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Abstract
We compare various notions of proper discontinuity for group actions. We also dis-
cuss fundamental domains and criteria for cocompactness.

1 Introduction

This note is meant to clarify the relation between different commonly used defini-
tions of proper discontinuity without the local compactness assumption for the 
underlying topological space. Much of the discussion applies to actions of nondis-
crete locally compact Hausdorff topological groups, but, since my primary inter-
est is geometric group theory, I will mostly work with discrete groups. All group 
actions are assumed to be continuous, in other words, for discrete groups, these are 
homomorphisms from abstract groups to groups of homeomorphisms of topological 
spaces. This combination of continuous and properly discontinuous, sadly, leads to 
the ugly terminology “a continuous properly discontinuous action." A better termi-
nology might be that of a properly discrete action, since it refers to proper actions of 
discrete groups.

Throughout this note, I will be working only with topological spaces which are 
1st countable, since spaces most common in metric geometry, geometric topology, 
algebraic topology and geometric group theory satisfy this property. One advantage 
of this assumption is that if (xn) is a sequence converging to a point x ∈ X , then the 
subset {x} ∪ {xn ∶ n ∈ ℕ} is compact, which is not true if we work with nets instead 
of sequences. However, I will try to avoid the local compactness assumption when-
ever possible, since many spaces appearing in metric geometry and geometric group 
theory (e.g. asymptotic cones) and algebraic topology (e.g. CW complexes) are not 
locally compact. (Recall that topological space X is locally compact if every point 
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has a basis of topology consisting of relatively compact subsets.) In the last two 
sections of the note I also discuss cocompact group actions and fundamental sets/
domains of properly discontinuous group actions.

2  Group actions

A topological group is a group G equipped with a topology such that the multiplica-
tion and inversion maps

are both continuous. A discrete group is a group with discrete topology. Every dis-
crete group is clearly a topological group.

A left continuous action of a topological group G on a topological space X is a 
continuous map

satisfying 

1. �(1G, x) = x for all x ∈ X.
2. �(gh, x) = �(g, �(h, x)) , for all x ∈ X , g, h ∈ G.

From this, it follows that the map � ∶ G → Homeo(X)

is a group homomorphism, where the group operation �� on Homeo(X) is the com-
position �◦�.

If G is discrete, then every homomorphism G → Homeo(X) defines a left continu-
ous action of G on X.

The shorthand for �(g)(x) is gx or g ⋅ x . Similarly, for a subset A ⊂ X , GA or G ⋅ A , 
denotes the orbit of A under the G-action:

The quotient space X/G (also frequently denoted G∖X ), of X by the G-action, is the 
set of G-orbits of points in X, equipped with the quotient topology: The elements of 
X/G are equivalence classes in X, where x ∼ y when Gx = Gy (equivalently, y ∈ Gx).

The stabilizer of a point x ∈ X under the G-action is the subgroup Gx < G given 
by

An action of G on X is called free if Gx = {1} for all x ∈ X . Assuming that X is 
Hausdorff, Gx is closed in G for every x ∈ X.

G × G → G, (g, h) ↦ gh,G → G, g ↦ g−1

� ∶ G × X → X

�(g)(x) = �(g, x),

GA =
⋃

g∈G

gA.

{g ∈ G ∶ gx = x}.
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Example 1 An example of a left action of G is the action of G on itself via left 
multiplication:

In this case, the common notation for �(g) is Lg . This action is free.

3  Proper maps

Properness of certain maps is the most common form of defining proper discontinu-
ity; sadly, there are two competing notions of properness in the literature.

A continuous map f ∶ X → Y  of topological spaces is proper in the sense of 
Bourbaki, or simply Bourbaki–proper (cf. [3, Ch. I, §10, Theorem 1]) if f is a closed 
map (images of closed subsets are closed) and point–preimages f −1(y), y ∈ Y  , are 
compact. A continuous map f ∶ X → Y  is proper (and this is the most common 
definition) if for every compact subset K ⊂ X , f −1(K) is compact. It is noted in [3, 
Ch. I, §10; Prop. 7] that if X is Hausdorff and Y is locally compact, then f is Bour-
baki–proper if and only if f is proper.

