiance distribution onto the detector surface was approximated by fitting eight

phase stepping projections to the Fourier expansion40
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I 5 (i , j , θq , ϕr , xg )≈ a0 ( i , j , θq , ϕr )+a1 ( i , j , θq , ϕr ) cos[ 2 π (i− (I +1 ) /2)

x p
x g−Φ ( i , j , θq , ϕr)]   ,          (14)               

where ( i , j ) are coordinates of the detector pixel (0 ≤ i ≤ I ); x g is the spatial sampling in the direction of

the phase grating; x pis the period in x ; θq , ϕr  is the rotation angle of the sample around the optical axis; and

a0, a1, and Φare the mean, amplitude, and phase of the sinusoidal curve, respectively. The definition of the

visibility of the scatter and reference signal is

V obj ( i , j ,θq , ϕ r )=a1
obj

(i , j ,θq ,ϕ r)/a0
obj

(i , j , θq , ϕr)  ,

V ref ( i , j , θq , ϕr )=a1
ref

(i , j ,θq ,ϕ r)/a0
ref

(i , j , θq , ϕr )  .

The projection measurements of the small angle scatter are given as 

m ( i , j ,θq ,ϕ r )=−ln [ D ( i , j ,θq , ϕ r ) ]=− ln [
V obj (i , j ,θq ,ϕ r )

V ref ( i , j ,θq , ϕ r ) ]=−ln [
V obj ( i , j , θq , ϕr )

V ref (i , j ) ] .           (15)

These measurements are the same as the projection of the linear diffusion coefficients. Projection of the 

linear attenuation coefficient is

p ( i , j , θq , ϕr )=−ln [T ( i , j , θq , ϕr ) ]=−ln [
a0

obj
( i , j ,θq ,ϕ r )

a0
ref

( i , j , θq , ϕr ) ]=−ln [
I 0 ,obj ( i , j , θq , ϕr )

I 0 , ref (i , j ) ]   .

The projection of the differential phase is

dΦx (i , j , θq , ϕr )=
x p

λ D2
(Φobj ( i , j , θq , ϕr )−Φref ( i , j , θq , ϕr ) )   ,

where x p is the period of the phase grating, λ is the X-ray wave length, and D2 is the distance between G1

and G2. 

 For phase stepping, we fit eight phase steps to a Fourier expansion for each projection. Then from the

zero order and first order Fourier coefficients we obtain the visibility and phase of the scatter and reference

signal. From this we are able to obtain the dark field projections of the small angle scatter, the projections of

the linear attenuation coefficient, and the projections of the differential phase contrast.  
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2.C.2. Moiré fringe analysis 

A Moiré pattern was superimposed on the detector irradiance distribution by rotating the G2 grating (Fig.

1) by about 3.5833º. Both the G1 grating and G2 grating irradiance patterns are shown in Fig. 6. For phase

stepping, the data were sampled with an image size of 16384×256, but for the Moiré pattern, the data were

sampled as a 16384×16384 array. Both arrays were down sampled to 256×256.

Fig. 6. A Moiré irradiance pattern was superimposed on the detector by rotating a grating by about
3.5833°. Here is an array size of 16384×16384 with pixel size of 6.25 ×10−7 m. The period of the Moiré
pattern was approximately 8×10−5 m, twice that of the detector pixel size. The total grating pattern had a
width 10.24 mm with an 8-pixel period width of 0.005 mm and grating gap of 0.0025 mm. 

Each Moiré projection was processed using Fourier analysis,13 so that the small angle scatter information

encoded by the G1 grating or bi-prism could be extracted. Three peaks related to the pattern with phantom

can be  observed in  the Fourier  transformed image in  Fig.  7.  A central  peak (the zero harmonic)  and

symmetric peaks (first ordered harmonics) about the central peak, in this case just two, are observed. 

