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ABSTRACT OF THE DISSERTATION 

Bayesian Selection Model with Shrinking Priors for Nonignorable Missingness  

 

by 

 

Juan Diego Vera 

Doctor in Philosophy in Psychology 

University of California, Los Angeles, 2023 

Professor Craig K. Enders, Chair 

 

This study investigates the effectiveness of Bayesian variable selection (BVS) procedures in 

dealing with missing not at random (MNAR) data for identification in selection models. Three 

BVS-adapted selection models, namely Bayesian LASSO, horseshoe prior, and spike-and-slab 

prior, were compared, along with established missing data methods such as a model that assumes 

a missing at random (MAR) process and full-selection model. The results indicate that the spike-

and-slab prior consistently outperformed other BVS methods in terms of accuracy and bias for 

various parameters, including slope estimates, residual variance, and intercept. When compared 

with the full-selection model, the spike-and-slab model exhibited superior performance across all 

parameters based on mean squared error (MSE) results. 

Although the MAR and spike-and-slab models showed comparable performance for slope 

estimates, the spike-and-slab model consistently outperformed the MAR model in estimating 

residual variance and intercept. This comparable performance is attributed to the bias-variance 

tradeoff. The MAR model, while biased, demonstrated efficiency by estimating fewer parameters 



 

 iii 

than selection models and obtaining robust support from the observed data. On the other hand, 

the spike-and-slab model outperformed the full-selection model, even when the full-selection 

model aligned with the true data-generating model. The adaptation of BVS to selection models, 

particularly through the spike-and-slab method, yielded promising results with unbiased 

estimates under various conditions. However, it is important to acknowledge that this study 

represents an initial exploration of this subject, and its scope was inherently limited. Finally, the 

BVS adaptations to the selection model was illustrated with data from a clinical-trial study. 
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INTRODUCTION 

The problem of missing data is relatively common in behavioral science research and, if 

not adequately handled, it can present various problems such as a reduction in statistical power, 

bias in the parameter estimates, and lack of sample representativeness (Enders, 2022; Little & 

Rubin, 2019). Missing data often arise for many different reasons; for example, some 

participants might refuse to respond to sensitive questions in a survey, participants in a clinical 

trial might drop out from the study because they are experiencing relief (or lack of), or 

participants with low income can miss visits to the lab because of lack of childcare or 

transportation. Each of these situations has a different reason for its missing observations, and as 

a result, researchers must consider the potential causes of missing values (Graham, 2009).  

Thanks to research by Rubin and colleagues, missing data problems have been 

categorized into different mechanisms according to potential “reasons” for missingness (Little & 

Rubin, 2019; Mealli & Rubin, 2016; Rubin, 1976). These mechanisms are mainly interested in 

the relationship between missing data and the observed and unobserved responses in the dataset. 

Missing data are classified as: missing completely at random (MCAR), missing at random 

(MAR), or missing not at random (MNAR). When the probability of being missing is the same 

for all observations, the missing data mechanism is considered MCAR. When the likelihood of 

data being missing does not depend on the unobserved data after conditioning on the observed 

data, then the missingness mechanism is considered MAR (or conditionally MAR; Graham, 

2009). Finally, when the probability of data being missing depends on unobserved scores, even 

after conditioning on the observed data, it is then considered MNAR.  

When the missing data mechanism is MNAR, the researcher must jointly model the 

missingness along with the substantive equation to avoid biases in parameter estimates and 
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standard errors (Little, 2008; Rubin, 1976). Selection models and pattern mixture models are two 

of the most prominent MNAR-based methods that can jointly model both equations (Hedeker & 

Gibbons, 1997; Little, 2008; Michiels et al., 1999; Puhani, 2000; Sartori, 2003). These two 

modeling frameworks can prevent bias when estimating the parameters of the substantive model 

(of vital interest to investigators), as long as the missingness model is approximately correct. 

However, specifying and estimating the missingness equation to achieve unbiased estimates is 

extraordinarily difficult. Ibrahim, Chen, Lipsitz, and Herring (2005) summarize two different 

approaches to building a missingness model: (a) The model can be determined empirically from 

the observed data using traditional model selection approaches such as Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC), and (b) sensitivity analyses can be 

performed that consider a range of different models. A main criticism of both options is that it 

requires the researcher to come up with candidate models for comparison (Ibrahim et al., 2005; 

Sterba & Gottfredson, 2015). This is particularly an issue when researchers do not have a 

substantive basis for constructing a missingness model. Under this circumstances, it is common 

for researchers to fit a large number of candidate missingness models, which increases the risk of 

overfitting the data (Ibrahim et al., 2005).  

This dissertation is primarily interested in developing a flexible alternative to diagnostic 

indices or sensitivity analysis; however, I am not interested in recovering the true underlying 

missingness model, instead, I aim to apply variable selection methods to choose a set of adequate 

variables for the missingness model. It is possible, for example, that the true missingness model 

is never selected, but the substantive model parameters are estimated accurately because the 

missingness model effectively characterizes determinants of missing data. 
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Instead of using traditional criteria for model selection, I intend to investigate Bayesian 

variable selection (BVS) procedures that select the “best-fitting” variables for the missingness 

model. Although, there are numerous traditional variable selection procedures one could adopt 

(e.g., forward and backward selection, stepwise regression) (Borboudakis & Tsamardinos, 2019), 

I investigate fully-Bayesian variable selection procedures because they can provide the flexibility 

of simultaneously performing variable selection in the missingness model and treating missing 

data in the substantive model in one coherent analysis, in other words, the variable selection 

problem becomes part of the estimation. In this dissertation, I propose to use fully-Bayesian 

variable selection to eliminate unnecessary components of the missingness model, thereby 

improving estimation and reducing bias. 

The three BVS procedures that I will investigate are (1) the Bayesian LASSO, (2) the 

spike-and-slab prior, (3) the horseshoe prior. The Bayesian LASSO is the Bayesian counterpart 

of a popular maximum likelihood approach called the Least Absolute Shrinkage and Selection 

Operator (LASSO), but instead of adding a penalty to the residual sum of squares, the Bayesian 

LASSO specifies a prior directly on the regression coefficients (Bhadra et al., 2019; Park & 

Casella, 2008). The spike-and-slab prior is an intuitive method for BVS because it uses a binary 

indicator variable for each regression coefficient, the purpose of which is to select which 

predictors are included or excluded (i.e., turned “on” or “off”) from the model (Bai et al., 2021; 

Bainter et al., 2020; Ishwaran & Rao, 2005). Finally, the horseshoe prior combines a global 

shrinkage parameter and a local shrinkage parameter, to allow a subset of predictors to have 

large and non-zero coefficients while shrinking irrelevant predictors towards zero (Carvalho et 

al., 2010). The goal of this study is to investigate if BVS methods can reduce nonresponse bias in 

the substantive model parameters when estimating selection models.  
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The remainder of the document is organized as follows. First, a brief introduction to the 

Bayesian framework is described. Second a short overview of missing data mechanism is 

presented. Third, a fully-Bayesian factored regression approach is explained and the MAR and 

MNAR missing data mechanisms are defined within this context. Then, I introduce in detail the 

three methods for Bayesian variable selection and discuss its relative strengths and weaknesses. 

Next, a fully-Bayesian factored regression approach with shrinking priors, a flexible model for 

handling missing data in a high dimensionality setting, will be described. Finally, a set of 

conditions for the simulation study, data generation procedures, and outcome variables will be 

stated.  

Bayesian Framework 

Given that the dissertation's focus is within the Bayesian framework, I briefly introduce 

the most relevant concepts to understand this thesis. The main idea of Bayesian inference is to 

combine information from the data with a prior distribution that represents a priori expectations 

about the parameters before looking at the data. The priors can be informed by previous research 

and accumulated knowledge, or it can be an “off-the-shelf” distribution that imposes as little 

information as possible on the data (Lynch, 2020). In other words, we specify a prior distribution 

for the parameter of interest, next, we combine this prior with a likelihood function that tells us 

how probable the data are under different parameter values. The result is a posterior distribution 

that describes the probability of different parameter values given the data (Chow & Hoijtink, 

2017; Gelman et al., 1995; Kruschke, 2011; Lynch, 2020).  

The posterior distribution of the parameter θ conditional on the data 𝐘 can be expressed 

using Bayes’ theorem.  
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𝑓(θ|𝐘) =  

𝑓(𝐘|θ)𝑝(θ)

𝑓(𝐘)
∝  𝑓(𝐘|θ)𝑓(θ) (1) 

 

Bayes’ theorem combines the prior distribution of the parameter 𝑓(θ), the assumed distribution 

of the parameter before the data is collected, and the likelihood function 𝑓(𝐘|θ), which is the 

relative probability of the data given different parameter values, to create the posterior 

distribution 𝑓(θ|𝐘). The denominator of the Bayes theorem, also called the marginal distribution 

of the data, functions as a normalizing constant and is often ignored because it does not depend 

on the parameters in θ. Therefore, the posterior distribution can also be described as proportional 

to the product of the prior and the likelihood function.  

In general, deriving the posterior distribution directly is often challenging and difficult.  

When the focus is on one parameter, the analytical calculation of the posterior distribution is 

often tractable. However, when we fit a model with many parameters, this calculation can 

become very complex or impossible. Fortunately, iteration estimation methods such as Markov 

chain Monte Carlo (MCMC) can be used to estimate the posterior distribution of multiple 

parameters (Casella & George, 1992; Geman & Geman, 1984; Jackman, 2000; Metropolis et al., 

1953).  

Missing Data Mechanisms 

In this section, I will further describe the three missing data mechanism: missing 

completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). 

As described earlier in the introduction, missingness mechanisms are mainly concern with the 

relationship between missing data and the observed value of the variables in the dataset. Using 

notation from Rubin (1976), the data 𝐘 are portioned into observed scores and unseen scores, 

usually denoted 𝐘obs and 𝐘miss, respectively; and missingness is represented by a binary 
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indicator 𝑴. Formally, missing data mechanisms are represented as the conditional distribution 

of 𝑴 given the data 𝐘. To illustrate an example, I will use a hypothetical depression study, where 

the depression score is missing 𝐘miss and the variable age is observed 𝐘obs.  

 MCAR is what researchers think of as unsystematic missingness, in the sense that 

missingness does not depend on the values of variables in the data and the distribution of the 

missing values are identical to those observed (Little & Rubin, 2019; Rubin, 1976). For example, 

some participants in a mental health study could have missing values on the depression score 

because the researcher lost their test scores by mistake.  

 

 𝑓(𝑴 = 1|𝐘obs, 𝐘miss , ϕ) = 𝑓(𝑴 = 1|ϕ) (2) 

 

The equation above the missingness indicator 𝑴, if 𝑴 = 1, then the outcome is missing, and if  

𝑴 = 0, then the outcome in observed. The term ϕ is a set of missingness model parameters that 

connect the data to the missingness indicator. In words, Equation 2 says that the cause of 

missingness is unrelated to any of the variables from dataset and is only related to ϕ which can 

be described as negligence from the researcher, where each participant had the same chance of 

having their score deleted. 

Missing at random (MAR) is the most commonly assumed mechanism for missing data 

analyses. When the mechanism is MAR, it is assumed that the probability of missingness is only 

due to the observed scores (Little & Rubin, 2019). For example, participants in a depression 

study might miss a visit to the lab for reasons related to background variables such as age or 

income-level, but not to levels of depression itself.  
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 𝑓(𝑴 = 1|𝐘obs, 𝐘miss , ϕ) = 𝑓(𝑴 = 1|𝐘obs, ϕ) (3) 

 

In words, the equation above says that after controlling for the observed scores (e.g., age in the 

bivariate example), all participants now have the same probability for missing data. That is, 

missingness is random after conditioning on observed data. The MAR mechanism is 

advantageous because the researcher can make statistical inferences about the model of interest 

by ignoring the specific causes of the missing data; that is, a researcher can perform the desired 

statistical analysis without also fitting an additional model that describes why data are missing 

(Little & Rubin, 2019; Rubin, 1976).  

When missing data are related to specific missing values, then missing data is said to be 

MNAR. For example, participants in a depression study might miss a visit to the lab because 

they already feel better and no longer feel the need to stay in the study, in this case, the 

probability of missingness is related to the unobserved outcome variable and therefore 

interrelated with the substantive analysis of depression.  

 

 𝑓(𝑴 = 1|𝐘obs, 𝐘miss , ϕ) = 𝑓(𝑴 = 1|𝐘obs, 𝐘miss , ϕ ) (4) 

 

In this scenario, the researcher is recommended to jointly model both the underlying missingness 

process and the substantive analysis in order to mitigate or eliminate nonresponse bias (Little & 

Rubin, 2019).  

 The underlying missingness process can further be categorized by two distinct systems of 

missingness, focused and diffuse (Gomer & Yuan, 2021). Equation 4 is an example of a diffuse 

system, where missingness can relate to both the unseen and observed data. Returning to the 
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depression example, Equation 4 shows a diffuse process that involves 𝐘obs as the age variable 

and 𝐘miss the unobserved depression score. In this scenario, age is also a predictor of the 

underlying missingness, where participants that come from an older generation are less likely to 

attend the study. Although the example above only involves one observed variable, a diffuse 

missingness process can involve any combination of covariates or auxiliary variables in addition 

to the unseen data (Gomer & Yuan, 2021).  

Focused MNAR as described by Gomer and Yuan (2021) is when missingness depends 

only on the unobserved values 𝐘miss and not on the observed values in the data. For example, a 

focused MNAR process may occur when a responder drops out from a depression study because 

she already feels better, irrespective of any other variable in the study. 

 

 𝑓(𝑴 = 1|𝐘obs, 𝐘miss , ϕ) = 𝑓(𝑴 = 1|𝐘miss ) (5) 

 

This is represented in Equation 5 where 𝐘 is a depression score and 𝑴 is a missingness indicator. 

Equation 5 is simply saying that missingness is only conditional on one’s unseen depression 

score. Like diffuse MNAR, focused MNAR considers the interdependency of the unobserved or 

unmeasured outcome values by explicitly modeling the missingness process (Gomer & Yuan, 

2021).  

While it may be unlikely that a focused MNAR process accurately represents reality in a 

broad sense, the categorization of MNAR into distinct systems of missingness can still provide 

valuable insights for researchers. Firstly, it helps conceptualize the complexity of the 

missingness model as a spectrum, ranging from a simple model with just one predictor to a more 

intricate model with numerous predictors and potentially higher-order effects. This 
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conceptualization proves particularly useful when conducting sensitivity analyses, where the 

examination of estimates across different missingness models is crucial, and when approaching 

MNAR analyses as a process of model development. In both scenarios, a focused MNAR serves 

as the initial step. Secondly, categorizing MNAR is beneficial due to the inherent challenges 

involved in implementing and estimating these models, which only intensify as more variables 

are incorporated into the missingness model. Even if a focused MNAR subtype may not 

accurately capture the true underlying missingness process, it may be the only estimable model 

in practical terms. Finally, MNAR subtypes play a pivotal role in the proposed simulation study, 

as this dissertation aims to investigate the behavior of variable selection methods under 

increasing levels of complexity in the true missingness model. The goal is to create scenarios that 

range from straightforward estimation of the model to scenarios where estimation becomes 

difficult or even impossible. 

Fully-Bayesian Factored Regression Approach for MAR  

This study will use a factored regression estimation procedure that tailors the 

distributions of missing values around the substantive analysis model. Missing data analysis 

using factored regression estimation has gain popularity recently because it allows for mixtures 

of categorical variables, continuous variables, interactions, non-linear terms, random 

coefficients, and skewed continuous variables. (Bartlett et al., 2015; Du et al., 2021; Enders et 

al., 2020; Erler et al., 2016; Lüdtke et al., 2020; Zhang & Wang, 2017). Although I could 

potentially deal with missing data by implementing full information maximum likelihood 

(FIML) or multiple imputation (MI), I will instead use a fully Bayesian factored regression 

approach for missing data handling. As noted previously, a fully Bayesian approach is appealing 

because it can implement two important tasks jointly in one estimation procedure; it can obtain 
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inferences about the substantive parameters of interest, and it can perform variable selection by 

identifying relevant subsets of features that can predict missingness. This section will introduce 

the estimation of fully-Bayesian factored regression model using the MAR assumption that omits 

the missingness model. A subsequent section expands the approach to accommodate MNAR 

missingness.  

To illustrate a factored regression approach, I will use an example from Enders (2022) 

where the substantive model has three predictors,  

 

 𝑌𝑖 =  𝛽0+ 𝛽1𝑋1𝑖+ 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖 + 𝜀𝑖 = 𝐸(𝑌𝑖|𝑿𝒊) +  𝜀𝑖 (6) 

 

𝑿𝒊 = (𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖), all three covariates have missing observations. The term 𝐸(𝑌𝑖|𝑿𝒊) in 

Equation 6 is a predicted value and 𝜀𝑖 is the residual. I can express the multivariate distribution 

in the above equation as the product of four univariate conditional distributions by using the 

probability chain rule, where each univariate distribution corresponds to a regression model. As a 

reminder, the term 𝑓(∙) just means that I am referencing a conditional distribution implied by 

regression model. The factored regression specification for the three-predictor model is as 

follows. 

 

 

𝑓(𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑) = 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑) 

× 𝑓(𝑿𝟐|𝑿𝟑) × 𝑓(𝑿𝟑) 

(7) 

 

The joint distribution can be factorized using several different variable orders, and the 

key is to sequence the variables such that one of the conditional distributions aligns with the 
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substantive analysis model. Accordingly, the first term after the equal sign in Equation 7 is the 

conditional distribution for the outcome 𝒀 given the predictors, and the remaining terms are the 

conditional distributions of the predictors. Assuming that all variables are continuous, below are 

the regression models that correspond to the conditional distributions of the predictors.  

 

 

𝑋1𝑖 =  𝛾01 + 𝛾11(𝑋2𝑖) + 𝛾21(𝑋3𝑖) + 𝑟1𝑖 

𝑋2𝑖 = 𝛾02 + 𝛾12(𝑋3𝑖) + 𝑟2𝑖 

𝑋3𝑖 = 𝛾03 + 𝑟3𝑖 

(8) 

 

The notation 𝜸 in the predictor’s linear model are regression coefficient and 𝒓 are residuals. Even 

though all models in our examples so far are linear, they can also contain interaction and non-

linear effects, and the variables need not be normal or continuous. 

When the predictors (𝑿𝟏, 𝑿𝟐, 𝑿𝟑) are normally distributed, it is possible to simplify the 

previous full factorization by setting some of the coefficients to zero in the model. The 

factorization can be expressed as: 

 

 𝑓(𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑) = 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟏, 𝑿𝟐, 𝑿𝟑) (9) 

 

In this factorization, the terms 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟐|𝑿𝟑) × 𝑓(𝑿𝟑) have been dropped because it 

is assumed that 𝑿𝟏, 𝑿𝟐, and 𝑿𝟑 are complete variables without any missing data. Therefore, they 

do not contribute to the missingness and can be excluded from the factorization. For the purpose 

of this dissertation, the factorization used will be the simplified version mentioned above, as only 

the outcome variable 𝒀 will have missing values. 
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Distribution of the Missing Outcome and Regressor Under MAR  

Next, I will illustrate the distribution of the missing outcome 𝑌𝑖 and the distribution of the 

covariates 𝑋1𝑖, 𝑋2𝑖, 𝑋3𝑖 by using factored regressions, which just means that I will break up the 

joint distribution into a product of conditional regression models. I denote the person-specific 

parameters by using the subscript 𝑖, where 𝑖 =  (1, . . . , 𝑛) and 𝑛 is the sample size. Again, I will 

assume that outcome 𝑌𝑖 and all covariates in 𝑿𝒊 = (𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖) have missing values to illustrate 

this example.  

First, the distribution of the missing outcome 𝑌𝑖  is  

 

 𝑓(𝑌𝑖|𝜷, 𝜎𝜀
2, 𝑿𝒊) = 𝑁(𝐸(𝑌𝑖|𝑿𝒊), 𝜎𝜀

2 ) (10) 

 

where this distribution is a normal distribution centered at the predicted value 𝐸(𝑌𝑖|𝑿𝒊) and the 

residual variance 𝜎𝜀
2 defines its spread. Drawing an observation from this distribution is 

equivalent to adding the predicted value and a random noise term from a normal distribution 

(Enders, 2022).  

In contrast, the distribution of an incomplete regressor (𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖) is more complicated 

because it must account for every model in which it appears. For example, 𝑿𝟏 appears on the 

right side of the substantive regression in Equation 6 and on the left side of its own model in 

Equation 8. Therefore, the distribution of 𝑋1𝑖 conditions on the other analysis variables via two 

sets of model parameters. Applying Bayes’ theorem gives the following expression for the 

distribution of missing 𝑿𝟏 scores. 

 

 𝑓(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖) ∝ 𝑓(𝑌𝑖|𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖) × 𝑓(𝑋1𝑖|𝑋2𝑖 , 𝑋3𝑖) (11) 
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In words, Equation 11 says that the model-implied distribution of 𝑿𝟏 is found by multiplying two 

univariate distributions, each of which aligns with a regression model.  

 

 

𝑓(𝑌𝑖|𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖) × 𝑓(𝑋1𝑖|𝑋2𝑖 , 𝑋3𝑖) = 

𝑁(𝐸(𝑌𝑖|𝑿𝒊), 𝜎𝜀
2) × 𝑁(𝐸(𝑋1𝑖|𝑋2𝑖 , 𝑋3𝑖), 𝜎𝑟1

2 ) 

(12) 

 

Equation 12 above specifies that the two univariate distributions are normal densities. The first 

distribution to the right of the equal sign is the exact same outcome distribution described in 

Equation 10, centered at the predicted value and 𝜎𝜀
2 defining its spread.  The second distribution 

is centered at the predicted score for 𝑋1𝑖 and its spread is defined by the residual variance 𝜎𝑟1
2 . 

If I drop any unnecessary scaling terms from the normal distribution functions, the 

conditional distribution of the 𝑋1𝑖 regression is proportional to: 

 

 

exp (−
1

2
 
(𝑌𝑖 − (𝛽0+ 𝛽1𝑋1𝑖+ 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖))2

𝜎𝜀
2

)

× exp (−
1

2
 
(𝑋1𝑖 − (𝛾01+ 𝛾11𝑋2𝑖+ 𝛾21𝑋3𝑖))2

𝜎𝑟1
2

) 

 

(13) 

Equation 13 shows the kernels of two normal curve functions, the first kernel depends on the 

substantive model parameters and the second function depends on the regressor model 

parameters.  

Next, I can compute the product of the two normal curve functions and analytically 

combine them into a single distribution for 𝑿𝟏. 
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 𝑓(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖) = 𝑁(𝐸(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖), 𝑣𝑎𝑟(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖)) (14) 

𝐸(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖) = 

𝑣𝑎𝑟(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖) × (
𝛾01+ 𝛾11𝑋2𝑖+ 𝛾21𝑋3𝑖

𝜎𝑟1
2

+
𝛽1( 𝑌𝑖 − 𝛽0 − 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖)

𝜎𝜀
2

) 

𝑣𝑎𝑟(𝑋1𝑖|𝑌𝑖 , 𝑋2𝑖 , 𝑋3𝑖) = (
1

𝜎𝑟1
2

+
𝛽1

2

𝜎𝜀
2

)

−1

 

 

Now, the conditional distribution of 𝑿𝟏 is represented as a normal distribution with two mean 

and variance expressions that are directly linked to the substantive and regressor model 

parameters. Although complicated, it is still manageable to analytically derive the predictive 

distribution of the regressor when it only appears in two models. Levy and Enders (2021) give 

general expressions for the missing data distributions, and specialized MCMC methods that 

approximate sampling from a complex multi-part distributions are also available (e.g., 

Metropolis–Hastings algorithm; Gilks et al., 1995; Hastings, 1970). 

Auxiliary Variables 

A standard recommendation is to include auxiliary variables that are not in the analysis 

model because it can reduce non-response bias, improve precision, or both (Collins et al., 2001; 

Graham, 2003, 2009). Fortunately, adding auxiliary variables using a factored regression 

specification is straightforward. To illustrate an example, I will add two auxiliary variables 𝑨𝟏 

and 𝑨𝟐 to the three-predictor example. The factorization with auxiliary variables is as follows.  
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𝑓(𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑨𝟏, 𝑨𝟐)

=  𝑓(𝑨𝟏|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑨𝟐) × 𝑓(𝑨𝟐|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑)

× (𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟐|𝑿𝟑) × 𝑓(𝑿𝟑) 

(15) 

 

The first two terms after the equal sign are auxiliary variable distributions that derive from 

regression models, the third term corresponds to the substantive analysis, and the final three 

terms are regressions for the incomplete predictors. Equation 15 specifies that the analysis 

variables predict the auxiliary variable, with the purpose of maintaining the desired interpretation 

of the substantive model parameters (i.e., placing auxiliary variables after 𝒀 would specify the 

additional variables as predictors, thus changing the meaning of the model parameters). The 

auxiliary variable regressions are shown below  

 

 

𝐴1𝑖 =  𝛾04 + 𝛾14(𝑌𝑖) + 𝛾24(𝑋1𝑖) + 𝛾34(𝑋2𝑖) + 𝛾44(𝑋3𝑖) + 𝛾54(𝐴2𝑖) + 𝑟4𝑖 

𝐴2𝑖 =  𝛾05 + 𝛾15(𝑌𝑖) + 𝛾25(𝑋1𝑖) + 𝛾35(𝑋2𝑖) + 𝛾45(𝑋3𝑖) + 𝑟5𝑖 

(16) 

   

MCMC Estimation 

Finally, I illustrate a generic MCMC algorithm to estimate all parameters of interest. 

MCMC sampling is an iterative process in which a sequence of random variables is estimated by 

sampling values at random from a posterior distribution that depends on the previous drawn 

value. The Gibbs sampler, introduced by Geman and Geman (1984), is an MCMC method that 

breakdowns a complex multivariate distribution into a series of univariate problems. The Gibbs 

sampler iteratively estimates one parameter at a time while holding all other parameters constant. 
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The estimation recipe below shows the MCMC algorithmic steps where all analysis variables 

could be missing 

0) Assign starting values to all parameters and missing values.  

a. Do for 𝑡 = 1 to 𝑇 iterations. 

1) Estimate the regression coefficients of every regression model conditional on its residual 

variance and all imputations. 

2) Estimate every regression model’s residual variance conditional on its coefficients and all 

imputations. 

3) Estimate each incomplete variable from a distribution, the shape of which depends on 

every model in which that variable appears 

4) Repeat 

The MCMC steps above estimate unknown parameters by drawing values at random 

from a probability distribution. First, it estimates the regression model coefficients from a 

multivariate normal distribution, conditioned on the current value of the residual variance at the 

𝑡th iteration. Step 2 in the MCMC process then updates the value of the residual variance from a 

positively skewed inverse gamma distribution, given the updated regression coefficients and the 

filled-in data. Step 3 of the MCMC step estimates the incomplete variables based on the updated 

parameter values from step 1 and 2.  The probability distribution for every incomplete variable is 

composed of every model in which that variable appears as shown in Equations 11-14. The 

conditional posterior distributions of the regression model parameters have a standard form and 

are widely available in the literature (Gelman et al., 1995; Levy & Enders, 2021; Lynch, 2020). I 

also describe these in more detail later in the paper. 
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Modeling frameworks for MNAR 

The two major modeling frameworks for MNAR processes are selection models and 

pattern mixture models (Hedeker & Gibbons, 1997; Kenward, 1998; Little, 2008; Little & Wang, 

1996; Michiels et al., 1999, 2002; Ratitch et al., 2013). These two frameworks decrease bias by 

introducing a model that describes the missingness process, but they do it in different manners. 

The pattern mixture model uses the binary missingness indicator as a predictor/moderator to 

form qualitatively distinct subgroups based on different missing data patterns, where every 

subgroup has its own parameter values (Fitzmaurice et al., 2008, pp. 409-431; Hedeker & 

Gibbons, 1997; Little, 1993). In contrast, the selection model uses the binary indicator as the 

outcome of the missingness model and directly models the relationship between the probability 

for missingness and its unobserved score (Galimard et al., 2016; Heckman, 1976, 1979; Ratitch 

et al., 2013).  

To illustrate a pattern mixture model and a selection model, I will present an example of  

both models where outcome 𝒀 has missing observations and covariates 𝐗 are all complete. Using 

factored regression specification, the pattern-mixture model factors the joint distribution of the 

outcome being measured and missingness mechanisms into the following set of univariate 

functions. 

 

 𝑓(𝒀, 𝑴, 𝐗) = 𝑓(𝒀|𝑴, 𝐗) × 𝑓(𝐗|𝑴) × 𝑓(𝑴) (17) 

   

The first term shows the missing data indicator as a predictor in the substantive model, where the 

distribution of the outcome is dependent on the missing data pattern. The third term 𝑓(𝑴) is a 

model that describes the pattern proportions.  



 

 18 

The selection model simultaneously estimates two models, (1) the probability of a 

variable being missing, which includes the outcome variables and a set of covariates as 

predictors, and (2) the substantive model. Using a factored regression specification, I can 

factorize the joint distribution of the outcome 𝒀, missingness indicator 𝑴, and covariates 𝐗 into a 

sequence of univariate functions.  

 

 𝑓(𝒀, 𝑴, 𝐗) = 𝑓(𝑴|𝒀, 𝐗) × 𝑓(𝒀|𝐗) × 𝑓(𝐗) (18) 

 

The first term in Equation 18 corresponds to a probit or logistic regression with the variables 

from the substantive model predicting the binary missing data indicator 𝑴. The second term  

𝑓(𝒀|𝐗) is the substantive model, and the third term is the marginal distribution of 𝐗. Even 

though differences in frameworks are evident (e.g., the missing data indicator functions as an 

outcome in one framework and a predictor in the other), they both require strict and unverifiable 

assumptions about data. Given that only some of the outcome values are observed, the 

parameters capturing the dependence between missingness and the outcomes cannot be fully 

estimated from the observed data and must be informed, at least partially, by information not 

specified by the substantive model. MNAR restrictions are untestable and if misspecified, it 

could produce estimates that contain more bias than those from a MAR analysis (Enders, 2022; 

Galimard et al., 2016, 2018; Molenberghs et al., 2004).   

This dissertation is only interested in studying BVS under selection models and I will not 

investigate pattern-mixture models. As described earlier in this section, selection models 

estimate a missingness model with a missing data indicator 𝑴 as its outcome. The main 

challenge of estimating a selection model is to find which variables to use in the missingness 
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model that best explain missingness while avoiding too much overlap among the predictor sets in 

the two models (Ogundimu & Collins, 2019; Sartori, 2003). The literature refers to an exclusion 

restriction when a variable appears in the substantive model but not the missingness regression 

(Marra et al., 2017; Toomet & Henningsen, 2008). In general, the search for exclusion 

restrictions is important because it facilitates the estimation of selection models, which are prone 

to convergence failures in the absence of such restrictions.  

BVS has a clear application for selection models because it can shrink unnecessary 

variables close to zero while simultaneously selecting variables that are associated with the 

missingness model. However, the application of BVS to pattern-mixture models is more 

challenging. Pattern-mixture models explicitly incorporate different missingness patterns, each 

with its own set of parameters. This increased complexity poses difficulties for directly applying 

BVS techniques due to the large number of parameters and potential model combinations that 

need to be considered. As a result, BVS for pattern-mixture models requires careful 

consideration and potentially modified approaches to address the increased complexity.   

Fully-Bayesian Selection Model 

Selection models estimate the relationship between the probability of missingness and the 

data by pairing the substantive analysis with an additional regression that models the underlying 

cause of missingness (Du et al., 2021; Heckman, 1979; Michiels et al., 1999; Ogundimu & 

Collins, 2019). Logistic and probit regression are both options to analyze the binary indicator for 

missingness. The current study will use a probit regression model because it is computationally 

simpler. The probit model represents the binary response as an latent and continuous normal 

distribution which denotes the propensity for missingness (Agresti, 2003; Albert & Chib, 1993; 

Johnson & Albert, 2006). This latent distribution has a threshold parameter 𝜑 that separates the 
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normal distribution of latent scores into two non-overlapping sections, one for missing and the 

other section for observed data.  

 

 𝑀𝑖 = {
0 𝑖𝑓 𝑀𝑖

∗ ≤ 𝜑

1 𝑖𝑓 𝑀𝑖
∗ > 𝜑

 (19) 

 

Equation 19 shows the link between 𝑀𝑖, the observed missing data indicator for individual 𝑖, and 

𝑀𝑖
∗, the latent missing data variable for individual 𝑖. The threshold parameter 𝜑 is what divides 

the latent response distribution of 𝑴∗ into sections for 𝑴 = 1 (missing observations) and 𝑴 =

0 (present observations).  

As described earlier, the selection model uses two regressions, one for the substantive 

model and one for the missingness model. The description of the substantive and a missingness 

model for individual 𝑖 are below: 

 

 

𝑌𝑖 =  𝛽0+ 𝛽1𝑋1𝑖+ 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖 + 𝜀𝑖 = 𝐸(𝑌𝑖|𝑋1𝑖,𝑋2𝑖,𝑋3𝑖) + 𝜀𝑖  

𝑌𝑖~𝑁(𝐸(𝑌𝑖|𝑿𝒊), 𝜎𝜀
2) 

(20) 

 

 

𝑀𝑖
⋆ = 𝛾0 + 𝛾1𝑌𝑖 + 𝛾2𝑋1𝑖 + 𝛾3𝑋2𝑖 + 𝛾4𝑋3𝑖 + 𝑟𝑖 

𝑀𝑖
∗~𝑁(𝐸(𝑀𝑖

∗|𝑌𝑖 , 𝑿𝒊), 𝜎𝑟
2) 𝐼(𝑄𝑖) 

𝜎𝑟
2 = 1 

(21) 

 

where 𝜷 = ( 𝛽0, 𝛽1, 𝛽2, 𝛽3) in Equation 20 are the estimable coefficients of the substantive model. 

