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Abstract 
 

 

The Ecology and Conservation of Animal Movement in Changing Land- and Seascapes 

by 

Briana Lee Abrahms 

Doctor of Philosophy in Environmental Science, Policy and Management 

University of California, Berkeley 

Professor Justin S. Brashares, Chair 

 

Anthropogenic habitat fragmentation is a primary driver of species endangerment across the 

globe and has compounding effects on species diversity and ecosystem function. While efforts to 

enhance habitat connectivity are therefore essential to protecting biodiversity, a fundamental 

behavioral and ecological understanding of animal movement is first needed to successfully 

protect species movements. Understanding the role of behavior in determining animal movement 

patterns is essential to conservation planning, yet the extent to which an animal’s behavioral state 

(e.g. foraging, dispersing) influences its movements and resource selection has largely been 

ignored as part of conservation planning efforts. Further, because empirical studies of animal 

movement are most-often site- and species-specific, the processes underlying observed 

movement patterns are not well understood across taxa. This dissertation seeks to elucidate the 

processes that shape animal movements to advance the biological grounding of connectivity 

science and inform conservation efforts.  

 

A systematic review of connectivity studies employing resource selection analysis examined 

how researchers have incorporated animal behavior into connectivity planning, and highlighted 

promising approaches for identifying wildlife corridors. The review revealed that most of the 

research done to date has superficially considered all animal location data as representative of 

resource selection patterns, despite recognition that an animal’s behavioral state can be an 

important component of space use. Those studies in the review that validated connectivity 

predictions with independent movement data indicate that general patterns of resource selection 

are not always a suitable proxy for movement preference during dispersal, and failure to 

recognize this distinction may have important consequences for species-specific efforts to 

preserve habitat connectivity.  
 

Using high-resolution GPS and activity data from African wild dogs (Lycaon pictus), an 

Endangered species highly sensitive to habitat fragmentation, resource selection and responses to 

roads were measured across three behavioral states identified from activity data (hunting, resting, 

and traveling). The response of wild dogs to roads varied markedly with both the behavioral and 

landscape contexts in which roads were encountered, ranging between strong selection for and 

avoidance of roads depending on behavioral state. A comparison of these outputs to a full model 

that did not parse for behavior revealed that these patterns were not evident when all movement 
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data were considered together in the full model. This study indicates that including behavioral 

information in resource selection models is critical to understanding wildlife responses to 

landscape features and suggests that successful application of resource selection analyses to 

conservation planning requires explicit examination of the behavioral contexts in which 

movement occurs.  

 

The effects of behaviorally-mediated patterns of resource selection were then applied in a habitat 

connectivity modeling context. To illustrate the importance of behavioral information in 

connectivity assessments, behavior-specific predictions of connectivity were tested against long-

distance dispersal movements of African wild dogs. Findings demonstrated that including only 

directed-movement behavior when measuring resource selection reveals far more accurate 

patterns of habitat connectivity than a model measuring resource selection independent of 

behavioral state. Results of this work suggest that connectivity studies that rely on resource 

selection analysis alone may be insufficient to target movement pathways and corridors for 

protection. This research highlights the value of incorporating animal behavior into connectivity 

planning. 

 

To examine how basic movement processes scale up to produce emergent patterns for multiple 

species, movement data from over a dozen marine and terrestrial vertebrate species spanning 

three taxonomic classes, continents and orders of magnitude in body size were compared with 

computer-simulated idealized movement paths. This comparative approach revealed that similar 

movement patterns and properties recur in highly dissimilar ecological systems, and showed that 

a simple set of metrics can reliably classify broad-scale movement patterns such as migration, 

nomadism, and territoriality in disparate taxa. This classification system can be applied to inform 

predictions in multiple areas of ecological research, such as how an individual or species’ 

movement classification influences its response to climate change or its invasion potential in an 

exotic environment. In addition, this work provides researchers with a standardized set of 

movement metrics for expediently analyzing animal trajectories over time to detect any changes 

in movement pattern that may be indicative of environmental change.  

 

Taken together, the body of work presented in this dissertation provides new approaches for 

researchers and practitioners to understand the ecology and conservation of animal movement, 

and in particular for measuring wildlife responses to widespread habitat alteration. Given limited 

conservation resources and rapidly changing environments, these contributions mark a key step 

in developing effective strategies to preserve critical wildlife movement processes. 
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1. Introduction  
 

Anthropogenic habitat fragmentation, the process of breaking apart and reducing intact habitat 

through human land conversion (Fahrig 2003), is a primary driver of species endangerment 

across the globe (Czech & Krausman 1997; Pimm & Raven 2000; Sala et al. 2000). Beyond the 

effects of habitat loss itself, fragmentation has been shown to increase genetic isolation of 

populations, interrupt dispersal routes leading to higher mortality rates, increase edge effects, and 

disrupt species' abilities to shift ranges in response to long-term environmental change (Fahrig 

2003). 

 

Today, nearly one fifth of all vertebrate species are classified as Threatened (Vulnerable, 

Endangered or Critically Endangered) on the International Union for Conservation of Nature 

(IUCN) Red List (Hoffmann et al. 2010). For wide-ranging species with large area requirements 

like large carnivores, the rate is significantly greater. Sixty one percent of extant large carnivore 

species are Threatened, and 77% of these species are experiencing ongoing population declines 

(Ripple et al. 2014). Habitat fragmentation, compounded with the loss of the important 

regulatory role of large carnivores in ecosystems (Terborgh et al. 2001; Estes et al. 2011), have 

cascading effects on species diversity and ecosystem function (Fahrig 2003; Prugh et al. 2008; 

Forister et al. 2010).  

 

Yet, evidence that conservation actions have prevented some 18% of bird and mammal species 

on the IUCN Red List from further declining in status offers reason for optimism (Hoffmann et 

al. 2010). Effective efforts to mitigate habitat fragmentation are essential to protecting 

biodiversity, and scientific methods to enhance landscape connectivity, the degree to which a 

landscape facilitates or impedes movement among habitats (Taylor et al. 1993), are consequently 

burgeoning (Beier, Majka & Spencer 2008; Gilbert-Norton et al. 2010; Rudnick et al. 2012). To 

successfully target these efforts for the protection of critical movement processes, a fundamental 

behavioral and ecological understanding of animal movement is first needed (Sawyer, Epps & 

Brashares 2011). This dissertation seeks to elucidate the internal and external processes that 

shape animal movements to advance the biological grounding of connectivity science and inform 

conservation efforts.  

Corridor ecology: theory, approaches and limitations 
 

The ability of animals to move through their landscapes has profound effects on their survival 

and population dynamics. Landscape connectivity influences demography (Clobert et al. 2001), 

promotes dispersal and colonization (Hanski 1998), maintains genetic diversity through gene 

flow (Hendrick 2005), increases a species’ ability to respond to environmental change (Heller & 

Zavaleta 2009), and supports long term persistence of populations (Swingland & Greenwood 

1983). Thus, a great deal of attention within the ecological and conservation literature is 

increasingly given to understanding and predicting animal movement processes and patterns 

(Nathan et al. 2008).  

 
Wildlife corridors are an important conservation tool for protecting animal movement and 

promoting landscape connectivity (Gilbert-Norton et al. 2010). Corridors, defined as a linear 

habitat connecting two or more larger habitat patches within a non-habitat matrix (Beier and 

Noss 1998), have been shown to facilitate movement between habitat patches (Haddad et al. 
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2003; Gilbert-Norton et al. 2010) and reduce individual mortality during dispersal (Kenneth 

Dodd, Barichivich & Smith 2004; Glista, DeVault & DeWoody 2009). At a population and 

meta-population scale, corridors can theoretically reduce genetic isolation and local extinction 

and allow immigration to new habitat patches if currently occupied habitat becomes unsuitable 

(Caro, Jones, and Davenport 2009).  

 
A requisite first step in protecting corridors for movement is the identification of areas on the 

landscape where movement between habitat areas is most likely to occur. Resistance surface 

modeling is the leading analytical technique for predicting animal movements across broad 

spatial scales to inform corridor planning (Sawyer, Epps & Brashares 2011; Zeller, McGarigal & 

Whiteley 2012). Resistance surface models assign a value in a landscape grid cell to each 

environmental variable of interest (e.g. elevation, land cover) that represents the energetic or 

survival cost to the study species of moving through that spatial position (Adriaensen et al. 

2003), or the willingness of the individual to cross the cell (Zeller, McGarigal & Whiteley 2012). 

Low cost (or resistance) values indicate a suitable habitat type while high values indicate less 

suitable habitat or habitat which impedes movement, for example rivers, roads, or urban areas. 

Corridors intended for protecting dispersal movements among habitat areas, for instance, may 

then be identified by evaluating paths of least resistance over the cost surface (Adriaensen et al. 

2003; McRae et al. 2008).  

 

While resistance surface modeling provides a strong analytical framework for evaluating 

landscape connectivity and predicting movement pathways, it has a number of limitations that 

necessitate further research to improve its efficacy. First, because resistance surface modeling 

typically uses the inverse of habitat suitability as a proxy for cost, it runs the risk of 

misappropriating movement preferences by treating all behaviors as equal (Zeller et al. 2012). 

Just as humans don’t drive over houses nor sleep on highways, animals may not select the same 

habitat they would for dispersal as they would for denning or any other behavior. In fact, there is 

increasing recognition that an animal’s behavioral state (e.g. resource use vs. dispersing) can 

strongly mediate its patterns of resource selection (Wilson, Gilbert-Norton & Gese 2012; Roever 

et al. 2013; Abrahms et al. 2016). Thus, the degree to which connectivity predictions are 

sensitive to behavior-specific estimates of resource selection must be better understood.  

 

Second, little direct evaluation exists of how well resistance surface models predict actual animal 

movement paths (Driezen et al. 2007). Empirical evidence is lacking on how assigned resistance 

values correlate with on-the-ground species’ movements (Beier and Noss 1998; Sawyer, Epps, 

and Brashares 2011). Not only is there no consensus as to which analytical approaches yield the 

most accurate resistance values, but there is little exploration of the sensitivity of model output to 

the chosen methodology (Zeller et al. 2012). These limitations are highly problematic, as 

managers may base land use and acquisition decisions on inaccurate and/or unevaluated models 

(Simberloff et al. 1992). 

 

With the advancement of GPS collar technology that includes kinematics data and allows for the 

collection of movement data at unprecedented scales, there is great opportunity for better 

understanding the role of behavior in shaping animal movements, determining the efficacy of 

connectivity models, and evaluating movement as an indicator of environmental change.  
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Study system 
 

African wild dogs (Lycaon pictus) serve as the focal species for the greater part of my 

dissertation uses. African wild dog GPS movement data was collected in the Okavango Delta 

region of northern Botswana.  

Okavango Delta, Botswana 

The Okavango Delta in north-western Botswana is a World Heritage Site and boasts one of most 

diverse assemblages of large carnivores in the world (Ripple et al. 2014). It supports populations 

of cheetahs (Acinonyx jubatus), spotted hyenas (Crocuta crocuta), brown hyenas (Hyaena 

brunnea), leopards (Panthera pardus), lions (Panthera leo), and one of the world’s largest 

African wild dog populations (c. 500 individuals) (Woodroffe, McNutt & Mills 2004). The 

Delta’s highly productive environment also supports some of the highest herbivore densities seen 

across Africa, including African buffalo (Syncerus caffer), African elephants (Loxodonta 

africana), impala (Aepyceros melampus), wildebeest (Connochaetes taurinus), and zebra (Equus 

burchelli) (Ramberg et al. 2006). 

 

My study site was located just east of the Delta’s main floodwaters (c. 2600 km²; 19°31’S, 

23°37’E; elevation: c. 950 m) and was bordered to the west and northwest by the Delta’s 

permanent swamp, including a portion of the Moremi Game Reserve. This area is part of the 

greater Kavango-Zambezi Transfrontier Conservation Area (KAZA-TFCA), which was recently 

instituted to re-establish ecological connectivity in southern Africa. The KAZA-TFCA 

encompasses a network of reserves and corridors across Botswana, Zimbabwe, Namibia, 

Zambia, and Angola, including Moremi Game Reserve. Adjacent to Moremi Game Reserve are 

designated Wildlife Management Areas in which photographic and trophy hunting tourism are 

the only human activities permitted. The Okavango Delta’s rich wildlife communities attract 

over two million tourists annually, and, between 1995 and 2005, tourism in Botswana grew 

nearly 15%, leading to the threat of rapid development for tourism infrastructure (Harrison & 

Maharaj 2013; Tourism Statistics Annual Report 2015). 

African wild dogs: natural history and population trends 

The African wild dog, otherwise known as the African hunting dog or African painted dog, is 

among the most iconic species of sub-Saharan Africa. African wild dogs are known for their 

unique social hierarchy and cooperative behavior, which are rare among mammals, living and 

breeding in hierarchical social groups called packs (Creel & Creel 2002). Packs range in size 

from 2-27 individuals and increasing pack size has been to shown to contribute to additive 

hunting and reproductive success (Creel & Creel 2015; Hubel et al. 2016). Their main prey 

species vary by region and include impala, kudu (Tragelaphus strepsiceros), Thomson's gazelle 

(Eudorcas thomsonii), wildebeest, and steenbok (Raphicerus campestris) (Creel & Creel 2002). 

Breeding among African wild dogs is typically restricted to the dominant male and female of the 

pack and occurs once annually. Because they are obligate cooperate breeders, African wild dogs 

are vulnerable to inverse density dependence at low densities (i.e. the ‘Allee effect’), whereby 

the probability of pack survival dramatically decreases below a pack size threshold (Courchamp, 

Clutton-Brock & Grenfell 1999; 2000). Dispersal occurs when individuals of either sex reach 

maturity typically between the ages of two and three years, and functionally serves to avoid 

inbreeding by emigrating to a new breeding range (McNutt 1996). 
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Along with the Ethiopian wolf (Canis simensis), the African wild dog is considered one of the 

top two most endangered carnivore species of Africa, and is listed as Endangered on the IUCN 

Red List (Woodroffe & Sillero-Zubiri 2013). The species currently occupies 12% of its historical 

range, with fewer than 1,500 mature adults estimated remaining in the population (Woodroffe & 

Sillero-Zubiri 2013). Anthropogenic habitat fragmentation is consistently identified as its 

principal threat (Creel & Creel 1998; Woodroffe & Sillero-Zubiri 2013; van der Meer et al. 

2013). African wild dogs have among the largest space requirements of large carnivores, which 

is attributed to avoidance of competitively dominant sympatric predators (lions and hyenas) 

(Creel & Creel 1996). In northern Botswana, African wild dog home range sizes are estimated at 

a mean of 739 km2 and have been observed to be as large as 1,608 km2, making them highly 

vulnerable to reduction and fragmentation of suitable habitat (Pomilia, McNutt & Jordan 2015). 

Habitat fragmentation increases direct mortality of African wild dogs from human-wildlife 

conflict and disease transmission from domestic animals, and increases barriers to movement for 

long-distance disperses, thereby increasing the genetic isolation of wild dog populations and risk 

of inbreeding depression (Woodroffe 2011). Indeed, strong genetic structuring recently shown 

among nine wild dog subpopulations, indicating the loss of gene flow, reveals the genetic 

signature of extensive habitat fragmentation across sub-Saharan Africa (Marsden et al. 2012). 

Consequently, the IUCN has identified “determining the landscape features which facilitate (or 

prevent), wild dog movement over long distances and hence promote (or block) landscape 

connectivity” among its top five scientific needs (Woodroffe & Sillero-Zubiri 2013).  

 

Because African wild dogs are highly wide-ranging, sensitive to habitat fragmentation, and are 

of immediate conservation concern, they provide an ideal focal species for examining the 

behavioral and environmental influences on movement and dispersal and identifying methods to 

protect these processes. 

 

Overview of Dissertation 
 

In the second chapter, I investigate the role of behavior in determining responses of African wild 

dogs to one of the most widespread forms of landscape alteration globally: road systems. 

Understanding how anthropogenic features affect species’ abilities to move within landscapes is 

essential to conservation planning and requires accurate assessment of resource selection for 

movement by focal species. Yet, the extent to which an individual’s behavioral state influences 

resource selection has largely been ignored. I collected high resolution GPS and activity data 

from 13 wild dogs over a two-year period. I employed a step selection framework to measure 

resource selection across three behavioral states identified from activity data (high-speed 

running, resting, and traveling) and across a gradient of habitats and seasons, and compared these 

outputs to a full model that did not parse for behavior. The response of wild dogs to roads varied 

markedly with both the behavioral and landscape contexts in which roads were encountered. 