The advantage of the notion of Bourbaki-properness is that it applies in the case 
of Zariski topology, where spaces tend to be compact1 (every subset of a finite-
dimensional affine space is Zariski-compact) and, hence, the standard notion of 
properness is useless.

Since our goal is to trade local compactness for 1st countability, I will prove a 
lemma which appears as a Corollary in [12]:

Lemma 2 If f ∶ X → Y  is proper, and X, Y are Hausdorff and 1st countable, then f 
is Bourbaki-proper.

Proof We only have to verify that f is closed. Suppose that A ⊂ X is a closed subset. 
Since Y is 1st countable, it suffices to show that for each sequence (xn) in A such that 
(f (xn)) converges to y ∈ Y  , there is a subsequence (xnk ) which converges to some 
x ∈ A such that f (x) = y . The subset C = {y} ∪ {f (xn) ∶ n ∈ ℕ} ⊂ Y  is compact. 
Hence, by properness of f, K = f −1(C) is also compact. Since X is Hausdorff, and 
K is compact, follows that (xn) subconverges to a point x ∈ K . By continuity of f, 
f (x) = y . Since A is closed, x ∈ A .   ◻

Remark 3 This lemma still holds if one were to replace the assumption that X is 1st 
countable by surjectivity of f, see [12].

The converse (each Bourbaki–proper map is proper) is proven in [3, Ch. I, §10; 
Prop. 6] without any restrictions on X, Y. Hence:

�(g, h) = gh.

1 quasicompact in the Bourbaki terminology.
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Corollary 4 For maps between 1st countable Hausdorff spaces, Bourbaki-proper-
ness is equivalent to properness.

4  Proper discontinuity

Suppose that X is a 1st countable Hausdorff topological space, G a discrete group 
and G × X → X a (continuous) action. I use the notation gn → ∞ in G to indicate 
that gn converges to ∞ in the 1-point compactification G ∪ {∞} of G, i.e. for every 
finite subset F ⊂ G,

Given a group action G × X → X and two subsets A,B ⊂ X , the transporter subset 
(A|B)G is defined as

Properness of group actions is (typically) stated using certain transporter sets.

Definition 5 Two points x, y ∈ X are said to be G-dynamically related if there is a 
sequence gn → ∞ in G and a sequence xn → x in X such that gnxn → y.

A point x ∈ X is said to be a wandering point of the G-action if there is a neigh-
borhood U of x such that (U|U)G is finite.

Lemma 6 Suppose that the action G × X → X is wandering at a point x ∈ X . Then 
the G-action has a G-slice at x, i.e. a neighborhood Wx ⊂ U which is Gx-stable and 
for all g ∉ Gx , gWx ∩Wx = �.

Proof For each g ∈ (U|U)G − Gx we pick a neighborhood Vg ⊂ U of x such that

Then the intersection

satisfies the property that (V|V)G = Gx . Lastly, take

  ◻

The next lemma is clear:

card({n ∶ gn ∈ F}) < ∞.

(A|B)G ∶= {g ∈ G ∶ gA ∩ B ≠ �}.

gVg ∩ Vg = �.

V ∶=
⋂

g∈(U|U)G−Gx

Vg

Wx ∶=
⋂

g∈Gx

V .
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Lemma 7 Assuming that X is Hausdorff and 1st countable, the action G × X → X is 
wandering at x if and only if x is not dynamically related to itself.

Given a group action � ∶ G × X → X , we have the natural map

where idX ∶ (g, x) ↦ x.

Definition 8 An action � of a discrete group G on a topological space X is Bour-
baki–proper if the map �̂� is Bourbaki-proper.

Lemma 9 If the action � ∶ G × X → X of a discrete group G on a Hausdorff topo-
logical space X is Bourbaki-proper, then the quotient space X/G is Hausdorff.

Proof The quotient map X → X∕G is an open map by the definition of the quotient 
topology on X/G. Since � is Bourbaki-proper, the image of the map �̂� is closed in 
X × X . This image is the equivalence relation on X × X which use used to form the 
quotient X/G. Now, Hausdorffness of X/G follows from [3, Proposition 8 in I.8.3].  
 ◻

Definition 10 An action � of a discrete group G on a topological space X is proper if 
the map �̂� is proper.