The term 𝜎𝜀
2 is the variance and 𝜀𝑖 is the error term of the substantive regression. Equation 21 

shows the missingness model, where the outcome 𝑀𝑖
⋆ is a value from the normally distributed 
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latent variable for individual 𝑖. Note that the residual variance 𝜎𝑟
2 is set to 1 because we only 

observe its sign (whether the latent score is above or below the threshold of 0). The 

identifiability of 𝑀𝑖
∗is not possible in Equation 21 (Albert & Chib, 1993; Du et al., 2021). The 

term 𝐼(·) in Equation 21 is an indicator function, 𝑄𝑖  is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑} 

corresponding to 𝑀𝑖 = 1 or 𝑀𝑖 = 0. The missingness equation uses 𝜸 to represent the probit 

regression coefficients, where 𝜸 = (𝛾0 , 𝛾1, … , 𝛾4). In this example, the predictors in the 

missingness model are composed of the outcome variable 𝑌𝑖 and the same covariates from the 

substantive model. However, the missingness model can include all, some, or none of the 

covariates from the substantive model and it can also include variables that do not appear in the 

substantive model.   

When constructing a missingness model, an important consideration is whether to include 

overlapping predictors from the substantive analysis (Ibrahim et al., 2005). Equation 21 is an 

example of a missingness model that includes all variables from the substantive model, where 

both regressions share the same predictors apart from 𝒀. If I were to try to estimate this selection 

model, I could encounter difficulties with convergence because the normality assumption alone 

identifies the model (Leung & Yu, 2000; Little & Rubin, 2019; Puhani, 2000). A common 

recommendation is then to eliminate shared redundancies between the two models (Ibrahim et 

al., 2005; Sartori, 2003); this could be achieved by using a subset of predictors from the 

substantive model or by adding an auxiliary variable to the missingness model that is unrelated 

to the substantive outcome. However, as Sartori (2003) noted, this practice can often turn into a 

“mad” search for an exclusion restriction which can lead to including unnecessary variables in 

the missingness model that do not satisfy exclusion restriction criteria (Bärnighausen et al., 

2011). In addition, it is of practical importance to avoid including too many variables in the 
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missingness model, as this could also translate into convergence issues (Ibrahim et al., 2005). 

Again, our focus is to improve estimation and reduce biases in the substantive model by 

investigating BVS as a data-driven option to simultaneously select variables that predict 

missingness, thereby decreasing the complexity of the missingness model.   

Distribution of the Missing Outcome and Regressor Under MNAR  

Next, I will illustrate the joint distribution of the substantive and missingness model 

variables by using factored regressions. To illustrate this example, I will assume that the outcome 

and covariates all have missing values. Using a factored specification, I can represent the joint 

distribution of the variables from both the substantive and missingness models into the following 

sequence of univariate functions:  

 

 

𝑓(𝒀, 𝑴, 𝐗) = (𝑴|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑) ×  𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑)

× 𝑓(𝑿𝟐|𝑿𝟑)  ×  𝑓(𝑿𝟑) 

(22) 

 

The first term to the right of the equals sign corresponds to the missingness model, the second 

term is the substantive model, the third and fourth terms are the conditional distribution for the 

first and second covariate, and the last term is the marginal distribution of the third covariate. 

The distributions of the incomplete covariates are composed by the product of all the univariate 

distributions in which it appears. In the case where a substantive covariate is also part of the 

missingness model, then the univariate distribution from the missingness model is also included 

in the distribution of its missing values (Du et al., 2021; Enders, 2022) For example, the 

distribution of 𝑿𝟏 depends on three univariate distributions, each of which aligns with the first 
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three models from Equation 22: the missingness model, the substantive model, and its own 

conditional distribution.  

In contrast to the Equation 10 in the MAR section, the distribution of the outcome 

variable 𝒀 is more complex, as it must account for every model in which it appears (Du et al., 

2021; Enders, 2022). Equation 22 shows 𝒀 as a variable in both the missingness and substantive 

model, therefore the distribution of the outcome’s unobserved values is found by multiplying two 

univariate distributions, each of which aligns with the regression from Equation 20 and 21. If I 

drop any unnecessary scaling terms from the normal distribution functions, the model-implied 

distribution of 𝑌𝑖 is proportional to: 

 

 

𝑓(𝑀𝑖
∗|𝑌𝑖 , 𝑿𝒊) × 𝑓(𝑌𝑖|𝑿𝒊) ∝ 

exp (−
1

2
 
(𝑀𝑖

∗ − (𝛾0 + 𝛾1𝑌𝑖 + 𝛾2𝑋1𝑖 + 𝛾3𝑋2𝑖 + 𝛾4𝑋3𝑖))
2

𝜎𝑟1
2

)

× exp (−
1

2
 
(𝑌𝑖 − (𝛽0+ 𝛽1𝑋1𝑖+ 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖))2

𝜎𝜀
2

) 

 

(23) 

where each of the two normal curve functions in Equation 23 depends on the substantive and 

missingness model parameters. As a side note, the selection model’s residual variance 𝜎𝑟1
2  is 

fixed to 1, however I include 𝜎𝑟1

2  as a term in Equation 23 to keep the same structure as the 

regressor distribution in Equation 13 in the MAR section.  

I can now multiply the two normal curve functions from Equation 23 and analytically 

combine them into a single distribution for 𝑌𝑖 . This results in a normal distribution with a mean 

and variance that depend on the substantive and missingness model parameters.  
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𝑓(𝑌𝑖|𝑀
∗, 𝑿𝒊) = 𝑁(𝐸(𝑌𝑖|𝑀𝑖

∗, 𝑿𝒊), 𝑣𝑎𝑟(𝑌𝑖|𝑀𝑖
∗, 𝑿𝒊)) 

𝐸(𝑌𝑖|𝑀𝑖
∗, 𝑿𝒊) = 𝑣𝑎𝑟(𝑌𝑖|𝑀𝑖

∗, 𝑿𝒊) × 

(
𝛾1(𝑀𝑖

∗+𝛾0 + 𝛾2𝑋1𝑖 + 𝛾3𝑋2𝑖 + 𝛾4𝑋3𝑖)

𝜎𝑟1
2

+
𝛽0+ 𝛽1𝑋1𝑖+ 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖

𝜎𝜀
2

) 

𝑣𝑎𝑟(𝑌𝑖|𝑀𝑖
∗, 𝑿𝒊) = (

𝛾1
2

𝜎𝑟1
2

+
1

𝜎𝜀
2

)

−1

 

 

(24) 

Auxiliary Variables 

Selection models can easily extend to include auxiliary variables as predictors by using 

factored regression.  

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝐀) = (𝑴|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑨𝟏, 𝑨𝟐) × 𝑓(𝑨𝟏|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑨𝟐)

× 𝑓(𝑨𝟐|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑) ×  𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑)

× 𝑓(𝑿𝟐|𝑿𝟑)  ×  𝑓(𝑿𝟑) 

(25) 

 

The first term in Equation 25 is the missingness model, where the binary indicator 𝑴 is 

conditional on the substantive model predictors 𝐗 and two auxiliary variables 𝑨𝟏 and 𝑨𝟐. The 

second and third terms are the conditional distribution of the two auxiliary variables. Notice that 

like the MAR section, I specified a sequence where the analysis variables predict the auxiliary 

variables to maintain the desired interpretation of the substantive model parameters.  

After including auxiliary variables in Equation 25, the distribution of the 𝒀 variable now 

appears in four models, as the outcome in the substantive model and as a predictor of the 

missingness indicator and the auxiliary variables. In contrast to Equation 23, where the 

distribution of the dependent variable is a product of two distributions, now the distribution of 𝒀 
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is a multi-part function that depends on the product of four univariate distributions. In general, 

when an auxiliary variable is included in the missingness model, the distribution of the outcome 

variable is far more complex, however, MCMC methods can also be used to approximate a 

complex multi-part distribution of missing values. 

Collins et al. (2001) define the auxiliary variables in Equation 25 as Type A auxiliary 

variables because they both predict missingness and correlate with the analysis variables. In 

contrast, Type B auxiliary variables correlates with the analysis and not with the missingness 

indicator. An example of Type B auxiliary variables is found below, 

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝐀) = (𝑴|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑨𝟏|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑨𝟐)

× 𝑓(𝑨𝟐|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑) ×  𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑)

× 𝑓(𝑿𝟐|𝑿𝟑)  ×  𝑓(𝑿𝟑) 

(26) 

 

where the auxiliary variables 𝑨𝟏 and 𝑨𝟐 in the equation above are not correlated with the 

missingness indicator 𝑴. Finally, Type C auxiliary variables correlate with the missing data 

indicator but not with substantive model variables.   

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝐀) = (𝑴|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑨𝟏, 𝑨𝟐) ×  𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑)

× 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑) × 𝑓(𝑿𝟐|𝑿𝟑)  ×  𝑓(𝑿𝟑) 

(27) 

 

As noted previously, past literature suggests that estimation problems may occur when 

the missingness model includes the same predictors from the substantive model or any other 

variables that are highly correlated with 𝒀 (Puhani, 2000; Stolzenberg & Relles, 1990, 1997). To 
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avoid this concern, a sensible recommendation is to include auxiliary variables in the 

missingness model that correlate with the missing data indicator but not the substantive model 

outcome (Puhani, 2000; Toomet & Henningsen, 2008; Vella, 1998). Auxiliary variables of Type 

A and B would not be considered true exclusion restrictions and will not alleviate collinearity 

and can lead to specification error (Ogundimu, 2022). In contrast, adding Type C auxiliary 

variables in the selection model can reduce non-response bias and improve precision (Galimard 

et al., 2018; Marra et al., 2017). 

MCMC Estimation 

Now I will describe the MCMC estimation steps for the case where the outcome in the 

substantive model is MNAR and the missingness model also contain both covariates and 

auxiliary variables as predictors. The MCMC steps and posterior distributions come from Du et 

al. (2021).  

MCMC steps: 

0) Initialization step: set initial values for 𝜷(0), 𝜎𝜀
2(0)

, 𝜸(0), 𝑎𝑛𝑑 𝑀𝑖
∗(0)

, and 𝑌𝑖(𝑚𝑖𝑠𝑠)
(0)

for the 

individuals who have missing outcome, and for the individuals who have missing 

covariates and auxiliary variables, set initial values 

1) In the 𝑡𝑡ℎ iteration, considering the covariates in the substantive model, the imputed 

outcomes from the previous iteration  (𝑌𝑖
𝑡−1), and the residual variance of the substantive 

model in the previous iteration (𝜎𝜀
2(𝑡−1)

), I sample 𝜷𝒕 from a multivariate normal 

distribution (𝑀𝑁). In this distribution, the variables and parameters are indicated by the 

symbol "∙" and are conditioned on. The mean and covariance matrix of this distribution 

correspond to the ordinary least squares estimates of the coefficients and their parameter 

covariance, respectively. 
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𝑓(𝜷| ∙) = 𝑀𝑁(𝜷̂, 𝚺𝜷̂) 

𝑤ℎ𝑒𝑟𝑒 𝜷̂ = (𝐗′𝐗)−1𝐗′𝒀  

𝑎𝑛𝑑 𝚺𝜷̂ = 𝜎𝜀
2(𝐗′𝐗)−1 

(28) 

 

2) Given 𝐗, 𝑌𝑖
𝑡−1, and 𝜷𝒕, we define 1/𝜎𝜀

2 as a gamma random variable and draw the 

reciprocal of residual variance (i.e., the precision) from a right-skewed gamma 

distribution. The terms 𝑑𝑓 and 𝑆 are hyperparameters from the prior. The shape 

parameter 
𝑁+𝑑𝑓

2
 determines the height of the distribution, which in turn affects its 

skewness and heavy-tailed properties. The spread of the distribution is determined by the 

sum of squared residuals from the previous iteration, adjusted by the hyperparameter of 

the prior distribution 𝑆. 

 

 𝑓(1/𝜎𝜀
2| ∙) = 𝐺𝑎𝑚𝑚𝑎 (

𝑁 + 𝑑𝑓

2
,
(𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷) + 𝑆

2
) (29) 

 

3) Using the imputed outcomes from the previous iteration 𝑌𝑖
𝑡−1, along with the other 

predictors in the missingness model (excluding the outcome variable), and the latent data 

𝑀𝑖
∗(𝑡−1)

, a sample of 𝜸𝒕 is generated from a multivariate normal distribution. The 

parameters of this distribution, including the mean and variance, are determined by the 

latent data 𝑴∗ and the current imputed data. The term 𝑰 is an identity matrix and 𝑏 is the 

variance of the prior distribution. 
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𝑓(𝜸| ∙) = 𝑀𝑁(𝜸̂, 𝚺𝜸̂) 

𝑤ℎ𝑒𝑟𝑒 𝛾̂ =  𝚺𝜸̂
−1𝐙′𝑴∗  

𝚺𝜸̂ = (
1

𝑏
× 𝐼 + 𝐙′𝐙)

−1

 

𝐙 = (𝒀, 𝐗, 𝐀) 

(30) 

 

4) The distribution of the latent variable 𝑀𝑖
∗ can now be defined. For individual 𝑖, 

considering their observed 𝑀𝑖, the imputed outcome 𝑌𝑖
(𝑡−1)

 , and the sampled values of 

𝜸(𝒕), I sample 𝑀𝑖
∗(𝑡)

 from the equation below. In this equation, the latent variable scores 

are modeled using a truncated normal distribution. The indicator function 𝐼() is used, and 

𝒁𝒊 represents the ith row of 𝐙.   

 

 𝑓(𝑀𝑖
∗| ∙) = {

𝑁(𝒁𝒊𝜸, 𝜎𝑟
2) 𝐼(𝑀𝑖

∗ > 𝜑) 𝑀𝑖 = 1

𝑁(𝒁𝒊𝜸, 𝜎𝑟
2) 𝐼(𝑀𝑖

∗ ≤ 𝜑) 𝑀𝑖 = 0
 (31) 

 

5) For every individual 𝑖 who has missing outcome (i.e., 𝑀𝑖 = 1), given the covariates 

and/or auxiliary variables, 𝜷(𝒕), 𝜎𝜀
2(𝑡)

,  𝜸(𝒕), and 𝑀𝑖
∗(𝑡)

, sample 𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)

 from   

 

 

𝑓(𝒀(𝒎𝒊𝒔𝒔)| ∙) ∝ 𝑓(𝑴|𝒀, 𝐗, 𝐀) × 𝑓(𝑨𝟏|𝒀, 𝐗, 𝑨𝟐) ×  𝑓(𝑨𝟐|𝒀, 𝐗)   

×  𝑓(𝒀|𝐗)  

(32) 

 

6) For the individual 𝑖 who has a missing covariate or auxiliary variable, given  𝜷(𝒕), 

𝜎𝜀
2(𝑡)

,  𝜸(𝒕), 𝑀𝑖
∗(𝑡)

, and  𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)

 sample from   
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𝑓(𝑿𝟑(𝒎𝒊𝒔𝒔)| ∙) ∝ 𝑓(𝑴|𝒀, 𝐗, 𝐀) × 𝑓(𝑨𝟏|𝒀, 𝐗, 𝑨𝟐) × … × 𝑓(𝒀|𝐗)  

× 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑) ×  … × 𝑓(𝑿𝟑) 

𝑓(𝑿𝟐(𝒎𝒊𝒔𝒔)| ∙) ∝ 𝑓(𝑴|𝒀, 𝐗, 𝐀)  ×  𝑓(𝑨𝟏|𝒀, 𝐗, 𝑨𝟐) × … × 𝑓(𝒀|𝐗)  

×  𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑)  ×  𝑓(𝑿𝟐|𝑿𝟑) 

𝑓(𝑿𝟏(𝒎𝒊𝒔𝒔)| ∙) ∝ 𝑓(𝑴|𝒀, 𝐗, 𝐀)  ×  𝑓(𝑨𝟏|𝒀, 𝐗, 𝑨𝟐) × … × 𝑓(𝒀|𝐗)

× 𝑓(𝑿𝟏|𝑿𝟐, 𝑿𝟑)  

𝑓(𝑨𝟐(𝒎𝒊𝒔𝒔)| ∙) ∝ 𝑓(𝑴|𝒀, 𝐗, 𝐀) ×  𝑓(𝑨𝟏|𝒀, 𝐗, 𝑨𝟐)  ×  𝑓(𝑨𝟐|𝒀, 𝐗) 

𝑓(𝑨𝟏(𝒎𝒊𝒔𝒔)| ∙) ∝ 𝑓(𝑴|𝒀, 𝐗, 𝐀) ×  𝑓(𝑨𝟏|𝒀, 𝐗, 𝑨𝟐) 

(33) 

 

7) Repeat steps 1 to 6 until MCMC chains reach convergence and provide sufficient 

posterior samples.  

Bayesian Variable Selection 

Advances in machine-learning have popularized potential methods that can ameliorate 

problems with high dimensionality; for example, penalized regression is a statistical technique 

widely used to guard against overfitting because it can select variables out of a large set of 

variables that are relevant for predicting some outcome (Casella et al., 2010; Hesterberg et al., 

2008; Van Erp et al., 2019; Wu & Lange, 2008). The central idea of penalized regression 

approaches is to add a penalty term to the minimization of the sum of squared residuals, with the 

goal of shrinking small coefficients towards zero while leaving large coefficients relatively intact 

(Hesterberg et al., 2008; Van Erp et al., 2019). The most common penalized regression is the 

least absolute shrinkage and selection operator (LASSO) introduced by Tibshirani (1996).  

Below is the LASSO estimator 
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 𝜷̂(𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑛
 ‖𝒀 − 𝐗𝜷‖ + 𝜆‖𝜷‖1} (34) 

 

where 𝒀 = (𝑌1, . . . , 𝑌𝑛) is an n-dimensional vector containing the observations on the outcome 

variable, 𝐗 is an (𝑛 × 𝑝) matrix of the observed scores on the 𝑝 predictor variables, and 𝜷 =

(𝛽1, . . . , 𝛽𝑝) is a 𝑝-dimensional parameter vector of regression coefficients. The term 𝜆 is the 

tuning parameter that controls the level of shrinkage in the regression coefficient, where 𝜆 =  0 

leads to the ordinary least squares solution (Tibshirani, 1996). The LASSO is the gold-standard 

of frequentist variable selection (Bai et al., 2021; Bhadra et al., 2019). 

Recent advancements in BVS have led to the development of methods for achieving 

penalized regression within the Bayesian framework by leveraging prior distributions for 

unknown parameters (Chipman, 1996; George & McCulloch, 1997; O’Hara & Sillanpää, 2009). 

This approach of Bayesian penalization is gaining popularity in the social sciences (e.g. Bainter 

et al., 2020; Chen et al., 2022) and it has shown to be as effective or superior to its frequentist 

counterpart (Casella et al., 2010; Hans, 2009; Li & Lin, 2010).  

Using the Bayesian framework for variable selection offers significant benefits. Firstly, in 

classical LASSO, the user must manually select the tuning parameter (𝜆), which can be 

challenging. In contrast, BVS allows for automatic tuning of the regularization parameter using 

hyperpriors. This eliminates the need for manual selection and provides a more data-driven 

approach to regularization. Similar to the LASSO, BVS often includes a parameter that controls 

shrinkage, but BVS methods like the Bayesian LASSO can estimate penalty parameters 

simultaneously with the model parameters within the same MCMC iteration. Another advantage 

of BVS over its frequentist counterpart is that Bayesian methods, in general, allow for the 
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incorporation of complex models with hierarchical structures and dependencies. BVS methods 

can easily handle intricate model setups, such as incorporating group structures or additional 

random effects (Griffin & Brown, 2017; Van Erp et al., 2019). Additionally, a key advantage of 

the BVS over the classical LASSO is its natural handling of missing data. The Bayesian 

framework imputes missing values through the posterior distribution. In contrast, the classical 

LASSO would require a separate process to handle missing data prior to variable selection 

(Casella et al., 2010). 

Bayesian penalization and variable selection is a very active area of research, and there is 

an immense variety of regularization methods, each with its advantages in terms of variable 

selection and prediction (Bai et al., 2021; O’Hara & Sillanpää, 2009; Van Erp et al., 2019). 

Broadly speaking, Bayesian procedures for penalization can be categorized into two categories 

of priors: (1) two-group model and (2) global-local shrinkage priors (Bhattacharya et al., 2015; 

Polson & Scott, 2012). The first category of prior places a discrete mixture of a point mass at 

zero (the spike) and a continuous density (the slab) on each parameter. The second category of 

priors places continuous shrinkage priors on the regression coefficients that selectively shrink 

coefficients to different degrees. For my thesis, I intend to employ three priors for penalizing the 

coefficients in the missingness model. These priors include one from the two-group models, 

namely the spike-and-slab prior (Ishwaran & Rao, 2005; Mitchell & Beauchamp, 1988). The 

remaining two priors fall under the global-local shrinkage priors category. The first of these is 

the Bayesian LASSO (Park and Casella 2008, Bhadra et al., 2017), which employs a Laplace 

prior. The second is the horseshoe prior (Carvalho et al., 2009). By utilizing these three Bayesian 

BVS methods, my aim is to select the most influential variables and eliminate unnecessary 

components from the missingness model.  
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Purpose of the Study 

The current dissertation is predicated on the assumption that the researcher believes there 

is a diffuse missingness model that includes various potential predictors. As mentioned earlier, 

modeling diffuse processes poses a significant challenge due to the tendency of the missingness 

model to incorporate an excessive number of variables. Consequently, including all covariates 

and auxiliary variables is likely result in issues of non-identification or in overfitting, especially 

as the ratio of predictor variables to observation is high (Du et al., 2021; Ibrahim et al., 2005). As 

mentioned earlier, the absence of a variable in the missingness model despite its presence in the 

substantive model is referred to as an exclusion restriction in the literature. Identifying exclusion 

restrictions is crucial as they allow for the estimation of selection models, which may encounter 

convergence issues in their absence. Therefore, it is essential to carefully consider the inclusion 

of covariates and auxiliary variables to avoid non-identification or overfitting in the context of 

the diffuse missingness model. 

My research focuses on exploring the application of BVS techniques as a means to 

introduce exclusion restrictions in the context of MNAR data. Specifically, I investigated the 

effectiveness of three approaches: the Bayesian LASSO, the horseshoe prior, and the spike-and-

slab prior. The goal is to assess how well these methods can eliminate unnecessary components 

from the missingness model, thereby reducing nonresponse bias in the parameters of the 

substantive model. 

There has been limited previous work on applying BVS methods to handle missing data. 

To the best of our knowledge, only two studies have investigated BVS methods to improve 

missing data handling. The first study by Zhao and Long (2016) introduced a Bayesian lasso 

imputation model, which demonstrated superior performance compared to other regularized 
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regression methods such as LASSO, elastic net, and adaptive lasso when applied to multiple 

imputation (MI). The second study by Yamaguchi (2022) developed a built-in function for the 

Bayesian lasso imputation model, implemented within the framework of multiple imputation 

using chained equations. Their findings, in the context of longitudinal data analysis, indicated 

that incorporating the Bayesian LASSO into the imputation model increased statistical power 

compared to the regular imputation model, particularly with small sample sizes and high 

dimensionality. 

 There are several important distinctions between these two previous studies and my 

dissertation research. Firstly, while the previous studies applied the Bayesian LASSO to multiple 

linear regression, my study focuses on a probit model. Additionally, they employed a multiple 

imputation algorithm using chained equations, whereas I employed a fully Bayesian factored 

regression. Furthermore, in addition to the Bayesian LASSO, I am also investigating the spike-

and-slab and the horseshoe prior as potential shrinking priors for the missingness model. Finally, 

my research is specifically targeted towards MNAR missingness, while the other studies 

investigated missingness mechanisms within the context of MAR. 

 In the following section, I will provide a technical overview of the Bayesian LASSO, 

spike-and-slab, and horseshoe prior. I will describe how these priors will be applied to model the 

underlying cause of missingness in a selection model. This will involve presenting the 

hierarchical representation of the prior, explaining the conditional posterior distributions, and 

outlining the sampling steps for the Gibbs sampler. 

The Bayesian LASSO 

As described before, Tibshirani (1996) proposed the frequentist LASSO as an alternative 

to the OLS estimator for multiple regression models. While OLS aims to minimize the sum of 
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squared residuals, the LASSO introduces a penalty term that encourages sparse solutions by 

simultaneously shrinking coefficients towards zero and performing variable selection. Park and 

Casella (2008) proposed a Bayesian version of the LASSO by imposing independent and 

identical double-exponential priors on the regression parameters (Laplace prior; Park & Casella, 

2008). The Laplace prior is illustrated below: 

 

 𝑓(𝜷|𝜎𝜀
2 ) =  ∏

 𝜆

2√𝜎𝜀
2 

𝑒𝑥𝑝 {
−𝜆|𝛽𝑗|

√𝜎𝜀
2 

}

𝑝

𝑗=1

 (35) 

 

This prior distribution is characterized by being centered around zero, having wide tails, and a 

shape that is unimodal and symmetrical. In Equation 35, the term 𝛽𝑗  represents the regression 

coefficient for predictor 𝑗, 𝜆 serves as the shrinkage parameter in the prior, and 𝜎𝜀
2 is the residual 

variance from the regression model. The role of the parameter 𝜆 in Equation 35 is analogous to 

the penalty shrinkage parameter in classical penalized LASSO regression. In Equation 35, 𝜆 

controls the amount of shrinkage, similar to how the parameter 𝜆 in penalized LASSO regression 

determines the amount of shrinkage. When 𝜆 is set to zero, no shrinkage is applied, as any 

number raised to power of zero equals one. As 𝜆 increases, the amount of shrinkage imposed on 

the regression coefficients also increases.  

In Bayesian statistics, utilizing a conjugate prior, which is a prior from the same 

distribution family as the likelihood function, results in a posterior distribution that also falls 

within the same distribution family as the prior and likelihood. This implementation of a 

conjugate prior offers computational convenience by providing a closed-form expression for the 

conditional posterior distribution. As a results, model parameters can be efficiently updated using 
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a Gibbs sampling procedure (Gelman et al., 1995; Lynch, 2020). Park and Casella (2008) exploit 

the fact that the Laplace distribution can be represented as a normal distribution with 

heterogeneous variances; this derivation is also called a scale mixture of normals (Andrews & 

Mallows, 1974). An advantage of using the scale mixture parameterization is that, by 

representing the Laplace distribution as normal densities, the prior can be considered conjugate 

to the likelihood function of the regression coefficients, and the posterior distribution can be 

estimated using standard Gibbs samplers.  

When the Laplace prior is represented as a scale mixture of normal distributions, each 

regression coefficient 𝑗 can be estimated using a hierarchical process (Andrews & Mallows, 

1974; Eltoft et al., 2006). In this framework, each coefficient has a unique variance, and these 

variances themselves follow a distribution with a unique prior. The Bayesian LASSO falls under 

the category of global-local shrinkage priors, where the first step of the hierarchical process is to 

generate a parameter that determines the variance or spread of the regression coefficient 

distributions (global shinkage). The second step of the process, samples the coefficients 

themselves from the distribution that incorporate the coefficient-specific variance terms (local-

shrinkage).  

Given the scale mixture of normals representation, the full model can be expressed by 

using multiple hierarchical levels. The following hierarchical representation of the linear 

regression with Bayesian LASSO prior can be found in Park and Casella (2008): 

 

 

𝜆2 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑟, 𝛿), 𝑤ℎ𝑒𝑟𝑒 𝜆2 > 0 (𝑟 > 0, 𝛿 > 0)  

𝜎𝜀
2, 𝜏1

2, … , 𝜏𝑝
2~ 𝑓(𝜎𝜀

2)𝑑𝜎𝜀
2 𝐸𝑥𝑝 (

𝜆2

2
)  

(36) 
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𝜎𝜀
2, 𝜏1

2, … , 𝜏𝑝
2 > 0 

𝜷|𝜎𝜀
2, 𝜏1

2, … , 𝜏𝑝
2 ~ 𝑀𝑁(𝟎, 𝜎𝜀 

2𝐃τ),   𝑤ℎ𝑒𝑟𝑒 𝐃τ = 𝑑𝑖𝑎𝑔(𝜏1
2, … , 𝜏𝑝

2) 

𝑦𝑖|𝛼, 𝑿𝒊, 𝜷, 𝜎𝜀
2~𝑁(𝛼 + 𝑿𝐢𝜷, 𝜎𝜀

2) 

𝑓(𝛼)  ∝  1 

 

In Equation 36, the subscript 𝑗 ranges from 1 to 𝑝, where 𝑗 represents the index for the predictors. 

Additionally, the subscript 𝑝 represents the total number of predictors in the model. The first line 

in Equation 36 is the prior for the shrinkage parameter 𝜆2. One option proposed by Park and 

Casella (2008) is to assign a diffuse hyperprior to 𝜆2, specifically a gamma prior with shape 𝑟 

and rate 𝛿. This choice is advantageous as it enables a straightforward extension of the Gibbs 

sampler (Park & Casella, 2008). 

The second line of Equation 36 represents the joint prior distribution for the residual 

variance 𝜎𝜀 
2 and the predictor-specific 𝜏1

2, … , 𝜏𝑝
2. This joint prior distribution incorporates an 

improper prior density for 𝜎𝜀 
2, specifically 𝑓(𝜎𝜀 

2) = 1/𝜎𝜀 
2, as well as an exponential distribution 

that incorporates the global shrinkage parameter 𝜆2. The shrinkage parameter 𝜆2 determines the 

amount of overall shrinkage of the regression coefficients, with extreme values resulting in 

smaller variation among the 𝜏𝑗
2. When the parameter 𝜆2 is near 0 there is virtually no shrinkage 

in any of the coefficients, and when 𝜆 is relatively large then all coefficients are shrunk towards 

zero. 

The fourth line of Equation 36 says that the priors of the regression coefficients 𝜷 are 

normal distributions centered at zero and a covariance matrix that includes a diagonal matrix 𝐃𝛕 

with a vector (𝜏1
2, … , 𝜏𝑝

2). More specifically, each regression coefficient 𝛽𝑗  has a prior with its 

center at 0 and a specific term 𝜏𝑗
2. The variance of the prior determines the extent of the 
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predictor-specific shrinkage: if a predictor has a salient influence on the outcome, the variance of 

the prior will be wide, resulting in less shrinkage. Conversely, if the predictor has a minor 

influence in the outcome, then the variance will be narrow, and it will shrink the regression 

coefficient relatively close to zero. In the fifth line of Equation 36, the distribution of the 

outcome variable 𝑦𝑖 is described. It follows a normal distribution centered around 𝛼 + 𝑿𝐢𝜷, 

where 𝑿𝒊 represents the predictor variables for observation 𝑖, and 𝜷 represents the regression 

coefficients. The residual variance of the distribution is represented by 𝜎𝜀 
2. Finally, the last line 

of Equation 36 is a non-informative prior for the intercept. No shrinking prior is applied to the 

intercept since the objective is to shrink the slopes while leaving the intercept unaffected. 

Bayesian LASSO for Probit Model 

Thus far, my focus has mainly revolved around discussing the Bayesian Lasso in the 

context of multiple regression scenarios. However, in this dissertation, I will be employing the 

BVS techniques to model the underlying cause of missingness in a selection model. The 

missingness model can be represented as follows: 

 

 

 

𝑀𝑖
⋆ = 𝛼 + 𝛾1𝑌𝑖 + 𝛾2𝑋1𝑖 + 𝛾3𝑋2𝑖 + 𝛾4𝑋3𝑖 + 𝛾5𝐴1𝑖 + 𝑟𝑖 

𝑀𝑖
∗|𝜸~𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2) 𝐼(𝑄𝑖) 

𝜎𝑟
2 = 1 

(37) 

 

In Equation 37, the missingness model is similar to Equation 21. However, there is a new 

addition of an auxiliary variable 𝐴1 and the intercept is represented as 𝛼. This missingness model 

specifically follows a probit model form. 
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Bae & Mallick (2004) introduced the application of the Bayesian Lasso in a probit model, 

specifically for gene expression classification. Similar to the Bayesian Lasso in linear regression, 

the probit model was assigned a Laplace prior for the regression coefficients to encourage 

sparsity. This approach ensured that parameters with minimal impact on the outcome were 

effectively shrunk towards zero. Since then, the application of the Bayesian Lasso in the probit 

model has been adopted in various studies, such as economic forecasting (Yang et al., 2019), and 

sports data analysis (Gao, 2018). However, to the best of my knowledge, this will be the first 

instance of employing the Bayesian Lasso within a selection model for MNAR data. 