Specifically, wild dogs selected roads when traveling, ignored roads when high-speed running, 

and avoided roads when resting. This distinction was not evident when all movement data were 

considered together in the full model. When traveling, selection of roads increased in denser 

vegetative environments, suggesting that roads may enhance movement for this species. These 

findings indicate that including behavioral information in resource selection models is critical to 

understanding wildlife responses to landscape features and suggest that successful application of 
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resource selection analyses to conservation planning requires explicit examination of the 

behavioral contexts in which movement occurs. Thus, behavior-specific step selection functions 

offer a powerful tool for identifying resource selection patterns for animal behaviors of 

conservation significance. 

 

In the third chapter, I review current connectivity literature and use an empirical case study on 

African wild dogs to demonstrate that including only directed-movement behavior when 

measuring resource selection reveals markedly different, and more accurate, patterns of 

landscape connectivity than a model measuring resource selection independent of behavioral 

state. I reviewed sixteen years of connectivity studies employing resource selection analysis to 

evaluate how researchers have incorporated animal behavior into corridor planning, and 

highlight promising new approaches for identifying wildlife corridors. This review indicated that 

most connectivity studies conflate resource selection with connectivity requirements, which may 

result in misleading estimates of landscape resistance, and lack validation of proposed 

connectivity models with movement data. To illustrate the importance of behavioral information 

in such analyses, I presented an empirical case study to test behavior-specific predictions of 

connectivity with long-distance dispersal movements of African wild dogs. Results of this work 

suggest that resource selection analyses that fail to consider an animal’s behavioral state may be 

insufficient in targeting movement pathways and corridors for protection. This study highlights 

the crucial importance of incorporating behavioral information into connectivity planning. 

 

In the fourth chapter, I move beyond a single species analysis to investigate whether broad-scale 

movement patterns can be characterized across diverse taxa and environments, and develop a 

system of measures for how the study of movement can be used as an indicator of environmental 

change. Because empirical studies of animal movement are most-often site- and species-specific, 

ecologists lack a generalized understanding of the mechanisms underlying broad movement 

patterns. By combining movement data from 13 marine and terrestrial species spanning three 

taxonomic classes, continents and orders of magnitude in body size with computer-simulated 

idealized movement paths, I examine how fundamental movement metrics scale up to predict 

emergent movement patterns across multiple taxa. I introduce a classification scheme for 

movement syndromes, which are suites of correlated movement traits seen across taxa (e.g. 

migration, nomadism), and show that a simple set of metrics can reliably classify movement 

syndromes across highly disparate vertebrate taxa. This movement syndrome classification 

scheme provides a general framework for linking movement patterns to movement process, and 

facilitates new understanding of relationships between movement and environmental factors such 

as landscape configuration and climate. In the final chapter, I discuss key conclusions from this 

body of work and provide recommendations for future areas of research.  
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2. Lessons from integrating behaviour and resource selection: 
activity-specific responses of African wild dogs to roads 

 
This paper has been previously published and is reproduced here with kind permission from 

John Wiley and Sons (License Number 3881031447205) 

 

Abrahms, B., Jordan, N.R., Golabek, K.A., McNutt, J.W., Wilson, A.M., and Brashares, J.S. 

2016. Lessons from integrating behaviour and resource selection: activity-specific responses of 

African wild dogs to roads. Animal Conservation, 19: 247–255. 

 

Abstract  
 

Understanding how anthropogenic features affect species’ abilities to move within landscapes is 

essential to conservation planning and requires accurate assessment of resource selection for 

movement by focal species. Yet, the extent to which an individual’s behavioural state (e.g. 

foraging, resting, commuting) influences resource selection has largely been ignored. Recent 

advances in GPS tracking technology can fill this gap by associating distinct behavioural states 

with location data. We investigated the role of behaviour in determining responses of an 

endangered species of carnivore, the African wild dog (Lycaon pictus), to one of the most 

widespread forms of landscape alteration globally: road systems. We collected high resolution 

GPS and activity data from 13 wild dogs in northern Botswana over a two-year period. We 

employed a step selection framework to measure resource selection across three behavioural 

states identified from activity data (high-speed running, resting, and traveling) and across a 

gradient of habitats and seasons, and compared these outputs to a full model that did not parse 

for behaviour. The response of wild dogs to roads varied markedly with both the behavioural and 

landscape contexts in which roads were encountered. Specifically, wild dogs selected roads when 

traveling, ignored roads when high-speed running, and avoided roads when resting. This 

distinction was not evident when all movement data were considered together in the full model. 

When traveling, selection of roads increased in denser vegetative environments, suggesting that 

roads may enhance movement for this species. Our findings indicate that including behavioural 

information in resource selection models is critical to understanding wildlife responses to 

landscape features and suggest that successful application of resource selection analyses to 

conservation planning requires explicit examination of the behavioural contexts in which 

movement occurs. Thus, behaviour-specific step selection functions offer a powerful tool for 

identifying resource selection patterns for animal behaviours of conservation significance. 

 

Keywords 
 

resource selection, animal behaviour, linear features, movement ecology, step selection 

functions, conservation planning, landscape permeability, Lycaon pictus 
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Introduction 
 

Understanding animal movement is essential to effective in-situ conservation planning. An 

animal’s ability to move through its landscape has fundamental consequences for both individual 

fitness (e.g. resource acquisition, survival) and long-term population persistence (e.g. dispersal, 

gene flow; Swingland & Greenwood 1983; Dingle 1996; Hanski 1999; Clobert et al. 2001). 

Management efforts aimed at preserving landscape connectivity have thus skyrocketed, and the 

effect of natural and human-built landscape features on animal movement and resource selection 

has become a central issue in ecology and conservation (Turner 1989; Nathan et al. 2008). In 

particular, conservation planners use estimates of resource selection to identify important habitat 

for wildlife populations, assess how wildlife responds to specific landscape features, and 

delineate wildlife corridors where animal movement is predicted to occur (Manly et al. 2002; 

Chetkiewicz & Boyce 2009).  

 

The extent to which an animal’s behavioural state (e.g. foraging, resting, commuting) influences 

resource selection has largely been ignored as part of these conservation planning efforts 

(Wilson, Gilbert-Norton & Gese 2012). Behavioural state has been shown to be an important 

component of habitat selection and space use in multiple taxa including elk (Cervus elaphus) 

(Fryxell et al. 2008), killer whales (Orcinas orca) (Ashe, Noren & Williams 2010), Bluefin tuna 

(Thunnus maccoyii) (Pedersen et al. 2011), lions (Panthera leo) (Elliot et al. 2014) and elephants 

(Loxodonta africana) (Roever et al. 2013).While both behavioural patterns and habitat use vary 

substantially among these species, these studies are similar in demonstrating that behaviour is an 

important determinant of how animals use their landscape. Thus, appropriate land management 

decisions rely on correctly identifying patterns of resource selection for the specific behaviours 

that are of conservation interest.  

 

Recent advances in GPS tracking and mapping technology promise to improve efforts to link 

behavioural traits and patterns of habitat use, thereby providing conservation practitioners with a 

greater understanding of animal space use (Nams 2014). Animal-attached accelerometers in 

particular are being increasingly used to collect high-resolution activity data that can be paired 

with GPS locations (Brown et al. 2013). This collar technology allows not only precise 

quantification of resource selection, but also assessment of the behavioural contexts in which 

landscape features are selected for or avoided. Here, we demonstrate the importance of 

combining location and activity data to determine the role of behavioural state in resource 

selection and response to human habitat modification. Specifically, we investigate how 

behavioural state affects responses of African wild dogs (Lycaon pictus; Fig. 1) to one of the 

most widespread forms of landscape alteration globally: road systems (Bennett 1991; Trombulak 

& Frissell 2013). Roads have been shown to impede movement and dispersal by small-bodied 

species, particularly in areas with high human traffic (e.g., Fahrig et al. 1995; Shepard et al. 

2008; Benítez-López, Alkemade & Verweij 2010). In contrast, a growing body of literature 

suggests that larger and more vagile species such as carnivores may use low traffic volume roads 

as movement corridors; roads may therefore increase the permeability of the encompassing 

landscape for these species (Latham et al. 2011; Whittington et al. 2011). Because of their 

vagility and sensitivity to human disturbance (Creel & Creel 1998), African wild dogs offer a 

particularly appropriate system for exploring behavioural variation in responses to road 
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networks. Given that road construction is accelerating throughout Africa, including in areas 

critical to the remaining African wild dog populations, detailed understanding of interactions 

between road networks and African wild dog behaviour is necessary for effective management of 

this endangered species.  

 

To determine if resource selection patterns by African wild dogs vary with behavioural state, we 

evaluated fine-scale individual responses to roads using step selection functions. This approach 

is ideal for estimating resource selection for continuous movement data as it accounts for 

changes in resource availability as the animal moves through its environment (Fortin et al. 2005; 

Thurfjell, Ciuti & Boyce 2014). We modeled resource selection across three behavioural states 

(high-speed running, resting, and traveling) measured across multiple habitats and seasons to test 

the hypothesis that roads increase landscape permeability for African wild dogs. In addition to 

providing the first behaviourally explicit analysis of movements by African wild dogs, our 

analyses demonstrate the importance of including behavioural information in conservation-

planning efforts.  

 

Materials and Methods 

Study Area 

Our study area (Fig. 1) was located in northern Botswana’s Okavango Delta (c. 2700 km2; 

centered at 19°31’S, 23°37’E; elevation c. 950 m) and included the southeastern portion of 

Moremi Game Reserve and surrounding Wildlife Management Areas. The region is 

characterized by highly seasonal fluctuations in precipitation, which correlate with vegetative 

growth. The dry season extends from April to October, peaking September-November (hereafter, 

peak dry season). The wet season extends from November to March with annual rainfall of 300-

600 mm (McNutt 1996), peaking January-March (peak wet season). At our study site, the peak 

of the Delta’s annual flood pulse typically occurs between August and September, which 

coincides with the wild dog denning season June-August (flood/denning season). Five major 

habitat types can be distinguished based on vegetation composition and structure: swamp (open 

structure), grassland (open structure), mixed woodland (medium structure), mopane (medium-

dense structure), and riparian (dense structure). Broekhuis et al. (2013) provide detailed 

descriptions of these habitats and the methods used to distinguish them. An extensive and 

growing network of unpaved (sand) roads in this area (Fig. 2) is used primarily to support 

ecotourism.  

Data Collection 

Between November 2011 and 2013, we fitted thirteen adults from six wild dog packs with 

custom-designed GPS radiocollars (mean fixes per collar = 22350 ± 18676; Table S1). Each 

collar included a GPS unit and an Inertial Measurement Unit (IMU) consisting of a three-axis 

accelerometer and gyroscope to record position, velocity, and acceleration data. The GPS units 

within the collars were programmed to move between different operating states depending on the 

measured activity status of the animal. For all collars, the default state (‘resting’) took hourly 

fixes when the animal was stationary but transitioned into a ‘traveling’ state with five-minute 

fixes when activity data indicated that the animal was moving consistently. In addition, 10 

collars included a ‘running’ state of five fixes per second, or 5-Hz intervals, triggered by 
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acceleration equivalent to galloping (38.2 m/s2). Field validation has shown that the number of 

runs recorded by the collars agree with reported data on average chases of prey per individual per 

day (Wilson et al. 2013). Wilson et al. (2013) provide additional information regarding the 

specifications of the collar design. 

Movement Analyses 

We chose roads as our focal landscape feature for evaluating patterns of resource selection since 

roads are a ubiquitous form of human landscape alteration and have been shown to influence 

animal movement patterns (e.g., Whittington, St. Clair & Mercer 2005; Shepard et al. 2008). To 

determine if responses to roads by African wild dogs vary with behavioural state, we employed a 

case-control design using step selection functions (SSFs; Fortin et al. 2005). SSFs use 

conditional logistic regression to estimate the relative probability of selecting a step by 

comparing the attributes of observed steps with those in a set of random control steps. When 

analyzing GPS-derived data, a step is typically measured as the straight line segment between 

two consecutive fix locations, and is described by its step length and turn angle (Turchin 1998). 

Following Forester et al. (2009), we generated five control steps for each observed step by 

sampling random step lengths from an exponential distribution and random turn angles from a 

uniform distribution from 0 to 2𝜋. We chose to create only five control steps per observed step 

since a low number of control steps has been shown to have no effect on coefficient estimation 

for large datasets (Thurfjell et al. 2014). The binary response variable of our step selection model 

was used (1) and control (0) locations, with predictor variables being step length, turn angle, and 

distance to nearest road, measured continuously. We checked these predictor variables for 

collinearity using pairwise Pearson correlation coefficients with a correlation threshold of |r| > 

0.6 (Latham et al. 2011); based on this threshold, no variables were discarded. 

 

We estimated a SSF for all movement data without parsing by behaviour (‘combined model’), 

and then estimated separate SSFs for each of the three behavioural states. Since SSFs rely on 

constant telemetry fix rates, for the combined model we matched the 5-minute fix intervals for 

traveling by interpolating the hourly resting data, during which the animal was stationary, and 

subsampling the 5 Hz running data. We conducted a sensitivity analysis to ensure post-hoc 

modification of fix rates did not affect parameter estimation; we found no significant difference 

between estimates for the resting and running data at the modified fix rates. For models 

partitioned by behaviour, we subsampled the running data to 1 Hz and did not alter the fix rates 

of the resting or traveling data. To consider the potential role of lack of independence between 

individuals occurring within the same pack, we repeated this and the following analyses with 

only one individual from each pack. The results of this more conservative approach were 

consistent with those presented in this paper (Table S2, Fig. S1 and S2).  

 

To explore effects of roads on landscape permeability when traveling, we included a distance-to-

road by habitat type interaction term in the traveling model; data on habitat type were derived 

from a GIS layer of the five habitat classes (Broekhuis et al. 2013). We performed a Fourier 

Transform for the traveling data and included an interaction between distance to road and the 

sine- and cosine-transformations of day of year to examine changes in selection over season 

(Priestley 1981). Finally, we calculated movement speed as displacement divided by time and 

turn angle as the change in direction of heading for each step in the traveling dataset. We used a 

linear model to test for relationships between average speed or turn angle as response variables 
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and a binary on-road/off-road predictor variable. To look at variation in these relationships over 

season, we created separate models with data from the peak wet, flood/denning, and peak dry 

seasons. All statistical analyses were performed using R 3.1.0 (R Core Team 2014). Conditional 

logistic regression was performed with R package survival and p-values for coefficient estimates 

were calculated with Wald tests (Therneau 2014).  

 

Results 

Behaviourally-mediated variation in responses to roads 

There were no effects of roads on step selection in a full model (“combined”) that included the 

entire GPS dataset and all behavioural categories (p = 0.54; Table 1). However, when locations 

were partitioned by behavioural state and run in separate models, we found that patterns of road 

use varied markedly among the focal behaviours. African wild dogs selected for roads when 

traveling (p<0.01) but selected locations far from roads when resting (p=0.015). No effect of 

roads was evident for high-speed running (p = 0.55). The positive and negative effects of roads 

on step selection for these behavioural categories explain the absence of a road effect in the 

combined model. 

Movement responses to roads across space and time 

When an interaction term between distance-to-road and habitat type was included in the model 

for traveling, we found significant road selection across all habitat types (p < 0.01; Fig. 3). 

However, the magnitude of the selection coefficient, corresponding to the degree to which roads 

were selected for, varied greatly among habitats. Road selection was lowest in open habitat types 

(swamp, |β| = 1.05e-04; grassland, |β| = 1.4e-04), and increased with increasing habitat density 

(woodland, |β| = 1.95e-04; mopane, |β| = 2.56e-04), although road selection was only moderate in 

the densest habitat category, riparian (|β| = 1.65e-04). Results from the Fourier Transform 

showed similar significant variation in road selection over time (Fig. 4). Road selection was 

strongest during the peak wet season, January-March (min β = -2.6 e-04), and weakest during the 

peak dry season, September-November (max β = 2.18e-05). A second peak in road selection 

occurred in June-August (min β = -1.04e-04), which corresponds with the flood/denning season. 

Movement statistics of road travel 

In our traveling data set, comparisons of the distribution of turn angles for observed steps on 

roads versus observed steps off roads revealed that movement steps on roads had a greater 

proportion of small or zero magnitude turn angles (Fig. 5). Our linear model showed that turn 

angles were 25% smaller on roads (intercept = 1.00, slope = -0.25, p < 0.01). Average speeds 

calculated from the traveling dataset were higher on roads than off-road across all seasons (Fig. 