Note that the equivalence of (1) and (5) in the following theorem is proven in [3, 
Ch. III, §4.4, Proposition 7] without any assumptions on X.

Theorem  11 Assuming that X is Hausdorff and 1st countable, the following are 
equivalent: 

 (1) The action � ∶ G × X → X is Bourbaki-proper.
 (2) For every compact subset K ⊂ X , 

 (3) The action � ∶ G × X → X is proper, i.e. the map �̂� is proper.
 (4) For every compact subset K ⊂ X , there exists an open neighborhood U of K 

such that card((U|U)G) < ∞.
 (5) For any pair of points x, y ∈ X there is a pair of neighborhoods Ux,Vx (of x, y 

respectively) such that card((Ux|Vy)G)) < ∞.
 (6) There are no G-dynamically related points in X.
 (7) Assuming, that G is countable and X is completely metrizable:2  The G-stabilizer 

of every x ∈ X is finite and for any two points x ∈ X, y ∈ X − Gx , there exists 
a pair of neighborhoods Ux,Vy (of x, resp. y) such that ∀g ∈ G , gUx ∩ Vy = �.

�̂� ∶= 𝛼 × idX ∶ G × X → X × X

card((K|K)G) < ∞.

2 It suffices to assume that X is hereditarily Baire: Every closed subset of X is Baire.
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 (8) Assuming that X is a metric space and the action G × X → X is equicontinuous:3 
There is no x ∈ X and a sequence hn → ∞ in G such that hnx → x.

 (9) Assuming that X is a metric space and the action G × X → X is equicontinuous: 
Every x ∈ X is a wandering point of the G-action.

 (10) Assuming that X is a CW complex and the action G × X → X is cellular: Every 
point of X is wandering.

 (11) Assuming that X is a CW complex the action G × X → X is cellular: Every cell 
in X has finite G-stabilizer.

Proof The action � is Bourbaki-proper if and only if the map �̂� is proper (see Corol-
lary 4) which is equivalent to the statement that for each compact K ⊂ X , the subset 
(K|K)G × K is compact. Hence, (1) ⟺ (2).

Assume that (3) holds, i.e. � is proper, equivalently, the map �̂� is proper. This 
means that for each compact K ⊂ X , �̂�−1(K × K) = {(g, x) ∈ G × K ∶ x ∈ K, gx ∈ K} 
is compact. This subset is closed in G × X and projects onto (K|K)G in the first factor 
and to the subset

in the second factor. Hence, properness of the action � implies finiteness of (K|K)G , 
i.e. (2). Conversely, if (K|K)G is finite, compactness of g−1(K) for every g ∈ G 
implies compactness of the union ( ⋆ ). Thus, (2) ⟺ (3).

In order to show that (2)⇒(6), suppose that x, y are G-dynamically related points: 
There exists a sequence gn → ∞ in G and a sequence xn → x such that gn(xn) → y . 
The subset

is compact. However, yn ∈ gn(K) ∩ K for every n. A contradiction.
(6)⇒(5): Suppose that the neighborhoods Ux,Vy do not exist. Let {Un}n∈ℕ , 

{Vn}n∈ℕ be countable bases at x, y respectively. Then for every n there exists gn ∈ G , 
such that gn(Un) ∩ Vn ≠ � for infinitely many gn ’s in G. After extraction, gn → ∞ in 
G. This yields points xn ∈ Un, yn = gn(xn) ∈ Vn . Hence, xn → x, yn → y . Thus, x is 
G-dynamically related to y. A contradiction.

(5) ⇒ (4). Consider a compact K ⊂ X . Then for each x ∈ K, y ∈ K there 
exist neighborhoods Ux,Vy such that (Ux|Vy)G is finite. The product sets 
Ux × Vy, x, y ∈ K constitute an open cover of K2 . By compactness of K2 , there exist 
x1, ..., xn, y1, ..., ym ∈ K such that

and for each pair (xi, yj),

(⋆)
⋃

g∈(K|K)G

g−1(K)