In order to illustrate the distinctions between the linear regression and probit versions of 

the Bayesian LASSO, I will provide the hierarchical representation of the full probit model 

incorporating a Bayesian LASSO prior: 

 

 

 

𝜆2 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑟, 𝛿), 𝑤ℎ𝑒𝑟𝑒 𝜆2 > 0 (𝑟 > 0, 𝛿 > 0) 

𝜏1
2, … , 𝜏𝑝

2~ 𝐸𝑥𝑝 (
𝜆2

2
) 

𝜏1
2, … , 𝜏𝑝

2 > 0 

𝜸|𝜏1
2, … , 𝜏𝑝

2 ~ 𝑀𝑁(𝟎, 𝐃𝛕),   𝑤ℎ𝑒𝑟𝑒 𝐃𝛕 = 𝑑𝑖𝑎𝑔(𝜏1
2, … , 𝜏𝑝

2) 

𝑀𝑖
∗|𝜸~𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2) 𝐼(𝑄𝑖),  

𝑓(𝛼)  ∝  1 

 

(38) 

Equation 38 introduces the hierarchical representation of the full probit model with a Bayesian 

LASSO prior. In this equation, the subscript 𝑗 ranges from 1 to 𝑝, where 𝑗 represents the index 

for the predictors. Additionally, the subscript 𝑝 represents the total number of predictors in the 
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model. I will now outline the differences between the hierarchical representation of the full linear 

model in Equation 36 and the probit model presented in Equation 38. 

The first line in Equation 38, which describes the prior of 𝜆2, remains unchanged between 

the linear regression (Equation 36) and probit model. Further details regarding this line can be 

found in the description of Equation 36. The second line in Equation 38 describes the prior joint 

distribution of  𝜏1
2, … , 𝜏𝑝

2. Unlike in the linear regression case, where the residual variance is 

explicitly modeled, the probit model fixes the residual variance 𝜎𝑟
2 at 1. Consequently, there is 

no need for a prior distribution of the residual variance. Instead, the prior distribution of 𝜏1
2, … , 𝜏𝑝

2 

is represented by an exponential distribution with rate parameter set at 𝜆/2. The fourth line in 

Equation 38 describes the priors of the regression coefficients 𝜸. The only distinction from the 

priors of the regression coefficients 𝜷 in the linear regression (Equation 36) is that the residual 

variance 𝜎𝑟
2 is fixed at one. Similar to Equation 36, the regression coefficients 𝜸 are normal 

distributions centered at zero and a covariance matrix that includes a diagonal matrix 𝐃𝛕 with a 

vector (𝜏1
2, … , 𝜏𝑝

2).  

The fifth line in Equation 38 addresses the requirements of the probit model, where a 

latent variable 𝑀𝑖
∗ is introduced to establish a connection between the binary response 𝑀𝑖 and the 

regression parameters 𝜸. The distribution of 𝑀𝑖
∗ follows a normal distribution with a fixed 

residual variance 𝜎𝑟
2 of one, centered around 𝛼 + 𝒁𝒊

𝑻𝜸. The term 𝐼(·) is an indicator function, 𝑄𝑖  

is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑}, the threshold parameter 𝜑 is used to divide the latent 

response distribution of 𝑀𝑖
∗ into distinct sections corresponding to 𝑀𝑖 = 1 (missing observations) 

and 𝑀𝑖 = 0 (present observations). Furthermore, the last line in Equation 38 corresponds to a 

non-informative prior for the intercept. Again, no shrinking prior is applied to the intercept since 

the objective is to shrink the slopes while leaving the intercept unaffected. 
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Bayesian LASSO for Selection Model Computation 

In this section, I will provide the conditional posterior distributions for MCMC 

estimation of the selection model, encompassing parameters from both the substantive model and 

the missingness model. I will also present the sampling steps from the posterior densities using 

the Gibbs sampler. This approach allows for the estimation of the selection model through 

iterative sampling. 

Step 1: Considering the covariates in the substantive model 𝐗, the imputed outcomes 

from the previous iteration 𝑌𝑖
(𝑡−1)

, and the residual variance of the substantive model in the 

previous iteration 𝜎𝜀
2(𝑡−1)

,  draw regression coefficients 𝜷(𝒕) from a multivariate normal 

distribution (𝑀𝑁). Assuming a uniform prior for the regression coefficients, 𝑓(𝜷) ∝ 1. 

 

 

 

𝑓(𝜷|𝒀, 𝐗, 𝜎𝜀
2) = 𝑀𝑁(𝜷̂, 𝚺𝜷̂) 

𝑤ℎ𝑒𝑟𝑒 𝜷̂ = (𝐗′𝐗)−1𝐗′𝒀  

𝑎𝑛𝑑 𝚺𝜷̂ = 𝜎𝜀
2(𝐗′𝐗)−1 

(39) 

 

Step 2: Given the covariates in the substantive model 𝐗, the imputed outcomes from the 

previous iteration 𝑌𝑖
(𝑡−1)

, and 𝜷(𝒕), drawn the reciprocal of residual variance 𝜎𝜀
2(𝑡)

 (i.e., the 

precision) from a right-skewed gamma distribution  

 

 

 

𝑓(1/𝜎𝜀
2|𝜷, 𝒀, 𝐗) = 𝐺𝑎𝑚𝑚𝑎 (

𝑁 + 𝑑𝑓

2
,
(𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷) + 𝑆

2
) (40) 
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where the terms 𝑑𝑓 and 𝑆 are hyperparameters from the prior. Both hyperparameters 𝑑𝑓 and 𝑆 

were specified to zero, which corresponds to a Jeffreys prior. The shape parameter 
𝑁+𝑑𝑓

2
 

determines the height of the distribution, which in turn affects its skewness and heavy-tailed 

properties. The spread of the distribution is determined by the sum of squared residuals from the 

previous iteration, adjusted by the hyperparameter of the prior distribution 𝑆. The term 𝑁 

represents the total number of observations. 

Step 3: By utilizing the imputed outcomes 𝑌𝑖
(𝑡−1)

 from the previous iteration, along with 

the other predictors 𝐗 and 𝑨𝟏 in the missingness model, as well as the latent data 𝑀𝑖
∗(𝑡−1)

 from 

the previous iteration, draw missingness model regression coefficients 𝜸(𝒕) from a multivariate 

normal distribution 

 

 

 

𝑓(𝜸|𝑴∗, 𝝉𝟐, 𝑴, 𝐙) =  𝑀𝑁(𝜸̂, 𝚺𝜸̂) 

𝑤ℎ𝑒𝑟𝑒 𝜸̂ = 𝚺𝜸̂𝐙𝐓𝑴∗ 

𝑎𝑛𝑑 𝚺𝜸̂ = (𝐙𝐓𝐙)−1 + (𝐃𝛕)−1 

𝐃𝛕 = 𝑑𝑖𝑎𝑔(𝜏1
2, … , 𝜏𝑝

2) 

𝐙 = (𝒀, 𝐗, 𝑨𝟏) 

(41) 

 

where the center of the distribution is determined by 𝐙𝐓𝑴∗and the covariance matrix 𝚺𝜸̂. The 

covariance matrix includes a diagonal matrix 𝐃𝛕 with a vector (𝜏1
2, … , 𝜏𝑗

2)
𝑡−1

 from the previous 

iteration, populating its diagonal elements. The purpose of the diagonal matrix 𝐃𝛕  is to shrink 

the coefficients towards zero, where only some of the coefficients will be shrunk effectively to 

zero. 
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Step 4: By using the missingness model predictors 𝐙, the latent data 𝑀𝑖
∗(𝑡−1)

 from the 

previous iteration, and the regression coefficients 𝜸(𝒕) , draw the missingness model intercept 

𝛼(𝑡) from a normal distribution. 

 

 

 

𝑓(𝛼) = 𝑁(𝑚𝑝𝑟𝑖𝑜𝑟 , 𝑣𝑝𝑟𝑖𝑜𝑟) 

𝑀∗̅̅ ̅̅ =
∑ 𝑀𝑖

∗ − (𝒁𝒊𝜸)𝑁
𝑖=1

𝑁
 

𝛼̂ =
𝜎𝑟

2𝑚𝑝𝑟𝑖𝑜𝑟 + 𝑁𝑀∗̅̅ ̅̅ 𝑣𝑝𝑟𝑖𝑜𝑟

𝑁𝑣𝑝𝑟𝑖𝑜𝑟 + 𝜎𝑟
2

 

𝜎𝛼̂
2 =

𝜎𝑟
2 𝑣𝑝𝑟𝑖𝑜𝑟

𝑁𝑣𝑝𝑟𝑖𝑜𝑟 + 𝜎𝑟
2
 

𝑓(𝛼|𝑴∗, 𝜸, 𝑴, 𝐙) =  𝑁(𝛼̂, 𝜎𝛼̂
2) 

(42) 

 

The prior distribution for the intercept 𝛼 is specified as a normal distribution with a mean 𝑚𝑝𝑟𝑖𝑜𝑟  

and a variance 𝑣𝑝𝑟𝑖𝑜𝑟. In order to ensure stable estimation, I have set the prior mean 𝑚𝑝𝑟𝑖𝑜𝑟  to 

0.01 and the prior variance 𝑣𝑝𝑟𝑖𝑜𝑟 to 5. The term 𝑀∗̅̅ ̅̅  represents the sample mean of the intercept, 

while 𝛼̂ and 𝜎𝛼̂
2 represent the conditional distribution mean and variance of the intercept, 

respectively. 

 Step 5: By utilizing the previously sampled shrinkage parameter 𝜆2(𝑡−1), and the sampled 

missingness model regression slopes 𝜸(𝒕), a sample for the vector 𝜏𝑗
2(𝑡)

 is generated from the full 

conditional posterior which follow an inverse Gaussian.  
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𝑓 (𝜏2
𝑗
−1

|𝝉−𝒋 
𝟐 , 𝜸, 𝜆) = 𝐼𝐺 (

𝜆

|𝛾𝑗|
, 𝜆2) (43) 

 

The mean of this inverse Gaussian distribution is determined by the ratio 𝜆/|𝛾𝑗|, where the data 

informs the mean of the distribution through the absolute value of the regression slope 𝛾𝑗 . If the 

regression slope is small, indicating a weaker relationship, the mean of the distribution will be 

larger. Consequently, drawing a value of 𝜏𝑗
2 from this distribution will result in shrinking the 

regression coefficient 𝛾𝑗  closer to zero.  

Step 6: Using the sampled 𝜏𝑗
2(𝑡)

 from the current iteration, Generate a sample for the 

parameter 𝜆2(𝑡)  from its full conditional posterior  

 

 

 
𝑓(𝜆2|𝜏1

2, … , 𝜏𝑝
2) = 𝐺𝑎𝑚𝑚𝑎 (𝑝 + 𝑟,

1

2
∑ 𝜏𝑗

2

𝑝

𝑗=1

+ 𝛿 ) (44) 

 

Where the subscript 𝑗 ranges from 1 to 𝑝, where 𝑗 represents the index for the predictors and 

subscript 𝑝 is the total number of predictors in the missingness model. The terms 𝑟 and 𝛿 are the 

hyperparameters from the prior of 𝜆2 described in Equation 36. Both hyperparameters were set to 

one, which sets the prior distribution to be a right-skewed distribution that starts at zero, peaks at 

zero, and decreases exponentially as the values increase.  

Step 7:  I can now proceed to compute the latent variable 𝑀𝑖
∗(𝑡)

. For each individual 𝑖, 

considering their observed value of 𝑀𝑖, the imputed outcome 𝑌𝑖
(𝑡−1)

 , and the sampled values of 

𝜸(𝒕), I can sample 𝑀𝑖
∗(𝑡)

 from the distribution below.  
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𝑓(𝑀𝑖
∗|𝜸, 𝛼, 𝐙, 𝑴) = 𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2)𝐼(𝑄𝑖) (45) 

 

where 𝐼(·) is an indicator function, 𝑄𝑖  is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑} corresponding to 

𝑀𝑖 = 1 or 𝑀𝑖 = 0. The conditional distribution of 𝑀𝑖
∗ is a normal distribution with a residual 

variance 𝜎𝑟
2 fixed at one and a center determined by the 𝛼 + 𝒁𝒊

𝑻𝜸.  

Step 8: Given 𝜷(𝒕), 𝜎𝜀
2(𝑡)

,  𝜸(𝒕), and 𝑀𝑖
∗(𝑡)

, for every individual 𝑖 who has missing outcome 

(i.e., 𝑀𝑖 = 1), draw 𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)

 from  

 

 

 

𝑓 (𝑌𝑖(𝑚𝑖𝑠𝑠)
|𝑀𝑖 , 𝑿𝒊, 𝐴1(𝑖)) ∝ 𝑓(𝑀𝑖|𝑌𝑖 , 𝑿𝒊, 𝐴1(𝑖)) × 𝑓(𝐴1(𝑖)|𝑌𝑖 , 𝑿𝒊) ×

 𝑓(𝑌𝑖|𝑿𝒊)  

(46) 

 

The conditional distribution of  𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)  must account for every model in which it appears. It is 

obtained by multiplying three separate distributions. The first distribution represents the model 

for missingness, the second distribution is the conditional distribution for the auxiliary variable, 

and the third distribution corresponds to the substantive model. The conditional distribution of 

𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)  is complex and cannot be derived analytically. Therefore I used the Metropolis–Hastings 

algorithm, a specialized MCMC method, to approximate sampling from this complex multi-part 

distribution (Gilks et al., 1995; Hastings, 1970) 
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The Horseshoe Prior 

The horseshoe prior, initially proposed by Carvalho et al. (2009), is a special type of 

shrinkage prior. It exhibits a symmetric distribution around zero, with fat tails and an infinitely 

large spike at zero. The horseshoe reduces variance by eliminating noise variables completely 

and introduces less bias by preserving informative variables intact (Polson & Scott, 2010). 

Similar to the Bayesian LASSO, the horseshoe prior falls under the category of global-local 

shrinkage priors. Its main concept involves employing a global shrinkage parameter that can 

potentially shrink all regression coefficients, while also incorporating a local shrinkage 

parameter that allows certain informative coefficients to escape shrinkage (Bhadra et al., 2019). 

The visual representation of the horseshoe prior is provided below: 

 

 

 

𝛽𝑗  |𝜆𝑗~𝑁(0, 𝜆𝑗
2𝜏2) 

𝜆𝑗~𝐶+(0,1) 

𝜏|𝜎𝜀~𝐶+(0, 𝜎𝜀) 

(47) 

 

The prior distribution for each coefficient 𝛽𝑗  is modeled as a normal distribution centered at zero 

and a variance of 𝜆𝑗
2𝜏2. The local shrinkage parameter 𝜆𝑗 follows a standard half-Cauchy 

distribution, and 𝜆𝑗 controls the specific shrinkage strength of the 𝛽𝑗  regression coefficient. The 

global shrinkage parameter 𝜏 also follows a standard half-Cauchy distribution, where 𝜏 controls 

the overall shrinkage of all regression coefficients (Carvalho et al., 2010; Makalic & Schmidt, 

2016b).  

The horseshoe prior offers several advantages. Firstly, the half-Cauchy distribution has a 

mode near zero and slow decaying tails. By concentrating an infinite density near zero, the 
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horseshoe prior places a significant amount of prior mass near the true parameter when 𝛽𝑗= 0. 

This characteristic leads to fast convergence to the correct estimate of the sampling density, 

surpassing other global-local shrinkage priors such as the Bayesian Lasso (Carvalho et al., 2010). 

Secondly, the horseshoe estimator is asymptotically unbiased, which means that as the sample 

size (i.e., the number of observations) tends towards infinity, the parameter estimates obtained 

using this prior converge to the true values without any systematic bias. This distinguishes the 

horseshoe prior from the Bayesian Lasso, as the Bayesian Lasso does not achieve asymptotic 

unbiasedness (Carvalho et al., 2010). 

Similar to the Laplace prior used in the Bayesian LASSO approach, the half-Cauchy 

distribution in the horseshoe prior can also be represented hierarchically (Carvalho et al., 2010; 

Piironen & Vehtari, 2017). The full model can be expressed by incorporating multiple 

hierarchical levels. Below is the hierarchical representation of linear regression using the 

horseshoe prior, also found in Makalic & Schmidt (2016a): 

 

 

 

𝜈1, . . . , 𝜈𝑝, 𝜉 ~𝐼𝑛𝑣𝐺𝑎𝑚 ( 
1

2
, 1) 

𝜏2|𝜉~𝐼𝑛𝑣𝐺𝑎𝑚 (
1

2
,
1

𝜉
) 

𝜆𝑗
2|𝜈𝑗~𝐼𝑛𝑣𝐺𝑎𝑚 (

1

2
,

1

𝑣𝑗
) 

1

𝜎𝜀
2

~𝐺𝑎𝑚𝑚𝑎(𝑑𝑓, 𝑆), 𝑤ℎ𝑒𝑟𝑒 𝑑𝑓, 𝑆 > 0 

𝛽𝑗|𝜆𝑗
2, 𝜏2, 𝜎𝜀 

2~ 𝑁(0, 𝜆𝑗
2𝜏2𝜎𝜀 

2) 

𝑦𝑖|𝛼, 𝑿𝒊, 𝜷, 𝜎𝜀
2~𝑁(𝛼 + 𝑿𝐢𝜷, 𝜎𝜀

2) 

(48) 
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𝑓(𝛼)  ∝  1 

 

The half-Cauchy distribution can be represented as a scale mixture, which involves using two 

latent variables 𝜈𝑗 and 𝜉. By employing this scale mixture representation, it becomes possible to 

establish conjugate conditional posterior distributions for all parameters. This facilitates the use 

of Gibbs sampling, as it simplifies the sampling process (Makalic & Schmidt, 2016b). 

In the first line of Equation 48, each of the latent variables 𝜈𝑗 and 𝜉 are independent, such 

as they each have their own inverse-gamma prior distribution. The global and local shrinkage 

terms, 𝜏2 and 𝜆𝑗
2, also have an inverse gamma prior distribution, which are conditional to their 

respective latent variable. The fourth line in Equation 48 is the prior distribution for the 

reciprocal of the residual variance 𝜎𝜀
2 which follows a gamma distribution with hyperparameters 

𝑑𝑓 and 𝑆. The fifth line in Equation 48 represents the prior distribution of the regression 

coefficient 𝛽𝑗 , where the regression coefficient 𝛽𝑗  follow a normal distribution centered at zero 

and a variance that is influenced by the global-local shrinkage parameters 𝜆𝑗
2𝜏2. 

 In the sixth line of Equation 48, the distribution of the outcome variable 𝑦𝑖 is described. 

It follows a normal distribution centered around 𝛼 + 𝑿𝐢𝜷, where 𝑿𝒊 represents the predictor 

variables for observation 𝑖, and 𝜷 represents the regression coefficients. The residual variance of 

the distribution is represented by 𝜎𝜀 
2. Finally, the last line of Equation 48 is a non-informative 

prior for the intercept. No shrinking prior is applied to the intercept since the objective is to 

shrink the slopes while leaving the intercept unaffected. 

Horseshoe for Probit Model 

In this dissertation, I will be employing the BVS techniques to model the underlying 

cause of missingness in a selection model, which takes the form of a probit model. There are few 
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studies that have adapted the horseshoe prior to a probit model. Maity, Carroll, and Mallik 

(2019) developed a Bayesian hierarchical model to jointly model the survival time and the 

classification of the cancer stages. To deal with the high dimensionality, they used horseshoe 

prior on a probit model to identify significant predictors of cancer. Another study, that adapted 

the horseshoe prior to a probit regression was Terenin, Dong, and Draper (2019). They 

developed a horseshoe probit regression algorithm based on the probit model described in Albert 

and Chib (1993), and combined it with the hierarchical representation of the horseshoe in 

Makalic and Schmidt (2016).  

Below, I will provide the hierarchical representation of the full probit model 

incorporating a horseshoe prior: 

 

 

 

𝜈1, . . . , 𝜈𝑝, 𝜉 ~𝐼𝑛𝑣𝐺𝑎𝑚 ( 
1

2
, 1) 

𝜏2|𝜉~𝐼𝑛𝑣𝐺𝑎𝑚 (
1

2
,
1

𝜉
) 

𝜆𝑗
2|𝜈𝑗~𝐼𝑛𝑣𝐺𝑎𝑚 (

1

2
,

1

𝑣𝑗
) 

𝛽𝑗|𝜆𝑗
2, 𝜏2~ 𝑁(0, 𝜆𝑗

2𝜏2) 

𝑀𝑖
∗|𝜸~𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2) 𝐼(𝑄𝑖) 

𝑓(𝛼)  ∝  1 

(49) 

 

Equation 49 introduces the hierarchical representation of the full probit model with a horseshoe 

prior. In this equation, the latent variables 𝜈𝑗 and 𝜉 retain the same prior as shown in Equation 

48. The prior for the global and local shrinkage parameters 𝜏2 and 𝜆𝑗
2 also remains unchanged 
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from the linear regression equation. It is important to note that unlike the linear regression case, 

where the residual variance 𝜎𝜀
2 is explicitly modeled with a prior distribution, in the probit 

model, the residual variance 𝜎𝑟
2 is fixed at 1. The fourth line in Equation 49 describes the prior of 

the regression coefficient 𝛾𝑗. The only distinction from the prior of the regression coefficients 𝛽𝑗  

in the linear regression (Equation 48) is that the residual variance 𝜎𝑟
2 is fixed at one. Similar to 

Equation 48, the regression coefficient 𝛾𝑗  follow a normal distribution centered at zero and a 

variance that depends on the global-local shrinkage parameters 𝜆𝑗
2𝜏2. 

The fifth line of Equation 49 represents the conditional distribution of 𝑀𝑖
∗. It follows a 

normal distribution with a fixed residual variance 𝜎𝑟
2 of one, centered around 𝛼 + 𝒁𝒊

𝑻𝜸. Here, the 

term 𝐼(·) represents an indicator function, 𝑄𝑖  is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑}, the 

threshold parameter 𝜑 is used to divide the latent response distribution of 𝑀𝑖
∗ into distinct 

sections corresponding to 𝑀𝑖 = 1 (missing observations) and 𝑀𝑖 = 0 (present observations). The 

last line in Equation 49 represents a non-informative prior for the intercept. Similar to the 

previous case, no shrinking prior is applied to the intercept because the objective is to shrink the 

slopes while keeping the intercept unaffected. 

Horseshoe Prior for Selection Model Computation 

In this section, I will provide the conditional posterior distributions for MCMC 

estimation of the selection model, encompassing parameters from both the substantive model and 

the missingness model. I will also present the sampling steps from the posterior densities using 

the Gibbs sampler. This approach allows for the estimation of the selection model through 

iterative sampling. 

Step 1: Considering the covariates in the substantive model 𝐗, the imputed outcomes 

from the previous iteration 𝑌𝑖
(𝑡−1)

, and the residual variance of the substantive model in the 
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previous iteration 𝜎𝜀
2(𝑡−1)

,  draw regression coefficients 𝜷(𝒕) from a multivariate normal 

distribution (𝑀𝑁). Assuming a uniform prior for the regression coefficients, 𝑓(𝜷) ∝ 1. 

 

 

 

𝑓(𝜷|𝒀, 𝐗, 𝜎𝜀
2) = 𝑀𝑁(𝜷̂, 𝚺𝜷̂) 

𝑤ℎ𝑒𝑟𝑒 𝜷̂ = (𝐗′𝐗)−1𝐗′𝒀  

𝑎𝑛𝑑 𝚺𝜷̂ = 𝜎𝜀
2(𝐗′𝐗)−1 

(50) 

 

Step 2: Given the covariates in the substantive model 𝐗, the imputed outcomes from the 

previous iteration 𝑌𝑖
(𝑡−1)

, and 𝜷(𝒕), drawn the reciprocal of residual variance 𝜎𝜀
2(𝑡)

 (i.e., the 

precision) from a right-skewed gamma distribution  

 

 

 

𝑓(1/𝜎𝜀
2|𝜷, 𝒀, 𝐗) = 𝐺𝑎𝑚𝑚𝑎 (

𝑁 + 𝑑𝑓

2
,
(𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷) + 𝑆

2
) (51) 

 

where the terms 𝑑𝑓 and 𝑆 are hyperparameters from the prior. Both hyperparameters 𝑑𝑓 and 𝑆 

were specified to zero, which corresponds to a Jeffreys prior. The shape parameter 
𝑁+𝑑𝑓

2
 

determines the height of the distribution, which in turn affects its skewness and heavy-tailed 

properties. The spread of the distribution is determined by the sum of squared residuals from the 

previous iteration, adjusted by the hyperparameter of the prior distribution 𝑆. The term 𝑁 

represents the total number of observations. 

Step 3: By utilizing the imputed outcomes 𝑌𝑖
(𝑡−1)

 from the previous iteration, along with 

the other predictors 𝐗 and 𝑨𝟏 in the missingness model, as well as the latent data 𝑀𝑖
∗(𝑡−1)

 from 
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the previous iteration, draw missingness model regression coefficients 𝜸(𝒕) from a multivariate 

normal distribution 

 

 

𝑓(𝜸|𝑴∗, 𝝉𝟐, 𝑴, 𝐙) =  𝑀𝑁(𝜸̂, 𝚺𝜸̂) 

𝑤ℎ𝑒𝑟𝑒 𝜸̂ = 𝚺𝜸̂𝐙𝐓𝑴∗ 

𝑎𝑛𝑑 𝚺𝜸̂ = (𝐙𝐓𝐙)−1 + (𝐃𝛕)−1 

𝐃𝝉 = 𝑑𝑖𝑎𝑔(𝜆1
−2, … , 𝜆𝑝

−2)/𝜏2 

𝐙 = (𝒀, 𝐗, 𝑨𝟏) 

(52) 

 

where the conditional posterior distribution of 𝜸 is a normal distribution with its center 

determined by 𝐙𝐓𝑴∗ and the covariance matrix 𝚺𝜸̂.  The covariance matrix includes a diagonal 

matrix 𝐃𝛕 with a vector (𝜆1
−2, … , 𝜆𝑝

−2 𝜏2⁄ )
(𝑡−1)

 from the previous iteration, populating its 

diagonal elements. The purpose of the diagonal matrix 𝐃𝛕  is to shrink the coefficients towards 

zero, where only some of the coefficients will be shrunk effectively to zero.  

Step 4: By using the missingness model predictors 𝐙, the latent data 𝑀𝑖
∗(𝑡−1)

 from the 

previous iteration, and the regression coefficients 𝜸(𝒕) , draw the missingness model intercept 

𝛼(𝑡) from a normal distribution. 

 

 𝑓(𝛼) = 𝑁(𝑚𝑝𝑟𝑖𝑜𝑟 , 𝑣𝑝𝑟𝑖𝑜𝑟) 

𝑀∗̅̅ ̅̅ =
∑ 𝑀𝑖

∗ − (𝒁𝒊𝜸)𝑁
𝑖=1

𝑁
 

𝛼̂ =
𝜎𝑟

2𝑚𝑝𝑟𝑖𝑜𝑟 + 𝑁𝑀∗̅̅ ̅̅ 𝑣𝑝𝑟𝑖𝑜𝑟

𝑁𝑣𝑝𝑟𝑖𝑜𝑟 + 𝜎𝑟
2

 

(53) 
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𝜎𝛼̂
2 =

𝜎𝑟
2 𝑣𝑝𝑟𝑖𝑜𝑟

𝑁𝑣𝑝𝑟𝑖𝑜𝑟 + 𝜎𝑟
2
 

𝑓(𝛼|𝑴∗, 𝜸, 𝑴, 𝐙) =  𝑁(𝛼̂, 𝜎𝛼̂
2) 

 

The prior distribution for the intercept 𝛼 is specified as a normal distribution with a mean 𝑚𝑝𝑟𝑖𝑜𝑟  

and a variance 𝑣𝑝𝑟𝑖𝑜𝑟. In order to ensure stable estimation, I have set the prior mean 𝑚𝑝𝑟𝑖𝑜𝑟  to 

0.01 and the prior variance 𝑣𝑝𝑟𝑖𝑜𝑟 to 5. The term 𝑀∗̅̅ ̅̅  represents the sample mean of the intercept, 

while 𝛼̂ and 𝜎𝛼̂
2 represent the conditional distribution mean and variance of the intercept, 

respectively. 

Step 5: By utilizing the previously sampled shrinkage parameter 𝜏2(𝑡−1), a sample for 

𝜉−1(𝑡) is generated from a full conditional posterior which follow an exponential distribution.  

 

 
𝑓(𝜉−1|𝜏−2) = 𝐸𝑥𝑝 ( 1 +

1

𝜏2
) (54) 

 

Step 6: By utilizing the sampled 𝜉−1(𝑡), the sampled missingness model regression slopes 

𝜸(𝒕), and the previously sampled local shrinkage parameter 𝜆𝑗
−2(𝑡−1)

 a sample for 𝜏2(𝑡) is 

generated from the full conditional posterior which follow a gamma distribution.  

 

 

𝑓(𝜏2|𝜸, 𝝀𝟐, 𝜉−1) = 𝐺𝑎𝑚𝑚𝑎 (
𝑝 + 1

2
,
1

𝜉
+

1

2
∑

𝛾𝑗
2

𝜆𝑗
2

𝑝

𝑗=1

) (55) 
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The term 𝑝 is the total number of predictors in the missingness model. The term 𝜉 is the latent 

variables generated from the hierarchical expression of the half-Cauchy prior, 𝜆𝑗
2 is the local 

shrinkage parameter, and 𝛾𝑗
2 is the squared transformation of the regression coefficients from the 

missingness model. 

Step 7: By utilizing the previous sampled local shrinkage parameter 𝜆𝑗
−2(𝑡−1)

, a sample for 

𝜈𝑗
−1 is generated from the full conditional posterior which follow an exponential distribution.  

 

 
𝑓(𝜈𝑗

−1 |𝜆𝑗
−2) = 𝐸𝑥𝑝 (1 +

1

𝜆𝑗
2) (56) 

 

Step 8: By using the missingness model regression coefficients 𝜸(𝒕) , the global shrinkage 

parameter 𝜏2(𝑡), and a vector of latent variable 𝜈𝑗
(𝑡)

, draw a vector of local shrinkage parameters 

𝜆𝑗
2(𝑡)

 from an exponential distribution. 

 

 
𝑓(𝜆𝑗

2|𝛾𝑗 , 𝜏2, 𝜈𝑗) = 𝐸𝑥𝑝 (
1

𝜈𝑗
+

𝛾𝑗
2

2𝜏2
) (57) 

 

The rate parameter for this distribution is informed by the data via 𝛾𝑗
2 and by the global 

shrinkage parameter 𝜏2. 

Step 9:  I will now proceed with computing the latent variable 𝑀𝑖
∗(𝑡)

. For each individual 

𝑖, taking into account their observed value of 𝑀𝑖, the imputed outcome 𝑌𝑖
(𝑡−1)

 , and the sampled 

values of 𝜸(𝒕), I can sample 𝑀𝑖
∗(𝑡)

 from the distribution below.  
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𝑓(𝑀𝑖
∗|𝜸, 𝛼, 𝐙, 𝑴) = 𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2)𝐼(𝑄𝑖) (58) 

 

where 𝐼(·) is an indicator function, 𝑄𝑖  is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑} corresponding to 

𝑀𝑖 = 1 or 𝑀𝑖 = 0. The conditional distribution of 𝑀𝑖
∗ is a normal distribution with a residual 

variance 𝜎𝑟
2 fixed at one and a center determined by the 𝛼 + 𝒁𝒊

𝑻𝜸.  

Step 10: Given 𝜷(𝒕), 𝜎𝜀
2(𝑡)

,  𝜸(𝒕), and 𝑀𝑖
∗(𝑡)

, for every individual 𝑖 who has missing 

outcome (i.e., 𝑀𝑖 = 1), draw 𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)

 from  

 

 

 

𝑓 (𝑌𝑖(𝑚𝑖𝑠𝑠)
|𝑀𝑖 , 𝑿𝒊, 𝐴1(𝑖)) ∝ 𝑓(𝑀𝑖|𝑌𝑖 , 𝑿𝒊, 𝐴1(𝑖)) × 𝑓(𝐴1(𝑖)|𝑌𝑖 , 𝑿𝒊) ×

 𝑓(𝑌𝑖|𝑿𝒊)  

(59) 

 

The conditional distribution of  𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)  must account for every model in which it appears. It is 

obtained by multiplying three separate distributions. The first distribution represents the model 

for missingness, the second distribution is the conditional distribution for the auxiliary variable, 

and the third distribution corresponds to the substantive model. The conditional distribution of 

𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)  is complex and cannot be derived analytically. Therefore I used the Metropolis–Hastings 

algorithm, a specialized MCMC method, to approximate sampling from this complex multi-part 

distribution (Gilks et al., 1995; Hastings, 1970) 
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The Spike-and-Slab Prior 

Spike-and-slab prior was initially proposed by Mitchell and Beauchamp (1988) for BVS 

in the context of linear regression models, and it has been used extensively for variable selection 

(George and McCulloch, 1993; Ishwaran and Rao, 2005). These prior combines two 

components: a spike component and a slab component. The spike component assigns high prior 

probability, such as a point mass at zero or a normal distribution with a very narrow variance, to 

exclude regression coefficients from the model. The slab component assigns non-zero prior 

probability, such as uniform or normal with a wide variance, to allow the inclusion of regression 

coefficient in the model.  

The spike-and-slab distribution, introduced by Mitchell and Beauchamp (1988), 

combines a point mass at zero (known as a Dirac delta spike) with a slab represented by a 

truncated uniform distribution. While this formulation is conceptually straightforward, it presents 

substantial computational challenges due to the need to calculate marginal likelihoods (Bai et al., 

2021; Ishwaran & Rao, 2005; Rockova, 2013). A computationally superior variation of the 

spike-and-slab prior was introduced by George and McCulloch (1993). This variation replaces 

the point mass at zero with a continuous normal prior distribution with a very small variance. 