4). Average off-road travel speeds were 27% less than on-road speeds in the peak wet season 

(0.81 vs. 1.03 m/s, SE=0.01, p<0.01), 50% less in the flood season (1.02 vs. 1.53 m/s, SE=0.006, 

p<0.01), and 23% less in the peak dry season (0.72 vs. 0.17 m/s, SE = 0.006, p=0.04).  

 



 

 

11 

Discussion 

Behaviour-specific patterns of resource selection 

Conservation and development planning require a comprehensive understanding of how 

anthropogenic landscape features affect resource selection and landscape connectivity. Our 

results emphasize the importance of explicitly considering the behavioural, landscape, and 

climatic contexts in which the landscape features under study are encountered by the study 

species. Importantly, we show that failure to consider these factors yields notably different and 

potentially misleading outcomes compared to models that incorporate behaviour. Specifically, 

while African wild dogs selected for roads when traveling, they avoided roads when resting. This 

distinction was not evident when all movement data were considered together, thus illustrating 

the need to consider the specific behavioural context in which movement is measured in order to 

understand fully how anthropogenic features affect wildlife. In our case, separating patterns of 

resource selection by behavioural state was required to determine roads effects on landscape 

permeability for African wild dogs.  

Road effects on landscape permeability  

Understanding the effects of landscape features such as roads on the energetic or survival cost of 

animal movement is critical for accurately assessing connectivity and for protecting linkages for 

wildlife movement (Rudnick et al. 2012; Cozzi et al. 2013). Yet, despite the global ubiquity of 

roads, little research has described their impacts on fine-scale behavioural responses of wide-

ranging species. While roads increase landscape resistance for many species, our findings 

indicate that unpaved roads can significantly enhance landscape permeability for a large 

carnivore of conservation concern. Our finding that African wild dogs selected for movement on 

roads when traveling is consistent with previous studies on large carnivore use of anthropogenic 

linear features (Dickson, Jenness & Beier 2005; Whittington et al. 2005); our use of high 

resolution spatial data partitioned by behavioural state provided a novel opportunity to link road 

use to enhancement of landscape permeability.  

 

Results of two analyses supported our hypothesis that roads increase landscape permeability for 

African wild dogs when traveling. First, African wild dogs selected roads more strongly in 

habitat types with high vegetation density, suggesting that roads are more preferred for 

movement as the vegetation surrounding them becomes less permeable (Fig. 3). One exception 

to this trend occurred in riparian habitat, where road selection was lower than in either mixed 

woodland or mopane forest habitats. While riparian habitat was the most densely vegetated, the 

riverbanks and ground cover immediately abutting riparian areas was more open and may have 

served as movement corridors, a pattern that has been demonstrated for other large carnivore 

species (Hilty & Merenlender 2004; Dickson et al. 2005). Second, road selection tracked 

seasonal changes in vegetation, peaking during the peak wet season when vegetative growth is 

highest, and dropping during the peak dry season when ground cover is relatively sparse (Fig. 4). 

A second peak in road selection occurred during the Delta flood pulse, which coincides with the 

denning season for African wild dogs. This peak in road selection may reflect the benefits of 

efficient travel to and from den sites. Topographically, the study area is extremely flat, with no 

correlation between road locations and elevation; as a result, we found no evidence that road 

selection during the wet or flooding seasons is an artifact of animals simply selecting higher 

ground to avoid flooded areas. A potential alternative hypothesis for road use is that prey species 
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of African wild dogs use roads for travel or foraging and the dogs simply followed their prey. 

However, our results do not support this explanation as road selection was greatest in mopane 

habitat, which is the habitat type most strongly avoided by their primary prey species, impala 

(Aepyceros melampus; Bonyongo 2005), and this hypothesis does not explain the seasonal 

variation in road use exhibited by African wild dogs.  

 

Roads also significantly influenced the turn angle and speed parameters of African wild dog 

movement, which may result in energetic benefits. Smaller turn angles (Fig. 5) and greater travel 

speeds may reflect reduced energetic costs of traveling on this type of open surface. These 

tendencies were most pronounced during the denning season, a finding that is consistent with 

work by Zimmermann et al. (2014), who reported that breeding wolves traveled faster than non-

breeding wolves, especially on roads. Increased travel speeds during the denning season might 

be explained by two contributing factors: den site habitat characteristics and the nature of central 

place foraging. Wild dogs frequently choose den sites in relatively prey-poor habitat which has 

been attributed to comparatively low predator densities (Meer et al. 2013). Commuting relatively 

long distances through less prey-productive habitats could contribute to direct steady, and 

therefore faster, travel until reaching comparatively high prey density hunting areas. Secondly, 

the return trip to provision pups during the denning season represents a direct and purpose-driven 

commute from wherever they are to a known destination (i.e., central place). Elimination of the 

need to maintain cohesion as a social group while traveling (because the common destination is 

predetermined), as well as the relatively direct return trip commute, would contribute to 

increased average travel speeds during this period. 

 

In addition to increasing landscape permeability, road use may have other behavioural 

advantages. One potential advantage of road use is demarcation of pack territories, as has been 

proposed for wolves (Zimmermann et al. 2014). African wild dogs regularly use roads as scent-

marking sites since roads may act as transmission corridors for olfactory information (Parker 

2010). Roads may also confer benefits for hunting behaviour. For example, roads may increase 

the line-of-sight to prey for African wild dogs (Latham et al. 2011). Indeed, Whittington and 

colleagues (2011) showed that encounter rates between wolves and caribou increased near linear 

features such as roads. Finally, while roads may increase the probability of encounters with other 

carnivore species (e.g., lions), road use may reduce the risk of potentially detrimental outcomes 

due to increased visibility along roads; this potential consequence of road use by traveling 

African wild dogs will be investigated as part of future studies of the movement patterns of this 

species. 

 

These results suggest that unpaved roads do not reduce, and may in fact enhance, landscape 

permeability for African wild dogs in wildlife areas of northern Botswana. This can and should 

be incorporated into landscape-level connectivity assessments for this species, though managers 

must be careful to align conservation action with the specific behaviour of conservation concern. 

For example, our results indicate that preservation of suitable habitat for African wild dog rest 

sites would be markedly different to that for movement pathways. Future research should explore 

the potential negative impacts of roads on other behaviours such as denning (Meer et al. 2013), 

and the direct impact of vehicle strikes or other effects of human presence in human-dominated 

areas (Woodroffe et al. 2007). 
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Conclusions  

Our findings emphasize the importance of considering the behavioural contexts in which animal 

movements occur when attempting to assess habitat preferences and responses to landscape 

features (Beyer et al. 2010; Wilson et al. 2012). Resource selection analyses are commonly used 

to inform landscape resistance surfaces in order to identify wildlife corridors (Chetkiewicz & 

Boyce 2009; Zeller, McGarigal & Whiteley 2012). We assert that conservation biologists should 

limit application of these data to localities identified when members of the target species are in 

an appropriate behavioural state; failure to do so risks misidentification of movement corridors 

(Elliot et al. 2014). While behaviour has been used to inform recommendations for conservation 

planning in marine systems (Ashe et al. 2010), it has yet to be similarly incorporated into land 

management for terrestrial species, particularly for the preservation of functional landscape 

connectivity. The use of behaviour-specific step selection functions as implemented here 

provides a powerful tool for analyzing fine-scale resource selection as part of efforts to conserve 

habitats critical to endangered wildlife.  
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Table 1. Summary of step selection coefficients for “distance to road” by collar-derived 
behaviour categories (n = 13 individuals). Negative beta values indicate increasing “distance to 
road” has a negative effect on step selection, therefore negative values correspond to selection 
for locations nearer roads (road selection); positive values indicate selection for locations farther 
from roads (road avoidance). All beta and standard error values are multiplied by 10-4. P-values 
were calculated from Wald tests. 
 
Behaviour # observed steps β SE p 
Combined 82840 -0.16 0.26 0.54 
Traveling 70550 -1.47 0.20 <0.01* 
Running 5934 -1.63 2.70 0.55 
Resting 6356 3.23 0.13 0.015* 
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Figure 1. Map of study area (c. 2700 km2; centered at 19°31’S, 23°37’E) and major vegetation 

types. 
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Figure 2. A pack of African wild dogs (Lycaon pictus) on a typical sand road in the study area 

located in northern Botswana’s Okavango Delta region. 
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Figure 3. The strength of road selection as a function of habitat type for African wild dogs 

moving consistently (“traveling”, n = 70550 steps). Selection coefficients were calculated with 

step selection functions; larger values indicate stronger road selection. Habitats are listed in 

increasing order of vegetation density from left: swamp (open structure), grassland (open 

structure), mixed woodland (medium structure), mopane forest (medium-dense structure), and 

riparian (dense structure). With the exception of riparian habitat (see Discussion), the strength of 

road selection increases in denser habitat types.  
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Figure 4. Variation in road selection over time of year (black line) when African wild dogs were 

moving consistently (“traveling”, n = 70550 steps) and corresponding travel speeds averaged 

within each season (light grey bars = average off-road travel speed; dark grey bars = average on-

road travel speed). Negative step selection coefficients correspond to selection for locations 

nearer roads (road selection); positive values indicate selection for locations farther from roads 

(road avoidance). Three distinct climatic seasons are highlighted: peak wet, peak flood, and peak 

dry seasons.  
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Figure 5. Probability density of turn angles for steps on roads and off roads when African wild 

dogs were moving consistently (“traveling”, n = 70550 steps). The dotted line highlights the 50% 

probability density for comparison between plots. Turn angles were measured as the change in 

bearing from the previous step.  
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Supplementary Material 
 

Table S1. Pack identities and data collected per collared individual. 

 

Individual  Gender Pack ID Study Period # GPS locations 

Accra* F KB Apr.-Sep. 2012 64,192 

Timbuktu F KB Apr.-Sep. 2012 38,366 

Scorpion M KB Apr. 2012-Oct. 2013 50,411 

Kobe M KB Apr.-July 2012 24,852 

Gomer* M HW Nov. 2011-Nov. 2012 23,023 

Bongwe M HW Apr.-Dec. 2012 17,378 

Bobedi F HW Nov. 2011-July 2012 20,676 

Yolo* M MT Nov. 2011-2012 21,131 

Stetson M MT Nov. 2011-Apr. 2012 8,906 

Brian M MT Apr.-July 2012 5,604 

Dar* F CT Apr.-Aug. 2012 1,447 

Kubu* F MK Apr.-Oct. 2012 8,587 

Jesus* M SA Mar.-July 2012 5,983 

* Individuals included in the more conservative analyses excluding multiple individuals from the 

same pack. 

 

 

Table S2. Summary of step selection coefficients for distance to road by collar-derived 

behaviour categories excluding multiple individuals from the same pack (n = 6 individuals). 

Negative beta values correspond to selection for locations nearer roads (road selection); positive 

values indicate selection for locations farther from roads (road avoidance). All beta and standard 

error values are multiplied by 10-4. P-values were calculated from Wald tests. 

 

Behaviour # observed steps β SE p 

Combined 29326 -0.47 0.55 0.461 

Traveling 25601 -2.18 0.27 <0.01* 

Running 1794 -11.7 8.1 0.151 

Resting 3168 2.96 1.64 0.07  
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Figure S1.  The strength of road selection as a function of habitat type for African wild dogs 

moving consistently, excluding multiple individuals from the same pack (“traveling”; n = 6 

individuals, 25601 steps). Selection coefficients were calculated with step selection functions; 

larger values indicate stronger road selection. Habitats are listed in increasing order of vegetation 

density from left: swamp (open structure), grassland (open structure), mixed woodland (medium 

structure), mopane forest (medium-dense structure), and riparian (dense structure). With the 

exception of riparian habitat (see Discussion), the strength of road selection increases in denser 

habitat types. 
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Figure S2. Variation in road selection over time of year (black line) when African wild dogs 

were moving consistently, excluding multiple individuals from the same pack (“traveling”; n = 6 

individuals, 25601 steps), and corresponding travel speeds averaged within each season (light 

grey bars = average off-road travel speed; dark grey bars = average on-road travel speed). 

Negative step selection coefficients correspond to selection for locations nearer roads (road 

selection); positive values indicate selection for locations farther from roads (road avoidance). 

Three distinct climatic seasons are highlighted: peak wet, peak flood, and peak dry seasons. 
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3. Does wildlife resource selection accurately inform corridor 
conservation? 

 
This paper has been previously published and is reproduced here with kind permission from 

John Wiley and Sons (License Number 3902031072945) 

 

Abrahms, B., Sawyer, S.C., Jordan, N.R., McNutt, J.W., Wilson, A.M., and Brashares, J.S. Does 

wildlife resource selection accurately inform corridor conservation? 2016. Journal of Applied 

Ecology, doi: 10.1111/1365-2664.12714. 

 

Abstract 
 

1. Evaluating landscape connectivity and identifying and protecting corridors for animal 

movement have become central challenges in applied ecology and conservation. Currently, 

resource selection analyses are widely used to focus corridor planning where animal 

movement is predicted to occur. An animal’s behavioural state (e.g. foraging, dispersing) is a 

significant determinant of resource selection patterns, yet has largely been ignored in 

connectivity assessments.  

2. We review sixteen years of connectivity studies employing resource selection analysis to 

evaluate how researchers have incorporated animal behaviour into corridor planning, and 

highlight promising new approaches for identifying wildlife corridors. To illustrate the 

importance of behavioural information in such analyses, we present an empirical case study 

to test behaviour-specific predictions of connectivity with long-distance dispersal movements 

of African wild dogs Lycaon pictus. We conclude by recommending strategies for 

developing more realistic connectivity models for future conservation efforts.  

3. Our review indicates that most connectivity studies conflate resource selection with 

connectivity requirements, which may result in misleading estimates of landscape resistance, 

and lack validation of proposed connectivity models with movement data.  

4. Our case study shows that including only directed-movement behaviour when measuring 

resource selection reveals markedly different, and more accurate, connectivity estimates than 

a model measuring resource selection independent of behavioural state.  

5. Synthesis and applications. Our results, using African wild dogs as a case study, suggest that 

resource selection analyses that fail to consider an animal’s behavioural state may be 

insufficient in targeting movement pathways and corridors for protection. This failure may 

result in misidentification of wildlife corridors and misallocation of limited conservation 

resources. Our findings underscore the need for considering patterns of animal movement in 

appropriate behavioural contexts to ensure the effective application of resource selection 

analyses for corridor planning.  

 

Keywords 
 

behavioural state, conservation planning, corridor ecology, dispersal, landscape connectivity, 

landscape resistance, movement ecology, resource selection, step selection 
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Introduction 
 

Connectivity, i.e., the degree to which a landscape facilitates or impedes movement between 

resources or habitats (Taylor et al. 1993), is a key aspect of land management for the 

conservation of species and communities. Connectivity influences demography (Clobert et al. 

2001), promotes dispersal and colonization (Hanski 1998), maintains genetic diversity (Hendrick 

2005), increases a species’ ability to respond to perturbations and changing climates (Heller & 

Zavaleta 2009), and supports long term persistence in heterogeneous landscapes (Vasudev et al. 

2015). Consequently, increasing landscape connectivity has been identified as a fundamental 

strategy for mitigating impacts of climate change on biodiversity (Heller & Zavaleta 2009).  

 

The identification and protection of wildlife corridors, i.e., land allowing movement of focal 

species between two or more habitat areas (Beier et al. 2008), has become a critical tool for the 

maintenance of landscape connectivity (Gilbert-Norton et al. 2010). As a response to global 

concerns about habitat fragmentation, climate change, and loss of landscape connectivity, 

establishment of wildlife corridors has accelerated in the last decade and half. Today, studies 

aimed at evaluating connectivity and determining where to establish corridors have become 

central to conservation science and practice (Beier, Majka & Spencer 2008; Beier et al. 2011; 

Rudnick et al. 2012). 

 

Here, we systematically review sixteen years of studies using wildlife resource selection to 

estimate landscape connectivity and highlight promising new approaches for identifying wildlife 

corridors. We argue that failure to assess resource selection in appropriate behavioural contexts 

may lead to misidentification of wildlife corridors and misallocation of limited conservation 

resources.  