K = {x, y} ∪ {xn, gn(xn) ∶ n ∈ ℕ}

K ⊂ Ux1
∪ ... ∪ Uxn

K ⊂ Vy1
∪ ... ∪ Vym

3 E.g. an isometric action.
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Setting

we see that

Taking U ∶= V ∩W yields the required subset U.
The implication (4) ⇒ (2) is immediate.
This concludes the proof of equivalence of the properties (1)—(6).
(5) ⇒ (7): Finiteness of G-stabilizers of points in X is clear. Let x,  y be 

points in distinct G-orbits. Let U′
x
,V ′

y
 be neighborhoods of x,  y such that 

(U�
x
|V �

y
)G = {g1, ..., gn} . For each i, since X is Hausdorff, there are disjoint neighbor-

hoods Vi of y and Wi of gi(xi) . Now set

Then gUx ∩ Vy = � for every g ∈ G.
(7) ⇒  (6): It is clear that (7) implies that there are no dynamically related points 

with distinct G-orbits. In particular, every G-orbit in X is closed.
Assume now that X is completely metrizable and G is countable. Suppose that a 

point x ∈ X is G-dynamically related to itself. Since the stabilizer Gx is finite, the 
point x is an accumulation point of Gx; moreover, Gx is closed in X. Hence, Gx is a 
closed perfect subset of X. Since X admits a complete metric, so does its closed sub-
set Gx. Thus, for each g ∈ G , the complement Ug ∶= Gx − {gx} is open and dense in 
Gx. By the Baire Category Theorem, the countable intersection

is dense in Gx. However, this intersection is empty. A contradiction.
It is clear that (6) ⇒  (8) (without any extra assumptions).
(8) ⇒  (6). Suppose that X is a metric space and the G-action is equicontinuous. 

Equicontinuity implies that for each z ∈ X , a sequence zn → z and gn ∈ G,

Suppose that there exist a pair of G-dynamically related points x, y ∈ X : 
∃xn → x, gn ∈ G , gnxn → y . By the equicontinuity of the action, gnx → y . Since 
gn → ∞ , there exist subsequences gni → ∞ and gmi

→ ∞ such that the products 
hi ∶= g−1

ni
gmi

 are all distinct. Then, by the equicontinuity,

card({g ∈ G ∶ gUxi
∩ Vyj

≠ �}) < ∞.

W ∶=

n⋃

i=1

Uxi
,V ∶=

m⋃

j=1

Vyj
,

card((W|V)G) < ∞.

Vy ∶=

n⋂

i=1

Vi, Ux ∶=

n⋂

i=1

g−1
i
(Wi).

⋂

g∈G

Ug

gnzn → gz.

hix → x.
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A contradiction.
The implications (5) ⇒  (9)⇒  (8) and (5) ⇒  (10)⇒  (11) are clear.
Lastly, let us prove the implication (11) ⇒  (2). We first observe that every CW 

complex is Hausdorff and 1st countable. Furthermore, every compact K ⊂ X inter-
sects only finitely many open cells e� in X. (Otherwise, picking one point from each 
nonempty intersection K ∩ e� we obtain an infinite closed discrete subset of K.) 
Thus, there exists a finite subset E ∶= {e� ∶ � ∈ Λ} of open cells in X such that for 
every g ∈ (K|K)G , gE ∩ E ≠ � . Now, finiteness of (K|K)G follows from finiteness of 
cell-stabilizers in G.   ◻

Unfortunately, the property that every point of X is a wandering point is fre-
quently taken as the definition of proper discontinuity for G-actions, see e.g. [9, 
11]. Items (8) and (10) in the above theorem provide a (weak) justification for this 
abuse of terminology. I feel that the better name for such actions is wandering 
actions.

Example 12 Consider the action of G = ℤ on the punctured affine plane 
X = ℝ

2 − {(0, 0)} , where the generator of ℤ acts via (x, y) ↦ (2x,
1

2
y) . Then for any 

p ∈ X , the G-orbit Gp has no accumulation points in X. However, any two points 
p = (x, 0), q = (0, y) ∈ X are dynamically related. Thus, the action of G is not 
proper.

This example shows that the quotient space of a wandering action need not be 
Hausdorff.

Lemma 13 Suppose that G × X → X is a wandering action. Then each G-orbit is 
closed and discrete in X. In particular, the quotient space X/G is T1.