Similarly, the truncated uniform distribution is substituted with a normal prior distribution with a 

very large variance. This modification enhances computational feasibility in variable selection, 

as it enables the spike-and-slab to be represented hierarchically, similar to the Bayesian LASSO 

in the previous section, by formulating it as a scale mixture of normal distributions (Ishwaran & 

Rao, 2005). 
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Now let's consider how the spike and slab operate in the classical linear regression model 

with regression coefficients 𝜷 and residual variance 𝜎𝜀
2. The hierarchical representation of the 

full linear model with spike-and-slab priors is presented below:  

 

 

 

1

𝜎𝜀
2

~𝐺𝑎𝑚𝑚𝑎(𝑑𝑓, 𝑆), 𝑤ℎ𝑒𝑟𝑒 𝑑𝑓, 𝑆 > 0 

𝛿𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑤) 

𝛽𝑗|𝛿𝑗 , 𝜎𝜀
2~(1 − 𝛿𝑗)𝑁(0, 𝜎𝜀

2𝜏0
2) + 𝛿𝑗𝑁(0, 𝜎𝜀

2𝜏1
2)  

𝑦𝑖|𝛼, 𝑿𝒊, 𝜷, 𝜎𝜀
2~𝑁(𝛼 +  𝑿𝐢𝜷, 𝜎𝜀

2) 

𝑓(𝛼)  ∝  1 

(60) 

 

The first line in Equation 60 is the prior distribution for the reciprocal of the residual 

variance 𝜎𝜀
2 which follows a gamma distribution with hyperparameters 𝑑𝑓 and 𝑆. The second 

line in Equation 59 is the prior distribution of 𝛿𝑗. Here, 𝛿𝑗 represents an auxiliary indicator that 

determines the presence (𝛿𝑗 = 1) or absence (𝛿𝑗 = 0) of predictor j in the model. The purpose of 

these indicator variables is to denote whether a variable belongs to the “slab” or “spike” part of 

the prior.  

The spike-and-slab prior treats the complete set of indicator variables 𝜹 as unknown 

parameters to be estimated; this estimation then combines variable selection with the estimation 

of the regression parameters (Bai et al., 2021). Since the indicator variables are unknown 

parameters, we need to specify a prior for each 𝛿𝑗. We do so by utilizing a Bernoulli distribution 

with parameter 𝑤. This parameter 𝑤 sets the prior probability of including or excluding a 

variable (George & McCulloch, 1997; Lee et al., 2003). In some cases, a researcher might 
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believe that every predictor has an equal chance to enter the model, and a value of 0.5 for 𝑤 is 

recommended (George & McCulloch, 1997). Choosing a standard weight of 0.5 implies that 

each predictor has a 50/50 prior probability of being included in the model. The value for 𝑤 is 

then up to the investigator; in some cases, a data-based approach may be a good way of 

specifying this prior (O’Hara & Sillanpää, 2009). 

The third line in Equation 60 represents the prior distribution of the regression coefficient 

𝛽𝑗 . This prior is a combination of two components: a peaked prior around zero (referred to as the 

spike) and a high variance prior (referred to as the slab). The values of the regression coefficients 

depend on the estimated indicator variable 𝛿𝒋, which can change from one iteration to another. 

When 𝛿𝑗 = 0 the coefficient uses the spike as the prior. In the given equation, the spike is 

represented by a normal distribution with a hyperparameter 𝜏0
2 in the variance. This spike 

component effectively shrinks the regression coefficients towards zero. On the other hand, when 

𝛿𝑗 = 1, the coefficient uses the slab as the prior. The slab is specified as a normal distribution 

𝑁(0, 𝜏1
2) with a wide variance, determined by the hyperparameter 𝜏1

2. This slab component 

allows for more flexibility, allowing the regression coefficients to take on a wider range of 

values. 

In the fourth line of Equation 60, the distribution of the outcome variable 𝑦𝑖 is described. 

It follows a normal distribution centered around 𝛼 + 𝑿𝐢𝜷, where 𝑿𝒊 represents the predictor 

variables for observation 𝑖, and 𝜷 represents the regression coefficients. The residual variance of 

the distribution is represented by 𝜎𝜀 
2. Finally, the last line of Equation 59 is a non-informative 

prior for the intercept. No shrinking prior is applied to the intercept since the objective is to 

shrink the slopes while leaving the intercept unaffected. 
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Spike-and-Slab Prior for Probit Model  

Most developments in the spike-and-slab prior for BVS has occurred in the context of the 

classical linear regression model. However, in this dissertation, I will be employing the BVS 

techniques to the missingness model, which has the form of a probit model. Publication in 

biomedical research have adapted the spike-and-slab for probit model for classification or 

prediction of binary outcomes (Lee et al., 2003; Russu et al., 2012; Yang et al., 2019). The 

scalable spike-and-slab R package also provides an algorithm for probit regression with a spike-

and-slab prior (Biswas et al., 2022). Nevertheless, as far as my knowledge extends, this 

dissertation represents the first instance of utilizing the spike-and-slab prior with missing data. 

By employing the spike-and-slab prior in this context, the study expands the scope of the spike-

and-slab prior beyond its conventional applications.  

Now I will present the hierarchical representation of a probit regression with spike-and-

slab prior for the missingness model: 

 

 

 

𝛿𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑤) 

𝛾𝑗|𝛿𝑗~(1 − 𝛿𝑗)𝑁(0, 𝜏0
2) + 𝛿𝑗𝑁(0, 𝜏1

2) 

𝑀𝑖
∗|𝜸~𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2) 𝐼(𝑄𝑖),  

𝑓(𝛼)  ∝  1 

(61) 

 

Equation 61 introduces the hierarchical representation of the full probit model with a spike-and-

slab prior. In this equation, the subscript 𝑗 ranges from 1 to 𝑝, where 𝑗 represents the index for 

the predictors. Additionally, the subscript 𝑝 represents the total number of predictors in the 
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model. I will now outline the differences between the hierarchical representation of the full linear 

model in Equation 60 and the probit model presented in Equation 61. 

The first line in Equation 61, which describes the prior of 𝛿𝑗, remains unchanged between 

the linear regression (Equation 60) and probit model. Further details regarding the prior of 𝛿𝑗 can 

be found in the description of Equation 60. Notice that the residual variance 𝜎𝑟
2 of the probit 

model does not have a prior distribution, unlike in the linear regression case, where the residual 

variance is explicitly modeled, the residual variance 𝜎𝑟
2  is fixed at 1. The second line in 

Equation 61 describes the prior of the regression coefficient 𝛾𝑗. The only distinction from the 

prior of the regression coefficients 𝛽𝑗  in the linear regression (Equation 60) is that the residual 

variance 𝜎𝑟
2 is fixed at one. Similar to Equation 60, the regression coefficient 𝛾𝑗  follow a normal 

distribution centered at zero and a variance that depends on the estimated indicator variables 𝛿𝑗. 

The fourth line of Equation 61 represents the conditional distribution of 𝑀𝑖
∗ which 

follows a normal distribution with a fixed residual variance 𝜎𝑟
2 of one, centered around 𝛼 + 𝒁𝒊

𝑻𝜸. 

The term 𝐼(·)is an indicator function, 𝑄𝑖  is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑}, the threshold 

parameter 𝜑 is used to divide the latent response distribution of 𝑀𝑖
∗ into distinct sections 

corresponding to 𝑀𝑖 = 1 (missing observations) and 𝑀𝑖 = 0 (present observations). The last line 

in Equation 61 corresponds to a non-informative prior for the intercept. Again, no shrinking prior 

is applied to the intercept since the objective is to shrink the slopes while leaving the intercept 

unaffected. 

Spike-and-Slab for Selection Model Computation 

In this section, I will provide the conditional posterior distributions for MCMC 

estimation of the selection model. A spike-and-slab prior will be included on the missingness 

model. Additionally, I will outline the sampling steps involved in the Gibbs sampler, which 
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facilitates the estimation of the selection model by iteratively sampling from the posterior 

densities. 

Step 1: Considering the covariates in the substantive model 𝐗, the imputed outcomes 

from the previous iteration 𝑌𝑖
(𝑡−1)

, and the residual variance of the substantive model in the 

previous iteration 𝜎𝜀
2(𝑡−1)

,  draw regression coefficients 𝜷(𝒕) from a multivariate normal 

distribution (𝑀𝑁). Assuming a uniform prior for the regression coefficients, 𝑓(𝜷) ∝ 1. 

 

 

 

𝑓(𝜷|𝒀, 𝐗, 𝜎𝜀
2) = 𝑀𝑁(𝜷̂, 𝚺𝜷̂) 

𝑤ℎ𝑒𝑟𝑒 𝜷̂ = (𝐗′𝐗)−1𝐗′𝒀  

𝑎𝑛𝑑 𝚺𝜷̂ = 𝜎𝜀
2(𝐗′𝐗)−1 

(62) 

 

Step 2: Given the covariates in the substantive model 𝐗, the imputed outcomes from the 

previous iteration 𝑌𝑖
(𝑡−1)

, and 𝜷(𝒕), drawn the reciprocal of residual variance 𝜎𝜀
2(𝑡)

 (i.e., the 

precision) from a right-skewed gamma distribution  

 

 

 

𝑓(1/𝜎𝜀
2|𝜷, 𝒀, 𝐗) = 𝐺𝑎𝑚𝑚𝑎 (

𝑁 + 𝑑𝑓

2
,
(𝒀 − 𝑿𝜷)′(𝒀 − 𝑿𝜷) + 𝑆

2
) (63) 

 

where the terms 𝑑𝑓 and 𝑆 are hyperparameters from the prior. Both hyperparameters 𝑑𝑓 and 𝑆 

were specified to zero, which corresponds to a Jeffreys prior. The shape parameter 
𝑁+𝑑𝑓

2
 

determines the height of the distribution, which in turn affects its skewness and heavy-tailed 

properties. The spread of the distribution is determined by the sum of squared residuals from the 
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previous iteration, adjusted by the hyperparameter of the prior distribution 𝑆. The term 𝑁 

represents the total number of observations. 

Step 3: A sample of 𝜸(𝒕) is generated by incorporating the imputed outcomes 𝑌𝑖
(𝑡−1)

 , the 

latent data 𝑀𝑖
∗(𝑡−1),  and the indicator variable 𝜹(𝒕−𝟏) from the previous iteration, along with the 

other predictors 𝐗 and 𝑨𝟏 in the missingness model. 

 

 

 𝑓(𝜸|𝜹, 𝑴∗, 𝑴, 𝐙) = 𝑀𝑁(𝜸̂, 𝚺𝜸̂) 

𝑤ℎ𝑒𝑟𝑒 𝜸̂ = 𝚺𝜸̂𝐙𝐓𝑴∗ 

𝑎𝑛𝑑 𝚺𝜸̂ = (𝐙𝐓𝐙)−1 + (𝐃𝛕)−1 

𝐃𝛕 = 𝑑𝑖𝑎𝑔((𝟏 − 𝜹)𝜏0
2 + 𝜹𝜏1

2) 

𝐙 = (𝒀, 𝐗, 𝑨𝟏) 

(64) 

 

In words, Equation 64 says that the missingness model’s regression coefficients are drawn from 

a multivariate normal distribution and the center and variance are determined by 𝐙𝐓𝑴∗ and the 

covariance matrix 𝚺𝜸̂. The covariance matrix includes a diagonal matrix 𝐃𝛕 with a vector 

((𝟏 − 𝜹)𝜏0
2 + 𝜹𝜏1

2)
𝑡−1

 from the previous iteration, populating its diagonal elements. The purpose 

of the diagonal matrix 𝐃𝛕 is to set coefficients to either the spike or the slab state. 

Step 4: By using the missingness model predictors 𝐙, the latent data 𝑀𝑖
∗(𝑡−1)

 from the 

previous iteration, and the regression coefficients 𝜸(𝒕) , draw the missingness model intercept 

𝛼(𝑡) from a normal distribution. 
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𝑓(𝛼) = 𝑁(𝑚𝑝𝑟𝑖𝑜𝑟 , 𝑣𝑝𝑟𝑖𝑜𝑟) 

𝑀∗̅̅ ̅̅ =
∑ 𝑀𝑖

∗ − (𝒁𝒊𝜸)𝑁
𝑖=1

𝑁
 

𝛼̂ =
𝜎𝑟

2𝑚𝑝𝑟𝑖𝑜𝑟 + 𝑁𝑀∗̅̅ ̅̅ 𝑣𝑝𝑟𝑖𝑜𝑟

𝑁𝑣𝑝𝑟𝑖𝑜𝑟 + 𝜎𝑟
2

 

𝜎𝛼̂
2 =

𝜎𝑟
2 𝑣𝑝𝑟𝑖𝑜𝑟

𝑁𝑣𝑝𝑟𝑖𝑜𝑟 + 𝜎𝑟
2
 

𝑓(𝛼|𝑴∗, 𝜸, 𝑴, 𝐙) =  𝑁(𝛼̂, 𝜎𝛼̂
2) 

(65) 

 

The prior distribution for the intercept 𝛼 is specified as a normal distribution with a mean 𝑚𝑝𝑟𝑖𝑜𝑟  

and a variance 𝑣𝑝𝑟𝑖𝑜𝑟. To ensure stable estimation, I have set the prior mean 𝑚𝑝𝑟𝑖𝑜𝑟  to 0.01 and 

the prior variance 𝑣𝑝𝑟𝑖𝑜𝑟 to 5. The term 𝑀∗̅̅ ̅̅  represents the sample mean of the intercept, while 𝛼̂ 

and 𝜎𝛼̂
2 represent the conditional distribution mean and variance of the intercept, respectively. 

Step 5: To sample 𝛿𝑗
(𝑡)

, the following procedure is followed: 

 

 

 

𝑤 = 1/𝑝 

𝑃0 =  log(1 − 𝑤) + log (𝑁(𝛾𝑗; 0, 𝜏0
2)) 

𝑃1 =  log(𝑤) + log (𝑁(𝛾𝑗; 0, 𝜏1
2))  

𝑝𝑟𝑜𝑏𝑗 =
1

1 + exp(𝑃0 − 𝑃1)
 

𝑓(𝛿𝑗|𝜸, 𝑴∗, 𝑴) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑟𝑜𝑏𝑗) 

(66) 

 

In words, Equation 66 says that the indicator variable 𝛿𝑗 is drawn from a Bernoulli distribution. 

The probability that each variable in 𝒁 is selected to the missingness model is determined by 
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𝛾𝑗  and the hyperparameters included by the prior distributions (𝑤, 𝜏1
2, 𝜏0

2). The probability 𝑝𝑟𝑜𝑏𝑗 

represents the likelihood of  𝛿𝑗 being equal to one, which indicates if the predictor 𝛾𝑗  is included 

in the model. The hyperparameter 𝑤 is initially set to be 1 divided by the total number of 

predictors in the initial model (𝑝). For example, if there are five predictors, 𝑤 would be set to 

0.2. Finally, hyperparameters 𝜏0
2 and 𝜏1

2, are set to 1/√𝑁 and 1, respectively, where 𝑁 represents 

the sample size. 

Step 6:  I will now proceed with computing the latent variable 𝑀𝑖
∗(𝑡)

. For each individual 

𝑖, taking into account their observed value of 𝑀𝑖, the imputed outcome 𝑌𝑖
(𝑡−1)

 , and the sampled 

values of 𝜸(𝒕), I can sample 𝑀𝑖
∗(𝑡)

 from the distribution below.  

 

 

 

𝑓(𝑀𝑖
∗|𝜸, 𝛼, 𝐙, 𝑴) = 𝑁(𝛼 + 𝒁𝒊

𝑻𝜸, 𝜎𝑟
2)𝐼(𝑄𝑖) (67) 

 

where 𝐼(·) is an indicator function, 𝑄𝑖  is either equal to {𝑀𝑖
∗ > 𝜑} or {𝑀𝑖

∗ ≤ 𝜑} corresponding to 

𝑀𝑖 = 1 or 𝑀𝑖 = 0. The conditional distribution of 𝑀𝑖
∗ is a normal distribution with a residual 

variance 𝜎𝑟
2 fixed at one and a center determined by the 𝛼 + 𝒁𝒊

𝑻𝜸.  

Step 7: Given 𝜷(𝒕), 𝜎𝜀
2(𝑡)

,  𝜸(𝒕), and 𝑀𝑖
∗(𝑡)

, for every individual 𝑖 who has missing outcome 

(i.e., 𝑀𝑖 = 1), draw 𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)

 from  

 

 

 

𝑓 (𝑌𝑖(𝑚𝑖𝑠𝑠)
|𝑀𝑖 , 𝑿𝒊, 𝐴1(𝑖)) ∝ 𝑓(𝑀𝑖|𝑌𝑖 , 𝑿𝒊, 𝐴1(𝑖)) × 𝑓(𝐴1(𝑖)|𝑌𝑖 , 𝑿𝒊) ×

 𝑓(𝑌𝑖|𝑿𝒊)  

(68) 
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The conditional distribution of  𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)  must account for every model in which it appears. It is 

obtained by multiplying three separate distributions. The first distribution represents the model 

for missingness, the second distribution is the conditional distribution for the auxiliary variable, 

and the third distribution corresponds to the substantive model. The conditional distribution of 

𝑌𝑖(𝑚𝑖𝑠𝑠)
(𝑡)  is complex and cannot be derived analytically. Therefore I used the Metropolis–Hastings 

algorithm to approximate sampling from this complex multi-part distribution (Gilks et al., 1995; 

Hastings, 1970) 

METHODS 

The methods section will present a summary of the population model utilized in the 

simulation. Following that, an outline of the simulation conditions will be provided, highlighting 

the different scenarios examined. Next, the data generation process for the simulation will be 

described, along with an explanation of the estimation procedure. Next, implementation details 

and outcome measures will be discussed, addressing how the simulation was evaluated. Finally, 

a description of the software employed will be provided.  

Population Models  

The equation provided (Equation 68) represents a linear regression equation for the 

substantive model, which includes 𝐗 predictors. In this equation, 𝜷 represents the regression 

coefficients, 𝜀𝑖 denotes the error term of the substantive regression, and 𝜎𝜀
2 represents the 

residual variance.  

 

 

𝑌𝑖 =  𝛽0+ 𝛽1𝑋1𝑖+ 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖+ 𝛽4𝑋4𝑖+ 𝛽5𝑋5𝑖+ 𝛽6𝑋6𝑖 + 𝜀𝑖   

𝑌𝑖 ~ 𝑁(𝐸(𝑌𝑖|𝑿𝒊), 𝜎𝜀
2) 

(68) 
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In the simulation design, the substantive model was defined with a fixed set of six predictors, and 

this configuration remained consistent across all simulations. However, the population regression 

coefficients were manipulated to reflect different correlation level among predictors in 𝐗. In 

addition to contributing to the between-subject factor, the substantive model played a crucial role 

in evaluating the simulation’s outcomes. The bias and precision of the coefficients in the 

substantive model were assessed. This evaluation allowed for comparisons between different 

conditions and estimation procedures. Further details regarding these outcome measures will be 

explained in the subsequent subsection.  

Additionally, the population model will include one auxiliary variable and a missingness 

model that will vary in complexity. Using notation from the introduction section, the full 

factorization is expressed as: 

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝑨𝟏) = 𝑓(𝑴|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔, 𝑨𝟏 )

× 𝑓(𝑨𝟏|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

                 × 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

             × 𝑓(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

(69) 

 

Next, I propose to simplify the full factorization by setting some of the coefficients in the 

factorization to zero in the population model. 

Auxiliary variable 𝐴1 in this simulation represents Type C auxiliary variables, as defined 

by Collins et al. (2001). These variables are only correlated with the missingness indicator 𝑀 and 

do not have any correlation with the outcome variable 𝑌 or predictors 𝑋1-𝑋6. To achieve this, the 

slopes coefficient for predictors 𝐗 and outcome 𝒀 in the second function in Equation 69 were set 



 

 66 

to zero. By simplifying the factorization of the auxiliary variable 𝑨𝟏 in this way, it is assumed 

that 𝑨𝟏 is solely correlated with the missingness indicator. 

The rationale behind this choice is driven by the primary interest in auxiliary variables 

that provide information about the predictability of missingness in the outcome. The correlation 

of these variables with 𝑋 is less important since the 𝑋 variables will be observed. Another 

significant reason for excluding 𝑋 from the auxiliary variable factorization is that selection 

models tend to be better estimated when a subset of predictor variables is not shared with the 

substantive model. Consequently, linking the auxiliary variables solely to the missingness 

indicator introduces exclusion restrictions that facilitate estimation. 

Finally, a key feature of the simulation design is to manipulate or vary the complexity of 

the missingness model. In this case, variables 𝑌 and 𝐴1 were set to always be predictors in the 

missingness model. The complexity of the missingness model is manipulated by varying the 

number of predictors in 𝑋 that also appear in the population data-generating model. Specifically, 

60% of the explained variance is allocated to 𝑌, while the remaining variation is evenly 

distributed among the predictors. 

For this simulation, there will be four levels of complexity, each differing in the number 

of substantive predictors. The models are as follows: a model with (a) only 𝒀 and 𝑨𝟏 predicting 

𝑴∗, (b) 𝒀, 𝑿𝟏, 𝑿𝟐, and 𝑨𝟏 predicting 𝑴∗, (c) 𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, and 𝑨𝟏 predicting 𝑴∗, and (f) 𝒀, 

𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔, and 𝑨𝟏, predicting 𝑴∗. Below are the factorizations of the four true 

data-generating models, ordered from most complex to least complex. 

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝑨𝟏) = (𝑴∗|𝒀, 𝑨𝟏) × 𝑓(𝑨𝟏) × 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔)

× 𝑓(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

(70) 
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𝑓(𝒀, 𝑴, 𝐗, 𝑨𝟏) = (𝑴∗|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑨𝟏) × 𝑓(𝑨𝟏)

× 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) × 𝑓(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

(71) 

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝑨𝟏) = (𝑴∗|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑨𝟏) × 𝑓(𝑨𝟏)

× 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) × 𝑓(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

(72) 

 

 

𝑓(𝒀, 𝑴, 𝐗, 𝑨𝟏) = (𝑴∗|𝒀, 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔, 𝑨𝟏) × 𝑓(𝑨𝟏)

× 𝑓(𝒀|𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) × 𝑓(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔) 

(73) 

 

Simulation Conditions 

As described before, the first between-subject condition is the complexity of the 

missingness model. The factorization in Equations 70-73 shows four conditions, where the level 

of complexity varies from including: (a) 𝒀 and the auxiliary variable 𝑨𝟏, (b) 𝒀, auxiliary variable 

𝑨𝟏, and two predictors in 𝐗, (c) 𝒀, auxiliary variable 𝑨𝟏, and four predictors in 𝐗, and (d) 𝑌, 

auxiliary variable 𝑨𝟏, and all six predictors in 𝐗. The second condition manipulated the 

correlation between the covariates in 𝐗, where I use 𝜌 =.10 and 𝜌 =.40 to cover both low and 

high collinearity among covariates. The third condition is sample size, and I simulated datasets 

of 100, 200, and 400 observations. I used these three sample sizes to evaluate simulation 

behavior with small and large sample sizes and at the same time keep a range that generalizes to 

typical social science data. In total, I used a combination of 144 between-subject design cells.  

The dissertation proposal involved manipulating the rate of missing data for variable 𝑌 in 

order to simulate both a high (30%) and low (10%) rate of missing data. However, due to time 
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constraints given the computational burden of the simulation, I made adjustments and decided to 

only simulate a high rate of missing data in order to illustrate worse-case scenario. Additionally, 

I made two other modifications to the original proposal regarding the simulation conditions. 

Initially, I had intended to include a condition with a sample size of 800. However, I decided 

against it for two reasons. Firstly, it proved to be computationally infeasible as it resulted in 

excessively long running times, even though it eventually converged. Secondly, including this 

condition was not essential for the study's objectives. Our primary focus lies on scenarios with 

low sample sizes and a considerable number of potential variables to be included in the 

missingness model. The last modification involved reducing the number of conditions for the 

complexity of the missingness model. Upon closer examination, it was unclear what unique 

information certain conditions would provide compared to others. I employed the four 

complexity conditions represented in Equations 70 to 73 as they serve as a solid reference point 

for the varying degrees of complexity in the missingness model 

Within the simulation, there were six fitted models that served as the sole within-subject 

factor. The chosen models were as follows: (a) an analysis that omits the missingness model and 

assumes MAR, (b) a selection model with no BVS that corresponds to the true data-generating 

model, (c) a full-selection model with the most complex factorization without BVS, and a 

selection model with the most complex factorization with three types of BVS applied to the 

missingness model, (d) the Bayesian LASSO (Gao, 2018; Park & Casella, 2008), (e) the 

horseshoe prior (Makalic & Schmidt, 2016a; Terenin et al., 2019), and (f) the spike-and-slab 

prior (Biswas et al., 2022; Ishwaran & Rao, 2005).  
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Data Generation 

Data generation followed the four factorizations outlined in Equations 70-73. In each 

factorization, the rightmost term corresponds to the multivariate normal distribution for the 

predictor matrix 𝐗, where 𝐗 represented the matrix of predictors in the substantive model. The 

term immediately to the left represents the substantive model itself. To generate data for both 

terms, I considered the correlation between 𝐗 covariates, which is a manipulated condition in the 

simulations, as well as the R-squared value for the substantive model, indicating the total 

variation in 𝒀 that is explained by the predictors in 𝐗. The R-squared of the substantive model 

remained constant at 𝑅2 =.13, while correlation between 𝐗 covariates varied between a low (.10) 

and high (.40) correlation. To achieve this, I generated multivariate standard normal data for 𝒀 

and 𝐗 using their correlation matrix. The 𝒀 variable was standardized with a mean of zero and a 

standard deviation of one, and each regression coefficient in the substantive model equally 

contributed to the explained variability. To generate the variables 𝐗 and 𝒀 based on their 

correlation matrix, I employed the R package 'mvtnorm' (Genz et al., 2021), which provided the 

necessary functionality to generate multivariate standard normal data.  

Subsequently, data can be generated for 𝐴1. To achieve this, I propose utilizing a 

univariate normal function, since 𝐴1 is uncorrelated with all 𝑋 and 𝑌 variables. In order to 

simulate the normally distributed latent variable 𝑀∗, I needed to determine the regression 

coefficients of the missingness model, which corresponds to the first term after the equal sign in 

Equations 70-73. It was not necessary to solve for the residual variance as this is already set to 1.  

For all four proposed missingness models, the proportion of variance in the missingness 

indicator that could be explained by the independent variables was set to 𝑅2 = .30. This choice 

was made to ensure a relatively strong selection mechanism (McKelvey & Zavoina, 1975). 
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Furthermore, approximately 60% of the explained variance was allocated to Y, while the 

remaining explained variation was distributed equally across the predictors. By imposing this 

proportional constraint, I was able to solve for the regression coefficients of the missingness 

model, denoted as the 𝜸 coefficients in previous equations.  

After solving for the missingness model parameters, I proceeded to simulate 𝑀∗ by 

plugging in a set of variables into the regression equation, generating predicted values for 𝑀∗, 

and adding a standard normal residual to create a dataset of simulated 𝑀∗ scores. Subsequently, I 

converted 𝑴∗ to the binary 𝑴 variable using Equation 19 from the introduction. Specifically, any 

𝑀𝑖
∗ value exceeding the fixed threshold 𝜑 was set as 𝑀𝑖 = 1, while values below or equal to the 

thresholds were designated as 𝑀𝑖 = 0. In the dataset, the outcome variable 𝑌𝑖 was assigned a 

missing value whenever 𝑀𝑖 =1, representing a 30% rate of missing observations to simulate a 

substantial amount of missing data. 

Outcome Variables  

Four outcomes measures were computed to assess the performance of the substantive 

model parameters: convergence rates, percent bias, standardized bias, and mean square error 

(MSE). I used two different approaches to measure bias. The first approach, which I call “percent 

bias,” involves calculating the difference between an average estimate and the true value, 

dividing that difference by the true value. However, this method cannot be used to measure bias 

in the focal model’s intercept, which has a true value (denominator) equal to zero. Therefore, I 

included a second method, which I refer to as standardized bias. 

The first outcome measure is convergence rates. Convergence was evaluated using 

potential scale reduction factors (PSR; Gelman & Rubin, 1992). The PSR is a statistical method 

used to assess the convergence of multiple chains in a MCMC simulation. It determines if 
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independent chains generate estimates with similar means and variation, thus indicating that the 

distributions are stationary, and their center and spread do not change with additional iterations. 

The PSR formula, shown below, compares the variation between chains to the variation within 

each chain. 

 

 𝑃𝑆𝑅 =  √
𝑊𝑖𝑡ℎ𝑖𝑛 + 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐶ℎ𝑎𝑖𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑊𝑖𝑡ℎ𝑖𝑛 𝐶ℎ𝑎𝑖𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 (74) 

 

 It employs the between-group mean square obtained from an analysis of variance (ANOVA) to 

quantify the mean differences between chains, and the within-group mean square from ANOVA 

to quantify the pooled variance within each chain. The sum of the between and within variances 

(total variance) is divided by the within-chain variance and then square-rooted to define the PSR. 

If there is minimal discrepancy between chains, the total variance in the numerator will be 

comparable to the denominator, resulting in a PSR value close to 1. If the chains are still 

diverging and failing to reach a stable estimate, the PSR will exceed 1. A PSR value close to 1 

indicates that the chains have converge and mix well. The most used cutoff values for PSR 

convergence are 1.10 (Gelman et al., 2013) and 1.05 (Asparouhov & Muthén, 2010), meaning 

that a PSR value less than or equal to 1.10 or 1.05 is usually considered indicative of 

convergence. (Gelman et al., 2004). 

Replications that produce PSR values greater than 1.05 within the burn-in period were 

considered convergence failures.  
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 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =  
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑)

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠)
 (75) 

 

Convergence rate was then defined as the ratio of the number of replications that converged to 

the total number of replications. 

The second outcome measure is percent bias. This measure was calculated as the 

difference between an average estimate and the true value divided by the true value, and then 

multiplied by 100 to create a percentage (i.e., bias as a percentage of the true value).  

 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑏𝑖𝑎𝑠 =  
(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) − (𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

(𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)
 × 100 (74) 

 

A commonly accepted criterion is that relative bias values should be less than 10% in absolute 

value. (Finch, West, & MacKinnon, 1997; Kaplan, 1988).  

Standardized bias was computed by dividing the difference between the average estimate 

and the true value, and then dividing that difference by the theoretical standard error (SE). 

 

 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑖𝑧𝑒𝑑 𝑏𝑖𝑎𝑠 =  
(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) − (𝑡𝑟𝑢𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝐸)
  

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝐸 = 𝑠𝑞𝑟𝑡 (𝑑𝑖𝑎𝑔(𝑐𝑜𝑣(𝜷))) 

𝑐𝑜𝑣(𝜷) = 𝜎𝜀
2(𝚺𝐗𝑁)−1 

(75) 

  

The second line of Equation 75 provides the definition of the theoretical SE, which is calculated 

as the square root of the diagonal vector derived from the population covariance matrix of the 
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regression coefficients 𝜷. Moving on to the third line of Equation 75, we find the computation of 

the covariance matrix for the population regression coefficients 𝜷. Within this equation, 𝜎𝜀
2 

represents the population residual variance, 𝑁 signifies the sample size, and 𝚺𝐗 denotes the 

population covariance matric of predictors. 

Theoretical SE defines the spread of the sampling distribution of complete-data estimates 

around the true value, and the resulting bias values indicate where the average estimate falls in 

this theoretical sampling distribution. The standardized bias outcome employs a threshold of 

0.40, after which bias can hinder efficiency, convergence, and error rates (Collins et al., 2001). 

Each bias measure has its advantages and disadvantages. The advantage of percent bias is that it 

is easy to understand, but it is not always clear if large values in percent bias are practically 

important. Additionally, percent bias fails to account for sample size; a bias value of 10% would 

indicate a substantial distortion in large sample sizes because the sampling distribution is 

narrower and has less variability, whereas the same 10% bias value may not be as meaningful 

when sample size is small, and sampling variance is high. Both methods produce slightly 

different results, but generally show similar trends.  

The fouth criteria I used in the study was MSE. The MSE is a composite measure that 

captures the accuracy and precision of an estimator, as it equals the squared bias plus the 

sampling variance of the parameter estimate.  

 

 MSE =  
1

1000
 ∑(𝜃̂ − 𝜃)2 (76) 

 

where 𝜃 ̂is the parameter estimate from a particular replication within a given design cell, 𝜃 is the 

population parameter, and 1000 is the number of replications within a given design cell. To 
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facilitate interpretation, I used MSE ratios to evaluate whether the any of the missing data 

methods, increases precision relative to a theoretical complete-data sample. I computed these 

MSE ratios by dividing the MSE from one of the missing data methods, by the squared 

theoretical standard error (SE). The squared theoretical SE represents the expected MSE of an 

unbiased complete-data estimator, as it only considers sampling variance without the bias 

component. Values closer to 1 indicate lower variance and better precision. These four outcome 

measures were calculated to compare the performance of the six within-subject models. The 

Bayesian LASSO, spike-and-slab, horseshoe prior, full model, MAR model, and the true data-

generating model estimates were compared. 