 

Methods for identifying wildlife corridors 

Accurate identification of functional corridors depends on knowledge of a species’ dispersal 

requirements (Vasudev et al. 2015). Currently, estimating landscape resistance to movement is 

the most widely used technique to focus corridor planning on areas where dispersal is considered 

most likely to occur (Sawyer, Epps & Brashares 2011). Landscape resistance models – or 

‘resistance surfaces’ – assign a value in a landscape grid cell to each environmental variable of 

interest (e.g. elevation, land cover) that represents the energetic or survival cost to the study 

species of moving through that spatial position (Adriaensen et al. 2003), or the willingness of the 

individual to cross the cell (Zeller, McGarigal & Whiteley 2012). Earlier efforts to estimate 

landscape resistance based on expert opinion (e.g., LaRue & Nielsen 2008; Shen et al. 2008) 

have been greatly advanced by technological and analytical tools that now allow researchers to 

evaluate resistance directly from empirical data (Zeller, McGarigal & Whiteley 2012). Methods 

for estimating resistance based on empirical data fall into the following two main approaches, 

landscape genetics and resource selection functions.  

 

Landscape genetics approaches measure the correlation of observed genetic distance between 

individuals or subpopulations separated by hypothesized values of landscape resistance 

(Cushman et al. 2006; Epps et al. 2007). Thus, landscape genetics infers the influence of 

landscape variables on gene flow. These methods are a gold standard in connectivity modelling 
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when the process of interest is genetic connectivity. However, the few studies that have 

attempted to validate genetic results with movement data indicate that while resistance models 

derived from landscape genetics are useful in understanding large-scale effects on the process of 

gene flow, they may not be as useful for predicting pathways of wildlife movement at finer, 

management-relevant scales (Reding et al. 2013; Graves, Beier & Royle 2013). Additionally, 

genetically-derived connectivity estimates can reflect past landscape permeability, due to the 

time-lag to detect barriers (15-100 generations depending on methods and species traits; 

Langduth et al. 2010), and thus may not capture current movement in rapidly evolving 

landscapes, changing climates or for species dispersing short distances. 

 

Given the uncertainties associated with applying landscape genetics to landscape planning at 

finer spatial and temporal scales, we focused our review on the use of resource selection 

functions (RSFs). In contrast to landscape genetic analyses, estimates of landscape resistance 

derived from RSFs are thought to be effective at predicting areas for wildlife movement at more 

immediate and fine scales; as a consequence, this approach is highly applicable to management 

decisions (Chetkiewicz & Boyce 2009). Resource selection functions calculate the probability of 

use of a given landscape variable (e.g., habitat type, elevation, slope) by statistically comparing 

the characteristics of locations used by the study species with those in a control set of random 

locations deemed available to, but presumably unused by, that species (Manly et al. 2002). These 

analyses have recently been improved by the introduction of step selection (Fortin et al. 2005; 

Thurfjell, Ciuti & Boyce 2014) and path selection (Cushman & Lewis 2010) functions, which 

characterize movement as a series of linked steps or paths rather than a distribution of 

independent points. Thus, while traditional RSFs, also known as point selection functions, are 

well-suited for detection data, step and path selection analyses tend to be more useful for 

relocation data because they account for changes in resource availability as an animal moves 

through its landscape (Zeller, McGarigal & Whiteley 2012). 

 

The role of behaviour 

Use of RSFs in connectivity planning is largely based on the assumption that a habitat 

occupied/selected by a species is predictive of the landscape conditions or features necessary for 

successful dispersal (Vasudev et al. 2015). This critical assumption has been the subject of 

debate, specifically regarding the degree to which resource selection models provide an accurate 

proxy for movement preference as an animal navigates through a landscape (Beier, Majka & 

Spencer 2008; Zeller, McGarigal & Whiteley 2012; Fattebert et al. 2015). Resource selection 

during dispersal may differ significantly from selection exhibited during daily residential 

activities (Elliot et al. 2014; Vasudev et al. 2015; Gastón & Cabrera 2016). In particular, there is 

increasing recognition that an animal’s behavioural state (e.g. resource use vs. searching, 

territory maintenance vs. dispersing) can strongly mediate patterns of resource selection (Wilson, 

Gilbert-Norton & Gese 2012; Roever et al. 2013; Abrahms et al. 2016).  

 

Behaviourally-mediated differences in resource selection can have important effects on estimates 

of landscape resistance and resulting conservation actions. For example, a recent study by Zeller 

and colleagues (2014) found opposite patterns of resistance to some landscape variables for 

pumas Puma concolor in a ‘resource use’ behavioural state versus a directed ‘movement’ state. 

Similarly, Elliot and colleagues (2014) found that landscape resistance differed between 
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dispersing and resident male lions Panthera leo. Thus, failure to assess resource selection in 

appropriate behavioural contexts may lead to misidentification of corridors for animal movement 

and ineffective use of limited conservation funding (LaPoint et al. 2013; Elliot et al. 2014). 

Because dispersal events are often difficult to detect in the field, resource selection measured 

during directed movement states may provide an important proxy that can be used to infer 

functional connectivity in addition to or in lieu of direct dispersal data. Yet, little work has 

validated RSF-derived predictions of landscape connectivity with long-distance movement data 

to assess this possibility.  

 

We surveyed recent RSF-derived connectivity studies to 1) evaluate the extent to which these 

efforts have incorporated movement behaviour and 2) identify best practices for considering 

movement behaviour for future connectivity studies. While the range of definitions for animal 

movement is vast (Nathan et al. 2008), we define ‘movement behaviour’ in the context of 

connectivity science as directed movement toward a new location (i.e., taxis), typical of 

movement between rest sites or resource patches (Schick et al. 2008). Using this definition, we 

evaluated published studies with regard to how movement behaviour was considered in 

estimating landscape resistance and predicting connectivity. Using data drawn from our studies 

of African wild dogs, we demonstrate the sensitivity of corridor models to behavioural state and 

test the validity of model predictions against empirical movement data. Specifically, we use 

high-resolution GPS data from African wild dogs in northern Botswana to create least-cost path 

predictions from two RSF-derived resistance models, one that ignores behavioural state and one 

that isolates movement behaviour. We then test these predictions against observed long-distance 

dispersal paths. We conclude by providing a framework and recommending strategies for 

researchers and managers to develop more realistic connectivity models for future corridor 

planning efforts.  

 

Materials and Methods 

Literature review 

To capture current trends in the literature, we searched ISI Web of Science for papers published 

between January 2000 and February 2016 that contained the following key words: Topic = 

(landscape resistance OR cost-distance OR effective distance) AND (corridor OR connectivity 

OR linkage). We filtered the resulting 157 papers by restricting our search to the subject areas 

Ecology, Environmental Sciences, Environmental Studies, Zoology, Biology, Biodiversity 

Conservation, or Remote Sensing; this resulted in a subset of 137 papers. We further restricted 

our review by excluding studies that did not use resource selection to estimate landscape 

resistance and/or did not explicitly aim to model connectivity for the purpose of predicting 

wildlife movement, resulting in a final set of 28 papers (Table 1). For each of the selected papers, 

we evaluated: (1) the source of biological data (study species and data collection method), (2) 

type of RSF employed (e.g., point selection, step selection), (3) whether movement behaviour 

was explicitly considered in developing connectivity models, and (4) whether modelled corridors 

were validated with independent movement data. 
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African wild dog case study 

To determine whether isolation of directed movement behaviour improves predictions regarding 

long-distance movement paths, we collected high-resolution GPS data from 15 free-ranging 

African wild dogs in northern Botswana (Abrahms et al. 2016). African wild dogs are both the 

widest ranging and most endangered of Africa’s large carnivores; the International Union for 

Conservation of Nature (IUCN) has linked the decline of wild dog populations to the species’ 

high sensitivity to habitat fragmentation (Woodroffe & Sillero-Zubiri 2013). Consequently, these 

animals are a highly relevant focal species for assessing functional landscape connectivity.  

 

Using collar-mounted accelerometers, we classified GPS locations into three discrete 

behavioural states: traveling, chasing, and resting (Hubel et al. 2016). We used step selection 

functions to quantify resource selection for a ‘combined model’ that included all available data, 

ignoring behavioural state, and for a ‘movement model’ that included only the traveling dataset 

(Thurfjell, Ciuti & Boyce 2014). Three of the 15 collared wild dogs exhibited long-distance 

dispersal movements during the study period; these animals were excluded from the step 

selection analysis to serve as test data against corridor model outputs. The data from the 

remaining 12 individuals used to parameterize our models were collected from 12 different packs 

to minimize risk of pseudoreplication. Habitat cover, land use type, proximity to road, and 

proximity to human settlements were included as initial covariates after testing for collinearity 

based on known influences on African wild dog space use (Woodroffe 2010; Whittington-Jones 

et al. 2014; Abrahms et al. 2016; Table 2). We used AIC forward model selection to determine 

which to retain in our final models (Burnham & Anderson 2002). We used significant selection 

coefficients from each model to create two corresponding resistance surfaces (Squires et al. 

2013). For each resistance surface we used least-cost path (LCP) analysis to predict the dispersal 

paths of the three dispersers, as this represents the most commonly used method for designing 

wildlife corridors (Sawyer, Epps & Brashares 2011). Finally, to address the uncertainty inherent 

in least-cost modelling we estimated least-cost corridors that overcome the single-pixel width 

limitation of LCPs (Beier, Majka & Newell 2009). Following published recommendations 

(Harrison 1992; Beier, Majka & Spencer 2008), we buffered our LCPs by a conservative 

estimate of half the average home range width for African wild dogs (8km; Woodroffe 2010) to 

determine biologically-informed corridor widths of 16 km. 

 

To evaluate our models, we used two metrics as suggested by a recent study comparing the 

utility of connectivity modelling validation methods (McClure, Hansen & Inman 2016) . Firstly, 

we calculated the percentage of observed dispersal relocations overlapping with predicted least-

cost corridors, a metric relevant to conservation practitioners in assessing the proportion of 

movement that would be protected by a potential corridor (Poor et al. 2012; McClure, Hansen & 

Inman 2016). Secondly, we measured the path deviation of each model’s LCP from the observed 

dispersal paths, a straightforward statistic of how well the model agrees with the data (Pullinger 

& Johnson 2010). All statistical analyses were performed using R 3.1.0 (R Core Team 2014). We 

used ESRI ArcMap 10.2 to create resistance surfaces and Linkage Mapper software (McRae & 

Kavanagh 2011) to generate least-cost paths. See Appendix S1 for full methods details. 
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Results 

Literature review  

The majority of studies (82%) used animal relocation data from either GPS or VHF collars to 

assess resource selection, while five (18%) relied on measures of indirect detection such as 

animal sign or camera trap data. None of the detection-based studies made efforts to focus on 

movement-related habitat use. In total, 11 of the 28 studies evaluated included efforts to 

explicitly incorporate movement behaviour into their connectivity analyses. The remaining 

studies assumed that resource selection indicated connectivity requirements.  

 

Only five studies (18%) validated connectivity predictions with movement data. LaPoint et al. 

(2013) found poor agreement between corridor predictions for fishers Martes pennanti based on 

GPS locations versus ‘animal-defined’ corridors delineated by quick, repeated, and linear fisher 

movements. Deployment of camera traps demonstrated greater use by fishers of animal-defined 

corridors than cost-based corridors. In contrast, Harju and colleagues (2013) found that 

connectivity estimates based on resource selection during traveling and relocating movement 

states for sage-grouse Centrocercus urophasianus were strong predictors of an independent test 

set of locations for these movement states. Finally, Trainor et al. (2013) found a strong 

correlation between connectivity predictions for red-cockaded woodpeckers Leuconotopicus 

borealis based on resource selection during exploratory forays and an independent dataset of 

short-distance dispersals.  

 

African wild dog case study 

The highest ranked movement model based on AIC model selection retained habitat cover, land 

use type, and distance to roads as predictor variables; the highest ranked combined model 

retained habitat cover and land use type (Table S2). Step selection results showed different, and 

in some cases opposing, responses to landscape variables between the movement model and the 

combined model (Fig.1, Table S3); these differences were reflected in the divergent patterns of 

landscape resistance between the two models and resulting LCPs (Fig. 2). Least-cost corridors 

from the movement model overlapped with the large majority of GPS locations from the three 

dispersal paths (range 62 -100%, mean 87%; Table 3) while those from the combined model 

included a lower percentage of GPS locations (range 0-100%, mean 33%). Path deviations 

between the movement model LCPs and observed paths were significantly lower than those 

between the combined model LCPs and observed paths.  

 

Discussion 

Literature review: inclusion of movement behaviour in corridor planning 

Collectively, the studies in our review that validated connectivity predictions with independent 

movement data point to the importance of incorporating behavioural data in connectivity models 

as a key step toward generating management strategies. As showcased by several such studies, 

multiple data collection, technological and analytical approaches exist to aid conservation 

scientists and practitioners in including movement behaviour in corridor planning. The eleven 

studies that considered animal movement behaviour in their connectivity predictions provide 
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informative examples for working with relocation data (Table 4). From these studies, we 

identified two principal scales at which movement behaviour has been addressed: a behavioural 

level and a demographic level. At the behavioural level, several studies identified the subset of 

locations at which animals displayed behavioural states categorized broadly as movement 

behaviour. These categorizations included a) ‘traveling’, ‘relocating’, or ‘moving’ based on step-

length distributions (Harju et al. 2013; Zeller et al. 2014); b) ‘large-scale movements’ delimited 

by a threshold for movement rate (Pullinger & Johnson 2010); and c) ‘active’ versus ‘resting’ 

behaviour based on both step-length and turn angle distributions (Squires et al. 2013). At the 

demographic level, three studies employed a demographic approach by collaring and collecting 

relocation data from juvenile dispersers (Richard & Armstrong 2010; Trainor et al. 2013; Elliot 

et al. 2014). While behavioural and demographic approaches may be used in concert, we 

distinguish a demographic approach from a behavioural one in that it may include all behavioural 

states of a disperser. This approach may be ideal for determining how dispersers navigate their 

landscape, but it is logistically challenging because it requires predicting which individuals in the 

population will disperse. Perhaps not coincidentally, two of these three studies focused on birds, 

where identification and tagging of juvenile dispersers is easier than it is for many other 

vertebrates (Zeller, McGarigal & Whiteley 2012). To focus on dispersal movements, three other 

studies collected location data during known dispersal seasons for their study species (Cushman 

& Lewis 2010; Walpole et al. 2012; Roever, van Aarde & Leggett 2013).  

 

Advances in GPS collar technology over the last decade can contribute to connectivity science 

by coupling discrete behavioural states with patterns of space use and movement preference. In 

particular, activity sensors such as collar-mounted accelerometers, magnetometers, and 

physiological loggers are becoming increasingly popular for classifying behavioural states 

remotely (Brown, Kays & Wikelski 2013; Wilson et al. 2013; Nams 2014). However, the 

literature also provides many methods for inferring behavioural state without the expense of 

activity sensors, even for collars that operate at coarse spatiotemporal scales. For instance, 

Pullinger & Johnson (2010) classified two behavioural states of resource use versus long-

distance movement for caribou Rangifer tarandus by examining movement rate between 3-hour 

GPS fix intervals. Similarly, pairing movement rate with turn angle distributions revealed a clear 

distinction between sedentary and exploratory behavioural states in elephants (Roever et al. 

2013). Patterns of GPS clustering have been used to further partition relocation data, including 

identifying kill sites, dens, and scent marking areas for pumas (Wilmers et al. 2013) and feeding 

and bedding behaviours in grizzly bears (Cristescu, Stenhouse & Boyce 2015). The wide variety 

of existing methods for inferring behavioural states necessitate the development of best practices 

for their application and interpretation in the context of connectivity modelling. 

 

As mentioned previously, advances have also been made in the analytical procedures associated 

with resource selection analyses, such as the addition of step selection (Fortin et al. 2005; 

Thurfjell, Ciuti & Boyce 2014) and path selection functions (Cushman & Lewis 2010). Both of 

these analytical approaches can help to quantify selection specifically for movement paths, 

though for the purposes of connectivity modelling care must still be taken to ensure resource 

selection is measured for the appropriate behavioural state(s). In addition, the rapidly growing 

field of movement ecology (Schick et al. 2008; Nathan et al. 2008) offers many analytical 

approaches for remote identification of behavioural states such as hidden Markov (Patterson et 
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al. 2009) and state-space models (Jonsen, Flemming & Myers 2005; Patterson et al. 2008) that 

have been developed for effectively analysing noisy or imperfect animal movement data.  