Proof Suppose that Gx accumulates at a point y. Then Gx ∩Wy is nonempty, where 
Wy is a G-slice at y. It follows that all points of Gx ∩Wy lie in the same Wy-orbit, 
which implies that Gx ∩Wy = {y} .   ◻

There are several reasons to consider proper actions of discrete (and, more 
generally, locally compact) groups; one reason is that such each proper action of 
a discrete group yields an orbi-covering map in the case of smooth group actions 
on manifolds: M → M∕G is an orbi-covering provided that the action of G on M 
is smooth (or, at least, locally smoothable). Another reason is that for a proper 
action on a Hausdorff space, G × X → X , the quotient X/G is again Hausdorff, see 
Lemma 9.

Question 14 Suppose that G is a discrete group, G × X → X is a free continuous 
action on an n-dimensional topological manifold X such that the quotient space 
X/G is a (Hausdorff) n-dimensional topological manifold. Does it follow that the 
G-action on X is proper?
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The answer to this question is negative if one merely assumes that X is a locally 
compact Hausdorff topological space and X/G is Hausdorff, see [7] (the action given 
there was even cocompact). Below is a different example. We begin by constructing 
a non-proper free continuous ℝ-action on a manifold, such that the quotient space is 
not just Hausdorff but is a manifold with boundary.

Example 15 This is a variation on Example 12. We start with the space

Take the quotient space X of Z by the equivalence relation (x, 0) ∼ (0,
1

x
) . The space 

X is homeomorphic to the open Moebius band. The group G = ℝ acts on Z continu-
ously by

The above equivalence relation on X is preserved by the G-action and, hence, the 
G-action descends to a continuous G-action on X. It is easy to see that this action is 
free but not proper: The equivalence class of (1, 0) is dynamically related to itself. 
Lastly, the quotient X/G is Hausdorff, homeomorphic to [0, 1) (the equivalence class 
of (1, 0) maps to 0 ∈ [0, 1)).

Lastly, we use Example 15 to construct a non-proper free ℤ-action with Haus-
dorff quotient. We continue with the notation of the previous example.

Example 16 Let Y ⊂ Z denote the following subset of Z (with the subspace 
topology):

Let W denote the projection of Y to X. We take Γ = ℤ < G = ℝ . This subgroup pre-
serves Y and, hence, W. The quotient W∕Γ is homeomorphic to Y ∩ {(0, y) ∶ y ∈ ℝ} , 
hence, is Hausdorff. At the same time, the Γ-action on W is non-proper.

5  Cocompactness

There are two common notions of cocompactness for group actions: 

(1) G × X → X is cocompact if there exists a compact K ⊂ X such that G ⋅ K = X.
(2) G × X → X is cocompact if X/G is compact.

It is clear that (1)⇒ (2), as the image of a compact under the continuous (quo-
tient) map p ∶ X → X∕G is compact.

Lemma 17 If X is locally compact then (2)⇒ (1).

Z = {(x, y) ∶ x, y ∈ [0,∞), (x, y) ≠ (0, 0)}.

(t, (x, y)) ↦ (2tx, 2−ty).

Y = {(2m, 0) ∶ m ∈ ℤ} ∪ {(0, 2n) ∶ n ∈ ℤ} ∪ {(2m, 2n) ∶ (m, n) ∈ ℤ
2}.
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Proof For each x ∈ X let Ux denote a relatively compact neighborhood of x in X. 
Then

is compact since G ⋅ Ux is open in X. Thus, we obtain an open cover {Vx ∶ x ∈ X} of 
X/G. Since X/G is compact, this open cover contains a finite subcover

It follows that

The set

is compact and p(K) = X∕G . Hence, G ⋅ K = X .   ◻

Lemma 18 Suppose that X is normal and Hausdorff, G × X → X is a proper action 
of a discrete group, such that X/G is locally compact. Then X is locally compact.

Proof Pick x ∈ X . Let Wx be a slice for the G-action at x; then Wx∕Gx → X∕G is 
a topological embedding. Thus, our assumptions imply that Wx∕Gx is compact for 
every x ∈ X . Let (x�) be a net in Wx . Since Wx∕Gx is compact, the net (x�)∕G con-
tains a convergent subnet. Thus, after passing to a subnet, there exists g ∈ Gx such 
that (gx�) converges to some x ∈ Wx . Hence, (x�) subconverges to g−1(x) . Thus, Wx 
is relatively compact. Since X is assumed to be normal, x admits a basis of relatively 
compact neighborhoods.   ◻

Corollary 19 For normal Hausdorff spaces X the two notions of cocompactness 
agree for proper discrete group actions on X.