Software Implementation 

For the purpose of data generation, I utilized the R programming language for statistical 

computing (R Development Core Team, 2017). The MCMC algorithm and analysis for the full-

selection model, MAR model, and the true model were implemented using Blimp version 3.2 

(Keller & Enders, 2021). Estimation and analysis using the Bayesian LASSO, horseshoe, and 

spike-and-slab selection models were performed through custom R functions developed 

specifically for this project. These functions were created as there is currently no existing 

software program that handles missing data in selection models with a BVS adaptation.  

To ensure the correctness of the custom programs, I fitted complete data using R 

functions from existing R packages that computed BVS in probit models and compared the 

outputs with my custom programs. For comparing the spike-and-slab and horseshoe custom 

programs, I used the R packages scalable spike-and-slab (Biswas et al., 2022) and horseshoe nlm 

(Maity et al., 2019), respectively. It should be noted that there was no R package available to fit a 

Bayesian Lasso to a probit model, to the best of my knowledge. Additionally, the computation of 
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outcome measures on the estimates of the substantive model was performed using the R 

programming language for statistical computing.  

Before starting the MCMC simulation with the Gibbs sampler, it is crucial to establish a 

sufficiently long burn-in period. The burn-in period is the initial phase of the simulation where 

the chain explores the parameter space and moves towards the desired outcome. Its purpose is to 

discard initial samples that may introduce bias or be far from convergence (Gelman et al., 2013; 

Little & Rubin, 2019; Rubin, 1976). To determine the appropriate burn-in period, I employed 

different methods depending on the software used. For the full, MAR, and true models, I utilized 

the Blimp software package. Blimp divides the burn-in period into 20 equal intervals and 

computes the PSR at the end of each interval. By examining the PSR values in Blimp's 

convergence diagnostic output, I identified a suitable value for the burn-in period, applying a 

threshold of 1.05 to the PSR. 

For the Bayesian LASSO, horseshoe, and spike-and-slab selection models, I employed 

the coda package (Plummer et al., 2006) in R to obtain PSR values. Prior to conducting the 

MCMC estimation of the BVS models, I performed exploratory MCMC estimations and 

monitored the PSR values every 10,000 iterations. If the PSR convergence rates remained below 

1.05 for five consecutive checks, I considered the number of iterations used in the third check as 

the final burn-in period. This approach was necessary because occasionally the PSR would 

momentarily dip below 1.05 in one check but then exceed the threshold in subsequent checks. 

RESULTS 

The results section will first focus on the convergence rates, followed by an analysis of 

bias and accuracy in the Bayesian variable selection (BVS) methods, full selection model, 

missing at random (MAR) model, and the true data-generating model. To ensure clarity in 
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presentation, the discussion will begin by comparing just the BVS methods, followed by a 

comparison of the best BVS method against the full selection, MAR, and true models.  

Convergence Rates 

Table 1 displays the convergence rates of six methods: Bayesian LASSO, horseshoe 

prior, MAR model, full selection model, spike-and-slab prior, and true model. The table is 

divided into four subsections based on the complexity conditions of the missingness model, with 

each subsection containing three columns for the sample size conditions of 100, 200, and 400. 

Moreover, the table specifies the finalized burn-in periods applied in each sample size condition. 

It is important to note that the burn-in period varies for each method. This decision was made 

considering the runtime of the custom scripts utilized for the BVS methods. To ensure efficient 

execution, I chose not to prolong the runtime of any method unnecessarily. 

Across the missingness model complexity condition, the Bayesian LASSO and horseshoe 

prior methods exhibited convergence rates of 42%-57% and 40%-55%, respectively. This means 

that out of 100 iterations, only 420 to 570 iterations converged for the Bayesian LASSO and only 

400 to 550 iterations converged for the horseshoe prior, depending on sample size condition. 

Even though rates improved with a larger sample size, it did not change at different levels of 

complexity of the missingness model. In contrast, the spike-and-slab method had its highest 

convergence rates (~60%) at the lower sample size condition, and these rates decreased as 

sample size increased. The convergence rates of the spike-and-slab method were found to 

significantly vary with changes in the complexity of the missingness model, where convergence 

improved at lower complexity levels. For instance, at a sample size of 400 and in the simplest 

missingness model scenario, the spike-and-slab method demonstrated a convergence rate of 

71%, whereas in the most complex missingness model condition, it was only 35%. 
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The full selection model had consistently low convergence rates, but these did improve 

with increasing sample size. The full selection model convergence rate also decreased at the least 

complex missingness model condition in comparison to the other complexity conditions. The 

true model had lower convergence rates compared to the BVS methods, particularly under low 

sample sizes and more complex missingness models. Finally, the misspecified method with an 

MAR assumption had a convergence rate ranged from 97%-100% under all possible conditions. 

It is important to note that the results presented in the following sections only consider iterations 

that converged. Therefore, methods with higher convergence rates, such as the MAR model, will 

have a larger number of iterations included in the analysis compared to methods with lower 

convergence rates, such as the full-selection model. 

Comparison of Bayesian Variable Selection Methods  

I will use trellis plots to compare different BVS methods based on percent and 

standardized bias, and MSE ratio. These plots illustrate the impact of sample size, predictor 

intercorrelation, and complexity of the missingness model. Each figure consists of four row-

panels with specific configurations. In the first row panel, a sample size of 100 and a predictor 

intercorrelation of .10 are presented. The second row panel displays the same predictor 

correlation of .10 and the percentage bias for a sample size of 400. Moving to the third and 

fourth row panels, they exhibit sample sizes of 100 and 400, respectively, with a predictor 

intercorrelation of .40. 

Each row-panel focuses on percent bias, standardized bias, or MSE ratio for the 

substantive model parameters. However, some specific rules apply to the values displayed in the 

trellis plots. For percent bias, if the estimate exceeds 50% (the minimum and maximum values 

shown), it will be presented as 50%. When measuring standardized bias, any value below -1 will 
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be displayed as -1, and any value greater than 1 will be shown as 1. In the case of MSE ratio, any 

value below 0.90 is presented as 0.90, and any value exceeding three is displayed as three. It's 

important to note that the actual percent bias, standardized bias, or MSE ratio value are provided 

in the corresponding description of each plot. 

The following sections will be divided into four subparts, each corresponding to a 

specific complexity condition of the missingness model. Each subpart will include three trellis 

plots. The first two figures compare percent bias and standardized bias for the spike-and-slab, 

Bayesian LASSO, and the horseshoe prior; while the last figure compares the MSE ratio for the 

same three BVS methods. In the first subpart, Figures 1 to 3 represent a true missingness model 

involving the outcome variable 𝑌, predictors 𝑋1 through 𝑋6 and auxiliary variable 𝐴1, which falls 

under complexity 4. Moving on to the second subpart, Figures 4 to 6 showcase the results of 

BVS methods under a true missingness model where 𝑌, 𝑋1 through 𝑋4, and 𝐴1 act as predictors, 

which corresponds to complexity 3. Next, the third subpart, Figures 7 to 9, present a true 

missingness model where the outcome variable 𝑌, predictors 𝑋1 and 𝑋2, and auxiliary variable 

𝐴1 are significant predictors, denoting complexity 2. Lastly, the fourth subsection will revolve 

around Figures 10 to 12. These figures pertain to a true missingness model where only 𝑌 and 𝐴1 

are significant predictors, representing complexity.  

Complexity 4 

Figures 1 to 3 illustrate the most complex true missingness model, which includes all 

variables from the focal regression and the auxiliary variable. All BVS models are always fitting 

the most complex missingness model, which means that in the complexity 4 condition, BVS 

model are fitting the true data generating model. 



 

 79 

Percent and Standardize Bias 

In the methods section, I described two different approaches to measure bias. The first 

approach, which I call “percent bias,” involves calculating the difference between an average 

estimate and the true value, dividing that difference by the true value, and then multiplying the 

result by 100 to get a percentage (Equation 74). Standardized bias involves calculating the 

difference between an average estimate and the true value, and then dividing that difference by 

the theoretical SE (Equation 75). In my presentation of results, I will provide both measures of 

bias, but will explain percent bias in more detail and give a brief overview of standardized bias, 

focusing on their differences. Please note that bias in the intercept estimate will only be 

measured using standardized bias, while R-squared bias will only be measured using the percent 

bias method. 

Figure 1 displays percent bias, and Figure 2 shows standardized bias measured in 

theoretical complete-data SE units. As previously mentioned, the cut-off for percent bias is 

±10%, and the standardized bias cut-off is ±0.40, which are marked in both figures using 

vertical dashed lines (Collins et al., 2001; L. K. Muthén & Muthén, 2002). The bias results for 

BVS methods revealed little difference between the Bayesian LASSO and the horseshoe prior. 

This similarity can be attributed to the fact that both priors stem from the same category of 

global-local shrinkage priors. Global-local shrinkage priors use a continuous shrinkage function 

to model the prior distribution of the regression coefficients. In contrast, the spike-and-slab is 

referred as part of the two-group model family, because it separates regression coefficients into 

"important" coefficients with non-zero values and "unimportant" coefficients with zero values 

(Polson & Scott, 2010). For concise writing, I will refer to the Bayesian LASSO and horseshoe 

prior as global-shrinkage priors in the following results.  
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In the first row panel of both figures, where the sample size is 100 and the 

intercorrelation of predictors is .10, the spike-and-slab prior produced less biased estimates than 

the global-shrinkage priors (horseshoe and Bayesian LASSO) across the regression slope 

estimates, which were the main focus of the substantive model. As the bias values were fairly 

similar across the regression coefficients, I will describe the average bias across slopes. On 

average, the spike-and-slab had -12% bias in the slope estimates for all six predictors in 

comparison to the -25% average bias for the global-shrinkage priors. The residual variance 

estimates had virtually no bias for the spike-and-slab, whereas the global-shrinkage priors 

showed a bias of nearly 39%. In Figure 2, it can be observed that the standardized bias estimates 

for the intercept parameter were -0.19 and -0.32 for the spike-and-slab and global-shrinkage 

priors, respectively. The regression coefficients and residual variance displayed a similar pattern 

in both Figure 1 and 2, with the spike-and-slab exhibiting less bias than the horseshoe prior and 

Bayesian LASSO for almost all parameters, except for the R-squared estimate. 

The R-squared estimate is an important parameter to consider because it is a composite 

function of multiple estimates, including the squared slope coefficients, residual variance, and 

predictor variances. Essentially, the R-squared represents a composite parameter that represents 

the cumulative effect of the biases in the individual parameters. In Figure 1's first row panel, the 

spike-and-slab model had a highly biased R-squared estimate of 72%, while the global-shrinkage 

prior had a bias of 46% on average. Upon closer inspection of the density plots for R-squared and 

residual variance estimates in the supplementary materials, it became clear that the spike-and-

slab model had unbiased estimates for residual variance, but the distribution was very narrow, 

resulting in low variability.  
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This lack of variability led to a consistent overestimation of R-squared because the 

sampling distribution did not include a sufficient number of estimates with high residual 

variation. On the other hand, Bayesian LASSO and horseshoe models had more asymmetric 

distributions with long right tails, indicating larger residual variance estimates. Replications with 

high residual variances naturally reduced the mean estimate of R-squared, resulting in a lower 

bias for the composite parameter. In the spike-and-slab model, consistently obtaining accurate 

but too small residual variance estimates resulted in an inflated R-squared estimate. 

Moving on to the second row panel in Figure 1, when the sample size increased to 400, 

the percentage bias for all BVS methods decreased. The spike-and-slab once again exhibited the 

smallest bias with an average of -8%, while the global-local shrinkage priors had an average bias 

of -15% between the substantive model predictors. The residual variance estimates for the spike-

and-slab prior again had almost no bias, while the global-local shrinkage priors showed a 

significant decrease in bias under the N = 400 condition, with a 10% bias. The R-squared 

estimate also showed a decrease in bias with a 10% biased estimate for the spike-and-slab prior, 

while the global-local shrinkage priors had an average bias of 4%.  

In the second row panel of Figure 2, it is evident that the spike-and-slab prior had lower 

bias for all parameters compared to the global-local shrinkage priors. The regression coefficients 

and residual variance in the second row panel exhibited a similar trend to that seen in Figure 1. 

However, there is one notable difference between the two figures. Unlike percent bias (Figure 1), 

standardized bias (Figure 2) did not show a noticeable decrease in bias as sample size increased 

for all parameters (first row panel versus second row panel). This discrepancy can be attributed 

to the fact that both the raw bias and theoretical SE (which form the numerator and denominator 

of the standardized bias calculation, respectively) decrease as the sample size increases. As a 
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result, the mean estimates from the two sample sizes fall at approximately the same position in 

their respective complete-data sampling distributions. 

The third row panel of the trellis plot depicted a stronger predictor intercorrelation of .40 

and a sample size of 100, allowing for a comparison of the simple effect of predictor correlation 

(𝜌 = .10 vs 𝜌 = .40) with the first-row panel. As shown in Figure 1, bias across the slope 

estimates for all methods increased with highly correlated predictors. The spike-and-slab prior 

exhibited a bias of -18% (-12% in the first row panel), while the global-local shrinkage priors 

showed an average bias of -35% (-25% in the first row panel). The presence of highly correlated 

predictors did not influence the bias in the estimates of residual variance or the R-squared. For 

the spike-and-slab model, there was no bias observed in residual variance, while the global-local 

shrinkage priors exhibited a bias of approximately 38% (39% in the first row panel). The R-

squared estimate had a biased estimate of 70% (72% in the first row panel) for the spike-and-slab 

and an average bias of 45% (46% in the first row panel) for the global-local shrinkage prior. 

Moving to the third row panel in Figure 2, there was no influence of highly correlated predictor 

in the bias estimate of the intercept parameter. The standardized bias estimates for the intercept 

parameter were -0.19 and -0.32 for the spike-and-slab and global-local shrinkage priors, 

respectively.  

The fourth row panel in Figure 1 and Figure 2, displayed a predictor correlation of .40 

and a higher sample size of 400, enabling us to investigate whether the effect of the predictor 

correlations varied as a function of sample size. If there was an interaction between predictor 

correlation and sample size, a difference between the first and third row panel would not be the 

same as the difference between the second and fourth row panel. Both Figures 1 and 2 

demonstrated that the difference between intercorrelation conditions remained uniform across 
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both sample size conditions. For instance, the disparities between the first and third row panel in 

Figure 1 indicated that all BVS methods were more biased with strongly intercorrelated 

predictors in the N = 100 condition. However, the spike-and-slab method remained the most 

unbiased. This pattern repeated itself in the N = 400 condition, where differences in bias between 

the second and fourth row panel also showed the same effect of predictor correlation.  

MSE Ratio 

A useful way to measure overall accuracy is by using MSE. This metric calculates the 

average of the squared differences between an estimate and the true value of a parameter. Figure 

3 illustrate the MSE ratios for the complexity 4 conditions, which is the most complex true 

missingness model, including all variables from the focal regression and the auxiliary variable. 

In the first row panel Figure 3, where the sample size was 100 and the intercorrelation of 

predictors was .10, the spike-and-slab prior produced more accurate estimates than the global-

shrinkage priors (horseshoe and Bayesian LASSO) across the regression slope estimates, residual 

variance, and intercept. However, differences in accuracy between methods was more pronounce 

for the intercept and residual variance parameters. Looking at the slope estimates, the spike-and-

slab MSE was 1.58 times larger than the complete-data MSE for all six predictors, in contrast the 

MSE ratio for the global-shrinkage priors was 1.87 on average. The spike-and-slab estimates for 

the intercept and residual variance were substantially more accurate in comparison. The residual 

variance estimates from the spike-and-slab approach were, on average, 2.20 times larger than the 

MSE from complete-data analysis, while the corresponding ratio for the intercept parameter was 

1.74. In contrast, the global-shrinkage priors exhibited much higher MSE ratios for the residual 

variance (13.15) and the intercept (5.86). 
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In the second row panel of Figure 3, a larger sample size of 400 is depicted, allowing for 

a comparison of the impact of sample size with the first row panel. The increased sample size 

had an impact on the accuracy of both the intercept parameter and the residual variance, but only 

for the global-local shrinkage priors. In the case of the spike-and-slab approach, the sample size 

affected only the accuracy of the intercept. With the global-local shrinkage priors, the accuracy 

of the residual variance estimates improved as the sample size increased. In the condition with N 

= 400, the MSE ratio was 5.38, whereas in the N = 100 condition, it was 13.15. This suggests 

that larger sample sizes led to more accurate estimates of the residual variance when using the 

global-local shrinkage prior methods.  

The intercept parameter shows results in the opposite direction. Specifically, at N = 400, 

the MSE (accuracy) of the global-local shrinkage prior intercept was 10.40 times larger than the 

complete-data MSE. However, at N = 100, this MSE was only about 5.86 times larger. For the 

spike-slab, the MSE ratio was 1.74 and 2.05 for N = 100 and N = 400 conditions, respectively. 

Initially, it may seem counterintuitive to have lower accuracy with a larger sample size, however 

both the squared bias in the numerator and theoretical MSE in the denominator decrease with 

increasing sample size. For the intercept parameter, it appears that the quantity in the 

denominator shrinks at a proportionally faster rate than the numerator. For all other 

estimates/methods, increasing the sample size did not proportionally improve their accuracy 

relative to the true values. The accuracies of the missing data estimates maintained similar 

magnitudes compared to the squared theoretical SE (complete-data MSE). 

In Figure 3, the third row panel shows a stronger intercorrelation of .40 among the 

predictors and a sample size of 100. This allowed for a comparison of the impact of predictor 

intercorrelation (𝜌 = .10 vs 𝜌 = .40) with the first-row panel. The stronger predictor 
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intercorrelation had a noticeable effect on the slope coefficients of the global-local shrinkage 

priors. At a predictor intercorrelation of .10, the slope estimates had an average MSE ratio of 

1.87. However, with a higher predictor intercorrelation of .40, the accuracy improved, resulting 

in a MSE ratio of 1.67. Although the accuracy of the slope coefficient estimates was more 

comparable among the BVS methods, the spike-and-slab approach still yielded the most accurate 

results. In terms of the residual variance and intercept, increasing the predictor intercorrelation 

did not lead to a proportional improvement in accuracy compared to the true values. Similar to 

the first and second row panels, the spike-and-slab method produced substantially more accurate 

estimates for both the residual variance and intercept parameters. 

The fourth row panel of the trellis-plot displays a predictor intercorrelation of .40 and a 

higher sample size of 400. This allows for an examination of whether the impact of predictor 

correlations varies depending on the sample size. If there were an interaction between predictor 

intercorrelation and sample size, the difference observed between the first and third row panels 

would not be the same as the difference between the second and fourth row panels. Or 

equivalently, the difference between the first and second row panels would be approximately 

equivalent to the difference between the third and fourth row panels. However, the findings in 

Figure 3 indicate that there is no interaction between predictor correlations and sample size 

conditions. 

Summary of Results for Complexity 4 

The findings of Complexity 4 are presented in Figures 1-3, showcasing the outcomes of 

the most complex missingness model condition. These figures display the bias, standardized 

bias, and MSE ratio. The study compared three BVS models across various conditions, including 

sample size, intercorrelation, and missing data complexity. The results, as indicated by the 
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relative and standardized bias, revealed that the spike-and-slab prior yielded less biased estimates 

compared to the global-local shrinkage priors (horseshoe and Bayesian LASSO) for the 

intercept, slope coefficients, and residual variance estimates. Because bias only indicates 

deviations from the average estimate, it’s important to note that an estimate with low bias may 

still be inaccurate due to wide variation in the estimates. To account for this, the MSE of the 

estimates was also examined. The MSE ratio results demonstrated that the spike-and-slab prior 

outperformed the global-shrinkage priors in terms of accuracy for slope estimates, residual 

variance, and intercept across all conditions. Generally, the accuracy of slope coefficient 

estimates did not differ significantly, although the spike-and-slab approach still yielded the most 

precise results. On the other hand, for residual variance and intercept, the spike-and-slab method 

consistently produced substantially more accurate estimates compared to the global-local prior 

methods. 

Complexity 3 

Figures 4 to 6 illustrate the condition where the true missingness model was comprised of 

the outcome variable, slope coefficients 𝑋1 through 𝑋4, and one auxiliary variable as predictors. 

This condition is compared to the complexity 4 condition, which includes not only these 

variables but also the slope coefficients 𝑋5 and 𝑋6 as predictors of the true missingness model. 

As a reminder, all BVS model fitted the most complex missingness model, which for the 

complexity 3 condition, means that these models are overfitted and are using variable selection 

to identify exclusion restrictions. 

Percent and Standardize Bias  

After examining Figures 4 and 5, significant disparities in bias were observed between 

the slope coefficients that acted as predictors of missingness in the data-generating model and 
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those that were not involved in the missingness prediction. As a result, I will provide distinct 

explanations for the average bias regarding the slope coefficients that served as predictors (𝑋1 

through 𝑋4) of missingness in the data-generating model and those that were not predictors (𝑋5 

and 𝑋6).  

In the first row panel of both figures, where the sample size is 100 and the 

intercorrelation of predictors is .10, the spike-and-slab prior produced less biased estimates than 

the global-shrinkage priors across all the regression slope estimates, residual variance, and 

intercept. However, it should be noted that the global-shrinkage priors exhibited less bias 

specifically for the R-squared parameter. The spike-and-slab model displayed a highly biased 

estimate of 71%, while the global-shrinkage prior had an average bias of 46%. Similar to the 

complexity 4 condition, the inflated R-squared estimate for the spike-and-slab model can be 

attributed to the excessively small spread of the distribution of the residual variance estimates. 

Moving to the slope parameters in the first row panel of Figure 4, the spike-and-slab had 

-18% bias in the slope estimates for 𝑋1 through 𝑋4 slope estimates (predictors of missingness in 

the true data-generating model) in comparison to the -35% average bias for the global-shrinkage 

priors. For the slope estimates 𝑋5 and 𝑋6 (not predictors in the true data-generating model), the 

spike-and-slab showed a bias of 5%, on average, and the global-local priors showed a bias of 

14% on average. The residual variance estimates had virtually no bias for the spike-and-slab, 

whereas the global-shrinkage priors showed a bias of nearly 37%. The standardized bias for the 

intercept estimates in Figure 5 were -0.18 and -0.33 for the spike-and-slab and global-shrinkage 

priors, respectively. In general, the two measures of bias in Figure 4 and 5 showed the same 

pattern, with the spike-and-slab exhibiting less bias than the horseshoe prior and Bayesian 

LASSO. The one exception was the R-squared estimate. 
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In the second row panel of Figure 4, as the sample size increased to 400, the percent bias 

decreased for all BVS methods, with the spike-and-slab method exhibiting the smallest bias. 

Specifically, in the N = 400 condition, the spike-and-slab method had a 10% bias for the 𝑋1 

through 𝑋4 slope estimates, compared to an -18% bias in the N = 100 condition. The global-local 

shrinkage priors also experienced a decrease in bias, from -35% to -18% in the N = 400 

condition. For the residual variance estimates, the spike-and-slab prior continued to show nearly 

no bias, while the global-local shrinkage priors demonstrated a substantial reduction in bias from 

37% in the N = 100 condition to 10% in the N = 400 condition. The R-squared estimate also 

exhibited a decrease in bias, with the spike-and-slab prior having an 11% biased estimate, while 

the global-local shrinkage priors had an average bias of 5%. 

The second row panel of Figure 5, the standardized bias is depicted, providing insight 

into the position of the average estimates within a theoretical sampling distribution. There were 

no noticeable differences between the first and second row panels for the spike-and-slab. This 

result suggests that the mean estimates of the spike-and-slab method from the two sample sizes 

fell approximately at the same position in their respective complete-data sampling distributions. 

On the other hand, the global-local prior showed a slight increase in standardized bias for the 𝑋1 

through 𝑋4 slope estimates, indicating that in the N = 400 conditions, bias did not decrease as 

rapidly as in its respective complete-data sampling distribution. 

The third row panel of the trellis plot in Figure 4 depicted estimates from the condition 

with a stronger predictor correlation of .40, along with a sample size of 100. This allowed for a 

comparison of the effect of predictor correlation (𝜌 = .10 vs 𝜌 = .40) with the first row panel. As 

depicted in Figure 4, the average bias across the slope estimates 𝑋1 through 𝑋4 slightly increased 

for all methods. The spike-and-slab prior exhibited a bias of -23% (-18% in the first-row panel), 
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while the global-local shrinkage priors demonstrated an average bias of -40% (-35% in the first-

row panel). However, the presence of highly correlated predictors did not influence the bias in 

the slope estimates 𝑋5 and 𝑋6 , residual variance, or the R-squared. Moving to the third row 

panel in Figure 5, the standardized bias displayed a similar pattern. The presence of highly 

correlated predictors did not affect the slope estimates 𝑋5 and 𝑋6, residual variance, R-squared, 

and intercept, and only slightly reduced the bias in the slope estimates 𝑋1 through 𝑋4.  

The fourth row panel in Figure 4 and Figure 5, displayed a predictor correlation of .40 

and a higher sample size of 400, enabling us to investigate whether the effect of the predictor 

correlations varied as a function of sample size. If there was an interaction between predictor 

correlation and sample size, a difference between the first and third row panel would not be the 

same as the difference between the second and fourth row panel. Both Figure 4 and 5 

demonstrated that the difference between predictor intercorrelation remained uniform across both 

sample size conditions. These results indicate that there is no interaction between predictor 

intercorrelation and sample size conditions. 

Finally, the impact of missingness model complexity can be compared the between the 

complexity 4 and complexity 3 conditions. One notable difference between the two complexities 

is that in the complexity 4 condition, all slope coefficients within a row panel display similar bias 

values. However, in the complexity 3 condition, there is a distinct pattern where slope 

coefficients 𝑋1 through 𝑋4 generally exhibit higher bias compared to slope coefficients 𝑋5 and 

𝑋6. This distinction between slope coefficients in complexity 3 arises because 𝑋5 and 𝑋6 are not 

predictors of the data generating model in the complexity 3 condition. 
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MSE Ratio 

Figure 6 illustrate the MSE ratios for the complexity 3 conditions. Under this complexity 

condition, the true data generating missingness model was comprised of the outcome variable, 

slope coefficients 𝑿𝟏 through 𝑿𝟒, and one auxiliary variable as predictors. This figure displays 

the MSE ratio.  

In the first row panel of Figure 6, with a sample size of 100 and a predictor correlation of 

.10, the spike-and-slab prior yielded more accurate estimates (i.e., MSE ratios closer to 1) 

compared to the global-shrinkage priors for the regression slope estimates, residual variance, and 

intercept. However, the differences in accuracy between the methods were more pronounced for 

the intercept and residual variance parameters. When examining the slope estimates 𝑋1 through 

𝑋4, the spike-and-slab MSE was 1.57 times larger than the MSE from complete-data analysis, 

while the average MSE ratio for the global-shrinkage priors was 1.91. The bias values for the 

slope estimates 𝑋5 and 𝑋6 did not exhibit a substantial difference between the methods, although 

the spike-and-slab approach remained the more accurate method. For the residual variance 

estimates, the spike-and-slab method yielded, on average, a ratio of 2.12 between the MSE and 

the complete-data MSE and a MSE ratio of 1.72 for the intercept parameter. In comparison, the 

global-shrinkage priors displayed much higher MSE ratios for the residual variance (12.72) and 

the intercept (5.67). 

In the second row panel of Figure 6, a larger sample size of 400 was used, enabling a 

comparison of the impact of sample size with the first row panel. The increased sample size 

affected the accuracy of the intercept parameter and the residual variance for the global-local 

shrinkage prior methods. On the other hand, for the spike-and-slab approach, the sample size 

only influenced the accuracy of the intercept. With the global-local shrinkage priors, the 
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accuracy of the residual variance estimates improved as the sample size increased. In the 

condition with N = 400, the MSE ratio was 5.61, indicating greater accuracy compared to the N = 

100 condition where the MSE ratio was 12.72. This suggests that larger sample sizes lead to 

more accurate estimates of the residual variance when using the global-local shrinkage prior 

methods.  

However, the results for the intercept parameter showed the opposite trend. Specifically, 

at N = 400, the MSE of the global-local shrinkage prior intercept was 10.35 times larger than the 

complete-data MSE. In contrast, at N = 100, this MSE was only about 5.67 times larger. For the 

spike-and-slab approach, the MSE ratio was 1.72 for the N = 100 condition and 2.29 for the N = 

400 condition. Regarding the intercept parameter, it seems that the denominator of the MSE 

ratio, the squared theoretical SE, decreases at a proportionally faster rate than the numerator. For 

all other estimates and methods, increasing the sample size did not lead to proportionally 

improved accuracy relative to the true values. The accuracies of the missing data estimates 

remained at similar magnitudes compared to the squared theoretical SE. 

In Figure 6, the third row panel presents the results for a stronger predictor 

intercorrelation of .40 and a sample size of 100. This allows for a comparison of the impact of 

predictor intercorrelation (𝜌 = .10 vs 𝜌 = .40) with the first-row panel. The stronger predictor 

intercorrelation had a moderate effect on the slope coefficients 𝑋1 through 𝑋4 of the global-local 

shrinkage priors. When the predictor correlation condition was .10, the slope estimates 𝑋1 

through 𝑋4 had an average MSE ratio of 1.91. However, with a stronger predictor 

intercorrelation of .40, the accuracy improved, resulting in a MSE ratio of 1.73. In contrast, the 

slope coefficients 𝑋5 and 𝑋6 showed no difference in MSE ratio between the .10 and .40 

intercorrelation conditions. Regarding the residual variance and intercept, increasing the 
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predictor intercorrelation did not lead to a proportional improvement in accuracy compared to 

the true values. Similar to the first and second row panels, the spike-and-slab method produced 

more accurate estimates for all the slope coefficients and substantially more accurate estimates 

for both the residual variance and intercept parameters.  

In the fourth row panel of the trellis plot, a predictor correlation of .40 and a higher 

sample size of 400 are depicted. This allows for an investigation of whether the effect of 

predictor correlations varies depending on the sample size. If there is an interaction between 

predictor correlation and sample size, the difference observed between the first and third row 

panels would not be the same as the difference between the second and fourth row panels. 

Alternatively, if there is no interaction, the difference between the first and second row panels 

would be approximately equivalent to the difference between the third and fourth row panels. 

However, the findings in Figure 6 indicate that there is no interaction between predictor 

correlations and sample size conditions, because the difference in ratios between predictor 

intercorrelation .10 and .40 were approximately equivalent in the 100 and 400 sample size 

conditions.  

Lastly, the impact in accuracy of missingness model complexity between the complexity 

4 and complexity 3 conditions can be compared. One notable difference between the two is that 

in the complexity 4 condition, all slope coefficients within a row panel display similar values for 

the MSE ratio. However, in the complexity 3 condition, there is a distinct pattern where slope 

coefficients 𝑋1 through 𝑋4 generally exhibit less accuracy than the slope coefficients 𝑋5 and 𝑋6. 

Again, this distinction between slope coefficients in complexity 3 arises because 𝑋5 and 𝑋6 are 

not predictors of missingness in the true data generating model. 
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Summary of Results for Complexity 3 

The results of Complexity 3, depicted in Figures 4 to 6, provide insights into the scenario 

where the true missingness model only has outcome variable 𝑌, 𝐴1, and 𝑋1 through 𝑋4 as its 

predictors. The findings, based on relative and standardized bias, indicate that the spike-and-slab 

prior yields less biased estimates compared to the global-local shrinkage priors for the intercept, 

slope coefficients, and residual variance. To assess the variation in the estimates, the MSE is also 

examined. The MSE ratio results demonstrate that the spike-and-slab prior outperforms the 

global-local shrinkage priors in terms of accuracy for slope estimates, residual variance, and 

intercept across all conditions. Notably, the spike-and-slab method consistently produced 

substantially more accurate estimates for residual variance and intercept compared to the global-

local prior methods. An important difference between complexity 4 and 3 is in the bias and 

accuracy of slope coefficient estimates. In Complexity 3 there is a distinction between the slope 

coefficients 𝑋5 and 𝑋6 (not included as predictors in the true data-generating model) and the 

slope coefficients 𝑋1 through 𝑋4. The former exhibit less bias and greater accuracy compared to 

the latter. Complexity 4 did not show this difference between slope coefficients.  

Complexity 2 

Figures 7 to 9 illustrate the percent bias, standardized bias, and MSE ratio, respectively, 

for the condition where the true data-generating model was comprised of the outcome variable, 

variables 𝑋1 and 𝑋2, and one auxiliary variable as predictors. The complexity 2 condition does 

not include variables 𝑋3 through 𝑋6 as predictors of missingness in the data-generating model. 

As a reminder, All BVS models fitted the most complex missingness model including outcome 

variable, variables 𝑋1 through 𝑋6, and one auxiliary variable as predictors, and will use variable 

selection to find exclusion restrictions. 
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Percent and Standardize Bias 

Similar to the complexity 3 condition, Figures 7 and 8 showed notable differences in bias 

between the slope coefficients that serve as predictors and those that do not contribute to the 

data-generating model. As a result, I will provide separate descriptions of the average bias for 

slopes that are predictors (𝑋1 and 𝑋2) and those that are not predictors (𝑋3 through 𝑋6) of 

missingness in the data-generating model.  