Let  |Fn
−1

| be the absolute value of the inverse Fourier transform (FT) around an area of the n th-order

harmonic. The visibility was calculated by taking the ratio of the absolute values of the inverse FT of the

area around the first-order harmonic and of the area around the zero-order harmonic:  V=|F1
−1
|/|F 0

−1
|. Then

the  projection  of  the  small  angle  scatter,  the  projection  of  the  linear  attenuation  coefficient,  and  the

projection of the differential phase were calculated using 
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m ( i , j ,θq ,ϕ r )=−ln  [ D ( i , j ,θq ,ϕ r ) ]=−ln [
V obj ( i , j , θq , ϕr )

V ref ( i , j ,θq ,ϕ r ) ]  .

p ( i , j , θq , ϕr )=− ln [T ( i , j , θq , ϕr ) ]=−ln [
a0

obj
( i , j ,θq ,ϕ r )

a0
ref

( i , j , θq , ϕr ) ]=−ln [|
F 0

−1
|obj ( i , j , θq , ϕr )

|F 0
−1
|ref ( i , j , θq , ϕr ) ]

dΦx (i , j , θq , ϕr )=∆ Φ (i , j ,θq , ϕr )=arg  [F1
−1

]obj ( i , j , θq , ϕr )−arg  [F 1
−1

]ref ( i , j , θq , ϕr )

where  Φ=arg  [F1
−1

].

Fig. 7. Processing Moiré projections. The distance between 0 th harmonic and 1st harmonic is 1/period.
F0 is obtained by centering on the central region. F1 is obtained by centering on the region over the first
harmonic peak of the FFT image.

2.E. Reconstruction of phase contrast projections

The tomographic projections of the phantom in Fig. 3 were simulated assuming parameters in Table 1. A

total of 546 parallel projection images were formed for phantom rotation angles θ from 0° to 90° at 18°

steps (6 angles), and  ϕ  from -90° to 90° at  2° steps (91 angles). Eight phase steps were used to form

projections for reconstruction that were compared with reconstructions of projections formed from a single

exposure Moiré pattern while G2 grating was rotated by a small angle. The size of each projection image
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processed with phase stepping was 16384 × 256, which was downsampled to 256 × 256. Note that the

image was oversampled along the x-scan direction to capture the small-angle scattering. The Moiré fringe

analysis was performed on a single projection exposure sampled as a 16384 × 16384 array. The image was

oversampled along both directions to make sure the width and length of each pixel were the same. A bi-

prism was also used to replace the G1 grating in Fig. 1 to form projections which were compared with the

grating results.

The reconstructions of the vector coefficients  η were performed using 25 iterations of the maximum-

likelihood expectation maximization (MLEM) algorithm to maximize the likelihood function:

f (η )=L ( m|η )=∏
i

e−ḿi

(ḿi )
mi

mi !
   ,                                                  (16)

for measurements m in Eq. (15) with assumed mean ḿ=Hη in Eq. (13). The coefficient elements of vector

η included K=7 vectors as the basis for each voxel. Every voxel was spanned by the 7-unit vectors: [ 1,0,0 ],

[ 0,1,0 ],  [ 0,0,1 ],  [√1/3 ,√1 /3 ,√1/3 ],  [−√1/3 ,√1/3 ,√1/3 ],  [√1/3 ,−√1/3 ,√1/3 ],  [−√1/3 ,−√1/3 ,√1/3 ].  In

the reconstruction the tomographic weighing factors in the projection and back projection operations were

calculated on the fly for the vector reconstruction because of the large number of lines of response and lack

of symmetry for storing a pre-computed weighting matrix for all  vectors.  A single-ray tracing method

developed for GPU was used. 

Apart  from  reconstructing  the  7-vector  coefficients  to  describe  the  scattering  directions,  we  also

successfully reconstructed the linear attenuation coefficients, the differential phases and the linear diffusion

coefficients, which is a measure of attenuation related to small angle scattering. The three images were

reconstructed separately with statistical  iterative reconstruction.  Ten iterations  of the MLEM algorithm

were implemented.  The tomographic  weighting factors  were also calculated  on the fly with single-ray

tracing method.
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Simulation with
Gratings

Simulation with
Bi-prism and Moiré

Fringe Analysis
Energy 17.5 keV 17.5 keV
Wave length λ 7.1 × 10-11 m 7.1 × 10-11 m
Wave number 1.41 × 1010 1.41 × 1010