 

Our result that none of the detection-based studies focused on movement-related habitat use 

highlights a ripe opportunity for advancement. Indirect detection methods are often less costly 

than obtaining direct relocation data and are sometimes the only feasible option for rare or 

elusive species. For those using indirect detection based on sign to identify movement corridors 

(e.g., Walpole et al. 2012; Mateo-Sànchez, Cushman & Saura 2014), locations with sign of 

resource-use behaviour (e.g. gorilla nesting/feeding sign, McNeilage et al. 2006; grizzly bear 

bedding sites, Munro et al. 2006) can be excluded from resource selection analyses in favour of 

travel-related sign (e.g., gorilla trampled vegetation, dung, footprints; Sawyer & Brashares 2013) 

to limit inferences to more movement-focused habitat use. For studies relying on camera trap 

data to identify corridors (e.g., Brodie et al. 2014; Wang et al. 2014), there are several 

improvements that can be made beyond using standard abundance estimates to infer areas with 

high connectivity. If individual identification from photos is possible, spatially-explicit 

movement rates can be measured and related to landscape variables through spatial capture-

recapture methods (Royle et al. 2013a; b). If individual identification is not possible, camera trap 

data can be used to associate habitat use with activity patterns of the study species (Rowcliffe et 

al. 2014). Given that nearly 20% of the connectivity studies we evaluated relied on indirect 

detection for their resource selection analyses, development and application of methods to better 

assess movement behaviour in these data sets is greatly needed. 

 

We propose a series of steps that can be taken through the data collection and analysis stages of 

resource selection estimation to better emphasize movement behaviour in connectivity modelling 

(Fig. 3). As is the case with all ecological fieldwork, the processes we suggest depend first on 

what data can be feasibly collected for the target species. However, since location data are often 

used for a variety of purposes and thus may not have been collected specifically for connectivity 

analyses, we suggest that researchers working with such data sets apply the analytical approaches 

outlined above to focus inferences on movement behaviour regardless of the methods employed 

during the data collection stage.  

 

African wild dog case study  

Results from our African wild dog case study mirror a small set of recent publications (e.g., 

Harju et al. 2013; Trainor et al. 2013) indicating that including only movement behaviour in 

resistance surfaces analyses reveals markedly different patterns of connectivity than models 

measuring resource selection without consideration of behavioural state. For the goal of 

predicting and protecting dispersal, the movement model (i.e., only GPS positions when the dogs 

were in a ‘traveling’ behavioural state) outperformed the combined model (i.e., all available GPS 

positions independent of behavioural state) according to both validation metrics used in our 

analysis (Table 3). The movement model least-cost corridor (LCC) fully incorporated two of the 

three observed dispersal paths, overlapping with a total of 87% of movement locations compared 

with only 33% for the combined model LCC. In addition, the path deviation statistic indicated 

greater agreement between the least-cost paths derived from the movement model and the 

observed wild dog dispersal paths than those from the combined model. These results suggest 
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that a general resource selection analysis may be insufficient in predicting and protecting 

movement pathways for African wild dogs.  

 

The divergent patterns of resource selection by African wild dogs revealed by our models have 

significance for the conservation and management of this species. African wild dogs displayed 

large differences in habitat preference when traveling compared to when behavioural state was 

not considered. Our behaviourally informed model also revealed that African wild dogs showed 

a higher tolerance for human-modified landscapes and features (pastoral areas, roads) when 

dispersing, an outcome that has been reported for other dispersing carnivores including lions 

(Elliot et al. 2014) and Iberian lynx Lynx pardinus (Gastón & Cabrera 2016). While the ability of 

dispersing carnivores to navigate potentially hostile landscapes may allow populations to 

maintain greater levels of connectivity than previously thought (Mateo-Sánchez et al. 2015), this 

also places them at higher risk of human-wildlife conflict. Because of increased tolerance for 

human disturbance and proclivity to range beyond protected areas, African wild dogs in a 

dispersing or exploratory state are more prone to human-caused mortality (Woodroffe et al. 

2007; Davies-Mostert et al. 2012) and thus it is essential that creation of corridors for large 

carnivore movement be paired with efforts to mitigate human-carnivore conflict (Elliot et al. 

2014).  

 

Caveats 

A number of caveats and assumptions to this work are important to note. First, this work is 

focused on corridor design for terrestrial vertebrates, and not for entire community assemblages. 

The latter would rely less upon single-species dispersal requirements than broader estimates of 

structural connectivity, such as landscape ‘naturalness’ (Theobald et al. 2012). We also focus on 

connectivity as viewed through movement corridors, rather than the more spatially-expansive 

lens of habitat contiguity. The first emphasizes the maintenance of pathways for effective 

dispersal between populations while the second seeks to preserve viable habitat to ensure 

occupancy of a focal species across fragmented landscapes. This distinction is important in the 

context of our review because resource selection functions or other general assessments of 

habitat use may be effective on their own where the conservation goal is simply to preserve a 

connected system of occupied habitats. 

 

We chose to employ least-cost path (LCP) analysis for our case study because it is the most 

popular method for managers to delineate corridors (Sawyer, Epps & Brashares 2011), however 

it requires a number of assumptions that may not be upheld in all cases. First, it assumes a 

defined start and end point, which is appropriate when determining a connection between two 

protected areas, or in our case a natal and dispersal range, but this assumption is often violated 

when clear habitat patches cannot be demarcated. Similarly, LCP analysis cannot evaluate 

multiple potential pathways between more than two patches. In addition, by weighting the 

cumulative cost of a pathway by its total Euclidean distance, LCP analysis implicitly assumes 

that animals have total knowledge of their landscape, which is especially likely to be violated 

when animals are dispersing into new territory. Ultimately, when evaluating whether to use a 

least-cost or alternative approach such as circuit-theory modelling, the movement ecology of the 

focal species and the landscape context are key determinants that should be considered 

(McClure, Hansen & Inman 2016). 
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A final and important limitation to our case study is the small number of known dispersal paths 

for our study animals, despite data collection over a four-year period, highlighting the challenge 

of collecting long-distance movement data for evaluating functional landscape connectivity. 

Efforts such as ours to directly compare behaviour-informed predictions of connectivity with 

known long-distance dispersal movements are accordingly rare. Nevertheless, the strong effect 

sizes of our model validation metrics lend confidence to our inference that consideration of 

behavioural state is critical, and that by focusing connectivity analyses on movement behaviour, 

researchers can eliminate much of the noise that comes from analysing all data points. 

 

Conclusions and future directions 

While the protection of corridors for animal movement involves sociopolitical, economic and 

other considerations that were not addressed in this assessment, our review and case study 

suggest that the success of corridor efforts also relies on an accurate understanding of how 

animals move through their environment. Resource selection within an animal’s home range may 

be a suitable proxy for movement preference during dispersal for some species (Fattebert et al. 

2015), though researchers and conservation practitioners should be aware this is not always the 

case and failure to recognize this distinction may have important consequences for preserving 

landscape connectivity. Our findings underscore the need for examining animal movement in 

appropriate behavioural contexts to ensure effective application of resource selection analyses 

for corridor planning. Advances in monitoring technology are fostering new opportunities to 

study wildlife movements that promise to enhance corridor conservation. At the same time, 

current analytical tools that rely on indirect location data can be improved to more accurately 

inform connectivity models. Given limited conservation resources and rapidly changing 

environments, efficient and accurate corridor identification, establishment and management is a 

critical need in conservation planning. Unifying the fields of movement ecology and connectivity 

science promises to advance our knowledge of – and thus our ability to preserve – the 

fundamental process of wildlife movement. 
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Table 1. Summary of studies evaluated that used resource selection analyses to model connectivity for wildlife movement. 
Study Species Data  

Collected 
RSF 

Type1 
Consideration of Movement 
Behavior  

Validation of Connectivity Predictions 
with Independent Movement Data 

Braaker et al. 
2014 

E. europaeus  Relocation – 
GPS  

PSF None None 

Brodie et al. 
2014 

H. derbyanus; H. 
malayanus; N. 
diardi; R. unicolor; 
M. nemestrina 

Detection – 
Camera trap 

PSF None None 

Carvalho et al. 
2015 

G. genetta Relocation – 
VHF  

PathSF 
 

None None 

Chetkiewicz & 
Boyce 2009 

U. arctos; 
P.concolor 

Relocation – 
GPS 

PSF None None 

Clark et al. 
2015 

U. americanus 
luteolus 

Relocation – 
GPS  

SSF Removed relocations <100 
     meters apart 

None 
 

Cushman & 
Lewis 2010 

U. americanus Relocation – 
GPS 

PathSF None None 

Elliot et al. 
2014 

P. leo Relocation – 
GPS 

PathSF 
     

Resource selection of 
    dispersing individuals 

None 
 

Harju et al. 
2013 

C. urophasianus  Relocation – 
GPS 

SSF Resource selection during 
     traveling and relocating 
     states 

Validated with independent GPS 
     data in traveling and 
     relocating states 

Kautz et al. 
2006 

P. concolor coryi  Relocation – 
VHF 

PSF None None 

Kindall & 
Manen 2007 

U. americanus Relocation – 
VHF 

PSF None None 

LaPoint et al. 
2013 

M. pennanti Relocation – 
GPS 

PSF None Validated with ‘animal-defined’ 
     corridors based on rate of 
     fast, linear movement 

Mateo-Sánchez, 
Cushman & 
Saura 2014 

U. arctos  Detection – Sign PSF None None 
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McClure, 
Hansen & 
Inman 2016 

C. elephas; G. gulo 
 

Relocation – 
GPS, VHF 

     PSF Resource selection for 
    migratory or dispersal- 
    related movements 

Validated with independent GPS 
      data for long-distance movements 

O’Brien et al. 
2006 

R. tarandus caribou Relocation – 
GPS 

PSF None None 

Proctor et al. 
2015 

U. arctos Relocation – 
GPS 

PSF None None 

Pullinger & 
Johnson 2010 

R. tarandus caribou Relocation – 
GPS 

SSF Resource selection during 
     large-scale movements 

Validated with independent GPS 
      data identified as long- 
      distance movement 

Reding et al. 
2013 

L. rufus Relocation – 
VHF 

PathSF None None 

Richard & 
Armstrong 
2010 

P. longipes Relocation – 
VHF 

SSF Resource selection of 
     dispersing individuals 

None 

Roever, van 
Aarde & 
Leggett 2013 

L. africana Relocation – 
GPS 

PSF None None 

Squires et al. 
2013 

L. canadensis Relocation – 
GPS 

SSF Resource selection during 
     movement state 

None 

Sutcliffe et al. 
2003 

A. hyperantus; H. 
virgaureae 

Relocation – 
Mark-recapture 

MSF Resource selection for 
     matrix with highest 
     passage rates  

None 

Thatcher, van 
Manen & Clark 
2009 

P. concolor coryi Relocation – 
VHF 

HSF None None 

Trainor et al. 
2013 

P. borealis Relocation – 
VHF 

PSF Resource selection of 
     dispersing individuals 

Validated with frequency of 
     dispersal events within 
     predicted corridors 

Verbeylen et al. 
2003 

S. vulgaris Detection - Sign MSF None None 
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Walpole et al. 
2012 

L. canadensis Detection –  Sign PSF None None 

Wang et al. 
2014 

A. melanoleuca Detection – 
Camera Trap 

PSF None None 

Zeller et al. 
2014 
 

P. concolor 
 

Relocation – 
GPS 
 

PSF 
 

Resource selection during 
     movement state 
 

None 
 

Zeller et al. 
2015 

P. concolor Relocation – 
GPS 

SSF, 
PathSF 

Removed relocations <200 
      meters apart 

None 

1PSF = point selection function, SSF = step selection function, PathSF = path selection function, MSF = matrix selection function, 
HSF = home range selection function (categories as defined by Zeller et al. 2012).
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Table 2. Landscape variables used to quantify resource selection of African wild dogs. 

Category Variable Name Description Source 
 

Habitat Cover  

 

 

 

 

 

 

 

 

 

Land Use Type 

 

 

 

 

 

 

Anthropogenic 

Features 

 

Swamp 

 

Grassland 

 

Woodland 

 

Mopane 

 

 

 

Game Reserve 

National Park 

Wildlife Mgmt 

Area (WMA) 

Pastoral 

 

 

Road 

Settlement 

 

Moist and seasonally flooded 

floodplains 

Former floodplains characterized by 

shrubbed grassland 

Mixed woodland dominated by Acacia 

spp. 

Woodland composed primarily of 

Colophosphermum mopane shrubs and 

trees 

 

IUCN Category IV Protected Area 

IUCN Category II Protected Area 

Community-managed land gazetted for 

photographic and hunting tourism 

Non-wildlife area dominated by 

pastoralism 

 

Distance to nearest road 

Distance to nearest human settlement 

 

Broekhuis  

et al. 2013 

 

 

 

 

 

 

 

 

Botswana 

Department  

of Lands 

 

 

 

Okavango 

Delta 

Information 

System 
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Table 3. Percentage overlap between least-cost corridors (LCC) and GPS points 

along observed dispersal paths, and path deviation between modelled and 

observed paths with p-values indicating significant differences between model 

performance. 

 LCC Overlap Path Deviation 

Model % Mean (km) SD p 

Path 1- Movement 62 7.16 

 

2.28 <0.001 

Path 1- Combined 0 25.5 3.18  

Path 2- Movement 100 2.65 1.92 <0.001 

Path 2- Combined 0 29.8 6.08  

Path 3- Movement 100 .34 .75 0.07 

Path 3- Combined 100 1.93 1.55  
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Table 4. Approaches for using movement behaviour to inform connectivity conservation. 

Approach Description # Studies Example studies 

 

Behavioral  

 

 

Use localities when the 

individual is in a 

traveling/exploratory state 

versus a resource use state 

 

7 
 

Pullinger & Johnson 2010; 

Squires et al. 2013; Zeller et 

al. 2014 

Demographic 

 

Use localities from dispersing 

vs. resident individuals in the 

population 

3 Elliot et al. 2014; Richard & 

Armstrong 2010; Trainor et al. 

2013  

 

Seasonal 

 

Collect location data during the 

known dispersal season 

 

3 

 

Cushman and Lewis 2010; 

Roever et al. 2013; Walpole et 

al. 2012 

 

 



 
 

 
Figure 1. (a) Comparison of step selection parameter estimates and standard errors for the combined model, measuring resource 
selection for all location data independent of behavioural state, and the movement model, measuring resource selection only when 
wild dogs were in a ‘traveling’ behavioural state (see Table S3 for listed values). Negative selection coefficients indicate avoidance 
of corresponding landscape variables; positive values indicate selection for corresponding variables. P-values were calculated from 
Wald tests. (b) Resistance surface derived from significant selection coefficients (p<0.05) in the combined model. Resistance values 
were calculated as the inverse of scaled ‘probability of use’ values w(x) = exp(ß1x1 + ß2x2 +....) where ßi is the selection coefficient 
for landscape variable xi. Blue cells and orange cells indicate low and high resistance to movement, respectively. (c) Resistance 
surface derived from significant selection coefficients in the movement model.  
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Figure 2. Comparison between least-cost corridors derived from combined model (solid black lines), movement model (dashed black 
lines), and GPS-captured paths (orange dots) from three distinct dispersal events in (a) October 2014, (b) August 2013 and (c) 
January 2012 (Table S1). Okavango Delta floodwaters (light blue) are included for spatial reference.  
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Figure 3. A decision tree for focusing resource selection analyses on animal movement for 

connectivity planning. At the data collection stage, decisions are made as to the type of data that 

can be collected and whether collection can be targeted toward dispersal seasonally or 

demographically. At the data analysis stage, the collected data can be analysed and cleaned to 

isolate locations for movement before inputting the dataset into a resource selection analysis. 
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Supplementary Material 
 

Appendix 1. Detailed methods for African wild dog case study. 

 

To collect movement data from African wild dogs, between November 2011 and March 2015 we 

fitted 15 adults from 13 packs in northern Botswana’s Okavango Delta region with custom-built 

GPS-accelerometer collars (Abrahms et al. 2016). Capturing and collaring of all animals was 

performed under approval from the Government of Botswana (permit #EWT 8/36/4 XXIV) and 

the University of London Royal Veterinary College Ethics & Welfare Committee and conformed 

to the guidelines of the American Society of Mammalogists for the use of wild mammals in 

research. The GPS units in the collars moved between different operating states depending on the 

measured activity status of the animal derived from the accelerometers (Hubel et al. 2016). The 

default state took hourly fixes when the animal was stationary but transitioned into a ‘traveling’ 

state with five-minute fixes when activity data indicated that the animal was moving consistently 

between consecutive locations; acceleration equivalent to galloping (38.2 m/s2) triggered the 

collars into a third ‘running’ state of five fixes per second. See Hubel et al. (2016) for further 

specifications on collar design.  