In the first row panel of both figures, where the sample size is 100 and the 

intercorrelation of predictors is .10, the spike-and-slab method yielded more accurate estimates 

compared to the global-local shrinkage priors across various regression slope estimates, residual 

variance, and intercept. The only exception was the R-squared parameter, where the global-local 

shrinkage priors demonstrated less bias at 47% compared to the 73% bias from the spike-and-

slab approach. Similar to the complexity 4 and 3 conditions, the spike-and-slab model's inflated 

R-squared estimate could be attributed to the excessively narrow distribution of the residual 

variance estimates. For the slope estimates of variables 𝑋1 and 𝑋2 (predictors in the data-

generating model), the spike-and-slab method exhibited a bias of -26%, whereas the global-

shrinkage priors showed an average bias of -49%.  

Regarding the slope estimates of variables 𝑋3 through 𝑋6 (not predictors of missingness 

in the data-generating model), the spike-and-slab method displayed an average bias of -7%, 

while the global-local shrinkage priors exhibited an average bias of -14%. The spike-and-slab 

method showed virtually no bias in the residual variance estimates, while the global-shrinkage 

priors had a bias of 39%. In Figure 8, the standardized bias for the intercept estimates was -0.19 

for the spike-and-slab method and -0.32 for the global-shrinkage priors. In general, both Figures 
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7 and 8 exhibited a consistent pattern where the spike-and-slab method yielded less bias 

compared to the horseshoe prior and Bayesian LASSO for most parameters. 

In the second row panel of Figure 7, as the sample size increased to 400, the percent bias 

decreased for all BVS methods, with the spike-and-slab method exhibiting the smallest bias. 

Specifically, for the 𝑋1 and 𝑋2 slope estimates in the N = 400 condition, the spike-and-slab and 

global-local shrinkage methods had -18% and -32% bias, respectively, compared to -26% and 

49% bias in the N = 100 condition. However, looking at the standardized bias in the second row 

panel of Figure 8, it can be observed that those same 𝑋1 and 𝑋2 slope estimates had a slight 

increase in standardized bias. This shows that even though bias did decrease with the increase of 

sample size, bias did not decrease as rapidly as in its N = 400 expected complete-data sampling 

distribution. For the residual variance estimates, the spike-and-slab prior continued to show 

nearly no bias, while the global-local shrinkage priors demonstrated a substantial reduction in 

bias from 39% in the N = 100 condition to 11% in the N = 400 condition. The R-squared estimate 

also exhibited a decrease in bias, with the spike-and-slab prior having an 12% biased estimate, 

while the global-local shrinkage priors had an average bias of 4%.  

In the trellis plot of Figure 7, the third row panel examined a stronger predictor 

intercorrelation of .40, with a sample size of 100, allowing for a comparison of the effect of 

predictor correlation (𝜌 = .10 vs. 𝜌 = .40) with the first row panel. As depicted in Figure 7, all 

methods showed a moderate increase in average bias across the slope estimates 𝑋1 and 𝑋2 when 

the predictor correlation increased. The spike-and-slab prior exhibited a bias of -36% (compared 

to -26% in the first-row panel), while the global-local shrinkage priors demonstrated an average 

bias of -61% (compared to -49% in the first-row panel). However, when looking at the 

standardized bias in the third row panel of Figure 8, it can be observed that the same 𝑋1 and 
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𝑋2 slope estimates did not increase in .40 predictor correlation condition. This suggests that 

although percent bias increased in the .40 correlation condition, the mean estimates from the two 

predictor correlation conditions fell approximately at the same position in their respective 

complete-data sampling distributions. 

Moving on to other parameters in the third row panel, the presence of highly correlated 

predictors did not influence the bias in the slope estimates 𝑋3 through 𝑋6, the residual variance, 

or the R-squared. This same pattern was observed in Figure 8, where strongly intercorrelated 

predictors did not influence these parameters, including the intercept. 

In the fourth row panel of Figure 7 and Figure 8, a predictor intercorrelation of .40 and a 

higher sample size of 400 were presented, allowing for an examination of whether the effect of 

predictor correlations varied with sample size. If there was an interaction between predictor 

correlation and sample size, the difference between the first and third row panel would not be the 

same as the difference between the second and fourth row panel. However, both Figure 7 and 

Figure 8 demonstrated that the difference between the intercorrelation conditions remained 

consistent across both sample size conditions. These results indicate that there is no interaction 

between predictor correlations and sample size conditions.  

Finally, we can examine the effect of varying complexity levels in the missingness model 

on bias by comparing three conditions: complexity 4, complexity 3, and complexity 2. 

Complexity 2 and 3 show the same pattern, where the variables that were excluded from the data 

generating model generally exhibit lower bias compared to the variables that were included. 

When comparing complexity 3 and 2, a noticeable difference in bias is observed for the 

predictors of missingness included in the data-generating model (𝑋1 through 𝑋4, in complexity 3 

and 𝑋1 through 𝑋2 in complexity 2). For example, when comparing the first row panel of Figure 



 

 97 

4 and Figure 7, the average bias for slope coefficients 𝑋1 through 𝑋4 in complexity 3 was -18% 

for the spike-and-slab and -35% for the global-local shrinkage priors. In contrast, the average 

bias for slope coefficients 𝑋1 and 𝑋2 was larger, with a spike-and-slab bias of -26% and a global-

local shrinkage prior bias of -49% (Figure 7). This trend is consistent across different sample 

sizes and intercorrelations. 

 MSE Ratio  

Figure 9 illustrate the condition where the true missingness model was comprised of the 

outcome variable, slope coefficients 𝑋1 and 𝑋2 , and one auxiliary variable as predictors. This 

figure displays the MSE ratio. In the first row panel of Figure 9, with a sample size of 100 and a 

predictor correlation of .10, the spike-and-slab prior provided more accurate estimates (i.e., MSE 

ratios closer to 1) compared to the global-shrinkage priors for the regression slope estimates, 

residual variance, and intercept.  

The differences in accuracy between the methods were particularly pronounced when 

examining the slope estimates for the variables that were included as predictors of missingness in 

the data generating model. For example, MSE for the spike-and-slab method was 1.75 times 

larger than the MSE from the complete-data analysis for the slope estimates of variables 𝑋1 and 

𝑋2, while the average MSE ratio for the global-shrinkage priors was 2.25. On the other hand, the 

bias values for the variables not included in the data-generating model (𝑋3 through 𝑋6) did not 

show a substantial difference between the spike-and-slab and global-local methods, although the 

spike-and-slab approach still remained the more accurate method. Regarding the residual 

variance and intercept estimates, once again, the spike-and-slab method exhibited a clear 

advantage. The spike-and-slab approach yielded, on average, a ratio of 2.13 between the MSE 

and the complete-data MSE for the residual variance and a MSE ratio of 1.73 for the intercept 
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parameter. In comparison, the global-shrinkage priors displayed much higher MSE ratios for the 

residual variance (13.23) and the intercept (5.37). 

In the second row panel of Figure 9, a larger sample size of 400 was used, enabling a 

comparison of the impact of sample size with the first row panel. The increased sample size 

affected the accuracy of the intercept parameter and the residual variance for the global-local 

shrinkage prior methods. On the other hand, for the spike-and-slab approach, the sample size 

only influenced the accuracy of the intercept. With the global-local shrinkage priors, the 

accuracy of the residual variance estimates improved as the sample size increased. In the 

condition with N = 400, the MSE ratio was 6.50, indicating greater accuracy compared to the N = 

100 condition where the MSE ratio was 13.23. The results for the intercept parameter showed the 

opposite trend. Specifically, at N = 400, the MSE of the global-local shrinkage prior intercept 

was 10.97 times larger than the complete-data MSE. In contrast, at N = 100, this MSE was only 

about 5.37 times larger. For the spike-and-slab approach, the MSE ratio was 1.73 for the N = 100 

condition and 2.69 for the N = 400 condition.  

Figure 9's third row panel displays the outcomes for a stronger predictor correlation of 

.40 and a sample size of 100. This permits a comparison between the impact of predictor 

correlation (𝜌 = .10 vs 𝜌 = .40) with the panel in the first row. The stronger predictor 

intercorrelation moderately influenced the slope coefficients 𝑋1 and 𝑋2 of the global-local 

shrinkage priors. Under the .10 predictor intercorrelation condition, the average MSE ratio for 

the global-local method's slope estimates 𝑋1 and 𝑋2 was 2.25. However, with a stronger predictor 

intercorrelation of .40, the accuracy improved, resulting in a MSE ratio of 2.03. In terms of the 

slope coefficients 𝑋3 through 𝑋6, residual variance, and intercept, increasing the predictor 

correlation did not lead to a proportional enhancement in accuracy compared to the true values. 
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Like the panels in the first and second rows, the spike-and-slab method generated more accurate 

estimates for all the slope coefficients and significantly more accurate estimates for both the 

residual variance and intercept parameters. 

The fourth row panel in the trellis plot portrays a scenario with a predictor correlation of 

.40 and a larger sample size of 400. This setup allows for an examination of whether the impact 

of predictor correlations varies based on the sample size. If there is an interaction between 

predictor correlation and sample size, the disparity observed between the first and third row 

panels would not be the same as the difference between the second and fourth row panels. 

Conversely, if there is no interaction, the distinction between the first and second row panels 

would be approximately similar to the difference between the third and fourth row panels. 

However, the results depicted in Figure 9 indicate that there is no interaction between predictor 

correlations and sample size conditions, because the difference between first and second row 

panels are similar to the difference between the third and fourth row panels. 

Lastly, we can examine the effect of varying complexity levels in the missingness model 

on bias by comparing three conditions: complexity 4, complexity 3, and complexity 2. Notably, 

there is a distinction between complexity 4 and complexity 2 regarding the behavior of slope 

coefficients within a row panel. In complexity 4, these coefficients exhibit similar MSE ratios, 

whereas in complexity 2, there is a clear pattern where slope coefficients 𝑋1 and 𝑋2 generally 

have lower accuracy compared to slope coefficients 𝑋3 through 𝑋6. This accuracy difference 

arises because 𝑋3 through 𝑋6 are not missingness predictors in the data-generating model. When 

comparing complexity 3 and 2, a noticeable difference in accuracy is observed for the variables 

included as missingness predictors in the data generating model (𝑋1 through 𝑋4 in complexity 3 

and 𝑋1 and 𝑋2 in complexity 2). For example, when comparing the first row panel of Figure 6 
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and Figure 9, the average MSE ratio for slope coefficients 𝑋1 through 𝑋4 in complexity 3 was 

1.57 for the spike-and-slab and 1.91 for the global-local shrinkage priors. In contrast, the average 

MSE ratio for slope coefficients 𝑋1 and 𝑋2 is less accurate, with a spike-and-slab ratio of 1.75 

and a global-local shrinkage prior ratio of 2.25 (Figure 9). This trend is consistent across 

different sample sizes and intercorrelations. 

Summary of Results for Complexity 2  

The results of Complexity 2, depicted in Figures 7-9, shed light on a scenario where the 

true missingness model did not include four variables (𝑋3 through 𝑋6) from the substantive 

model. Figures 7 and 8 illustrate the percent and standardized bias, respectively, while Figure 9 

presents the MSE ratio for Complexity 2. Overall, the spike-and-slab method provided more 

accurate and less biased estimates compared to the global-local shrinkage priors. Across all 

figures, notable differences were observed in bias and MSE ratios between variables that acted as 

predictors of missingness (𝑋1 and 𝑋2) and those that did not (𝑋3 through 𝑋6) in the data-

generating model. Generally, the slope estimates for 𝑋1 and 𝑋2 exhibited lower accuracy and 

higher bias compared to 𝑋3 through 𝑋6. When comparing complexity 2 with complexity 3, it was 

evident that the average MSE ratios and percentage bias for the substantive variables that were 

also missingness predictors in the data-generating model (𝑋1 and 𝑋2) were less accurate 

compared to the corresponding variables in complexity 3. This highlights the impact of the 

predictors included in the data-generating model on accuracy and bias. 

Complexity 1  

Figures 10 to 12 illustrate the condition where the true missingness model includes only 

the outcome variable and one auxiliary variable as predictors. In the complexity 1 condition, all 

substantive variables (𝑋1 through 𝑋6) are not missingness predictors in the data-generating 
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model. Again, all BVS methods are fitting the most complex missingness model and employing 

variable selection to establish exclusion criteria. 

Percent and Standardize Bias  

In the first row panel of Figures 10 and 11, the sample size was set to 100, and the 

predictors had an intercorrelation of .10. Across various regression slope estimates and 

intercepts, the spike-and-slab method demonstrated less bias in its estimates compared to the 

global-local shrinkage priors. However, unlike the previous complexity conditions, the 

differences in bias between the two methods were relatively small. Specifically, for slope 

estimates, the spike-and-slab method had a bias of -9%, while the global-shrinkage priors 

showed an average bias of -14%. In Figure 11, the standardized bias for intercept estimates was -

0.24 for the spike-and-slab method and -0.33 for the global-shrinkage priors. 

Regarding the residual variance and R-squared parameters, the differences between the 

global-local shrinkage priors and spike-and-slab method were consistent with the results from 

complexity conditions 2 to 4. The global-local shrinkage priors exhibited less bias in the R-

squared parameter, with a bias of 47% compared to the 72% bias from the spike-and-slab 

approach. The spike-and-slab method showed almost no bias in the residual variance estimates, 

while the global-shrinkage priors had a bias of 44%. In general, both Figures 10 and 11 displayed 

a consistent pattern where the spike-and-slab method yielded less bias compared to the horseshoe 

prior and Bayesian LASSO for most parameters. 

In the second row panel of Figure 10 the sample size increased to 400. Increasing the 

sample size did not lead to a substantial decrease in bias for the slope estimates. Specifically, for 

the slope estimates in the N = 400 condition, the spike-and-slab and global-local shrinkage 

methods had -6% and -10% bias, respectively, compared to -9% and 14% bias in the N = 100 
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condition. The same pattern is found in the standardized bias in the second row panel of Figure 

11. It can be observed that the mean slope estimates from the two sample size conditions fell 

approximately at the same position in their respective complete-data sampling distributions. For 

the residual variance estimates, the spike-and-slab prior showed a percent bias of -5%, while the 

global-local shrinkage priors demonstrated a substantial reduction in bias from 44% in the N = 

100 condition to 12% in the N = 400 condition. The R-squared estimate also exhibited a decrease 

in bias, with the spike-and-slab prior having an 16% biased estimate, while the global-local 

shrinkage priors had an average bias of 1%.  

In the trellis plot shown in Figures 10 and 11, the third row panel investigated a stronger 

intercorrelation (.40) between predictors, using a sample size of 100. This allowed for a 

comparison of the impact of predictor correlation (𝜌 = 0.1 vs. 𝜌 = 0.4) with the first row panel. 

The figures illustrate that increasing the predictor intercorrelation did not significantly increase 

bias in the slope estimates, residual variance, intercept, or R-squared estimates.  

In the fourth row panel of Figure 10 and Figure 11, a higher sample size of 400 was used 

along with a predictor correlation of .40, to examine if the effect of predictor correlations varied 

with sample size. However, both Figure 10 and Figure 11 showed that the difference between the 

intercorrelation conditions remained consistent regardless of sample size. These findings suggest 

that there is no interaction between predictor correlations and sample size conditions. 

To evaluate the impact of varying complexity levels in the true missingness model on 

bias, the different complexity conditions can be compared. Complexity 1 and 4 exhibit a similar 

pattern, with all slope coefficients in a row panel showing comparable bias values. In contrast, 

complexity 2 and 3 demonstrate differences in bias between variables that were and were not 

predictors of missingness in the data generating model. When comparing complexity 1 (the least 
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complex model) to complexity 4 (the most complex model), it can be observed that the 

differences in bias between the BVS methods are more pronounced in the most complex 

conditions. In the least complex conditions, the bias values are relatively comparable across 

methods, except for the residual variance parameter, where the spike-and-slab method 

consistently outperforms the others. 

MSE Ratio 

Figure 12 illustrate the condition where the true missingness model was comprised of the 

outcome variable and one auxiliary variable as predictors. This figure displays the MSE ratio. In 

the first row panel of Figure 12, where the sample size was 100 and the predictor intercorrelation 

was 0.1, there was not a substantial difference in accuracy between the spike-and-slab and 

global-local methods for the slope coefficients. However, the spike-and-slab approach still 

showed a slight advantage. When it comes to estimating the residual variance and intercept, the 

spike-and-slab method clearly outperformed the global-local method. The spike-and-slab 

approach resulted in an average ratio of 2.49 between the MSE and the complete-data MSE for 

the residual variance, and a ratio of 2.25 for the intercept parameter. On the other hand, the 

global-local method exhibited much higher MSE ratio for the residual variance (14.87) and the 

intercept (6.05). 

In the second row panel of Figure 12, a larger sample size of 400 was utilized, allowing 

for a comparison of the sample size's impact with the first row panel. The increased sample size 

resulted in improved accuracy of the slope coefficients for all BVS methods. Specifically, for the 

slope estimates in the N = 400 condition, the spike-and-slab and global-local shrinkage methods 

exhibited an MSE ratio of 1.35 and 1.49, respectively, compared to 1.55 and 1.70 in the N = 100 

condition. Similarly, the accuracy of the residual variance estimation also improved as the 
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sample size increased. In the N = 400 condition, the MSE ratio for the global-local shrinkage 

priors was 7.62, indicating greater accuracy compared to the N = 100 condition where the MSE 

ratio was 14.87. However, the results for the intercept parameter showed the opposite trend. 

Specifically, at N = 400, the MSE of the global-local shrinkage prior intercept was 12.45 times 

larger than the complete-data MSE. In contrast, at N = 100, this MSE was only about 6.05 times 

larger. For the spike-and-slab approach, the MSE ratio was 2.25 for the N = 100 condition and 

4.32 for the N = 400 condition. 

The third row panel of Figure 12 presents the results for a stronger predictor correlation 

of .40 and a sample size of 100. This allows for a comparison of the impact of predictor 

correlation (𝜌 = .10 vs. 𝜌 = .40) with the first row panel. Surprisingly, the stronger predictor 

intercorrelation did not have a significant effect on the slope coefficients, residual variance, or 

intercept. Increasing the predictor correlation did not result in a proportional improvement in 

accuracy compared to the true values. Similar to the first row panel, the spike-and-slab method 

produced slightly more accurate estimates for all the slope coefficients and significantly more 

accurate estimates for both the residual variance and intercept parameters. 

In the fourth row panel of the trellis plot, a scenario is depicted with a predictor 

correlation of .40 and a larger sample size of 400. This configuration enables an investigation 

into whether the impact of predictor correlations varies depending on the sample size. If there is 

an interaction between predictor correlation and sample size, the difference observed between 

the first and third row panels would not be the same as the difference between the second and 

fourth row panels. However, the results illustrated in Figure 12 suggest that there is no 

interaction between predictor correlations and sample size conditions. The disparities observed 
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between the different predictor correlation conditions remain consistent across both the smaller 

and larger sample size conditions. 

Lastly, the impact of varying complexity levels in the missingness model on the accuracy 

and bias of the estimates can be evaluated. It is worth noting a similarity between complexity 4, 

the most complex true missingness model, and complexity 1 in terms of the behavior of slope 

coefficients within a row panel. In complexity 1 and 4, there is less variability observed between 

MSE ratios. On the other hand, in complexity 2 and 3, there is a clear pattern where slope 

coefficients for predictors of missingness in the data-generating model generally exhibit lower 

accuracy compared to the other slope coefficients. Additionally, the influence of predictor 

intercorrelation on the accuracy of the estimates is less pronounced in the complexity 1 condition 

when compared to complexity 2 through 4. 

Summary of Results for Complexity 1 

The results of Complexity 1, depicted in Figures 10 to 12, shed light on a scenario where 

the true missingness model did not include any of the predictors from the substantive model. 

Figures 10 and 11 illustrate the percent and standardized bias, respectively, while Figure 12 

presents the MSE ratio for Complexity 1. At the N = 100, the spike-and-slab method provided 

more accurate and less biased slope estimates compared to the global-local shrinkage priors, 

although this advantage was not substantial. In the N = 400 condition, all method had 

comparable slope estimates in terms of bias and accuracy. There was minimal influence of 

predictor intercorrelation on the accuracy or bias of the estimates in complexity 1.  

Conclusion of Bayesian Variable Selection Methods Comparison 

As stated in the introduction, the construction of a missingness model poses a significant 

practical challenge when applying MNAR selection models. Determining which variables should 
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be included in the model is difficult, and statistical challenges arise due to the strict distribution 

assumptions required for estimation (Ibrahim et al., 2005). Relying solely on the available data 

may not provide sufficient information for accurate estimation. To address this, one approach is 

to identify Type C auxiliary variables that exhibit correlation with the missing data indicator but 

not with the variables in the substantive model (Collins et al., 2001). This process often involves 

dealing with a high-dimensional selection problem, as researchers have access to numerous 

measured variables that are not included in the model. Another way to improve estimation is by 

removing overlapping variables from the focal and missingness models. Since BVS methods 

have not been explored in this context, the focus is on the more specific problem involving 

overlapping predictors. 

The simulations presented in this study, examined four missingness model complexity 

condition. At one end of the spectrum, the most complex true data-generating model 

(Complexity 4) included all variables, making it a more challenging problem for variable 

selection since all variables influenced missingness. At the other end, the complexity 1 condition 

included only the outcome variable 𝑌 and an auxiliary variable 𝐴1 in the data-generating model, 

requiring the exclusion of all 𝑋 predictors. Analyzing the simulation results revealed a consistent 

finding: when the missingness model was overfit and BVS methods were applied, there were 

positive effects on the slope estimates of the focal model for the non-overlapping predictors. 

This study did not explore the selection of the correct missingness model, as it is not of interest 

in this MNAR modeling framework. However, the reduction in bias and MSE for the focal 

model predictors suggests that the BVS methods were effectively "turning off" unnecessary 

predictors in the missingness model. Furthermore, the spike-and-slab prior consistently 

outperformed the global-local shrinkage priors, with few exceptions (the R-square parameter). 
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The following section aims to address the question of whether BVS offers improvements 

compared to analyses conducted without variable selection. This assessment includes an analysis 

under the assumption of MAR, where missing data assumptions are violated, as well as the 

correctly-specified selection model (true model), and the overfitting selection model that 

incorporates all focal variables in the missingness model (representing the correct specification 

for the complexity 4 condition). These approaches represent the currently utilized procedures 

available to researchers. The subsequent section of the results will compare the performance of 

the spike-and-slab method against these existing approaches. 

Spike and Slab Comparison to Existing Methods 

Figures 1 to 12 compared bias estimates and MSE ratios for the three Bayesian variable 

selection methods under different sample size, intercorrelation, and missing data complexity 

conditions. In general, the results showed that the spike-and-slab prior had less biased and more 

accurate estimates than the global-local shrinkage priors (horseshoe and Bayesian lasso) for the 

intercept, regression coefficients, and residual variance estimates. In the following sections, the 

spike-and-slab method will be compared with the full selection model, MAR model, and true 

data-generating model.  

Complexity 4 

Figures 13 to 15 displays complexity 4, which is the most complex true missingness 

model, including all variables from the focal regression and the auxiliary variable. Percent bias is 

shown in Figure 13, standardized bias is shown in Figure 14, while MSE ratio are shown in 

Figure 15. In the most complex missingness model condition (complexity 4), the full selection 

model and the true model are identical, as they both fit the most complex missingness model 

without utilizing BVS. Consequently, Figures 13 to 15 will exhibit overlapping results between 
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full selection and true model. The spike-and-slab is also fitting the most complex missingness 

model and employing variable selection to establish exclusion criteria. 

Percent and Standardize Bias 

The first row panel of Figures 13 and 14, depict a sample size of 100 and a .10 predictor 

intercorrelation. The MAR model had an average bias of -23% across all six slope coefficients, 

while the spike-and-slab had an average bias of -13%. Additionally, the true and full selection 

models had a bias of -65% across all six slope coefficients. For the residual variance estimates 

bias, the MAR model displayed a -6% bias, while the true and full selection models had an 88% 

bias. The spike-and-slab model had minimal bias for the residual variance. As for the R-squared 

estimate, the spike-and-slab showed a biased estimate of 72%, and the MAR model exhibited a 

high bias percentage of 62%. However, the true and full selection models had a low bias of -2%. 

The standardized bias of the intercept parameter in Figure 14 was -0.19 for the spike-and-slab 

prior and -0.24 for the MAR model, while the true and full selection models had a higher 

standardized bias of -0.80. Overall, the MAR and spike-and-slab models had less bias than the 

full selection and true models for all parameters, except for the R-squared estimate. The spike-

and-slab method, in general, exhibited the least biased estimates.  

The second row panel of Figure 13, where the intercorrelation is .10 and the sample size 

increased to 400, shows that a larger sample size benefitted the estimation of the regression 

coefficients for the spike-and-slab, full selection model, and true model. The spike-and-slab prior 

displays the lowest average bias of -8% (-13% in the first row panel), while the true and full 

selection models exhibit an average bias of -46% (-65% in the first row panel) across slope 

coefficients. However, the MAR model did not show a significant reduction in bias in the N = 

400 condition, with an average bias of -22%. This is expected because the MAR model estimates 
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are not consistent under an MNAR process (i.e., do not achieve unbiasedness in large samples). 

The residual variance estimates for the spike-and-slab prior again had almost no bias, while the 

residual variance for the MAR model did not change significantly. On the other hand, the full 

selection model and the true model benefited from an increase in sample size as it reduced bias 

for the residual variance to a 32% bias (88% in the first row panel). In terms of the R-squared 

estimate, both the MAR model and the spike-and-slab prior improved with a higher sample size, 

with a 3% bias for the MAR model (62% in the first row panel) and a 10% biased estimate for 

the spike-and-slab prior (72% in the first row panel). In contrast, the full selection and true 

models showed an increase in bias to -48% as the sample size increased. 

In the second row panel of Figure 14, the bias relative to the theoretical complete-data SE 

is depicted. Standardized bias exhibits a different trend concerning the impact of sample size 

compared to the percent bias shown in Figure 13. While the spike-and-slab model shows no 

significant difference in standardized bias, the regression coefficients for the MAR model, full 

selection model, and true model demonstrate higher standardized bias in the second row panel 

compared to the first row panel in Figure 14. For instance, the standardized bias for the MAR 

model across slope coefficients increased from -0.25 to -0.50. In contrast, the percent bias 

remains constant between the first and second row panels in Figure 13, indicating that the mean 

point estimates are essentially identical. Therefore, the increase in standardized bias for the MAR 

model in Figure 14 can be mainly attributed to the decrease in theoretical standard error (used as 

the denominator in the standardized bias formula) as the sample size increases. 

The third row panel of the trellis plot in Figure 13 and 14 depicted a stronger predictor 

intercorrelation (𝜌 = 0.4) and a sample size of 100, allowing for a comparison of the simple 

effect of predictor correlation with the first-row panel (𝜌 = 0.1). As depicted in Figure 13, both 
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the MAR model and the spike-and-slab method did not exhibit a noticeable increase in 

percentage bias compared to the first-row panel. The spike-and-slab prior had an average bias of 

-17% (-13% in the first row panel) for the substantive model coefficients, while the MAR model 

showed an average bias of -26% (-23% in the first row panel). In contrast, the full selection and 

true models exhibited a 10% increase in bias under the .40 predictor correlation condition for the 

regression coefficients. This highlights that high predictor correlation severely affected bias in 

the estimates of the regression coefficients for the true and full selection models, while it did not 

cause significant issues for the spike-and-slab and MAR models. This pattern aligns with 

expectations for the full selection model, as increasing predictor intercorrelation diminishes the 

non-overlapping variation between the selection and missingness models, resulting in weakened 

identification and support from the data. There were no major differences between residual 

variance and R-squared between the first and third row panels for all models, showing that high 

correlation between the predictors did not affected bias in the residual variance and R-squared for 

all models.  

The fourth row panel in Figure 13 and 14 depicts a scenario where a larger sample size of 

400 was used, with a higher correlation between the substantive regression coefficients. The 

fourth row panel allows us to investigate whether the intercorrelation differences observed in the 

first and third row panels change with sample size compared to the second and fourth row 

panels. Both Figure 13 and Figure 14 demonstrate that the intercorrelation differences remain 

constant across both sample size conditions. The bias discrepancies between the first and third 

row panels indicate that the spike-and-slab, full selection model, and true model had more biased 

estimates in the .40 intercorrelation condition than the .10 intercorrelation condition, while the 

MAR model's bias estimates did not change. This pattern was also observed in the N = 400 
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condition between the second and fourth row panels, indicating no interaction between predictor 

correlation and sample size. 

The fourth row panel in Figure 14 further highlights that the spike-and-slab method has 

the least bias among the models considered. The spike-and-slab prior displayed a bias of -0.24 

standard error units for the intercept parameter, whereas the MAR model showed a standardized 

bias of -0.48, and the true and full selection models had a standardized bias of -1.15. The bias for 

the regression coefficients in the fourth row panel in Figure 14 show a similar trend as to that 

observed in Figure 13. However, there is a significant difference in the standardized and 

percentage bias for the residual variance parameter in the MAR model. The percentage bias 

metric shows a small bias of 9% compared to 1.25 standardize bias. 

MSE ratio  

Figure 15 illustrate MSE ratios for the complexity 4 conditions, which is the most 

complex true missingness model, including all variables from the focal regression and the 

auxiliary variable. The first row panel in Figure 15, depicts a sample size of 100 and a weaker 

intercorrelation of predictors (𝜌 = .10). In this scenario, both the spike-and-slab prior and the 

MAR model demonstrated superior accuracy in estimating regression slope, residual variance, 

and intercept when compared to the true and full-selection model. The disparities in accuracy 

between the spike-and-slab and MAR models were minimal for the slope estimates. However, 

the MAR model outperformed the spike-and-slab model in estimating residual variance, while 

the spike-and-slab model excelled in estimating the intercept.  

Examining the slope estimates, MSE of the MAR model and spike-and-slab model were 

1.50 and 1.58 times larger than the MSE of the complete-data analysis for all six predictors, 

respectively. In contrast, the MSE ratio for the true and full-selection model was, on average, 
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2.91. The spike-and-slab methods yielded residual variance estimates that were, on average, 2.20 

times larger than the MSE from the complete-data analysis, while the MAR model was more 

accurate with an MSE that was 1.57 times larger. For the intercept, the spike-and-slab model had 

an MSE ratio of 1.74, while the MAR model had an MSE ratio of 2.39. The true and full-

selection model exhibited much higher MSE ratios for the residual variance (47.01) and the 

intercept (24.51). 

In Figure 15, the second row panel presents a larger sample size of 400, allowing for a 

comparison of sample size impact with the first row panel. The increased sample size affected 

the accuracy of the intercept parameter and the residual variance, but it did not influence the 

slope estimates. The accuracy of the residual variance estimates improved as the sample size 

increased in both the true and full-selection models. The MSE ratio decreased from 47.01 in the 

N = 100 condition to 27.21 in the N = 400 condition. On the other hand, for the intercept 

parameter, increasing the sample size in the true and full-selection model did not result in a 

proportional improvement in accuracy compared to the true values. The MSE ratio in the N = 

400 condition was 53.56, while it was 24.51 in the N = 100 condition. In terms of the MSE 

model, increasing the sample size did not lead to a proportional improvement in accuracy for the 

intercept and residual variance compared to the true values. The MSE ratio for the residual 

variance and intercept was 1.57 and 2.39, respectively, in the N = 100 condition. However, in the 

N = 400 condition, these ratios increased to 3.12 and 7.78 for the residual variance and intercept, 

respectively. 

In Figure 15, the third row panel displays a sample size of 100 and a stronger predictor 

intercorrelation (𝜌 = .40). This setup allowed for a comparison of the impact of predictor 

correlation with the first-row panel (𝜌 = .10). The increased predictor correlation had a 
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noticeable effect on the slope coefficients of the true and full-selection models. When the 

predictor intercorrelation was .10, the slope estimates had an average MSE ratio of 2.91. 

However, with a stronger predictor intercorrelation of .40, the accuracy of the slope estimates 

improved proportionally to the MSE from complete-data analysis, resulting in a MSE ratio of 

2.61. It is worth noting that the spike-and-slab approach and the MAR model consistently 

outperformed other methods in terms of accuracy across all parameters. 

The fourth row panel in the trellis plot of Figure 15 showcases a higher sample size of 

400 and a strong predictor intercorrelation (𝜌 = .40). This configuration allows for an 

examination of whether the impact of predictor correlations varies depending on the sample size. 

If there is an interaction between predictor correlation and sample size, the difference observed 

between the first and third row panels would not be the same as the difference between the 

second and fourth row panels. In other words, the discrepancy between the first and second row 

panels would be approximately equivalent to the difference between the third and fourth row 

panels. The findings presented in Figure 15 indicate the presence of an interaction between 

predictor intercorrelation and sample size conditions. Specifically, increasing the sample size 

resulted in more accurate slope estimates, proportional to the MSE from complete-data analysis, 

in the .40 intercorrelation condition (difference between the third and fourth row panels), in 

contrast to the .10 intercorrelation conditions (difference between the first and second row 

panels). 

Summary of Results for Complexity 4  

The findings of Complexity 4 are presented in Figures 13 to 15, showcasing the outcomes 

of the most complex missingness model condition. These figures display the bias, standardized 

bias, and MSE ratio. In this study, I conducted a comparison of the performance of a selection 
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model with a spike-and-slab prior against an misspecified MAR model, full-selection model, and 

the true data-generating model. Looking at bias as an outcome, the results demonstrate that the 

spike-and-slab prior and MAR model consistently outperforms the full-selection and true models 

across regression coefficients, residual variance, and intercept estimates. The results also 

revealed that lower sample sizes and highly correlated predictors can increase bias in all the 

models. 