Bi-prism angleχ NA 84.624°
Bi-prism period p NA 5 μm
Distance between 
phantom and G1  D1

0.1764 m 0.1764 m

Distance between G1 
and G2 D2

0.1764 m 0.1764 m

Gratings G1 = G2 G2 rotated 3° relative
to G1

Grating aperture 2.5 μm 2.5 μm
Grating period 5 μm 5 μm
No. Phase steps 8 1
Detector voxel size 0.04×0.04×0.04 mm3 0.04×0.04×0.04 mm3

Detector matrix size 256×256 256×256
Phantom circular dia. 8 mm 8 mm
Slice width 0.5 mm 0.5 mm
Fiber diameter 15 μm 15 μm
Carbon fiber index of
refraction n0 

n0=1−δ+iβ
δ=1.1512 × 10−6

β=5.6117×10−10

n0=1−δ+iβ
δ=1.1512 × 10−6

β=5.6117×10−10

Number of fibers 71,000 71,000
No. projection angles
in θ from 0° to 90° at 
18° steps

6 6

No. projection angles
in ϕ  from -90° to 90° 
at 2° steps

91 91

Total No. of 
projection angles

546 546

Table 1. Parameters used in the simulation of the reconstruction of the phase contrast projections.
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3. RESULTS

   The previous sections presented our methods used to simulate the phase contrast  projections  of the

phantom of parallel carbon microfibers. To obtain 546 projections of 284,000 fibers required 207 hours on

the GPU server Dell PowerEdge R740 with two 4-core Intel(R) Xeon(R) Gold 5122 CPUs @ 3.60GHz,

128 GiB RAM, and 2 NVIDIA Tesla V100 accelerators; offering a total of 10,240 CUDA cores, 1,280

tensor cores and 16 GiB GPU RAM. In the following we present examples of the projection measurements

and the reconstructions of the vector coefficients for the small angle scatter, the linear diffusion coefficient,

the linear attenuation coefficient, and the differential phase. 

3.A. Processing phase contrast projections

An example of one of the dark field projections is shown in Fig. 8. One sees preferential scatter oriented

at approximate 45° from the vertical axis. There also appears to be some isometric scatter throughout the

projection.

                                    

Fig.  8.  Example of a dark field projection (θ = 45°,  ϕ= 0°). Preferential  scattering is shown rotated
counterclockwise. 
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Figure 9 shows an example of the Moiré image obtained in  the experiment.  The Moiré pattern was

measured both with and without the phantom. 

     

Fig. 9. Moiré pattern with (left) and without (right) phantom. The 16384 ×16384 arrays in the previous
figure were down sampled here to 256×256.

Figure 10 gives results after taking the inverse Fourier transform of the zero and first order harmonics of

the Moiré image to obtain the projection of the phantom and reference intensity and visibility. The phase of

the object and reference is also presented.
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Fig. 10. Results processing Moiré projections. Left: Intensity images I 0=|F 0
−1

| with (upper) and without
(lower) the phantom. Center: Visibility images  V=|F1

−1
|/|F 0

−1
| with and without the phantom. Right: Phase

images Φ=arg ( F1
−1

) with and without the phantom. 
Figure 11 compares projections obtained by phase stepping and that obtained by Moiré fringe analysis. As

expected, projections obtained by Moiré fringe analysis have more noise than phase stepping. However, the

single-exposure Moiré fringe analysis takes about 1/8 the time that of phase stepping. 

Fig. 11. Example of absorption, phase contrast, and dark field projections obtained by phase stepping
(upper) and Moiré fringe analysis (lower). As expected, increased noise is observed in the Moiré dark field
image.
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3.B. Reconstruction of phase contrast projections

The reconstruction of the coefficients for the 7-fixed vectors in each voxel is shown in Fig. 12. Since each

projection was downsampled to 256 × 256, the image matrix size was set to 256×256×256 with a voxel size

of  0.04×0.04×0.04 mm3.  The image  intensity  in  each voxel  correspond to  the  vector  amplitude.  Each

column from left to right are the results of grating with phase stepping, grating with Moiré fringe analysis,

and bi-prism with Moiré fringe analysis. The three images across each column are the coronal (x-z plane),

sagittal (y-z plane), and transaxial section (x-y plane) through the central axis of the phantom. The images

going down the columns correspond to the amplitude of the 7 vectors in the sequence first starting with

[ 1,0,0 ], at the top and [−√1/3 ,−√1/3 ,√1/3 ]  at the bottom of each column. 