 

We created two separate step selection models to quantify resource selection (Fortin et al. 2005; 

Thurfjell, Ciuti & Boyce 2014). We used conditional logistic regression to compare the 

landscape attributes of each observed step with those of five matched control steps (see Abrahms 

et al. 2016 for details on step selection methods). For the combined model, we included all 

available GPS data, resampled to a consistent fix rate of five-minute intervals. For the movement 

model, we used only GPS data when the animals were in the ‘traveling’ state. To determine the 

sensitivity of model output to GPS fix interval, we repeated these analyses using an hourly fix 

rate; this conservative approach did not significantly alter our coefficient estimates (see Table 

S4).  

 

Three of the fifteen collared wild dogs exhibited long-distance dispersal movements (movement 

from a natal or breeding range to a new potential breeding range; Clobert et al. 2001) during the 

study period; these animals were excluded from the step selection analyses to serve as test data 

against corridor model outputs. The data from the remaining 12 individuals used to parameterize 

our models were collected from 12 different packs to minimize risk of pseudoreplication. 

Because African wild dogs travel in packs and retain a high degree of spatial proximity to one 

another (Hubel et al. 2016), we assumed that the movement pattern of a given pack member is 

representative of other members of the pack, with the exception of denning females which were 

not included in this study. The following landscape variables were included in the models based 

on known influences on African wild dog space use (Woodroffe 2010; Whittington-Jones et al. 

2014; Abrahms et al. 2016): habitat cover, land use type, proximity to road, and proximity to 

human settlements (Table 1). Topography was not included as there was little to no topographic 

variation in the study area. All GIS layers were resampled to 100 m resolution to maintain 

consistent grain size. We tested for independence between all landscape variables using Pearson 

pairwise correlations and used the standard threshold for non-independence of |r|>0.6. No 

variables were characterized by correlations greater than |r|=0.38 and thus no landscape variables 

were discarded. We used AIC forward model selection to determine which variables to include 

in our final models (Burnham & Anderson 2002).  
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We used significant selection coefficients (p<0.05) from the combined model and movement 

model to create two corresponding resistance surfaces. First, we calculated the probability of use 

of each grid cell using the equation w(x) = exp(ß1x1 + ß2x2 +....) where ßi is the selection 

coefficient for landscape variable xi  (Thurfjell, Ciuti & Boyce 2014). Following (Squires et al. 

2013), we scaled the probability of use values to between 0 and 1 by dividing each grid cell 

value by the maximum probability value; we then inverted these values to create each resistance 

surface such that resistance = 1/scaled(w(x)). We used least-cost path analysis to predict the 

movement paths of the three dispersing individuals, as this represents the most commonly used 

method for designing wildlife corridors (Sawyer, Epps & Brashares 2011). This approach finds 

the least costly path between two user-defined points on a resistance surface by minimizing the 

Euclidian distance weighted by the cumulative resistance values of all cells traversed 

(Adriaensen et al. 2003; Sawyer, Epps & Brashares 2011). For our analyses, we used the center 

of each natal and dispersal home range centroid as our start and end points. Finally, to address 

the uncertainty inherent in least-cost modeling we estimated least-cost corridors that overcome 

the single-pixel width limitation of LCPs (Beier, Majka & Newell 2009). Following published 

recommendations (Harrison 1992; Beier, Majka & Spencer 2008), we buffered our LCPs by a 

conservative estimate of half the average home range width for African wild dogs (8km; 

Woodroffe 2010) to determine biologically-informed corridor widths of 16 km. 
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Table S1. Pack identities and data collected per collared individual. 

 

Individual  Gender Pack ID Study Period # GPS locations 

Residents 

Accra F KB Apr.-Sep. 2012 64,192 

Gomer M HW Nov. 2011-Nov. 2012 23,023 

Yolo M MT Nov. 2011-2012 21,131 

Dar F CT Apr.-Aug. 2012 1,447 

Kubu F MK Apr.-Oct. 2012 8,587 

Jesus M SA Mar.-July 2012 5,983 

Augustus M BW June-Sept. 2013 4,841 

Xerxes M AP June 2014-Mar. 2015 26,345 

Pula M FV July-Nov. 2014 11,295 

Bali F HT Dec. 2013-Nov. 2014 22,556 

Aztec M ZU Feb.-Oct. 2014 19,488 

Adiga M MB Aug. 2013-Mar. 2015 37,648 

Dispersers 

Scorpion M KB Apr. 2012-Nov. 2013 156,099 

Stetson M MT Nov. 2011-Apr. 2012 8,906 

Lupe M KM July 2014-Jan. 2015 14,494 
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Table S2. AIC model selection for Combined and Movement step selection models; L = Step 

length; A = Absolute relative turn angle; S = Distance to nearest human settlement; R = Distance 

to nearest road; H = Habitat type; M = Land use type. 

 

Because there was support for inclusion of distance to roads in the combined model (∆AIC=1.1), 

we included this variable in our initial step selection analysis for comparison with the movement 

model, though its selection coefficient proved non-significant and was not given weight in the 

corresponding resistance surface (p=0.35). There also was modest AIC support in each model 

type for including distance to settlement as a predictor variable, but selection coefficients for this 

variable were not significant (p>0.5) in either step selection model and we did not include this 

parameter in our final models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Combined SSF Movement SSF 

I

D 

Model AIC ∆AI

C 

w LogLi

k. 

AIC ∆AIC w LogLik. 

 0 L + A  21231

.2 

151.

4 

0 -

10613.

6 

198269.2 3207.1  0 -

99132.6 
1 L +  A + S 21233

.1 

153.

3 

0 -

10613.

6 

198269.8 3207.6 0 -

99131.9 
2 L + A + R 21233

.1 

153.

3  

0 -

10613.

6 

198126.3 3064.1

5 

0 -

99060.1 
3 L + A + H 21093

.9 

14.1 0 -

10540.

9 

195366.0 303.85 0 -

97677.0 
4 L + A + M 21211

.1 

131.

3  

0 -

10599.

6 

198074.5 3012.4

2 

0 -

99031.3 
5 L +  A + H + M 21079

.8 

0 0.4

6 

-

10529.

9 

195196.1 134.01 0 -

97588.1 
6 L +  A + H + R 21095

.7  

15.9 0 -

10540.

9 

195220.8 158.61 0 -

97603.4 
7 L +  A + H + S 21095

.9  

16.1 0 -

10540.

9 

195368.0  305.81 0 -

97677.0 
8 L + A + H + M + R 21080

.9 

1.1 0.2

6 
-

10529.

5 

195062.1 0 0.53 -

97520.1 
9 L + A + H + M + S 21081

.7  

1.9 0.1

8 

-

10529.

9 

195194.8 132.61 0 -

97586.4 
1

0 

L +  A + H + M + 

R + S 

21082

.8 

3.0 0.1

0 

-

10529.

4 

195062.3 0.20 0.47 -

97519.2 
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Table S3. Step selection parameter estimates (ß) and standard errors for the combined model, 

measuring resource selection for all location data independent of behavioural state, and the 

movement model, measuring resource selection only when wild dogs were in a ‘traveling’ 

behavioural state. Negative selection coefficients indicate avoidance of corresponding landscape 

variables; positive values indicate selection for corresponding variables. P-values were 

calculated from Wald tests. 

 

 
Movement Model Combined Model 

Variable ß SE p-value ß SE p-value 

Road 0.200 0.017 <0.001 -0.439 0.472 0.35 

Grassland -0.025 0.029 0.38 0.099 0.131 0.45 

Mopane -0.175 0.033 <0.001 0.497 0.142 <0.001 

Woodland -0.149 0.037 <0.001 -0.049 0.163 0.76 

Swamp -0.443 0.074 <0.001 -0.616 0.175 <0.001 

Game Reserve 0.261 0.286 0.36 0.233 0.473 0.62 

National Park 0.496 0.301 0.10 0.303 0.206 0.52 

Pastoral 0.124 0.029 <0.001 0.341 0.472 0.47 

WMA 0.687 0.282 0.01 0.297 0.472 0.53 
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Table S4. Results of sensitivity analysis for 1-hour fix intervals. Step selection parameter 

estimates (ß) and standard errors for the combined model, measuring resource selection for all 

location data independent of behavioural state, and the movement model, measuring resource 

selection only when wild dogs were in a ‘traveling’ behavioural state. Negative selection 

coefficients indicate avoidance of corresponding landscape variables; positive values indicate 

selection for corresponding variables. P-values were calculated from Wald tests. 

 

 
Movement Model Combined Model 

Variable ß SE p-value ß SE p-value 

Road 0.180 0.016 <0.001 -0.489 0.425 0.25 

Grassland -0.028 0.031 0.36 0.082 0.232 0.72 

Mopane -0.169 0.034 <0.001 0.478 0.137 <0.001 

Woodland -0.150 0.039 <0.001 -0.051 0.171 0.76 

Swamp -0.419 0.067 <0.001 -0.602 0.183 <0.001 

Game Reserve 0.268 0.282 0.34 0.187 0.510 0.71 

National Park 0.515 0.320 0.11 0.332 0.251 0.19 

Pastoral 0.102 0.031 <0.001 0.362 0.494 0.46 

WMA 0.574 0.292 0.05 0.282 0.486 0.56 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
49 

4. Classification of movement syndromes across individuals and 
species 
 

This chapter has been prepared for publication and is reproduced here with kind permission of 

the contributing authors: Dana P. Seidel, Eric Dougherty, Elliot L. Hazen, Steven J. Bograd, 

Alan M. Wilson, John W. McNutt, Daniel P. Costa, Stephen Blake, Justin S. Brashares and 

Wayne M. Getz. 

 

Abstract 
 

Patterns of animal movement have critical implications for multiple aspects of biology, including 

the ecology, evolutionary biology, and long-term persistence of wildlife populations. Because 

empirical studies of animal movement are most-often site- and species-specific, it is difficult to 

gain a generalized understanding of the mechanisms underlying broad movement patterns. By 

combining movement data from 13 marine and terrestrial species spanning three taxonomic 

classes, continents and orders of magnitude in body size with computer-simulated idealized 

movement paths, we provide the first empirical examination of how fundamental movement 

metrics scale up to predict emergent movement patterns across multiple taxa. We introduce a 

classification scheme for movement syndromes, which are suites of correlated movement traits 

seen across taxa (e.g. migration, nomadism), and show that a simple set of metrics can reliably 

classify movement syndromes across highly disparate vertebrate taxa. Our movement syndrome 

classification scheme thus provides a general framework for linking movement patterns to 

movement process, and facilitates new understanding of relationships between movement 

syndromes and physiological, behavioral and life-history traits. 

 

Introduction  
 

Ecology links community, population, and ecosystem patterns with individual and interactive 

level processes at multiple scales of inquiry (Levin 1992). Animal movement is one such process 

that is also an essential component of individual fitness (e.g. resource acquisition, survival), with 

critical implications for population persistence (e.g. dispersal, gene flow), species distributions, 

and ecosystem function (e.g. ecosystem engineering, propagule dispersal) (Swingland & 

Greenwood 1983; Lawton & Jones 1995; Hanski 1998; Clobert et al. 2001). Further, in the so-

called Anthropocene, movement will play a critical role in species and community responses to 

environmental change (Tingley et al. 2009; Hazen et al. 2012; Bost et al. 2015). Because of the 

profound importance of movement in driving the spatial dynamics of multiple levels of 

ecological organization, the identification of common mechanistic underpinnings for complex 

movements has recently been identified as a research priority in ecology and conservation 

biology (Hays et al. 2016). A stronger conception of how movement processes lead to higher-

level patterns will facilitate the integration of movement into other areas of ecology to inform 

predictions, such as the invasive potential of exotic species (Peterson 2003), how diseases will 

spread through contact-networks (Peterson 2008), or how species will respond to climate change 

(Schloss et al. 2012). 
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In behavioral ecology, the concept of behavioral syndromes, i.e. suites of correlated behaviors, 

has aided quantification of behavioral types and their ecological and evolutionary implications 

(Sih et al. 2004). Analogously, current efforts to characterize movement syndromes, i.e. suites of 

correlated movement traits seen across taxa such as migration or nomadism (Sih et al. 2004; 

Dingle 2006), have generated a number of promising methods and metrics (Schick et al. 2008). 

Several important theoretical contributions have linked basic movement metrics (i.e., 

mechanism/process) with broad-scale movement syndromes (i.e., pattern) (Börger et al. 2008; 

Mueller & Fagan 2008; Nathan et al. 2008), but few empirical studies have confirmed these links 

(Mueller et al. 2011). Moreover, it is unclear which metrics have the greatest utility for 

identifying movement syndromes, information that is critical both to developing appropriate data 

collection procedures and to conducting efficient analyses of movement. Given that the majority 

of empirical movement studies have focused on single species, our ability to generalize findings 

is limited (Holyoak et al. 2008). Different taxa not only have different modes of movement (e.g., 

swimming versus terrestrial locomotion), but also move across spatial and temporal scales that 

differ by orders of magnitude. Thus, a more unified understanding of the processes underlying 

emergent movement syndromes requires an examination across a broad array of taxa, movement 

modes, and body sizes.  

 

Here, we provide the first empirical examination of the extent to which simple measures of 

animal movement can be used to identify movement syndromes across widely disparate taxa, in 

effect linking movement process with pattern. Three movement syndromes appear repeatedly in 

the literature from which we draw upon: range residency, nomadism, and migration (Mueller & 

Fagan 2008; Bunnefeld et al. 2010; Mueller et al. 2011; Bastille-Rousseau et al. 2016). Range 

residency can be further expanded upon to include central place foraging and territoriality, 

yielding four movement syndromes classically defined as: 1) central-placed foraging, in which 

individuals return to fixed locations between foraging trips (Orians & Pearson 1979); 2) 

territoriality, in which individuals actively demarcate the boundaries of fixed areas against 

conspecifics (Howard 1920); 3) nomadism, in which individuals move unpredictably with little 

to no site fidelity (Weins 1976); 4) migration, in which individuals move with persistence from 

one habitat area to another, bi-directionally and with temporal predictability (Williams 1957). 

These movement syndromes may be lifetime descriptors correlated with life history types, or life 

history stage descriptors of significant movement phases associated with particular events (e.g. 

breeding, resource pulses, etc.). While these four syndromes differ conceptually and 

qualitatively, we develop a novel methodology for their quantitative distinction.  

 

We expected similar forms and characteristics of movement to underlie the same syndrome 

across species and spatial scales. To evaluate this prediction and test whether simple metrics 

reliably identify movement syndromes, we assessed five key movement metrics for GPS 

trajectories of individuals from 13 species spanning three taxonomic classes, continents, 

movement modes, and orders of magnitude in body size. Using these metrics, we performed a 

cluster analysis to determine if our study organisms fell into statistically distinct groupings. We 

compared these groupings with simulations of four idealized syndromes – central place foraging, 

territoriality, nomadism, and migration – which revealed that observed groupings were explained 

by common movement syndrome. This approach provides a framework for a rigorous large-scale 

movement classification scheme that may facilitate the integration of animal movement into 
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other areas of ecology by pairing an animal’s movement syndrome with other ecological data to 

develop and test predictions. 

 

Methods 

Empirical Data 

We gathered GPS-derived movement data for the following species: African buffalo (Syncerus 

caffer), African elephant (Loxodonta africana), African wild dog (Lycaon pictus), black-backed 

jackal (Canis mesomelas), California sea lion (Zalophus californianus), cheetah (Acinonyx 

jubatus), Galapagos albatross (Phoebastria irrorata), Galapagos tortoise (Geochelone nigra), 

African lion (Panthera leo), northern elephant seal (Mirounga angustirostris), plains zebra 

(Equus quagga), springbok (Antidorcas marsupialis), and white-backed vulture (Gyps 

africanus). Species were chosen to represent an array of taxa, environments, and body sizes, but 

were restricted by the availability of datasets with sufficient quality in terms of resolution and 

duration. All data were collected with fix intervals of 1-hour or less and subsampled to 1-hour 

resolutions to achieve consistent fix rates for comparison, with the exception of Galapagos 

albatross data which were collected at 90-min intervals and interpolated to a 1-hour resolution. 

See Table S1 in supporting information for a detailed summary of GPS data. 