When comparing the spike-and-slab model with the MAR model, the spike-and-slab 

consistently exhibits less bias across various conditions. This bias advantage becomes more 

pronounced in conditions with larger sample sizes. When assessing precision using the MSE 

ratio, the results indicate that both the MAR and spike-and-slab models perform similarly in 

terms of slope estimates across all conditions. This comparison highlights distinct strengths for 

each model. The spike-and-slab model's low bias suggests that its posterior distribution, which 

represents the uncertainty of the model's parameters, is centered around the true population 

parameter. On average, across many samples, the spike-and-slab model's estimates converge to 

the true values in the population. However, the approximately equal MSE ratio indicates that, 

within any given sample, both the spike-and-slab and MAR estimates deviate from the true 

values by the same amount. This implies that although the MAR model may have some bias, it 

has lower variance compared to the spike-and-slab model. As a result, in any individual sample, 

the performance of the MAR model is comparable to that of the spike-and-slab model. Overall, 

while the spike-and-slab model excels in reducing bias, the MAR model demonstrates lower 

variance. These factors contribute to their respective strengths, and understanding the trade-off 

between bias and variance is crucial in evaluating the performance of these models. 
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Complexity 3 

Figures 16 to 18 illustrate the percent and standardized bias, and MSE ratio, respectively, 

for the condition where the true missingness model was comprised of the outcome variable, 

slope coefficients 𝑋1 through 𝑋4, and one auxiliary variable as predictors. As a reminder, the 

spike-and-slab model and the full-selection model fitted the most complex missingness model. In 

contrast, the MAR model fitted variables 𝑋1 through 𝑋6, and one auxiliary variable as predictors. 

Additionally, the true data generating model fitted outcome variable 𝑌, slope coefficients 𝑋1 

through 𝑋4, and auxiliary variable 𝐴1 as predictors. Complexity 3 is compared to the complexity 

4 condition, which includes not only these variables but also the slope coefficients 𝑋5 and 𝑋6 as 

predictors of missingness in the data-generating model. 

Percent and Standardize Bias  

Upon analyzing Figures 16 and 17, notable differences in bias were observed between the 

slope coefficients that acted as predictors of missingness in the data-generating model and those 

that were not involved in the missingness prediction. As a result, I will provide distinct 

explanations for the average bias regarding the slope coefficients that served as predictors (𝑋1 

through 𝑋4) of missingness in the data-generating model and those that were not predictors (𝑋5 

and 𝑋6). 

In Figures 16 and 17, specifically in the first row panel, where the sample size is 100 and 

the predictors have an intercorrelation of .10, the estimates obtained from the spike-and-slab 

prior demonstrated substantially lower bias compared to the full-selection and true models. This 

observation applies to the regression slope estimates, residual variance, and intercept. 

Furthermore, the spike-and-slab exhibited less bias the MAR model, however this difference was 

small for all parameters. 
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Examining the slope estimates 𝑋1 through 𝑋4 (predictors of missingness in data-

generating model) in the first row panel of Figure 16, the spike-and-slab method exhibited an 

average bias of -18%, the MAR model showed an average bias of -22%, the full-selection model 

displayed an average bias of -82%, and the true model had an average bias of -71%. These 

results highlight the substantial advantage in bias achieved by the MAR model and spike-and-

slab method over the true and full-selection models. For the slope estimates of 𝑿𝟓 and 𝑿𝟔 

(predictors that were not included in the data-generating model), all methods showed less bias 

when compared to the 𝑋1 through 𝑋4 slope estimates. On average, the spike-and-slab method had 

a bias of -5%, the MAR model exhibited a bias of -11%, the full-selection model showed a bias 

of -42%, and the true model had a bias of -28%. 

Regarding the estimates of residual variance, the spike-and-slab method demonstrated 

virtually no bias, the MAR model showed a bias of 9%, while the full-selection and true models 

exhibited biases of nearly 85% and 72%, respectively. Thus far, the MAR and spike-and-slab 

models have shown an advantage in terms of bias. However, the R-squared parameter displayed 

a slightly different pattern. In this case, the true and full-selection models had the least bias 

compared to the MAR and spike-and-slab models. The spike-and-slab and MAR models yielded 

highly biased estimates of 71% and 62%, respectively, while the true and full-selection models 

had biases of 11% and 2%, respectively. Similar to the complexity 4 condition, the inflated R-

squared estimate for the spike-and-slab and MAR models can be attributed to an excessively 

small residual variance. 

Moving on to Figure 17, the standardized bias for the intercept estimates was -0.18 and -

0.22 for the spike-and-slab and MAR models, respectively, while the true and full-selection 

models had biases of -0.73 and -0.82, respectively. Generally, both Figure 16 and 17 exhibited 
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the same pattern, with the spike-and-slab method demonstrating less bias than the other models 

for almost all parameters, except for the R-squared estimate. 

In the second row panel of Figure 16, as the sample size increased to 400, the bias 

percentages in the slope coefficients 𝑋1 through 𝑋4 decreased for all methods except for the 

MAR model. In this scenario, the spike-and-slab model exhibited the greatest advantage in terms 

of bias compared to the MAR model. While the bias in the MAR model remained unchanged, the 

spike-and-slab, true model, and full-selection model demonstrated a decrease in bias as the 

sample size increased. Specifically, in the N = 400 condition, the spike-and-slab, true, and full-

selection models had biases of -10%, -29%, and -52%, respectively, for the 𝑋1 through 𝑋4 slope 

estimates. This is in contrast to biases of -18%, -71%, and -82% observed in the N = 100 

condition. On the other hand, the MAR model did not display a significant change in bias, with 

biases of 22% in the N = 100 condition and 20% in the N = 400 condition for the 𝑋1 through 𝑋4 

slope estimates.  

When considering the slope estimates for 𝑿𝟓 and 𝑿𝟔, increasing the sample size only 

resulted in reduced bias in the true and full-selection models. The biases decreased from -28% 

and -42% in the N = 100 condition to -12% and -22% in the N = 400 condition. As for the 

estimates of residual variance, only the true and full-selection models exhibited a change in bias 

in the N = 400 condition. Both models showed a substantial reduction in bias, decreasing from 

71% and 85% in the N = 100 condition to 11% and 32% in the N = 400 condition, respectively. 

The third row panel of the trellis plot in Figure 16 presented a stronger predictor intercorrelation 

(𝜌 = .40) , along with a sample size of 100, allowing for a comparison of the simple effect of 

predictor correlation with the first-row panel (𝜌 = .10). As depicted in Figure 16, the average 

bias across the slope estimates 𝑋1 through 𝑋4 substantially increased for the full-selection and 
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true models. The full-selection model exhibited a bias of -86% (-71% in the first-row panel), 

while the true model demonstrated an average bias of -95% (-82% in the first-row panel). The 

mean bias across the 𝑋1 through 𝑋4 slope coefficients for the MAR and spike-and-slab did not 

change dramatically between the .10 and .40 predictor correlation conditions. Moving on to the 

slope estimates 𝑿𝟓 and 𝑿𝟔, residual variance, and R-squared, the presence of highly correlated 

predictors did not influence changes bias for those parameters.  

The fourth row panel in Figure 16 and Figure 17, displayed a predictor correlation of .40 

and a higher sample size of 400, enabling us to investigate whether the effect of the predictor 

correlations varied as a function of sample size. If there was an interaction between predictor 

correlation and sample size, a difference between the first and third row panel would not be the 

same as the difference between the second and fourth row panel. Both Figure 16 and 17 

demonstrated that the difference between intercorrelation conditions remained uniform across 

both sample size conditions. These results indicate that there is no interaction between predictor 

correlations and sample size conditions. 

Finally, the impact of missingness model complexity between the complexity 4 and 

complexity 3 conditions can be compared. One notable difference between the two is that in the 

complexity 4 condition, all slope coefficients within a row panel display similar bias values. 

However, in the complexity 3 condition, there is a distinct pattern where slope coefficients 𝑋1 

through 𝑋4 generally exhibit higher bias compared to slope coefficients 𝑿𝟓 and 𝑿𝟔. This 

distinction between slope coefficients in complexity 3 arises because 𝑿𝟓 and 𝑿𝟔 are not 

predictors of missingness in the data generating model. 
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MSE Ratio 

Figure 18 illustrate the MSE ratios for the complexity 3 conditions. Under this 

complexity condition, the true data generating missingness model was comprised of the outcome 

variable, slope coefficients 𝑋1 through 𝑋4, and one auxiliary variable as predictors. This figure 

displays the MSE ratio.  

The top row panel in Figure 18, illustrates the outcomes achieved with a sample size of 

100 and a weaker intercorrelation of predictors (𝜌 = .10). In this scenario, both the spike-and-

slab prior and the MAR model demonstrated superior accuracy in estimating regression slope, 

residual variance, and intercept when compared to the true and full-selection model. The 

disparities in accuracy between the spike-and-slab and the MAR model were negligible for the 

slope estimates. However, when it came to estimating residual variance, the MAR model 

outperformed the spike-and-slab model, whereas the spike-and-slab model excelled in estimating 

the intercept. When examining the slope estimates for predictors 𝑋1 through 𝑋6, the MSE of the 

MAR model and spike-and-slab model were 1.51 and 1.56 times larger than the MSE of the 

complete-data analysis for all six predictors, respectively. In contrast, the MSE ratio for the true 

and full-selection model averaged 2.89 and 3.38, respectively. 

Moving on to the residual variance, the spike-and-slab methods produced estimates that 

were, on average, 2.14 times larger than the MSE from the complete-data analysis, while the 

MAR model was more accurate with an MSE that was 1.57 times larger. Concerning the 

intercept, the spike-and-slab model had an MSE ratio of 1.72, while the MAR model had an 

MSE ratio of 2.27. In comparison, the true and full-selection model exhibited significantly higher 

MSE ratios for the residual variance (33.96 and 44.34, respectively) and the intercept (20.11 and 

24.06, respectively). 
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In the second row panel of Figure 18, a larger sample size of 400 was used, enabling a 

comparison of the impact of sample size with the first row panel. The increased sample size 

affected the accuracy of the intercept parameter and the residual variance for all methods, and 

only influenced the 𝑋1 through 𝑋4 slope estimates of the true model and the 𝑋5 and 𝑋6 slope 

estimates of both the true and full selection models. Examining the slope estimates for predictors 

𝑋1 through 𝑋4, the MSE of the true model was 2.14 times larger than the MSE of the complete-

data analysis in the N = 400 condition, whereas the MSE ratio was 2.89 in the N = 100 

condition. This shows an improvement in accuracy of the 𝑋1 through 𝑋4 slope estimates when 

sample size increase for the true model. Moving to the slope estimates for predictors 𝑋5 and 𝑋6, 

the true model MSE was 1.87 times larger than the MSE from the complete-data analysis and the 

full-selection model had a MSE ratio of 1.91, for both models bias decreased with the increase in 

sample size. The accuracy of the residual variance estimates improved as the sample size 

increased in both the true and full-selection models, however for the MAR model the residual 

variance did not result in a proportional improvement in accuracy compared to the true values.  

In Figure 18, the third row panel presents the results for a stronger predictor 

intercorrelation (𝜌 = .40) and a sample size of 100. This allows for a comparison of the impact 

of predictor correlation with the first-row panel (𝜌 = .10). The stronger predictor intercorrelation 

had a moderate effect on the slope coefficients 𝑋1 through 𝑋4 of the true and full-selection 

model. When the predictor correlation condition was .10, the slope estimates 𝑋1 through 𝑋4 had 

an average MSE ratio of 2.89 and 3.38, respectively, however, with a stronger predictor 

intercorrelation of .40, the accuracy improved, resulting in a MSE ratio of 2.53 and 2.60.  

Regarding the slope-coefficients 𝑋5 and 𝑋6, residual variance, and intercept, increasing the 
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predictor correlation did not lead to a proportional improvement in accuracy compared to the true 

values.  

In the fourth row panel of the trellis plot, a predictor correlation of .40 and a higher 

sample size of 400 are depicted. This allows for an investigation of whether the effect of 

predictor correlations varies depending on the sample size. If there is an interaction between 

predictor correlation and sample size, the difference observed between the first and third row 

panels would not be the same as the difference between the second and fourth row panels. 

Alternatively, if there is no interaction, the difference between the first and second row panels 

would be approximately equivalent to the difference between the third and fourth row panels. 

However, the findings in Figure 18 indicate that there is no interaction between predictor 

correlations and sample size conditions. 

Lastly, the impact in accuracy of true missingness model complexity between the 

complexity 4 and complexity 3 conditions can be compared. One notable difference between the 

two is that in the complexity 4 condition, all slope coefficients within a row panel display similar 

values for the MSE ratio. However, in the complexity 3 condition, there is a distinct pattern 

where slope coefficients 𝑋1 through 𝑋4 generally exhibit less accuracy than the slope coefficients 

𝑋5 and 𝑋6. Again, this distinction between slope coefficients in complexity 3 arises because 𝑋5 

and 𝑋6 are not predictors of missingness in the data-generating model. 

Summary of Results for Complexity 3 

The findings from Complexity 3, as shown in Figures 15 to 17, shed light on a scenario 

where two variables from the substantive model are not predictor of missingness in the true data-

generating model. The results, measured by percent and standardized bias, demonstrate that the 
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spike-and-slab prior and MAR model consistently outperforms the full-selection and true models 

across regression coefficients, residual variance, and intercept estimates.  

When comparing the spike-and-slab model with the MAR model, the spike-and-slab prior 

is less biased than the MAR model, especially in the higher sample size condition. To evaluate 

the variation in the estimates, the MSE ratio is also examined. When assessing precision using 

the MSE ratio, the results indicate that both the MAR and spike-and-slab models perform 

similarly in terms of slope estimates across all conditions. This comparison highlights distinct 

strengths for each model. The spike-and-slab model's low bias suggests that its posterior 

distribution, which represents the uncertainty of the model's parameters, is centered around the 

true population parameter. On average, across many samples, the spike-and-slab model's 

estimates converge to the true values in the population. However, the approximately equal MSE 

ratio indicates that, within any given sample, both the spike-and-slab and MAR estimates deviate 

from the true values by the same amount. This implies that although the MAR model may have 

some bias, it has lower variance compared to the spike-and-slab model. As a result, in any 

individual sample, the performance of the MAR model is comparable to that of the spike-and-

slab model. Overall, while the spike-and-slab model excels in reducing bias, the MAR model 

demonstrates lower variance. These factors contribute to their respective strengths, and 

understanding the trade-off between bias and variance is crucial in evaluating the performance of 

these models. 

Complexity 2 

Figures 19 to 21 show the percent bias, standardized bias, and MSE ratio, respectively.  

Complexity 2 represents the condition where the true data-generating model was comprised of 

the outcome variable, variables 𝑋1 and 𝑋2, and one auxiliary variable as predictors. The 
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complexity 2 condition does not include variables 𝑋3 through 𝑋6 as predictors of missingness in 

the data-generating model. As a reminder, the spike-and-slab model and the full-selection model 

fitted the most complex missingness model. In contrast, the MAR model fitted variables 𝑋1 

through 𝑋6, and one auxiliary variable as predictors. Additionally, the true data generating model 

fitted outcome variable 𝑌, slope coefficients 𝑋1 through 𝑋2, and auxiliary variable 𝐴1 as 

predictors.  

Percent and Standardize Bias  

Similar to the complexity 3 condition, Figures 19 and 20 showed notable differences in 

bias between the slope coefficients that serve as predictors and those that do not contribute to the 

data-generating model. As a result, I will provide separate descriptions of the average bias for 

slopes that are predictors (𝑋1 and 𝑋2) and those that are not predictors (𝑋3 through 𝑋6) of 

missingness in the data-generating model. In Figures 19 and 20, specifically in the first row 

panel, where the sample size is 100 and the predictors have an intercorrelation of .10, the 

estimates obtained from the spike-and-slab prior demonstrated substantially lower bias compared 

to the full-selection and true models. This observation applies to the regression slope estimates, 

residual variance, and intercept. Furthermore, the bias differences between the spike-and-slab 

prior and the MAR model were minimal for all parameters. 

Examining the slope estimates 𝑋1 and 𝑋2 (predictors that were included in the data-

generating model) in the first row panel of Figure 19, the spike-and-slab method exhibited an 

average bias of -26%, the MAR model showed an average bias of -32%, the full-selection model 

displayed an average bias of -108%, and the true model had an average bias of -69%. These 

results highlight the substantial advantage in bias achieved by the MAR model and spike-and-

slab method over the true and full-selection models. For the slope estimates of 𝑋3 through 
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𝑋6 (predictors not included in the data-generating model), all methods showed less bias when 

compared to the 𝑋1 and 𝑋2 slope estimates. On average, the spike-and-slab method had a bias of 

-6%, the MAR model exhibited a bias of -12%, the full-selection model showed a bias of -35%, 

and the true model had a bias of -28%. Regarding the estimates of residual variance, the spike-

and-slab method demonstrated virtually no bias, the MAR model showed a bias of -7%, while 

the full-selection and true models exhibited biases of nearly 85% and 53%, respectively. 

 Thus far, the MAR and spike-and-slab models have shown an advantage in terms of bias. 

However, the R-squared parameter displayed a slightly different pattern. In this case, the true and 

full-selection models had the least bias compared to the MAR and spike-and-slab models. The 

spike-and-slab and MAR models yielded biased estimates of 73% and 62%, respectively, while 

the true and full-selection models had biases of 30% and 4%, respectively. Similar to the 

complexity 3 and 4 condition, the inflated R-squared estimate for the spike-and-slab and MAR 

models can be attributed to the narrow distribution of the residual variance. Moving on to Figure 

20, the standardized bias for the intercept estimates was -0.19 and -0.24 for the spike-and-slab 

and MAR models, respectively, while the true and full-selection models had biases of -0.56 and -

0.80, respectively. Generally, both Figure 19 and 20 exhibited the same pattern, with the spike-

and-slab method demonstrating less bias than the other models for almost all parameters, except 

for the R-squared estimate. 

In the second row panel of Figure 19, as the sample size increased to 400, the bias 

percentages in the slope coefficients 𝑋1 and 𝑋2 decreased for all methods except for the MAR 

model. In this scenario, the true model has the greatest advantage exhibited in terms of bias 

compared to the full-selection and MAR model, and it bias estimates are comparable to the 

spike-and-slab method. Specifically, in the N = 400 condition, the spike-and-slab, true, and full-
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selection models had biases of -18%, -11%, and -67%, respectively, for the 𝑋1 through 𝑋2 slope 

estimates. This is in contrast to biases of -26%, -69%, and -108% observed in the N = 100 

condition. When considering the slope estimates for 𝑋3 through 𝑋6, increasing the sample size 

resulted in a substantial reduction bias for the true and full-selection models. The biases 

decreased from -28% and -35% in the N = 100 condition to -1% and -21% in the N = 400 

condition, for the true and full-selection model, respectively. As for the estimates of residual 

variance, only the true and full-selection models exhibited a change in bias in the N = 400 

condition. Both models showed a reduction in bias, decreasing from 53% and 85%, in the N = 

100 condition to 1% and 29% in the N = 400 condition, for the true and full selection models 

respectively. 

The third row panel of the trellis plot in Figure 19 presented a stronger predictor 

intercorrelation of .40, along with a sample size of 100, allowing for a comparison of the simple 

effect of predictor correlation (𝜌 = .10 vs. 𝜌 = .40) with the first-row panel. The average bias 

across the slope estimates 𝑋1 and 𝑋2 substantially increased for the full-selection and true 

models. The full-selection model exhibited a bias of -135% (-108% in the first-row panel), while 

the true model demonstrated an average bias of -93% (-69% in the first-row panel). The mean 

bias across the 𝑋1 and 𝑋2 slope coefficients for the MAR and spike-and-slab did not change 

dramatically between the .10 and .40 predictor correlation conditions. Moving on to the slope 

estimates 𝑋3 through 𝑋6, residual variance, and R-squared, the presence of strongly 

intercorrelated predictors did not influence changes bias for those parameters.  

The fourth row panel in Figure 19 and Figure 20, displayed a predictor intercorrelation of 

.40 and a higher sample size of 400, enabling us to investigate whether the effect of the predictor 

intercorrelations varied as a function of sample size. If there was an interaction between 
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predictor correlation and sample size, a difference between the first and third row panel would 

not be the same as the difference between the second and fourth row panel. Both Figure 19 and 

17 demonstrated that the difference between intercorrelation conditions remained uniform across 

both sample size conditions. These results indicate that there is no interaction between predictor 

correlations and sample size conditions.  

Finally, the influence of different complexity levels on bias can be examined by 

comparing three conditions: complexity 4, complexity 3, and complexity 2. Complexity 2 and 3 

exhibit a similar trend, where the substantive variables 𝑋3 through 𝑋6 generally display lower 

bias compared to the substantive variables (𝑋1 and 𝑋2) that are predictors of missingness in the 

data-generating model. When comparing complexity 3 and 2, a noticeable difference in bias is 

observed for the true model. As the missingness model becomes less complex, the true model 

exhibits lower bias in its estimates. For instance, in the second row panel of Figure 16 

(complexity 3), the true model had a -29% bias for the variables were predictors of missingness 

in the data-generating model (𝑋1 through 𝑋4 in complexity 3), while in the second row panel of 

Figure 19 (complexity 2), there was an -11% bias for the variables included as predictors of 

missingness in the data-generating model (𝑋1 and 𝑋2 in complexity 2). 

MSE Ratio 

Figure 21 illustrate the results of condition where the true missingness model was 

comprised of the outcome variable, slope coefficients 𝑋1 and 𝑋2 , and one auxiliary variable as 

predictors. This figure displays the MSE ratio. The top row panel in Figure 21, illustrates the 

outcomes achieved with a sample size of 100 and a .10 intercorrelation of predictors. In this 

scenario, both the spike-and-slab prior and the MAR model demonstrated superior accuracy in 

estimating regression slope, residual variance, and intercept when compared to the true and full-
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selection model. The disparities in accuracy between the spike-and-slab and MAR models were 

negligible for the slope estimates. However, when it came to estimating residual variance, the 

MAR model outperformed the spike-and-slab model, whereas the spike-and-slab model excelled 

in estimating the intercept.  

When examining the slope estimates for predictors 𝑋1 and 𝑋2, the MSE of the MAR 

model and spike-and-slab model were 1.60 and 1.74 times larger than the MSE of the complete-

data analysis. In contrast, the MSE ratio for the true and full-selection model averaged 2.65 and 

4.25, respectively. Same trend occurred in the slope estimates 𝑋3 through 𝑋6, the spike-and-slab 

and MAR models were more accurate than the true and full-selection model. In addition, the 

slope estimates 𝑋1 and 𝑋2 were considerably more biased than the slope estimates 𝑋3 through 

𝑋6, for only the true and full-selection models. Moving on to the residual variance, the spike-

and-slab methods produced estimates that were, on average, 2.16 times larger than the MSE from 

the complete-data analysis, while the MAR model was more accurate with an MSE that was 1.55 

times larger than the MSE from the complete-data analysis. Concerning the intercept, the spike-

and-slab model had an MSE ratio of 1.71, while the MAR model had an MSE ratio of 2.35. In 

comparison, the true and full-selection model exhibited significantly higher MSE ratios for the 

residual variance (22.86 and 44.78, respectively) and the intercept (23.66 and 14.07, 

respectively). 

In the second row panel of Figure 21, a larger sample size of 400 was used, enabling a 

comparison of the impact of sample size with the first row panel. The increased sample size 

affected the accuracy of the intercept parameter and the residual variance for all methods, and 

only influenced the 𝑋1 and 𝑋2 slope estimates of the true and MAR model and the 𝑋3 through 𝑋6 

slope estimates of both the true and full selection models. Overall, under these conditions the 
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true model had MSE estimates that were comparable to the spike-and-slab method, with the 

exception of the intercept.  

When examining the slope estimates for predictors 𝑋1 and 𝑋2, it was found that in the N 

= 400 condition, the MSE of the true model was 1.67 times larger than the MSE of the complete-

data analysis. In contrast, the MSE ratio was 2.65 in the N = 100 condition. On the other hand, 

the MAR model had a MSE ratio of 1.90 in the N = 400 condition, while it was 1.60 in the N = 

100 condition. These findings indicate that as the sample size increased, the true model improved 

the accuracy of its slope estimates compared to the true values, whereas the MAR model did the 

opposite. This outcome is expected since the mechanism of the true missingness model is 

MNAR. Moving on to the slope estimates for predictors 𝑋3 through 𝑋6, it was observed that the 

true model had a MSE that was 1.46 times larger than the MSE from the complete-data analysis. 

Meanwhile, the full-selection model exhibited a MSE ratio of 1.87. As the sample size increased, 

bias decreased for both models. Additionally, the accuracy of the residual variance estimates 

improved with increasing sample size in both the true and full-selection models. However, for 

the MAR model, the improvement in accuracy of the residual variance estimates did not match 

the proportionate improvement observed in the true values.  

The third row panel in Figure 21 displays the findings obtained from a larger predictor 

correlation of .40 and a sample size of 100. This allows for a comparison of the impact of 

predictor correlation (𝜌 = .10 vs 𝜌 = .40) with the panel in the first row. The heightened 

predictor correlation moderately influenced the slope coefficients 𝑋1 and 𝑋2 in both the true and 

full-selection models. Under the predictor correlation condition of .10, the MSE ratios for the 

slope estimates 𝑋1 and 𝑋2 were 2.65 and 4.12 for the true and full-selection models, respectively. 

However, with an increased predictor correlation of .40, the accuracy improved, resulting in 
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MSE ratios of 2.37 and 3.20 for the true and full-selection models, respectively. Regarding the 

slope coefficients 𝑋3 through 𝑋6, residual variance, and intercept, enhancing the predictor 

correlation did not lead to a proportionate improvement in accuracy when compared to the true 

values. 

The fourth row panel in the trellis plot illustrates a scenario where a predictor 

intercorrelation of .40 and a larger sample size of 400 are utilized. This setup allows for an 

examination of whether the impact of predictor correlations varies based on the sample size. If 

there is an interaction between predictor correlation and sample size, the disparity observed 

between the first and third row panels would differ from the difference between the second and 

fourth row panels. Conversely, if there is no interaction, the distinction between the first and 

second row panels would be roughly equivalent to the difference between the third and fourth 

row panels. However, the findings presented in Figure 21 indicate that there is no interaction 

between predictor correlations and sample size conditions. 

Lastly, the impact of varying complexity levels in the missingness model on accuracy can 

be assessed by comparing three conditions: complexity 4, complexity 3, and complexity 2. 

Notably, there is a distinction between complexity 4 and complexity 2 regarding the behavior of 

slope coefficients within a row panel. In complexity 4, these coefficients exhibit similar MSE 

ratios, whereas in complexity 2, there is a clear pattern where slope coefficients 𝑋1 and 𝑋2 

generally have lower accuracy compared to slope coefficients 𝑋3 through 𝑋6. This accuracy 

difference arises because 𝑋3 through 𝑋6are not predictors of missingness in the data-generating 

model.  
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Summary of Results for Complexity 2 

The findings from Complexity 2, as depicted in Figures 19 to 21, provide insights into a 

scenario where the true missingness model from the data-generating model did not incorporate 

four variables (𝑋3 through 𝑋6) from the substantive model. Figures 19 and 20 visualize the 

percent and standardized bias, respectively, while Figure 21 presents the MSE ratio for 

Complexity 2. When comparing the spike-and-slab model with the MAR model, the spike-and-

slab prior is less biased than the MAR model, especially in the higher sample size condition. To 

evaluate the variation in the estimates, the MSE ratio is also examined.  

When assessing precision using the MSE ratio, the results indicate that both the MAR 

and spike-and-slab models perform similarly in terms of slope estimates across all conditions. 

This comparison highlights distinct strengths for each model. The spike-and-slab model's low 

bias suggests that its posterior distribution, which represents the uncertainty of the model's 

parameters, is centered around the true population parameter. On average, across many samples, 

the spike-and-slab model's estimates converge to the true values in the population. However, the 

approximately equal MSE ratio indicates that, within any given sample, both the spike-and-slab 

and MAR estimates deviate from the true values by the same amount. This implies that although 

the MAR model may have some bias, it has lower variance compared to the spike-and-slab 

model. As a result, in any individual sample, the performance of the MAR model is comparable 

to that of the spike-and-slab model.  

Complexity 1  

Figures 22 to 24 provide visualizations of the percent bias, standardized bias, and MSE 

ratio, respectively. Conplexity1 represents the condition where the true missingness model 

includes only the outcome variable and one auxiliary variable as predictors. In the complexity 1 
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condition, all substantive variables (𝑋1 through 𝑋6) are not missingness predictors in the data-

generating model. As a reminder, the spike-and-slab model and the full-selection model fitted the 

most complex missingness model. In contrast, the MAR model fitted variables 𝑋1 through 𝑋6, 

and one auxiliary variable as predictors. Additionally, the true data generating model fitted 

outcome variable 𝑌 and auxiliary variable 𝐴1 as predictors.  

Percent and Standardize Bias 

In Figures 22 and 23, specifically in the top row panel, where the sample size is 100 and 

the predictors have a correlation of 0.1, the spike-and-slab prior yielded estimates that were 

significantly less biased than the full-selection approach for all parameters except R-squared. 

Moreover, the bias differences between the spike-and-slab prior, the MAR model, and the true 

model were minimal for the intercept and slope estimates. Looking at the slope estimates in the 

top row panel of Figure 22, the spike-and-slab method had an average bias of -10%, the MAR 

model had an average bias of -12%, the full-selection model had an average bias of -36%, and 

the true model had an average bias of -13%. These results indicate that under a less complex 

missingness model, the MAR, spike-and-slab method, and true models had similar levels of bias 

for the slope estimates, while the full-selection model exhibited higher bias compared to the 

other three models. 

Regarding the estimates of residual variance, the spike-and-slab and MAR models had 

biases of 3% and 5%, respectively. On the other hand, the full-selection and true models 

exhibited higher bias. The full-selection model had a bias of 76%, while the true model had a 

bias of 20%. As for the R-squared parameter, the full-selection and true models had the least bias 

compared to the MAR and spike-and-slab models. The spike-and-slab and MAR models 

produced biased estimates of 76% and 72%, respectively, while the true and full-selection 
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models had biases of 60% and 18%, respectively. Similar to the complexity 3 and 4 condition, 

the inflated R-squared estimate for the spike-and-slab and MAR models can be attributed to a 

narrow distribution of the residual variance parameter. 

Moving on to Figure 23, the standardized bias for the intercept estimates was -0.19 and -

0.24 for the spike-and-slab and MAR models, respectively, while the true and full-selection 

models had biases of -0.56 and -0.80, respectively. Overall, both Figure 22 and 23 exhibited the 

same pattern, with the spike-and-slab method showing less bias than the other models for almost 

all parameters, except for the R-squared estimate. 

In the second row panel of Figure 22, as the sample size increased to 400, the bias 

percentages in the slope coefficients decreased for all methods except for the MAR model. In 

this scenario, the true model had the least bias compared to all other models for all parameters 

except for the R-squared. However, both the spike-and-slab and true models exhibited biases 

within the 10% threshold for all parameters except R-squared. Specifically, in the N = 400 

condition, the spike-and-slab, true, and full-selection models had biases of -5%, -1%, and -17%, 

respectively, for the slope estimates. This is in contrast to biases of -10%, -13%, and -36% 

observed in the N = 100 condition. Regarding the estimates of residual variance, only the true 

and full-selection models showed a change in bias in the N = 400 condition. Both models 

exhibited a reduction in bias, decreasing from 20% and 76% in the N = 100 condition to -1% and 

13% in the N = 400 condition, respectively. Moving on to the R-squared, bias was reduced for all 

models as the sample size increased. In the N = 400 condition, the biases were 17%, 13%, 24%, 

and -9% for the spike-and-slab, MAR, true, and full-selection models, respectively. 

In the third row panel of the trellis plot in Figure 22, a stronger predictor intercorrelation 

(𝜌 =  .40) was presented alongside a sample size of 100, allowing for a comparison of the effect 
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of predictor correlation with the first-row panel (𝜌 =  .10). The presence of strongly 

intercorrelated predictors did not result in changes in bias for any of the parameters. Moving on 

to the fourth row panel in Figure 22 and Figure 23, a predictor correlation of .40 and a higher 

sample size of 400 were displayed. This setup allowed us to investigate whether the effect of 

predictor intercorrelations varied depending on the sample size. If there was an interaction 

between predictor correlation and sample size, the difference between the first and third row 

panels would not be the same as the difference between the second and fourth row panels. 

However, both Figure 22 and 23 demonstrated that the difference between the intercorrelation 

conditions remained consistent across both sample size conditions. These results indicate that 

there is no interaction between predictor correlations and sample size conditions. 

To evaluate the impact of varying complexity levels in the missingness model on bias, 

the different complexity conditions can be compared. Complexity 1 and 4 exhibit a similar 

pattern, with all slope coefficients in a row panel showing comparable bias values. In contrast, 

complexity 2 and 3 demonstrate differences in bias for the variables included in the missingness 

model. When comparing complexity 1 (the least complex model) to complexity 4 (the most 

complex model),  the differences in bias between the BVS methods are more pronounced in the 

most complex conditions. In the least complex conditions, the bias values are relatively 

comparable across methods, except for the residual variance parameter, where the spike-and-slab 

and MAR model consistently outperforms the others. 