The reconstruction results of the Moiré fringe analysis are comparable to those of phase stepping, though

there is more visual noise in images of the Moiré fringe analysis. The results also show that replacing G1

grating with bi-prism has little influence on final reconstructed results. From the reconstructed scattering

vector coefficients,  one can see that the maximum scattering strength is along the y-direction ([0,1,0]),

which is perpendicular to the direction of the fibers and perpendicular to the sensitivity direction of the

grating. Note that the third row of images for [0,0,1] in Fig. 13 are approximately zero because these are

coefficients for the vector pointing along the optical axis. 
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Fig. 12.  Reconstructed vector coefficients from projections obtained: using grating with phase stepping
(left); grating with Moiré fringe analysis (middle); bi-prism with Moiré fringe analysis (right).  The three
images for each at the top are the coefficients for the vector [ 1,0,0 ], in the x-z slice, y-z slice, and x-y slice
through  the  center  of  the  phantom,  respectively.  The  series  of  images  from  top  to  bottom  are  the
coefficients  for  the  vectors  [ 1,0,0 ],  [ 0,1,0 ],  [ 0,0,1 ],  [√1/3 ,√1 /3 ,√1/3 ],  [−√1/3 ,√1/3 ,√1/3 ],
[√1/3 ,−√1/3 ,√1/3 ], [−√1/3 ,−√1/3 ,√1/3 ], respectively. Note: the third row of images are zero because
these are coefficients for the vector pointing along the optical axis.
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Contrast to noise ratio (CNR) in Table 2 was used to evaluate the noise level of the reconstructed images.

A circle with a diameter of 7.2 mm at the center was chosen as the region of interest (ROI), and a ring with

an inner diameter of 9.2 mm and an outer radius of 10 mm was chosen as the background ROI. The CNR is

the  mean  difference  between  the  ROI  and  background  divided  by  the  standard  derivation  of  the

background.  Table  2  lists  the  CNR results  of  the  reconstructed  vector  coefficients  for  three  different

situations. We can see that the reconstructed coefficients with the higher visual contrast in the images (Fig.

12) also have higher CNR (Table 2). This is true for the vector coefficients of [0,1,0].  The images of the

coefficients  of  [√1/3 ,√1 /3 ,√1/3 ] and  [−√1/3 ,−√1/3 ,√1/3 ] seem to  have less  contrast  than  those  of

[0,1,0], but a higher contrast (though it is subtle) than the coefficient images of [−√1/3 ,√1/3 ,√1/3 ] and

[√1/3 ,−√1/3 ,√1/3 ]. However, one would expect the contrast for [0,0,1] to be zero though the calculations

from the small values give a positive CNR.  From Table 2, we can see with the potential of increased fringe

visibility, bi-prism interferometry can improve CNR.

Table 2 CNR of reconstructed vector coefficients

Grating with 

phase stepping

Grating with 

Moiré fringe analysis

Bi-prism with 

Moiré fringe analysis
[ 1,0,0 ] 4.85 4.41 6.40
[ 0,1,0 ] 29.33 29.65 29.88
[ 0,0,1 ] 5.10* 5.27* 5.33*

[√1/3 ,√1 /3 ,√1/3 ] 16.70 16.83 19.68
[−√1/3 ,√1/3 ,√1/3 ] 7.43 7.27 7.49
[√1/3 ,−√1/3 ,√1/3 ] 7.64 7.47 7.20

[−√1/3 ,−√1/3 ,√1/3 ] 16.51 17.98 21.29
*From Fig. 12 we see that the vector coefficients are small ≈ 0; however, the calculations from the small
values give a positive contrast. 