On the other hand, if the drop the properness condition, the two notions are 
not equivalent even for ℤ-actions with Hausdorff quotients, see the example by 
R. de la Vega in [16].

6  Fundamental sets

Definition 20 A closed subset F ⊂ X is a fundamental set for the action of G on X 
if G ⋅ F = X and there exists an open neighborhood U = UF of F such that for every 
compact K ⊂ X , the transporter set (U|K)G is finite (the local finiteness condition).

Vx ∶= p(Ux) = p(G ⋅ Ux),

Vx1
, ...,Vxn

.

p(

n⋃

i=1

Uxi
) = X∕G.

K =

n⋃

i=1

Uxi
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Fundamental sets appear naturally in the reduction theory of arithmetic groups 
(Siegel sets), see [13] and [2].

There are several existence theorems for fundamental sets. The next propo-
sition, proven in [10, Lemma 2], guarantees the existence of fundamental sets 
under the paracompactness assumption on X/G.

Proposition 21 Each proper action G × X → X of a discrete group G on a locally 
compact Hausdorff space X with paracompact quotient X/G admits a fundamental 
set.

One frequently encounters a sharper version of fundamental sets, called funda-
mental domains. A domain in a topological space X is an open connected subset 
U ⊂ X which equals the interior of its closure.

Definition 22 Suppose that G × X → X is a proper action of a discrete group. A sub-
set F in X is called a fundamental domain for an action G × X → X if the following 
hold: 

(1) F is a domain in X.
(2) G ⋅ F = X.
(3) gF ∩ F ≠ � if and only if g = 1.
(4) For every compact subset K ⊂ X , the transporter set (F|K)G is finite, i.e. the 

family {gF}g∈G of subsets in X is locally finite.

Suppose that (X, d) is a proper geodesic metric space, i.e. a space where every 
closed metric ball is compact and every two points are connected by a geodesic 
segment. Suppose, furthermore, that G × X → X is a proper isometric action of a 
discrete group, x ∈ X is a point which is fixed only by the identity element.

Remark 23 If G is countable and fixed point sets in X of nontrivial elements of G are 
nowhere dense, then Baire’s Theorem implies existence of such x.

One defines the Dirichlet domain of the action as

Note that gDx = Dgx.

Proposition 24 Each Dirichlet domain D is a fundamental domain for the G-action.

Proof 1. The closure D is contained in

As before, gD̂x = D̂gx . I claim that D̂ is the closure of D and D is the interior of D̂ ; 
this will prove that D is a domain. Clearly, D is contained in the interior of D̂ and D̂ 

D = Dx = {y ∈ X ∶ d(y, x) < d(y, gx) ∀g ∈ G ⧵ Gx}.

D̂ = D̂x = {y ∈ X ∶ d(y, x) ≤ d(y, gx) ∀g ∈ G ⧵ Gx}.
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is closed. Hence, it suffices to prove that each point of D̂ is the limit of a sequence in 
D. Consider a point z ∈ D̂ ⧵ D and let c ∶ [0, T] → X be a geodesic connecting x to 
z. Then for each t ∈ [0, T) and g ∈ G ⧵ {1},

i.e. c(t) ∈ D . Thus, indeed, z lies in the closure of D, as claimed. This argument also 
proves that D is connected.

2. Let us prove that gD̂ = X . For each y ∈ X the function g ↦ d(z, gx) is a proper 
function on G, hence, it attains its minimum at some g ∈ G . Then, clearly, y ∈ D̂gx , 
hence, y ∈ gD̂x . Thus, gD = X.

3. Suppose that g ∈ G ⧵ {1} is such that gD = Dgx ∩ D ≠ � . Then each point y of 
intersection is closer to x than to gx (since y ∈ Dx ) and also y is closer to gx than to 
g−1gx = x (since y ∈ Dgx ). This is clearly impossible.