 

Movement Metrics 

We employed five metrics widely applied in current movement studies and grounded in 

ecological theories of animal movement in heterogeneous landscapes. Turn angle correlation and 

net-squared displacement are two central parameters in random-walk (RW) models, which are 

extensively used to evaluate animal search strategies and foraging efficiency (Viswanathan et al. 

1999; Bartumeus et al. 2005; Codling, Plank & Benhamou 2008; Reynolds & Rhodes 2009). 

Variations of random walk models have been shown to approximate nomadic movement via 

uncorrelated RWs (Bunnefeld et al. 2010), central-place foraging via biased RWs (Börger, 

Dalziel & Fryxell 2008), and territorial behavior via correlated RWs (Moorcroft, Lewis & 

Crabtree 2006). When spatially-explicit information about the landscape is known, ecologists 

have employed a variety of time-use metrics to quantify how animals exploit resources. In 

heterogeneous landscapes, for example, animals are predicted to adjust their residence times 

and/or return times to a given area in response to variation in resource quality (Turchin 1991; 

Barraquand & Benhamou 2008; van Moorter et al. 2015); these two properties have been linked 

to emerging patterns of home range residency (van Moorter et al. 2015). Over longer timescales, 

measures of home range stability, such as the amount of overlap between seasonal home ranges, 

can inform theory on how animals respond to temporal predictability of resources (Alcock 2009) 

and have been used to identify migration patterns (Cagnacci et al. 2015). Because movement 

processes are often scale-dependent and those of a given syndrome may be observable at one or 

more spatiotemporal scales (Benhamou 2013), we also considered that our metrics were relevant 

over a range of timescales — in our case, hour, day, month, and lifetime of trajectory. Thus, for 

each individual in our dataset, we calculated five movement metrics suitable for analysis over 

these timescales as follows: 
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1. Mean turn angle correlation (TAC). Following Dray et al. (2010), we calculated angular 

autocorrelation 𝑆𝐴 as the sum of squares of chord distances between N successive turn angles 𝜌: 

 

𝑆𝐴  =  
1

𝑁
 ∑[(cos 𝜌𝑛+1 − cos 𝜌𝑛)2

𝑁−1

𝑛=1

+ (sin 𝜌𝑛+1 −  sin 𝜌𝑛)2] 

 

Thus, small chord distances resulting in low 𝑆𝐴 values correspond to high turn angle correlation 

(Dray, Royer-Carenzi & Calenge 2010). 

 

2. Mean residence time (RT). Residence time was measured as the number of hours the animal 

spends inside a circle of a given radius centered on each location without leaving the radius for 

more than a specified cut-off time (van Moorter et al. 2015). We tested the sensitivity of a subset 

of our dataset to radii of mean step length (SL), 2 x mean SL, 4 x mean SL, and 8 x mean SL, 

where SL was calculated as the mean Euclidean distance between successive relocations, and 

cut-off times of 12 and 24 hours. Consistent time-use patterns were observed across these 

thresholds, so following van Moorter et al. (2015), we used a radius of mean SL and a 12-hour 

cut-off time. 

 

3. Mean time-to-return (T2R). Time-to-return was measured as the number of hours the animal 

spends beyond a specified cut-off time before its return to a circle of a given radius centered on 

each location (van Moorter et al. 2015). We conducted the same sensitivity analysis for this 

metric as above, and finding consistent patterns across thresholds, we again used a radius of 

mean SL and a 12-hour cut-off time. 

 

4. Mean volume of intersection (VI). Volume of intersection was measured by the between 

monthly 95% kernel density home ranges (Millspaugh et al. 2004; Fieberg & Kochanny 2005). 

Volume of intersection varies between 0 and 1, with increasing values corresponding to 

increasing overlap between monthly home ranges, and is thus VI is a measure of home range 

stability. 

 

5. Maximum net squared displacement (MNSD). Maximum net squared displacement was 

calculated as the maximum squared Euclidean displacement from the first relocation of the 

trajectory over the full course of the trajectory (Kareiva & Shigesada 1983). To make 

comparisons among individuals across species that have orders of magnitude different motion 

capacities, we scaled this parameter for each individual by dividing by the smallest MNSD 

observed for its species. 

 

All movement metrics were calculated using the adehabitatLT package (Calenge 2015) in R 

3.2.3. 

 

Cluster Analysis 

To elucidate any underlying structure in our dataset, we performed a principal components 

analysis (PCA) on the five movement metrics calculated from our empirical datasets. PCA is a 

widely used technique for summarizing a multivariate dataset into a reduced number of 
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uncorrelated dimensions, or principal components, while minimizing the loss of information in 

the original dataset (King & Jackson 1999). We used the Broken-stick criterion to retain 

important composite (PC) axes, whereby only the eigenvalues that are greater than those 

expected from a random model are considered significant. Comparative analyses of component 

retention methods have shown the Broken-stick model to be among the most reliable techniques 

(King & Jackson 1999; Peres-Neto, Jackson & Somers 2003). To normalize the dataset for this 

analysis we first log-transformed the data, followed by centering around the mean and dividing 

by the variance (Jolliffe 2014).  

 

Finally, we applied Ward’s agglomerative hierarchical clustering algorithm to the resulting PCA 

values (Ward 1963). This approach clusters the most similar pair of points based on their squared 

Euclidean distance at each stage of the algorithm, and is an efficient method to identify clusters 

based on minimum within-cluster variance without making an a priori determination of the 

number of clusters to generate (Gordon 1987). These clusters can be viewed as functional 

movement groups, analogous to functional types first theorized for plant communities, which 

provide a non-phylogenetic classification based on shared responses to environmental conditions 

(Gitay & Noble 1997). To determine the significance of the resulting cluster arrangement, we 

calculated p-values for each cluster via multi-scale bootstrap resampling with 1000 bootstrap 

replications (Shimodaira 2004). By simulating the following idealized movers and determining 

their cluster assignments, we were able to identify these clusters by movement syndrome.  

 

Simulated Data 

As a baseline for comparison, we developed spatially-explicit models simulating four movement 

syndromes: central place foraging, territorial, nomadic, and migratory (Fig. 1). Central place 

foragers and territorial individuals were assumed to have stable home ranges, whereas nomadic 

and migratory individuals moved without boundary constraints. For each syndrome, we 

simulated six individuals, using rules described below. In all cases, we drew step length and 

turning angle randomly from probability distributions, enabling variation in the movement paths 

of individuals within the same syndrome. We simulated data for each individual for 3600 time 

steps at hourly intervals, with the exception of migratory individuals, which we simulated for 

7200 time steps to incorporate a return migration.  

 

Central Place Foragers (CPF). For CPF, we assumed that resources are optimal at the center of 

the home range (the ‘central place’; (Ford 1983). We drew steps within the core of the home 

range from a uniform distribution and weighted them by the distance to the edge of the home 

range to simulate greater space use within the core. Upon reaching the home range boundary, we 

drew turning angles from a normal distribution with a mean 180° from the direction the 

simulated individual was traveling rather than a uniform distribution, leading to its return to the 

home range center.  

 

Territorialists. The territorial individual functioned in an opposite fashion from CPFs in terms of 

its selective use of the outer edges of its home range – in effect demarcating or defending the 

territory (Giuggioli, Potts & Harris 2011). Thus, steps were weighted by the distance to the home 

range center. However, turning angles were adjusted as for CPFs to maintain home range 

stability.  
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Nomads. We assigned these individuals randomly to one of two states: foraging or dispersing 

(Morales et al. 2004). The probability of switching from one state to the other in nomads was 

0.05 based on empirical estimates ranging from 0.018-0.09 (Fryxell, Wilmshurst & Sinclair 

2004; Haydon et al. 2008). The foraging state was meant to simulate movement patterns in the 

vicinity of high quality resources, so we applied lower weights to step sizes for the foraging state 

than for the dispersing state. We drew turning angles from a uniform distribution for the foraging 

state and a normal distribution for the dispersal state with a mean of the initial direction after 

switching from the foraging state. 

  

Migrants. We assigned these individuals to one of two states: sedentary or migratory (Morales et 

al. 2004). In the sedentary state, we defined movement by uniform step size and turning angle 

distributions. We defined the migratory state by highly directional movement, with long step 

sizes and highly correlated turning angles (Dingle & Drake 2007). After an approximately four-

month period of residence, the individuals migrated for about two months before entering a 

sedentary state for another four months at their new location, then returned to their origin 

location over the course of a two month return migration.  

 

Results 
 

The first two principal components (PC) of the PCA explained 70% of the variance among the 

five movement metrics and thus PC1 and PC2 were retained for the cluster analysis using the 

Broken-stick criterion (Table 1). Plotting our data along the minor PC axes (PCs 3, 4, and 5) did 

not provide informative clusters, suggesting that the first two PCs are sufficient for classifying 

individuals by syndrome (Fig. S3). Because of evidence of collinearity between metrics (Fig. 

2B), we also ran the PCA using different combinations of a reduced set of three variables (Fig. 

S4). Despite potential collinearity, we found that including only three variables performed less 

well than including all five, presumably because some variables play a larger role in classifying 

particular syndromes than others (Fig. 3). 

 

Using acronyms VI (Volume of Intersection), RT (Residence Time), T2R (Time-to-Return), 

TAC (Turn Angle Correlation) and MNSD (Maximum Net Squared Displacement), the first PC 

represented a contrast primarily between VI+RT and TAC+MNSD, with a somewhat smaller 

contribution of T2R, to the latter. From left to right along PC1 were clustered CPFs/territorial 

individuals, nomads, and migrants (Fig. 2B), suggesting this axis indicates a spectrum of random 

walk movement from diffusive (low directional persistence) to advective (high directional 

persistence) movement (Codling, Plank & Benhamou 2008). 

 

The second PC represented a contrast primarily between T2T and TAC+MNSD. Along PC2 

territorial individuals had low values and CPFs had high values, suggesting this axis indicates a 

continuum of low to high repeated use of resources, as territorial animals may limit returns to 

previously visited sites in exchange for patrolling a greater proportion of their territory 

(Giuggioli, Potts & Harris 2011), while CPFs by definition have high site fidelity and return rates 

to their ‘central place’ (Ford 1983). There is also a clear trend along this axis differentiating 

terrestrial species and marine species. Marine species — here, migratory Northern elephant seals 

and central placing foraging Galapagos albatrosses and California sea lions — had lower mean 
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T2R and higher MNSD and TAC than their terrestrial counterparts. These differences are likely 

due to the high motion capacity of marine organisms (Nathan et al. 2008), facilitation of 

movement in air and water with few static barriers requiring circumnavigation (Shillinger et al. 

2012), and greater dispersion of resources in pelagic environments (Sorte 2012).  

 

The cluster analysis identified four statistically significant groupings (Fig. 2A). All individuals of 

the four simulated movement syndromes fell into separate groups (see Fig. S1 for a full 

dendrogram displaying individual leaves within clusters), suggesting each grouping represents a 

different movement syndrome. The heights of the associated dendrogram branches correspond to 

the squared Euclidean distances between clusters in PCA-defined movement ecology space (Fig. 

2B). Thus, clusters that diverge at lower heights (have shorter branches) have greater similarity. 

Multiple species were represented in more than one cluster, showing that more than one 

movement syndrome may occur within a monospecific population (Table 2; Fig. S1).  

 

Analysis of the movement metrics for each cluster revealed distinct differences between putative 

syndromes (Fig. 3). Specifically, individuals in the migrant cluster had the highest average turn 

angle correlation, times to return, and maximum net squared displacement, and the lowest 

average residence times and volume of intersection. In contrast, individuals in the central place 

cluster had the highest average RT and VI and lowest T2R. Individuals in the territorial cluster 

had next-to-highest T2R and VI, and lowest MNSD. Finally, individuals in the nomadic cluster 

had intermediate values for all metrics. 

 

Discussion 
 

A generalized understanding of the basic mechanisms underlying broad movement patterns 

across taxa is limited by the species-specific nature of movement studies, often due to constraints 

in funding or feasibility (Holyoak et al. 2008). By combining movement data from 13 

taxonomically diverse species with simulated movement trajectories constructed for the four 

syndromes, we show that a simple set of metrics provides a framework that we can use to 

reliably classify the trajectories of organisms over large time scales into movement syndromes. 

Our analysis found that movement syndromes transcend species membership and revealed that 

similar movement patterns and properties recur in highly disparate ecological systems. The 

movement syndromes were conserved across ecotype, even though marine systems change more 

rapidly than terrestrial habitats (Scales et al. 2016). Ultimately, classifying individuals by 

movement syndromes provides a window to predicting spatial and broader life history patterns.  

 

Importantly, our movement syndrome classifications did not simply divide by species 

membership, but instead indicated movement strategies common across individuals within their 

syndrome cluster. For some species, such as the black-backed jackal, all individuals were 

assigned to the same syndrome (Table 2). For other species, assignments were made to more 

than one syndrome. For instance, half of the Galapagos tortoises in our dataset exhibited seasonal 

altitudinal migrations (Blake et al. 2012) and were appropriately classified as migrants while the 

remaining resident tortoises were classified as CPFs (see Fig. S5 for movement paths). This 

highlights the value of examining intraspecific variability in movement behavior when assessing 

population-level movement patterns. It also emphasizes the need to consider the degree to which 
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populations of a species contain multiple movement syndromes, particularly when developing 

conservation and management plans.  

 

No single metric could be used to distinguish the four movement syndromes, suggesting that 

these metrics must be assessed in concert. While significant headway has been made applying a 

single statistic such as Net Squared Displacement to differentiate between sedentary home range 

behavior, migration and nomadism in a single taxon (Bastille-Rousseau et al. 2016), 

distinguishing between more complex forms of sedentary behavior such as territoriality versus 

central place foraging, and among disparate taxa, is a greater challenge. Thus, we recommend 

evaluating movement with multiple metrics in order to capture metric- or scale-dependent 

patterns. Our choices of metrics reflect those prevalent in current studies of movement ecology 

and were selected to represent multiple time scales of analysis relevant to resource use on land- 

and seascapes. Our results indicate that the metrics used here can serve as informative synoptic 

measures to classify a broad array of organisms into movement syndromes. However, future 

research should test the utility of other movement metrics in classifying organisms into 

additional meaningful classes in ecology. 

 

For any given individual movement trajectory, our approach provides a method for 

quantifying the degree of intermediacy among syndromes, akin to fractional trophic levels in 

community ecology (Pauly et al. 1998). This quantification is achieved by comparing the relative 

distance measured in terms of node heights within the dendrogram where the trajectory diverges 

from two different syndrome clusters. The “degree of intermediacy” can be defined in terms of 

ratios of the distances among neighboring clusters (measured by going ‘down’ or ‘up and then 

down’ the relevant node heights, as illustrated in Fig. S7). For purposes of discussion, we define 

the lowest node that includes all the simulated cases from one syndrome as the “strict cluster 

node.” If a particular trajectory is contained within this “strict syndrome cluster” then, following 

phylogenetic practices, we classify it as being that syndrome sensu stricto. On the other hand, 

if a particular trajectory falls outside the strict syndrome cluster but within the 

greater syndrome cluster (cf. Fig. S7), then we classify this trajectory as being the 

syndrome sensu lato. In this case, we can take the further step of calculating the relative distance 

of that trajectory’s node to its defining sensu stricto cluster node compared with its distance to 

another sensu stricto cluster nodes. To illustrate using our dendrogram in Fig. S1, the trajectory 

of Elephant Seal #13 (ES13) is migrant (MG) sensu stricto. In contrast, African Wild Dog #5 

(WD05) is CPF sensu lato, but because its distance to the CP node is roughly 4 and to the strict 

territorial (TE), nomad (NM), and migrant (MG) nodes are roughly 9, 9 and 17 respectively, we 

can make statements such as, this individual’s trajectory is 9/4=2.25 times more CPF-like than 

TE- or MN-like, and 17/4=4.25 times more CPF- than MG-like. 

 

While we cannot validate the classification of each study animal in our dataset, their assignments 

are consistent with how we understand their movement processes, such as the tortoise 

assignments described above (Blake et al. 2012). A priori predictions for individual African wild 

dogs, lions and cheetahs based on behavioral observations made during movement data 

collection also match their classifications (Botswana Predator Conservation Trust, personal 

communication). Because the classification scheme is determined by our syndrome simulations, 

assignments may exist that are contrary to expectations and these may prompt deeper 

investigation into the ecology of the study system. For example, all of the California sea lions in 
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our dataset were breeding females restricted to central place foraging and were correctly 

assigned as CPFs except one: this individual exhibited foraging trips an order of magnitude 

greater in distance than its conspecifics, and as a result was classified as a migrant (Table 2; see 

Fig. S6 for movement paths). This result could subsequently direct researchers to more closely 

examine the behavior and ecology driving this intraspecific variation in foraging pattern.   