The reconstruction of the linear attenuation coefficient, the differential phase, and the linear diffusion

coefficient from the simulation with the bi-prism are shown in Fig. 13. The image matrix size was set to

256×256×256 with a voxel size of 0.04×0.04×0.04 mm3. The three images across each column are the
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coronal (x-z plane), sagittal (y-z plane) and transaxial section (x-y plane) through the central axis of the

phantom. 

(a)

(b)

(c)

   Fig. 13. Reconstructed (a) linear attenuation coefficient, (b) differential phase and (c) linear diffusion 
coefficient. An array of bi-prisms with Moiré fringe analysis was used to simulate these data. The three 
images for each are the x-z slice, y-z slice, and x-y slice through the center of the phantom, respectively. 
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4. DISCUSSION

This simulation study is the first to present results of the reconstruction of coefficients of a vector basis

from simulated projections of X-ray small angle scatter using single-exposure Moiré fringe analysis of X-ray

bi-prism interferometry  projections. At  every  image  voxel,  coefficients  of  a  fixed  set  of  scatter  vector

directions are reconstructed from simulated dark field projections. Reconstructions of simulated projections

using grating interferometry with phase stepping are compared with those using grating interferometry with

Moiré fringe analysis and with those using bi-prism interferometry with Moiré fringe analysis. Simulations

of projections are obtained using a full mathematical wave approach to X-ray refraction and diffraction

assuming Rytov approximation.36 Our projection model28-31 of  X-ray scatter  compares results  of grating

using  phase  stepping  with  the  replacement  of  grating  by  bi-prisms  and  single  exposure  Moiré  fringe

analysis, although with somewhat increased noise but with one eighth the acquisition time. 

At every image voxel a fixed set of scatter vector directions is assumed for which the coefficients are

estimated from the measured projections  m in Eq. (13). Maximizing the likelihood in Eq. (16), provides

estimates of these coefficients from which a tensorial representation can be obtained by fitting the weights

of the fixed set of vectors to ellipsoids.29,30 This differs significantly from reconstruction of vector  and

tensor fields from direct scalar measurements of projected vector and tensor fields.45 In the present work the

estimates of the coefficients were obtained by the MLEM algorithm assuming Poisson noise; however, the

results  show some limited  angle  artifacts.  If  angular  sampling  is  limited  as  in  the  present  case  with

sampling only around the x−¿ and z−¿axis, one potential solution would be to implement a compressed

sensing CT reconstruction method.48,49 For more complex samples, it may also be necessary to measure

projections around the y−¿axis.

One of the early works to use tomography to reconstruct X-ray phase contrast data was presented by

Takeda48 and later by Bronnikov.49 Direct Fourier analysis was used because it was recognized that the

projection image of the object is modulated by the periodic grid pattern providing a strong primary peak
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signal  around  zero  spatial  frequency,  and  at  least  two  strong  harmonic  peak  signals  centered  at  the

periodicity of the implemented grating.50 Iterative approaches have advantages,  in addition to modeling

noise, to provide constraints on the solution. Investigations along this line were pursued by Brendel et al.32

who proposed a  cost  function  with  regularization  to  iteratively  reconstruct  simultaneously  attenuation,

phase, and scatter images (with independent penalty functions) from differential phase contrast acquisitions,

without the need of phase retrieval. In another work,51 a maximum likelihood reconstruction algorithm with

regularization  for  differential  phase  contrast  acquisitions  was  applied  to  sparsely  sampled  projections.

Forward and back-projection operations  were implemented using spherically  symmetric  basis  functions

(blobs). 

X-ray phase contrast imaging has also been applied to non-conventional tomographic applications with

the  investigation  of  phase-contrast  X-ray  computed  laminography52 and  tomosynthesis.53 The  specific

geometry  of  laminography  leads  to  unsampled  frequencies  in  a  double  cone  in  the  reciprocal  space;

reconstruction is improved by using prior information with an iterative filtered backprojection algorithm.