4. Lastly, we verify local finiteness. Consider a compact K ⊂ X . Then 
K ⊂ B = B(x,R) for some R. For every g ∈ G such that gB ∩ B ≠ � , d(x, gx) ≤ 2R . 
Since (X, d) is a proper metric space and the action of G on X is proper, the set of 
such elements of G is finite.   ◻

We will now prove existence of fundamental domains for proper discrete group 
actions on a certain class of topological spaces, cf. [14].

Theorem 25 Suppose that X is a 2nd countable, connected and locally connected 
locally compact Hausdorff topological space. Suppose that G × X → X is a proper 
action of a discrete countable group such that the fixed-point set of each nontrivial 
element of G is nowhere dense in X. Then this action admits a fundamental domain.

Proof Our goal is to construct a G-invariant geodesic metric metrizing X. Then the 
result will follow from the proposition.

Lemma 26 The quotient space Y = X∕G is locally compact, connected, locally con-
nected and metrizable.

Proof Local compactness and connectedness of Y follows from that of X. The 2nd 
countability of X implies the 2nd countability of Y. By Lemma 9, Y is Hausdorff. 
Since Y is locally compact and Hausdorff, its one-point compactification is compact 
and Hausdorff, hence, regular. It follows that Y itself is regular. In view of the 2nd 
countability of Y, Urysohn’s metrization theorem implies that Y is metrizable.   ◻

Remark 27 Note that each locally compact metrizable space is also locally 
path-connected.

It is proven in [15] that each locally compact, connected, locally connected metriz-
able space, such as Y, admits a complete geodesic metric dY which we fix from now 
on. Consider the projection p ∶ X → Y . According to [4, Theorem 6.2] (see also [1, 
Lemma 2]), the map p satisfies the path-lifting property: Given any path c ∶ [0, 1] → Y , 

d(x, c(t)) < d(x, c(t)) + d(c(t), z) = d(x, z) ≤ d(z, gx),
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a point x ∈ X satisfying p(x) = c(0) , there exists a path c̃ ∶ [0, 1] → X such that 
p◦c̃ = c . (This result is, of course, much easier if the G-action is free, i.e. p ∶ X → Y  
is a covering map.) We let LX denote the set of paths in X which are lifts of rectifiable 
paths c ∶ [0, 1] → Y . Clearly, the postcomposition of c̃ ∈ LX with an element of G is 
again in LX . Our next goal is to equip X with a G-invariant length structure using the 
family of paths LX . Such a structure is a function on LX with values in [0,∞) , satisfying 
certain axioms that can be found in [5, Section 2.1]. Verification of most of these axi-
oms is straightforward, I will check only some (items 1, 2, 3 and 4 below).

1. If c̃ ∈ LX is a lift of a path c in Y, then we declare �(c̃) to be equal to the length 
of c.

2. If c̃i, i = 1, 2 , are paths in LX (which are lifts of the paths c1, c2 respectively) 
whose concatenation b = c̃1 ⋆ c̃2 is defined, then b is a lift of the concatenation 
c1 ⋆ c2 . Clearly, �(b) = �(c̃1) + �(c̃2).

3. Let U be a neighborhood of some x ∈ X . We need to prove that

where the infimum is taken over all 𝛾 = c̃ ∈ LX connecting x to points of X ⧵ U . It 
suffices to prove this claim in the case when U is Gx-invariant, satisfies

and � connects x to points of �U . Then V = p(U) is a neighborhood of y = p(x) in Y 
and the paths c = p◦� connect y to points in �V  . But the lengths of the paths c are 
clearly bounded away from zero and are equal to the lengths of their lifts c̃ . Thus, we 
obtain the required bound (1).

4. Let us verify that any two points in X are connected by a path in LX . Since X 
is connected, it suffices to verify the claim locally. Let U is Gx-invariant neighbor-
hood of x satisfying (2), such that V = p(U) is an open metric ball in Y centered at 
y = p(x) . Take u ∈ U , v ∶= p(u) ∈ V  . Let c ∶ [0, T] → V  be a geodesic connecting 
v to y. Then there exists a lift c̃ ∶ [0, T] → U of c with c̃(0) = u . Since x ∈ U is the 
only point projecting to y, we get c̃(T) = x . By taking concatenations of pairs of 
such radial paths in U, we conclude that any two points in U are connected by a path 
c̃ ∈ LX.