 

It is important to note that individuals may transition between syndromes seasonally or during 

different life stages. One such example (not analyzed here) is the Pacific salmon (Oncorhynchus 

spp.), which undertakes a one-time migration as juveniles (Quinn 2005). Individuals can also 

experience seasonal transitions, such as male springbok that enter a highly territorial phase 

(Lyons, Turner & Getz 2013) or pelagic seabirds that become CPFs (Shaffer et al. 2006; Kappes 

et al. 2015) during their breeding season. These transitions can explain why some individuals 

within a species that have the same life history pattern may be categorized differently, or appear 

at the interface between two syndromes. For example, among African wild dogs, which have 

annual denning periods during which they are restricted to central place foraging (Mbizah et al. 

2014), most were classified as CPFs while some were classified as territorial and one was 

nomadic (Table 2). These differences can reasonably be explained by the life history stage of an 

individual during data collection. Developing methods for dividing an individual’s movement 

path into constituent movement syndromes is an arena ripe for future research. 

 

Our findings reveal that a relatively simple set of metrics can reliably predict movement 

syndromes across taxa, environments, and spatial scales. By linking movement with higher-level 

patterns of organization, we open the way to further studies relating movement syndromes to life 

history traits, such as examining the extent to which traits can be inferred from belonging to 

different movement syndromes. This has important implications for current attempts to 

incorporate species traits into climate change predictions (Angert et al. 2011). For example, the 

inclusion of coarse classifications of species’ movement capacities (permanent resident, short-

distance migrant, and long-distance migrant) into species distribution models has been shown to 

improve predictions of the probability of range shifts in response to climate change (Tingley et 

al. 2012). The movement syndrome concept can also inform predictions in a number of other 

areas of ecological research. For example, movement syndromes can be applied to macroecology 

to test whether species-area relationships vary between syndromes, in parallel to how they are 

expected to vary among taxa or geographic regions (Rosenzweig 1995). Classifying organisms 

by movement syndrome can also inform predictions regarding the spatial dynamics of invasive 

species and disease ecology (Peterson 2003; 2008) as well as the spatial distribution of resources 

in the organism’s environment (Turner 1989). Moreover, movement syndrome types could be 

informative for conservation biology, for example in assessing landscape connectivity solutions 

for each generalized syndrome when assessments for thousands of individual species are not 

feasible. To our knowledge, this is the first attempt to summarize measures of animal movement 

into broad movement syndromes evident across diverse systems — a framework that forges new 

links between movement pattern and process and that enables the generation of new insights into 

multiple aspects of ecology and conservation biology. 
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Table 1. Contributions of variables to and cumulative percentage of variance explained by 

principal components. Significant components based on the Broken-stick criterion and retained 

for the cluster analysis are shaded. 

 

 PC1 PC2 PC3 PC4 PC5 

Turn Angle Correlation 0.47 0.47 -0.12 -0.55 -0.50 

Residence Time -0.46 0.17 0.72 0.04 -0.50 

Time-to-Return 0.35 -0.68 0.46 -0.45 0.08 

Volume of Intersection -0.50 0.23 -0.00 -0.67 0.49 

Maximum Net Squared 

Displacement 

0.44 0.48 0.51 0.21 0.51 

Cumulative Percentage of  

Variance Explained 
51.5% 70.1% 84.4% 94.8% 100% 
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Table 2. Summary of 130 individuals within 13 species analyzed into cluster classifications. 

 

Species N individuals Migratory Central place Nomadic Territorial 

African buffalo  5 - - 2 3 

African elephant  8 - 1 4 3 

African wild dog  13 - 9 1 3 

Black-backed jackal 15 - 15 - - 

California sea lion 15 1 14 - - 

Cheetah 5 - - - 5 

Galapagos albatross 8 - 8 - - 

Galapagos tortoise 8 4 4 - - 

Lion 9 - 1 1 7 

N. elephant seal 15 15 - - - 

Plains zebra 9 - - 6 3 

Springbok 10 2 4 4 - 

White-backed vulture 10 - 2 3 5 
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Figure 1. Sample path simulations for four idealized movement syndromes. Movement paths 

begin at the blue triangle and end at the red square. 
 

 

 

 

 

 

 



 
 

 
 
Figure 2. A) Dendrogram tree displaying results of Ward hierarchical cluster analysis of all individuals based on PC1 and PC2 values, 
and bootstrapped p-values for each cluster. See Fig. S1 for full display of individual leaves within each major cluster. B) Scatterplot of 
classified individuals based on PCA-defined axes. See Fig. S2 for scatterplot with species identities. Ellipses represent the 50% 
probability contour for cluster classifications. Simulated individuals are plotted for reference, although not included in the PCA.  

62



 

 
63 

 

 

Figure 3. Boxplots of movement metrics for syndrome classifications, excluding simulated 

individuals.  
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Supplementary Material 
 

Table S1. Summary and sources of GPS data used in analyses. 

1Daniel P. Costa, Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, 

costa@ucsc.edu 
2Alan M. Wilson, Structure & Motion Lab, Royal Veterinary College, University of London, 

awilson@rvc.ac.uk 
3Royi Zidon, Department of Evolution, Systematics and Ecology, Hebrew University of Jerusalem, 

royi_zidon@yahoo.com 
4Miriam Tsalyuk, Minerva Center for Movement Ecology, Ben-Gurion University of the Negev, 

miri.tsa@gmail.com 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species N individuals Total fixes 

Duration 

(mo.) Source 

African buffalo 5 14449 5 ± 2.2 Bar-David et al. 2009 

African elephant 8 93590 17.5 ± 5.2 Unpublished4 

African wild dog 13 (1 per pack) 55675 7 ± 2.3 Abrahms et al. 2016 

Black-backed jackal 15 98691 9.4 ± 4.7 Bellan et al. 2012 

California sea lion 15 34088 2.4 ± 0.3 Unpublished1 

Cheetah 5 25421 7 ± 3.6 Wilson et al. 2014 

Galapagos albatross 8 17123 3 ± 0.9 Dodge et al. 2013 

Galapagos tortoise 8 103663 18 ± 2.7 Blake et al. 2013 

Lion 9 41278 7 ± 3.3 Unpublished2 

N. elephant seal 15 120353 7.5 ± 0.5 Robinson et al. 2012 

Springbok 10 59608 8.7 ± 2.3 Lyons et al. 2013 

White-backed vulture 10 30454 8.5 ± 4.9 Spiegel et al. 2013 

Zebra 9 67835 11.8 ± 3.1 Unpublished3 
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Figure S1. Full dendrogram 

displaying results of Ward 

hierarchical cluster analysis 

of all individuals based on 

PC1 and PC2 values. All 

individuals organize into 

four clusters, which can be 

considered movement 

syndromes. Simulated 

individuals are highlighted 

in bold. 
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Figure S2. Scatterplot of individuals based on PCA-defined axes. Simulated individuals are 

plotted for reference, although not included in the PCA.



 
 

 
 
Figure S3. Scatterplot of classified empirical (panels A-C) and simulated (panels D-F) individuals based on minor PC axes (PCs 3, 4, 
and 5). Ellipses represent the 50% probability contour for cluster classifications based on PC1 and PC2.  

67
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Figure S4. Scatterplots of classified individuals in PCA-defined axes based on a reduced set of 

three metrics to explore effects of collinearity between metrics: A) Residence Time (RT), Time-

to-Return (T2R), and Maximum Net Squared Displacement (MNSD); B) RT, T2R, and Turn 

Angle Correlation (TAC); C) Volume of Intersection (VI), T2R, MNSD; and D) VI, T2R, and 

MNSD. Colors refer to cluster classifications based on the full set of five metrics for comparison.  
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Figure S5. Movement paths of GPS-tracked resident (Tortoise 01, 03, 04, 08) and migratory 

Galapagos tortoises (Tortoise 02, 05-07). Movement paths begin at the blue triangle and end at 

the red square. 
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Figure S6. Movement paths of GPS-tracked California sea lions. Data were collected from 

females over a 3-month breeding period between November-February during which they 

exhibited central place foraging from the breeding colony. All individuals were appropriately 

classified as central place foragers except Sea Lion 10, which was classified as a migrant. 

Movement paths begin at the blue triangle and end at the red square.  

 



 

 
71 

 
Figure S7. Illustration of method for quantifying the degree of intermediacy among movement 

syndromes for a given trajectory in a hypothetical dendrogram. The “strict syndrome cluster” is 

defined as the lowest cluster that contains all the simulations from a single syndrome. If a given 

trajectory is contained within the strict syndrome cluster then it is classified as being that 

syndrome sensu stricto. If a trajectory falls outside the strict syndrome cluster but within the 

greater syndrome cluster, then it is classified as being that syndrome sensu lato. In this diagram, 

a trajectory in Group 4 would be considered Territorial in sensu lato. Its degree of intermediacy 

between Territorial and Nomadic syndromes would be the ratio between its distance in terms of 

node heights to the strict Nomadic syndrome cluster and its distance to the strict Territorial 

syndrome cluster (gray hashed arrows). 
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5. Conclusions  

Key Findings 
 

At a global scale, conservation efforts in response to habitat alteration are arguably the most 

critical element of any strategy for protecting biodiversity. Therefore, research advancing our 

understanding of animal movement and landscape connectivity is imperative. The body of work 

presented in this dissertation provides several new approaches for increasing our understanding 

of the ecology and conservation of wildlife movement, and in particular for measuring wildlife 

responses to environmental change. Moreover, understanding the nature and drivers of 

behavioral modification in response to human disturbance is important for predicting how 

increased human activity will affect species. 
 
My second chapter clearly showed that how animals respond to features in their environment 

(e.g., resource patches, anthropogenic features) can greatly depend on their behavioral state 

during which the landscape feature is encountered. My analyses using GPS and accelerometer 

data from thirteen African wild dogs showed revealed strong patterns of road selection when 

traveling, ignoring roads when high-speed running, and road avoidance when resting. Yet a key 

finding from this study was that these distinctions were not evident when analyzing all 

movement data in a single resource selection function, which is the status quo in resource 

selection studies. Thus, to fully understand how an anthropogenic landscape feature affects 

movements of wildlife populations, patterns of resource selection should be explicitly linked 

with behavioral states.  

 

In my third chapter, I extended these findings to show how behaviorally-mediated patterns of 

resource selection play out in a landscape connectivity modeling context. I tested behavior-

specific predictions of connectivity with long-distance dispersal movements of African wild 

dogs, which demonstrated that including only directed-movement behavior when measuring 

resource selection reveals far more accurate patterns of landscape connectivity than a model 

measuring resource selection independent of behavioral state. Results from this work can be 

directly applied in Botswana to make conservation recommendations to mitigate existing 

movement barriers or to protect key areas for landscape connectivity against future development 

for African wild dogs. I also conducted a systematic review of connectivity literature that 

revealed that most of the research done to date has superficially considered all animal location 

data as representative of resource selection patterns, despite the fact that an animal’s behavioral 

state has been shown to be an important component of resource selection and space use. A key 

conclusion from this work is that researchers and conservation practitioners should be aware 

resource selection within an animal’s home range is not always a suitable proxy for movement 

preference during dispersal, and failure to recognize this distinction may have important 

consequences for preserving landscape connectivity. Together, my second and third chapters 

highlight the value of incorporating behavioral information into conservation planning, and 

provide approaches for better linking behavior with resource selection and connectivity analyses 

in future efforts.  

 
My fourth chapter identifies a framework for classifying individual animals by broad-scale 

movement patterns. For this I combined GPS movement data from 13 species in three taxonomic 
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classes with computer-simulated idealized movement paths. A central finding from this work is 

that a simple set of metrics can reliably classify broad-scale movement patterns like migration, 

nomadism, or territoriality across a wide range of vertebrate taxa in both terrestrial and marine 

environments. This classification scheme can inform predictions in multiple areas of ecological 

research. For example, an individual or species’ movement classification can inform predictions 

on how it will respond to climate change or its invasion potential in an exotic environment. In 

addition, this work provides researchers with a standardized set of metrics for expediently 

analyzing animal trajectories of any species over time to detect any changes in movement pattern 

that may be indicative of environmental change.  

 

Taken together, my dissertation sheds light on the processes shaping animal movement patterns, 

with applications to landscape connectivity science and predicting impacts of human-driven 

environmental changes.  

 

Future Research 
 

A few directions for future research emerge from the results of this work, while at the same time 

advances in monitoring technology are fostering new opportunities to study animal movement 

that promise to enhance biodiversity conservation. First, a significant challenge to current 

approaches in connectivity modeling that my dissertation did not address is the static treatment 

of the landscapes considered in the modeling process. Current trends in characterizations of 

animal space use and connectivity science do not account for dynamic fluctuations in the 

environment at multiple temporal scales, such as seasonal changes in vegetation or species 

distributions, or long-term changes in land-use and/or climate, because this is computationally 

challenging (Roshier & Reid 2003; Zeller, McGarigal & Whiteley 2012). Connectivity methods 

rely instead on stationary images of remotely sensed landscapes, despite recognition that few 

landscapes are static through time (Beier et al. 2011; Rudnick et al. 2012). This challenge is 

exemplified in my study system, the Okavango Delta, where dramatic seasonal fluctuations in 

hydrography influence the permeability of the landscape to wildlife populations. The seasonal 

Delta flood has been shown to create a temporarily impermeable barrier for all large carnivore 

species except lions from June to September (Cozzi et al. 2013). Geophysical constraints due to 

the flood system may therefore seasonally restrict both home range extents and dispersal paths. 

Thus, assuming that environments are static may result in a limited or even spurious 

understanding of animal space use. When applied to connectivity planning, assumptions of static 

environments may lead to inaccurate designation of wildlife corridors or corridors that only 

provide temporary windows of connectivity (Zeigler & Fagan 2014). Development of methods to 

overcome this limitation, such as dynamic resistance surfaces that can identify regions on a 

landscape where planners may expect high variability in contributions to connectivity, is an 

important next step.  

 

Similarly, accounting for spatiotemporal variation not only in the physical environment, but also 

in the effects of interspecific interactions, could help inform a more biologically relevant 

framework for modeling animal movement and landscape connectivity. Resistance surface 

modeling seeks to bridge classic metrics of structural landscape connectivity with functional 

connectivity by including species-specific ecological information such as dispersal ability 

(Rudnick et al. 2012). However, many ecological processes that likely affect movement choices 
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are often omitted from models as they are difficult to quantify and map, and linking behavioral 

ecology with connectivity science is recognized as a need for future research (Rudnick et al. 

2012). In particular, interspecific competition and predation significantly alter animal behavior 

and movement over multiple spatial scales (Fortin et al. 2005; Broekhuis et al. 2013). This 

understanding has been conceptualized as a “landscape of fear”, in which relative levels of 

predation risk are represented as “peaks and valleys that reflect the level of fear of predation a 

prey experiences in different parts of its area of use” (Laundré, Hernández & Ripple 2010). In 

my study system, African wild dogs are limited by direct predation and competition by lions and 

hyenas, and are known to avoid these sympatric predators when there is immediate risk of 

encounters (Webster, McNutt, and McComb 2012). Future research should explore the utility of 

a marriage between landscape of fear and connectivity approaches to assess the effects of 

including interspecific interactions in resistance surface modeling predictions.  

 

Finally, scientific culture and practices from the disciplines of landscape ecology and marine, or 

‘seascape’, ecology could undoubtedly better speak to and inform one another. Methods for 

dealing with the extreme dynamism inherent in seascape ecology, such as the pairing of animal 

locations with real-time oceanographic conditions (Block et al. 2011) and the development of 

dynamic ocean management (Lewison et al. 2015), could aid in the development of dynamic 

landscape connectivity modeling as described above. On the other hand, most analyses of 

connectivity in marine environments rely on estimates of genetic distances between populations 

that supply a low-resolution understanding of seascape connectivity (Thomas et al. 2015). 

Resistance surface modeling borrowed from landscape ecology could offer a more detailed and 

management-relevant understanding of connectivity between marine populations or 

oceanographic features (Caldwell & Gergel 2013). Studies bridging the disciplines of landscape 

and seascape ecology are rare, and further investigation is needed on what can and cannot 

translate between fields (Manderson 2016), but strengthening their cross pollination holds 

promise in improving both terrestrial and marine spatial planning for the conservation of 

biodiversity. 
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