For tomosynthesis,53 the conventional attenuation image is obtained using the filtered-backprojection (FBP)

algorithm with  the  ramp kernel;  the  phase  contrast  is  reconstructed  using  FBP with  a  Hilbert  kernel;

whereas, the differential phase contrast image is reconstructed by removing differentiation operator in the

equation involving the Hilbert kernel because of the differential nature in the differential phase contrast

projections.

In our previous work,45,59,60 we mathematically represent tensor tomography as the direct reconstruction of

elements  of  a  rank-2  tensor  T ( x ) from  3D  directional  X-ray  projections  of  T ( x ) defined  by

pθτ
(s ;θ )=∫

R

❑

θT T (s+l θ) τ dl, where θ, τ  are three-dimensional directional unit vectors; or of elements of a
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rank-1 tensor (vector)  ν (x ) defined by  pθ
(s ;θ )=∫

R

❑

θT v(s+l θ)dl.  The algorithms involve reconstructing

directly the elements of the tensor or vector.

The  tensor  tomography  algorithms  of  Pfeiffer’s  group28-31 did  not  directly  reconstruct  elements  of  a

second order tensor or of a first order tensor (vector field). Their X-ray tensor tomography (XTT) method28

involved a two-step process of reconstructing coefficients of a Cartesian vector basis at each voxel and then

fitting that to an ellipsoidal representation of the tensor at each voxel. The forward model was an ingenious

representation of small angle scatter as the discrete supposition of the anisotropic scatter signal, much like

the Beer–Lambert model for the X-ray attenuation signal.31 Vogel et al.29 formulated the reconstruction of

the  ellipsoidal  representation  as  a  regular  inverse  problem  [see  Eq.  (13)]  whereby  an  iterative

reconstruction algorithm is used to estimate vector coefficients constrained by an ellipsoidal function. Later

Wieczorek  et  al.56 developed  what  they  termed  anisotropic  X-ray  dark  field  tomography  (ANDT),

modifying the previous algorithm by replacing the  Cartesian vector representation of the scatter in each

voxel by  a  spherical  harmonic  expansion. Redefining  the  forward  model  for  the  spherical  function

representation of the small angle scatter, a reconstruction algorithm was developed whereby coefficients of

the spherical harmonics were estimated to represent the reconstruction of the multiple scattering directions

within single voxels. They demonstrated that the rank-2 tensor model of XTT28,31 is a special case of this

continuous model.

 The  first  tensor  tomography  approach  to  directly  reconstruct  elements  of  a  second  rank  tensor

representation  of  small  angle  scatter from dark  field  projections  was  presented  by  Gao  et  al.58 They

modeled the projection of a rank-2 symmetric tensor distribution of the anisotropic scatter in every voxel as

the scalar measure of the product of a symmetric 3×3 tensor matrix  T(x)  with two equal unit vectors  τ

orthogonal  to  the  incoming  X-ray  beam  θ:  pττ
( s ;θ )=∫

R

❑

τ T T (s+ l θ)τ dl .  The  tensor  tomographic
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reconstruction was performed by what they termed an iterative reconstruction tensor tomography (IRTT)

algorithm, which used an iterative method similar to ART61 to minimize the difference between the forward

model  and  the  measured  data.  The  IRTT  algorithm  was  used  to  demonstrate  the  reconstruction  of

nanostructure anisotropy of a carbon fiber knot, a human bone trabecula specimen, and a fixed mouse brain.

The paper did an extensive comparison with their IRTT method and the small-angle X-ray scattering tensor

tomography (SASTT) reconstruction method,54,55 both in comparison of the theory and results, indicating

that the reconstruction speed for the IRTT was faster than that of the SASTT reconstruction method. The

SASTT method  uses spherical harmonics in fitting the three-dimensional reciprocal-space map for each

voxel.  A more general reciprocal-space formulation was developed by Schaff et al.57 who proposed an

algorithm  where  a  posteriorly virtual  axes  of  rotation  are  interrogated  for  the  3D  reciprocal-space

momentum  vector  q to find the projection angles and 2D scattering orientations that would align to the

virtual axis. Several virtual axes are analyzed for each voxel to obtain the best fit for  q.  This requires a

dense sampling of projections to identify the rotationally invariant component of the scatter in each voxel. 