Given a length structure on X, one defines a path-metric (metrizing the topology 
of X) by

where the infimum is taken over all � ∈ LX connecting x1 to x2 . By the construction, 
the projection p ∶ (X, dX) → (Y , dY ) is 1-Lipschitz.

Lemma 28 The metric dX is complete.

Proof Let (xn) be a Cauchy sequence in (X, dX) . By the construction of the metric 
dX , there exists a finite length path c̃ ∶ [0, 1) → (X, dX) and a sequence tn ∈ [0, 1) 
such that c̃(tn) = xn, c̃(0) = x = x1 . Since the map p is 1-Lipschitz, the path 

(1)inf
𝛾
{�(𝛾)} > 0,

(2)U ∩ gU ≠ � ⟺ g ∈ Gx,

dX(x1, x2) = inf
�
{�(�)}
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c = p◦c̃ ∶ [0, 1) → (Y , dY ) also has finite length. Since the metric dY was complete to 
begin with, the path c extends to a path c̄ ∶ [0, 1] → Y  ; set y� ∶= c̄(1).

Assume for a moment that G acts freely on X. Then we have the uniqueness of 
lifts of paths from Y to X. Thus, the unique lift ̃̄c of c̄ starting at the point x satisfies 
the property that its restriction to [0, 1) equals c̃ . It follows that the sequence (xn) 
converges to ̃̄c(1) . Below we generalize this argument to the case of non-free actions.

Let U be a neighborhood of y� = c̄(1) which is the projection to Y of a relatively 
compact slice neighborhood Ũ of some x� ∈ p−1(y�) . Without loss of generality (by 
removing finitely many initial terms of the sequence (xn) ) we can assume that the 
image of the path c lies entirely in U. Applying the path-lifting property to the path c 
with the prescribed terminal point x′ , we obtain a lift of the path c̄ that terminates at 
x′ . This lift has to be entirely contained in Ũ and its initial point has to be of the form 
g(x) for some g ∈ G . Applying g−1 to this lift, we obtain another lift of c̄ , denoted ̃̄c , 
which starts at x and terminates at g−1(x�).

Consider the restriction of ̃̄c to [0, 1). This restriction is also a lift to the path c|[0,1) 
and the image of the latter lies entirely in U. Hence, the image of ̃̄c|[0,1) lies entirely 
in the relatively compact subset g−1(Ũ) ⊂ X . Thus, the Cauchy sequence (xn) lies in 
a relatively compact subset of X, and it follows that this sequence converges in X.  
 ◻

Since (X, dX) is locally compact and complete, by Theorem 2.5.28 (and Remark 
2.5.29) in [5], (X, dX) is a geodesic metric space. Lastly, we note that, by the con-
struction, the length structure on X and, hence, the metric dX , is G-invariant. This 
concludes the proof of the theorem.   ◻

Question 29 Local compactness and local connectivity were critical for the proof of 
the theorem. Does the theorem hold without these assumptions?

For each fundamental set F of a G-action on a topological space X we define 
its quotient space F/G as the quotient space of the equivalence relation x ∼ y ⟺ 
({x}|{y})G ≠ � . The following proposition explains why fundamental sets are use-
ful: They allow one to describe quotient spaces of proper actions by discrete groups 
using less information than is contained in the description of that action.

Proposition 30 Suppose that F is a fundamental set for proper action by discrete 
group G on a 1st countable and Hausdorff space X. Then the natural projection map 
p ∶ F∕G → X∕G is a homeomorphism.

Proof The map p is continuous by the definition of the quotient topology. It is also 
obviously a bijection. It remains to show that p is a closed map. Since F is closed, it 
suffices to show that the projection q ∶ F → X∕G is a closed map. Suppose that (xn) 
is a sequence in F such that q(xn) converges to some y ∈ X∕G , y is represented by a 
point x ∈ F . Then there is a sequence gn ∈ G such that gn(xn) converges to x. Since 
{gn(xn) ∶ n ∈ ℕ} ∪ {x} is compact which, without loss of generality is contained in 
UF , the local finiteness assumption implies that the sequence (gn) is finite. Hence, 
after extraction, gn = g for all n. The fact that F is closed then implies that x ∈ F . It 
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follows that x is an accumulation point of (xn) . Thus, q ∶ F → F∕G is a closed map.  
 ◻
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