What  is  missing  in  these  methods  is  tomographic  data  sufficiency  conditions  required  to  uniquely

reconstruct the tensor components. We know from the works of Desai and Lionheart62 that the 6 unknown

tensor components can be uniquely reconstructed by sampling special protection measurements, which are

projections of a subspace of the 3D tensor field around 3-orthogonal axes. Still, more work is needed in the

tensor reconstruction of phase contrast interferometry data to verify the uniqueness of the solution and

devising methods of uniquely reconstructing tensors from phase contrast interferometry. 
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5. CONCLUSION

Our simulations  of  anisotropic  X-ray  dark-field  imaging  of  a  phantom consisting  of  parallel  carbon

microfibers show an advantage of bi-prism X-ray interferometry with Moiré fringe analysis over X-ray

grating interferometry with phase stepping. This advantage is pronounced for certain scattering vectors and

is due to the expected increase in fringe visibility using a bi-prism interferometer.

Future work will investigate the use of a detector/scintillator with small hexagonal elements to provide

the Moiré patterns.26,27
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FIGURE CAPTIONS

Fig. 1. Schematic diagram of the X-ray bi-prism interferometry system used in our simulations. An X-ray

tube produces multiple  X-rays passing through a source grating G0.  The source grating forms multiple

coherent but mutually incoherent sources of X-rays. These refract or diffract through the G1 grating (either

bi-prism or binary grating in our simulations) and are scattered by the object. The resultant X-rays pass

through an analyzing grating G2 (either phase stepping grating or a rotated grating for Moiré fringe analysis

in our simulations).  In Section 2.B, we present the imaging model.  For this  model,  the following unit

vectors:  ϵ̂1 , ϵ̂2 , ϵ̂3∈ R3 are three scattering directions [in our simulations we used 7 scattering directions

(K=7)],  l̂ j ∈ R3 is  the direction  of the incoming X-ray beam, and  t̂ j ∈ R3 is  the sensitivity  direction

parallel to the detector surface.

Fig.  2.  (a)  Density  plot  of  a  fringe  visibility  pattern  for  25-point  sources  with  1  bi-prism.  The

amplification of the interference pattern is repeated at non-periodic distances away from the plane of the bi-

prism. For the calculation we set  λ=7.1×10−11 m (17.5 keV),  I p=1 /∆2, ∆=7.00 ×10−7 m,  α=δ tan( χ),

δ=1.57 ×10−6 (silicon),χ=82 °,   η=0.4 m,  and  x0=36.7 μm. (b)  Talbot-Lau carpet.  Illuminating plane

wave passes through a grating producing a fringe pattern with replicating amplified fringe patterns at regular

distances from the sources produced by the grating. At zT /2 there is a secondary Talbot image and at zT a

replication of the original Talbot image that emerged from the grating. At  zT /4 there is a double frequency

fractional image and increased frequency of images at less fractional distances. (Modified from Wikipedia:

https://en.wikipedia.org/wiki/Talbot_effect.)

45

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

https://en.wikipedia.org/wiki/Talbot_effect


Fig.  3.  Phantom  used  in  the  simulations.  The  phantom  consisted  of  four  layers  of  parallel  carbon

microfibers to provide preferential scatter perpendicular to the direction of the fibers. The angles ϕ  and θ

show the rotation directions of the projections of the phantom.

   Fig. 4. Schematic diagram of the simulation geometry used in the simulation study. G1  and G2 are the

gratings  and the phantom is the four layers of fibers shown in Fig.  3.  D1 is  the distance between the

phantom and the first grating G1. D2 is the distance between the first grating and the second grating G2. The

numbers 1 through 5 in the circles refer to the planes where Eqs. (5)-(9) were calculated. For the phase

grating simulation, the phase grating G2 was shifted 8 positions in the y-direction over one period. For the

Moiré simulation G2 was rotated by 3°. (This figure was modified from Fig. 1 in Sung et al.39)

   Fig. 5. Bi-prism replaces the binary grating in G1 for the simulations. This results in a trapezoidal phase

shift along the x-direction, which can be represented as ϕ ( x )=⋀ ( x )∗Π ( x ).

   Fig. 6. A Moiré irradiance pattern was superimposed on the detector by rotating a grating by about

3.5833°. Here is an array size of 16384×16384 with pixel size of 6.25 ×10−7 m. The period of the Moiré

pattern was approximately 8 ×10−5 m, twice that of the detector pixel size. The total grating pattern had a

width 10.24 mm with an 8-pixel period width of 0.005 mm and grating gap of 0.0025 mm.

   Fig. 7. Processing Moiré projections. The distance between 0 th harmonic and 1st harmonic is 1/period. F0

is obtained by centering on the central region.  F1 is obtained by centering on the region over the first

harmonic peak of the FFT image.
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Fig.  8.  Example  of  a  dark field  projection  (θ =  45°,  ϕ=0°).  Preferential  scattering  is  shown rotated

counterclockwise. 

Fig. 9. Moiré pattern with (left) and without (right) phantom. The 16384 ×16384 arrays in the previous

figure were down sampled here to 256×256.

Fig. 10. Results processing Moiré projections. Left: Intensity images I 0=|F 0
−1

| with (upper) and without

(lower) the phantom. Center: Visibility images V=|F1
−1
|/|F 0

−1
| with and without the phantom. Right: Phase

images Φ=arg ( F1
−1

) with and without the phantom. 

Fig. 11. Example of absorption, phase contrast, and dark field projections obtained by phase stepping

(upper) and Moiré fringe analysis (lower). As expected, increased noise is observed in the Moiré dark field

image.

Fig. 12.  Reconstructed vector coefficients from projections obtained: using grating with phase stepping

(left); grating with Moiré fringe analysis (middle); bi-prism with Moiré fringe analysis (right).  The three

images for each at the top are the coefficients for the vector [ 1,0,0 ], in the x-z slice, y-z slice, and x-y slice

through  the  center  of  the  phantom,  respectively.  The  series  of  images  from  top  to  bottom  are  the

coefficients  for  the  vectors  [ 1,0,0 ],  [ 0,1,0 ],  [ 0,0,1 ],  [√1/3 ,√1 /3 ,√1/3 ],  [−√1/3 ,√1/3 ,√1/3 ],

[√1/3 ,−√1/3 ,√1/3 ], [−√1/3 ,−√1/3 ,√1/3 ], respectively. Note: the third row of images are zero because

these are coefficients for the vector pointing along the optical axis.
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Fig. 13. Reconstructed (a) linear attenuation coefficient,  (b) differential  phase and (c) linear diffusion

coefficient. An array of bi-prisms with Moiré fringe analysis was used to simulate these data. The three

images for each are the x-z slice, y-z slice, and x-y slice through the center of the phantom, respectively.
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	As described in Section 2.A, dark field projections were simulated using an integrated wave optics framework33,34 to model X-ray-matter interaction and free-space propagation. Our approach calculates X-ray phase contrast images formed with sources of arbitrary shape (though a plane wave was used in our simulations), and objects of preferential scattering directions. The forward model for phase contrast imaging as described in the previous section formulates the inverse problem for the reconstruction of the measured projections.
	X-ray projections were simulated for an asymmetric scattering phantom in Fig. 3 consisting of four layers of parallel carbon microfibers. Each layer width was 0.5 mm and the diameter of the disk was 8 mm. The layers each consisted of an array of 71,000 fibers of 15 m diameter. All solid carbon fibers had the same orientation along the x-axis providing preferential scatter along the y-axis perpendicular to the fibers. In our comparison of gratings and bi-prisms, for one case we performed simulations with similar gratings G1 and G2 both with a grating pattern width of 10.24 mm with an 8-pixel period width of 0.005 mm and grating aperture of 0.0025 mm. In the second case the G1 and G2 gratings were the same but G2 was rotated by 3.6° for Moiré analysis. In the third case G1 was replaced by an array of bi-prisms as describe in Section 2.A.4 and the G2 grating was the same rotated grating (by 3.6°) as in the previous case.
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