MSE Ratio  

Figure 24 illustrate the results of condition where the true missingness model was 

comprised of the outcome variable and one auxiliary variable as predictors. This figure displays 

the MSE ratio.  
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The top row panel in Figure 24, illustrates the outcomes achieved with a sample size of 

100 and a .10 intercorrelation of predictors. In this scenario, both the spike-and-slab prior and the 

MAR model demonstrated superior accuracy in estimating regression slope, residual variance, 

and intercept when compared to the true and full-selection model. The disparities in accuracy 

between the spike-and-slab and MAR models were negligible for the slope estimates. However, 

when it came to estimating residual variance and the intercept, the MAR model outperformed the 

spike-and-slab model. 

Examining the slope estimates, the MSE of the MAR model and spike-and-slab model 

were 1.45 and 1.55 times larger than the MSE of the complete-data analysis. In contrast, the 

MSE ratio for the true and full-selection model averaged 1.77 and 2.39, respectively. Moving on 

to the residual variance, the spike-and-slab methods produced estimates that were, on average, 

2.48 times larger than the MSE from the complete-data analysis, while the MAR model was 

more accurate with an MSE that was 1.55 times larger. Concerning the intercept, the spike-and-

slab model had an MSE ratio of 2.24, while the MAR model had an MSE ratio of 2.06. In 

comparison, the true and full-selection model exhibited significantly higher MSE ratios for the 

residual variance (7.54 and 37.53, respectively) and the intercept (5.03 and 20.24, respectively). 

In the second row panel of Figure 24, a larger sample size of 400 was used, enabling a 

comparison of the impact of sample size with the first row panel. The true model’s intercept 

parameter had a better accuracy in the N = 400 sample size condition with a MSE ratio of 1.34 

(5.03 in the N = 100 condition). However, the intercept results for the full-selection, MAR, and 

spike-and-slab models showed the opposite trend. Specifically, at N = 400, the MSE ratio of the 

MAR and full-selection model intercepts were 6.59 and 24.14 times larger than the complete-

data MSE, respectably. In contrast, at N = 100, the MSE for the MAR and full-selection models 
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were about 2.06 and 20.24 times larger. For the spike-and-slab approach, the MSE ratio was 2.25 

for the N = 100 condition and 4.32 for the N = 400 condition. 

Moving to the slope estimates in the second row panel, the increased sample size resulted 

in improved accuracy for all methods, except for the MAR model. Specifically, for the slope 

estimates in the N = 400 condition, the spike-and-slab, full-selection, and true models exhibited 

MSE ratios of 1.35, 1.71, and 1.46, respectively. Similarly, the accuracy of the residual variance 

estimation also improved as the sample size increased for all methods, except for the MAR 

model which did not show any significant changes. In the N = 400 condition, the MSE ratios for 

the spike-and-slab, full-selection, and true models were 2.15, 11.12, and 1.76, respectively, 

indicating greater accuracy compared to the N = 100 condition.  

The third row panel of Figure 24 displays the findings obtained from a larger predictor 

correlation of .40 and a sample size of 100. This allows for a comparison of the impact of 

predictor intercorrelation (𝜌 = .10 vs 𝜌 = .40) with the panel in the first row. The .40 predictor 

correlation moderately only influenced the slope coefficients in the full-selection model. Under 

the predictor correlation condition of .10, the average MSE ratio for the slope estimates was 

2.39. However, with an increased predictor correlation of .40, the accuracy improved, resulting 

in a average MSE ratio of 2.07 for the full-selection model. Regarding the residual variance and 

intercept, increasing the predictor correlation did not lead to a proportionate improvement in 

accuracy when compared to the true values. 

The fourth row panel in the trellis plot illustrates a scenario where a predictor correlation 

of .40 and a larger sample size of 400 are utilized. This setup allows for an examination of 

whether the impact of predictor correlations varies based on the sample size. If there is an 

interaction between predictor correlation and sample size, the disparity observed between the 
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first and third row panels would differ from the difference between the second and fourth row 

panels. Conversely, if there is no interaction, the distinction between the first and second row 

panels would be roughly equivalent to the difference between the third and fourth row panels. 

However, the findings presented in Figure 24 indicate that there is no interaction between 

predictor correlations and sample size conditions. 

Finally, it can be evaluated how the different levels of complexity in the missingness 

model affect the accuracy and bias of the estimates. It's important to note a similarity between 

complexity 4, which represents the most complex true missingness model, and complexity 1 in 

terms of the behavior of slope coefficients within a row panel. In both complexity 1 and 4, there 

is less variability observed among MSE ratios. Conversely, in complexity 2 and 3, a clear pattern 

emerges where slope coefficients that predict missingness in the data-generating model generally 

exhibit lower accuracy compared to the other slope coefficients. Additionally, it's worth 

mentioning that at lower levels of complexity, the true model performs better in terms of both 

bias and accuracy outcomes. 

Summary of Results for Complexity 1 

The findings from Complexity 1, as presented in Figures 22 to 24, provide insights into a 

scenario where the true missingness model did not incorporate any predictors from the 

substantive model. Figures 22 and 23 visualize the percentage and standardized bias, 

respectively, while Figure 24 displays the MSE ratio for Complexity 1. In the N = 100 case, the 

spike-and-slab, MAR, and true models exhibited comparable bias in the slope estimates, but the 

spike-and-slab and MAR models maintained an advantage over the true model in terms of bias in 

residual variance. In the N = 400 condition, the true model slightly outperformed the MAR and 

spike-and-slab models across all parameters. In terms of accuracy, in the N = 100 scenario, the 
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spike-and-slab model and MAR model demonstrated the most precise slope estimates compared 

to the true and full-selection models. However, in the N = 400 condition, this advantage 

vanished, and accuracy was similar among the spike-and-slab, MAR, and the true model. 

Overall, the full-selection approach performed the poorest in both bias and accuracy outcomes. 

There was minimal influence of predictor correlation on the accuracy or bias of the estimates in 

complexity 1. 

EMPIRICAL EXAMPLE 

In this section, I illustrate the practical value and implementation of selection models 

with Bayesian shrinking priors within the context of a clinical-trial study. To exemplify this, I 

used the dataset from a study conducted by Ray et al. (2021). The study aimed to assess the 

effectiveness of combining varenicline, a partial agonist of the α4β2 nicotinic acetylcholine 

receptor, and naltrexone, an antagonist of opioid receptors, in enhancing smoking cessation and 

reducing alcohol consumption among heavy drinking smokers. The objective was to compare 

these results with the outcomes of using varenicline alone as the sole pharmacological treatment. 

In this context, it is plausible that an MNAR mechanism exists, as individuals with higher 

substance use rates might be more likely to drop out, leading to missing data. 

Data Preparation 

 For this empirical illustration, I used data from all participants in the clinical trial 

(𝑁=165) which is consistent with the sample size condition used in the simulation. I focused on 

the outcome "drinks per drinking day" at the eight-week follow-up (𝐷𝑃𝐷𝐷8), as it had a missing 

data rate of 20%, which closely resembles the missing data rate in the simulation study. The 

treatment condition (𝑇𝑋) and “drinks per drinking day” at baseline (𝐷𝑃𝐷𝐷0) served as the 

predictors in the substantive model, as represented in Equation 77. 
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 𝐷𝑃𝐷𝐷8𝑖 = 𝛽0 + 𝛽1𝐷𝑃𝐷𝐷0𝑖 + 𝛽2𝑇𝑋𝑖 + 𝜀𝑖  (77) 

 

The empirical example assumed a MNAR process, where an individual’s unobserved “drinks per 

drinking day” value at week eight predicts missingness. To address this, a selection model for 

handling missing data was used, which combined the substantive model in Equation 77 with a 

missingness model.  

The missingness model's predictors consisted of all the variables from the substantive 

model, "drinks per drinking day" at both week eight and baseline, and the treatment condition 

(𝑇𝑋). Additionally, Type B and C auxiliary variables were included in the model. As a reminder 

from the introduction section, Type B auxiliary variables are correlated with the analysis but not 

with the missingness indicator, while Type C auxiliary variables correlate with the missing data 

indicator but not with the substantive model variables. To determine the potential Type B and C 

auxiliary variables for inclusion in the missingness model, I tested various background variables 

from Table 1 of Ray et al. (2021) study that were considered potential correlates of treatment 

compliance. Each potential auxiliary variable needed to exhibit a correlation or Cohen’s d effect 

size greater than .10 to be included as predictors in the subsequent missingness model. 

Two Type B auxiliary variables, cotinine at baseline (𝐶𝑜𝑡0) and drinking days at baseline 

(𝐷𝐷0), were selected based on their correlations with the outcome variable "drinks per drinking 

day" measured at week eight. Variables 𝐶𝑜𝑡0 and 𝐷𝐷0 showed correlations with the outcome 

variable of .11 and .16, respectively. For the potential Type C auxiliary variables, effect sizes 

were computed. First, a missing data indicator was created for the outcome variable 𝐷𝑃𝐷𝐷8𝑖, 

and independent t-tests were conducted with each of the background variables as the outcomes. 
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The effect sizes obtained from these tests helped determine which variables to include in the 

missingness model. After examining nine possible variables from Table 1, age, gender, and the 

Fagerström Test of Nicotine Dependence score (𝐹𝑇𝑁𝐷) were selected based on their effect sizes 

with the missingness indicator. 

Next the complete missingness model is presented. The outcome of this model is a value 

from a normally distributed latent variable for individual 𝑖 represented as 𝑀8𝑖
∗  in the equation 

below: 

 

 

𝑀8𝑖
∗ = γ0 + γ1𝐷𝑃𝐷𝐷8𝑖 + γ2𝑇𝑋𝑖 + γ3𝐷𝑃𝐷𝐷0𝑖 + γ4𝐶𝑜𝑡0𝑖 + γ5𝐷𝐷0𝑖

+ γ6𝐴𝑔𝑒𝑖 + γ7𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + γ8𝐹𝑇𝑁𝐷𝑖 + 𝑟𝑖 

𝑀8𝑖
∗ ~𝑁(𝐸(𝑀8𝑖

∗ | ∙), 𝜎𝑟
2) 𝐼(𝑄𝑖) 

(78) 

 

The term 𝐼(·) is an indicator function, 𝑄𝑖  is either equal to {𝑀8𝑖
∗ > 𝜑} or {𝑀8𝑖

∗ ≤ 𝜑} 

corresponding to 𝑀8𝑖 = 1 or 𝑀8𝑖 = 0. Where 𝑀8𝑖 = 0 if the week eight “drinks per drinking 

day” score is observed and 𝑀8𝑖  = 1 if it is missing, for individual 𝑖. The following regression 

models correspond to the conditional distributions of the Type B auxiliary variables. 

 

 

𝐶𝑜𝑡0𝑖 =  𝛾02 + 𝛾12𝐷𝑃𝐷𝐷8𝑖 + 𝛾22𝐷𝑃𝐷𝐷0𝑖 + 𝛾32𝑇𝑋𝑖 + 𝑟2𝑖 

𝐷𝐷0𝑖 =  𝛾01 + 𝛾11𝐷𝑃𝐷𝐷8𝑖 + 𝛾21𝐷𝑃𝐷𝐷0𝑖 + 𝛾31𝑇𝑋𝑖 + 𝛾41𝐶𝑜𝑡0𝑖 + 𝑟1𝑖 

(79) 

 

Finally, the sample characteristics at baseline for the selected variables by treatment conditions 

are presented in Table 2. All variables were standardized prior to analyses. 
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Data Analysis and Results 

For the analysis, various models were applied, including a full-selection model, a model 

assuming a MAR process, and all three BVS adapted selection models as described in the 

simulation section. Additionally, a model assuming a focused MNAR process was also fitted: 

 

 𝑀8𝑖
∗ = γ0 + γ1𝐷𝑃𝐷𝐷8𝑖 + 𝑟𝑖 (80) 

 

where missingness depends on 𝐷𝑃𝐷𝐷 scores at the eighth week assessment, some of which are 

missing. This model was fitted for comparison. The analyses were performed using Blimp for the 

MAR and focused selection models and R for the BVS selection models, with identical 

hyperpriors as in the simulation. Estimates of substantive model’s intercept and treatment effect 

can be found in Table 3. 

As mentioned in the previous section, all variables were standardized. Although this 

standardization is not natural for binary variables like treatment condition (𝑇𝑋), it was done to 

adhere to the norm in the literature. Consequently, the intercept represents the mean of the 

varenicline-only group on a standardized metric, and the regression coefficient for 𝑇𝑋 reflects 

the treatment effect on the same standardized metric. From the results presented in Table 3, it can 

be observed that all BVS, full-selection, and focused models produced similar outcomes for the 

intercept and treatment effect. On the other hand, the MAR model yielded substantially different 

results for these parameters. 

To offer more insights into the BVS methods, we visually represent the posterior 

distribution of the regression coefficients for the missingness model. Figures 25 to 33 showcase 

the resulting posterior distributions of the regression slopes for the spike-and-slab, horseshoe 

prior, and Bayesian LASSO. These figures demonstrate the distributions of the independent 



 

 141 

variables from the missingness model, each displaying varying degrees of shrinkage. For 

illustration purposes, I will focus on two of these figures. First, the posterior distribution of the 

outcome variable 𝐷𝑃𝐷𝐷8 and then the posterior distribution for the baseline drinking days (𝐷𝐷0) 

will be examined.  

Figure 26 displays the posterior distributions of the regression coefficient for the outcome 

variable for different selection models. The distributions for the full selection model, horseshoe 

model, and Bayesian LASSO model appear left-skewed, with medians close to -6.38, -5.23, and -

4.22, respectively. In contrast, the spike-and-slab model exhibit a more symmetric and narrower 

posterior distribution of the outcome variable. Its variance is approximately half that of the other 

three selection models, and it has a median of -2.49, indicating the most substantial shrinkage of 

the outcome variable regression coefficient out of the three BVS priors. Despite all BVS 

methods reducing the outcome coefficient toward zero, none of their distributions contain zero as 

a value, demonstrating that 𝐷𝑃𝐷𝐷8 is an important predictor in the missingness model. 

Figure 30 displays the posterior distribution of the auxiliary variable baseline drinking 

days (𝐷𝐷0). The posterior distribution of 𝐷𝐷0 for the full selection model, horseshoe model, and 

Bayesian LASSO model appear more symmetrical in comparison to Figure 26, with medians 

close to 1.46, 1.13, and 0.83, respectively. In contrast, the spike-and-slab model has a median 

value of 0.10, showing the most substantial shrinkage among all the BVS methods. This model's 

posterior distribution in Figure 30 shows a mixture of two distributions: one centered at zero (the 

"spike") and the other centered at a non-zero value (the "slab"). This unique characteristic is a 

result of the spike-and-slab prior effectively "turning off" the regression coefficient for 𝐷𝐷0 

approximately half of the time, leading to the observed bimodal distribution. 
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In general, all BVS methods led to parameter estimates being shrunk compared to the 

full-selection model. Among the BVS methods, the spike-and-slab approach appeared to be the 

most conservative in terms of model complexity. Specifically, the spike-and-slab posterior 

distribution for the less informative predictors were the closest to zero and had the narrowest 

variance when compared to the horseshoe and Bayesian LASSO methods. In addition, the 

Bayesian LASSO model demonstrated more substantial shrinkage in its regression coefficients 

compared to the horseshoe model.  

In summary, the empirical example aimed to determine if BVS could protect against 

overfitting in a clinical trial with a small sample size. The empirical analysis included one model 

that assumed an MAR process and five model that assume MNAR. Among the MNAR models, 

there were three selection models with different BVS adaptations, a full-selection model, and a 

focus selection model. Remarkably, all MNAR models produced similar estimates for the 

substantive model, while the MAR model produced different estimates for the substantive model 

estimates in comparison. It's important to note that there is no definitive way to choose the true 

model or determine which results are more accurate, as the differences in the results reflect the 

treatment effect under two different assumptions about missing data. 

DISCUSSION 

When missing data is MNAR, it's important for researchers to model the missingness and 

the substantive equation together to avoid biases in parameter estimates and standard errors 

(Little, 2008; Rubin, 1976). One commonly used method for this is selection models, which 

simultaneously model both the missingness and substantive models (Du et al., 2021; Heckman, 

1976, 1979; Michiels et al., 1999). When constructing a missingness model, researchers need to 

consider whether to include predictors that overlap with the substantive analysis. A 
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recommended approach is to remove redundant predictors shared between the two models using 

exclusion restrictions (Collins et al., 2001; Galimard et al., 2018; Sartori, 2003). This can be 

done by using a subset of predictors from the substantive model or by adding unrelated auxiliary 

variables to the missingness model. It's also important not to include too many variables in the 

missingness model to avoid convergence issues (Du et al., 2021; Ibrahim et al., 2005). However, 

specifying and estimating the missingness equation accurately is challenging, especially when 

researchers don't have a solid basis for constructing the missingness model.  

The present study is the first to apply BVS procedures for the purposes of helping to 

establish identification for selection models. Three approaches were investigated: Bayesian 

LASSO, horseshoe prior, and spike-and-slab prior. The goal was to evaluate how well these 

methods can remove unnecessary components from the missingness model, thereby reducing 

biases in the parameters of the substantive model. Custom R functions were developed for 

estimation and analysis using the Bayesian LASSO, horseshoe, and spike-and-slab selection 

models since there is currently no existing software that handles missing data in selection models 

with a BVS adaptation. 

The study examined bias and MSE for true data-generating models that varied the 

complexity of the missingness model. Complexity 4 represented the most complex missingness 

model scenario where every variable from the focal model also appeared in the missingness 

model, while Complexity 3, 2, and 1 represented scenarios with decreasing levels of complexity. 

Considering the focal model parameters, the comparison among BVS methods showed that the 

spike-and-slab prior method had less bias compared to the global-local shrinkage priors 

(horseshoe and Bayesian LASSO) for intercept, slope coefficients, and residual variance 

estimates across all complexity conditions except for Complexity 1, where the advantage was not 
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substantial. However, bias alone does not capture the variation in estimates, so the MSE was also 

examined. The results consistently demonstrated that the spike-and-slab prior outperformed the 

global-shrinkage priors in terms of accuracy (lower MSE) for slope estimates, residual variance, 

and intercept across all complexity conditions. Particularly, the spike-and-slab method produced 

substantially more accurate estimates for residual variance and intercept compared to the global-

local prior methods.  

After selecting the spike-and-slab as the top performer among the three BVS methods, it 

was compared to the MAR model, full-selection model, and the true data-generating model. 

Across complexities 2 to 4, the spike-and-slab model consistently outperformed the competing 

model in terms of bias for regression coefficients, residual variance, and intercept estimates. The 

MSE results indicated that the MAR and spike-and-slab models performed similarly in terms of 

slope estimates across all conditions. This implies that, although the MAR model may be biased, 

it has lower variance (i.e., greater precision) compared to the spike-and-slab model. 

Consequently, in individual samples, the performance of the MAR model is comparable to that 

of the spike-and-slab model for the slope coefficients.  

The comparable performance of the MAR model and the spike-and-slab model can be 

attributed to the bias-variance tradeoff. The MAR model, although biased, is efficient because it 

estimates fewer parameters compared to selection models with or without BVS. Additionally, the 

parameters estimated by the MAR model have strong support from the observed data. On the 

other hand, fitting selection models is challenging, particularly when dealing with datasets 

containing MNAR missing data. The observed data in such cases contains limited information 

about the missingness model parameters, leading to increased noise and imprecision when 

estimating the missingness model. Consequently, selection models usually require a large sample 
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size to stabilize the model estimation, as the limited information becomes sufficient only with a 

substantial sample size. 

The study results also emphasized the dependency of sample size for the performance of 

the MAR and selection models. For instance, in the second row panel of Figure 19, increasing 

the sample size did not improve bias for the MAR model, indicating that the estimator is not 

consistent and does not converge on the population parameter as the sample size increases. 

However, based on the results of this study, we cannot determine whether any of the BVS 

methods would gain an advantage in precision with a larger sample size. This highlights the need 

for further research and investigation into the behavior of BVS methods under different sample 

size conditions. 

Additionally, it is important to highlight that the spike-and-slab model consistently 

outperformed the MAR model in terms of MSE ratio for the residual variance and intercept 

estimates. The current simulation involved a focal model with continuous predictors, where the 

intercept might not have been the primary focus. In a different scenario such as the clinical trial 

analysis in the empirical example, the intercept would represent a critical parameter (e.g., the 

placebo group average). In such cases, the accuracy advantage provided by the spike-and-slab 

model becomes practically significant and could have profound implications for result 

interpretation. 

Limitations 

This study has several limitations, with the first one being the use of a relatively small 

range of sample sizes. It is recommended to have a larger sample size to reduce noise and 

improve precision in selection models. However, in this study, the inclusion of larger sample size 

conditions was not feasible due to computational limitations, which resulted in excessively long 
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running times. Nevertheless, the study's primary objective was to obtain a detailed snapshot of a 

small parameter space rather than to determine the sample size at which BVS methods achieve 

their asymptotic optimal performance. The simulated sample size conditions were realistic for 

many studies where one might apply this method, such as clinical trials. However, the limited 

range of sample sizes used in the study does not allow for a conclusive comparison of the 

performance of the MAR model and the spike-and-slab model under larger sample sizes. Future 

research should aim to replicate the study with larger sample sizes to assess whether the MAR 

model remains comparable to the spike-and-slab model or if the latter provides more precise 

slope coefficients under such conditions.  

Another limitation is that the selection model only accounted for missingness in the 

outcome variable, and missing data was not generated for any of the covariates. While having 

missing data only on the outcome variable can be representative of certain studies (e.g., clinical 

trials with complete baseline measures and missing dependent variable), it does not reflect the 

majority of studies where missing data is present in both covariates and outcome measures. 

Future studies should include missing data in the predictor variables, as this would introduce 

additional biases and uncertainties and would likely require a larger sample size to accommodate 

the increased noise.  

Moreover, the study has a limitation in terms of the generalizability of the results due to 

several fixed parameters. Both the number of predictors in the focal and missingness models and 

the effect sizes of these predictors remained constant throughout the simulation. Additionally, the 

missing data rate was also fixed at a specific value. Furthermore, the correlation among 

predictors was limited to only two values, and a single auxiliary variable was used in the 

missingness model. Lastly, the simulation solely focused on continuous variables, excluding 
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other variable types. While these fixed values facilitated controlled comparisons and evaluations, 

they may not fully capture the variability and complexity encountered in real-world scenarios. 

Due to time constraints and computational intensity, the study prioritized exploring specific 

simulation conditions over examining a broader range of factors such as different numbers of 

predictors, variable types, effect sizes, and missing data rates. As a result, the findings 

applicability to real-world situations may be limited. 

Future Studies 

The findings from this study lay the groundwork for several potential directions of future 

research. A key finding from the simulation was that the spike-and-slab model exhibited lower 

bias and greater precision when estimating the intercept compared to all other methods, including 

the MAR model. However, it is worth noting that the estimated intercept for the focal model was 

not the primary focus of interest in this study. An important direction for future investigation 

would be to simulate a focal model where the intercept holds significance, similar to the 

empirical example presented. In such an analysis, the intercept would represent the control group 

average, and the slope would indicate the mean difference. If the intercept estimates show 

substantial improvement with BVS, the implication for the selection model with a BVS 

adaptation could be quite different. The same holds true for other models where mean parameters 

are of primary interest, such as growth models. Therefore, conducting a future study that 

emphasizes the intercept as a crucial parameter of the population model would be highly 

valuable in further understanding the performance of BVS in such scenarios. 

Another promising area for future research is to assess how well the BVS methods 

perform under various hyperparameters. For the current simulation, I used recommended 

hyperparameters from existing literature as an initial step to explore BVS adaptation to selection 
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models. Varying the prior hyperparameters was not given as much priority as other aspects of the 

design. However, it is vital for future investigations to explore diverse hyperparameter settings in 

order to evaluate the sensitivity and robustness of the BVS method. In both the spike-and-slab 

model used in the simulation and the empirical example study, the hyperparameter 𝑤, which 

represents the probability of predictor inclusion, was set to 1/𝑝, where 𝑝 is the total number of 

predictors. Nevertheless, researchers have the flexibility to select any value for 𝑤 based on their 

prior beliefs or with the goal of improving convergence. To conduct a comprehensive 

investigation, future studies should simulate a range of liberal and conservative probabilities of 

predictor inclusion, as optimizing the hyperparameters holds the potential to enhance the 

performance and convergence of all three BVS methods. 

Another promising area for future research involves developing criteria to assess 

convergence in selection models with BVS adaptations. Although PSR is a widely used 

technique for evaluating the convergence of MCMC simulations, it may not be perfectly suitable 

for Bayesian variable selection methods. When applying these methods, some coefficients may 

be repeatedly pushed towards zero, leading to higher PSR values than the desired threshold, even 

if the chains have already converged to the same stable distribution. This happens because the 

within-chain variation of the parameter of interest becomes very small due to the coefficient 

taking on near-constant values within a very small range. Thus, even small between/mean 

difference variation among chains could look large relative to attenuated within-chain variation 

that occurs with BVS. Future studies can focus on identifying and assessing alternative 

convergence diagnostics specifically tailored to these types of models. This is a practical issue 

for users of these approaches as well as for methodologists studying BVS methods.  
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The focus of this study's simulation was to achieve exclusion criteria by eliminating 

overlapping variables from both the missingness model and the focal model. However, in certain 

situations, such as the empirical analysis presented in the previous section, the focal model might 

consist of only a few variables. Consequently, constructing a missingness model would require 

selecting from a substantial pool of candidate auxiliary variables that are not part of the focal 

analysis. This concept was demonstrated in a smaller scale through the empirical analysis 

example.  

Further investigations should explore scenarios where researchers have access to a large 

pool of candidate auxiliary variables that could be used as predictors in the missingness model.  

The primary focus of this future study should be to assess whether BVS can satisfy the necessary 

exclusion restriction criteria by excluding or shrinking predictors from an expanded list of 

candidate variables, which includes type A, B, and C auxiliary variables (Collins et al., 2001). 

Examining BVS under high-dimensional conditions may reveal additional distinctions between 

BVS methods. For instance, prior studies have indicated that sampling from posteriors in high-

dimensional regression cases requires computationally intensive procedures for the discrete 

variation of the spike-and-slab prior as opposed to global-local shrinkage priors (Bhadra et al., 

2017; Mitchell & Beauchamp, 1988). Additionally, another study has demonstrated that the 

horseshoe prior outperforms Bayesian LASSO in high-dimensional settings (Yamaguchi & 

Zhang, 2023). Consequently, it is plausible that the outcomes under such conditions could differ 

significantly from those obtained in the current study.  

Another important avenue for future research involves analyzing multi-level data 

structures by employing BVS-adapted selection models to handle missing data. Many real-world 

datasets exhibit hierarchical structures (e.g., a clinical trial where repeated measurements are 



 

 150 

obtained from each participant). In such contexts, MNAR models are commonly employed, 

especially in longitudinal studies (Enders, 2011; B. Muthén et al., 2011). The BVS methods we 

examined here all extend to the multilevel context without substantial modification. Thus, 

extending BVS to linear mixed models could be a useful future contribution. 

Final Summary 

The objective of the study was to examine the effectiveness of BVS procedures in 

establishing identification for selection models when dealing with MNAR data. Three BVS-

adapted selection models, namely Bayesian LASSO, horseshoe prior, and spike-and-slab prior, 

were compared. The study also compared the spike-and-slab model to existing methods like an 

MAR model and full-selection model. Results indicated that the spike-and-slab prior consistently 

outperformed other BVS methods in terms of accuracy and bias for slope estimates, residual 

variance, and intercept. When comparing the full-selection, MAR, and spike-and-slab models, 

the MSE results showed that the spike-and-slab model performed better than the full-selection 

model across all parameters. The MAR and spike-and-slab models had similar performance for 

slope estimates, but the spike-and-slab consistently outperformed the MAR model in estimating 

residual variance and intercept. 

The comparable performance of the MAR and spike-and-slab models can be attributed to 

the bias-variance tradeoff. The MAR model is biased but efficient because it estimates fewer 

parameters compared to selection models and those parameters estimates have a strong support 

from the observed data. On the other hand, the spike-and-slab model outperformed the full-

selection model, even when the full-selection model matched the true data-generating model. 

The adaptation of BVS to selection models showed promising results, particularly the spike-and-

slab method, which demonstrated unbiased estimates under most conditions. As it was a first 
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foray into this topic, this study was necessarily limited in scope. Nevertheless, the results provide 

a foundation for numerous future studies on this topic. 
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Tables and Figures 

 

 

Table 1       

Convergence Rates 

 N = 100 N = 200 N = 400 

 C.R B.I. C.R B.I. C.R B.I. 

 Complexity 4 

BLASSO 42% 120,000 44% 160,000 54% 220,000 

Horseshoe prior 41% 120,000 42% 160,000 43% 220,000 

MAR model 97% 6,000 100% 5,000 100% 4,000 

Full selection  20% 170,000 27% 220,000 37% 280,000 

Spike-and-slap 59% 80,000 54% 140,000 35% 220,000 

True model 20% 170,000 28% 220,000 37% 280,000 

 Complexity 3 

BLASSO 41% 120,000 46% 160,000 57% 220,000 

Horseshoe prior 40% 120,000 40% 160,000 48% 220,000 

MAR model 97% 6,000 100% 5,000 100% 4,000 

Full selection  20% 170,000 27% 220,000 34% 280,000 

Spike-and-slap 60% 80,000 54% 140,000 46% 220,000 

True model 22% 170,000 28% 220,000 36% 280,000 

 Complexity 2 

BLASSO 42% 120,000 46% 160,000 57% 220,000 

Horseshoe prior 42% 120,000 44% 160,000 48% 220,000 

MAR model 98% 6,000 100% 5,000 100% 4,000 

Full selection  20% 170,000 27% 220,000 34% 280,000 

Spike-and-slap 60% 80,000 56% 140,000 46% 220,000 

True model 28% 170,000 29% 220,000 36% 280,000 

 Complexity 1 

BLASSO 42% 120,000 47% 160,000 54% 220,000 

Horseshoe prior 45% 120,000 48% 160,000 50% 220,000 

MAR model 97% 6,000 100% 5,000 100% 4,000 

Full selection  17% 170,000 22% 220,000 23% 280,000 

Spike-and-slap 66% 80,000 68% 140,000 71% 220,000 

True model 31% 170,000 31% 220,000 36% 280,000 

Note. C.R. = convergence rate, B.I. = burn-in iterations. 
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Table 2     

Sample Characteristics at Baseline by Treatment Conditions 

Variable 
Varenicline + Placebo 

(n=82) 

Varenicline + 

Naltrexone (n=83) 

Demographic Characteristics  

 Mean SD Mean SD 

Age 42.07 11.75 41.24 12.42 

 N % N % 

Gender     

Male 50 60.98 52 62.65 

Female 32 39.02 31 37.35 

Covariates Characteristics    

  Mean SD Mean SD 

Cotinine (ng/ml) 5.37 1.49 5.50 1.14 

FTND Score 4.61 2.35 4.64 2.26 

Drinking Days 19.63 7.92 20.71 8.08 

Drinks per Drinking Day 6.44 3.76 6.50 4.65 

Note. FTND = Fagerström Test of Nicotine Dependence 

 

 

 

 

 

 

Table 3     

Substantive Model Estimates 
 

Intercept TX Effect 

 Median (SE) 95% CI Median (SE) 95% CI 

BLASSO -0.40 (0.10) -0.59, -0.20 -0.26 (0.10) -0.46, -0.07 

Horseshoe prior -0.40 (0.09) -0.59, -0.20 -0.26 (0.10) -0.46, -0.07 

MAR model -0.03 (0.09) -0.20, 0.14 -0.13 (0.09) -0.30, 0.04 

Full selection -0.40 (0.10) -0.60, -0.20 -0.26 (0.10) -0.46, -0.06 

Spike-and-slap -0.39 (0.10) -0.59, -0.19 -0.26 (0.10) -0.46, -0.07 

Focused selection -0.41 (0.10) -0.61, -0.21 -0.27(0.10) -0.47, -0.08 

Note. 
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Figure 1  

Complexity 4 Percent Bias for BVS Methods 
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Figure 2 

Complexity 4 Standardized Bias for BVS Methods 

 
 

 

30% Missing

X
 co

rr =
 0

.1
 O

b
s =

 1
0

0
X

 co
rr =

 0
.1

 O
b

s =
 4

0
0

X
 co

rr =
 0

.4
 O

b
s =

 1
0
0

X
 co

rr =
 0

.4
 O

b
s =

 4
0

0

−1.0 −0.5 0.0 0.5 1.0

resvar

X6

X5

X4

X3

X2

X1

Int

resvar

X6

X5

X4

X3

X2

X1

Int

resvar

X6

X5

X4

X3

X2

X1

Int

resvar

X6

X5

X4

X3

X2

X1

Int

Standardized Bias

Blasso Hshoe SS



 

 156 

Figure 3 

Complexity 4 MSE Ratios for BVS Methods 
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Figure 4  

Complexity 3 Percent Bias for BVS Methods 
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Figure 5 

Complexity 3 Standardized Bias for BVS Methods 
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Figure 6 

Complexity 3 MSE Ratios for BVS Methods 
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Figure 7 

Complexity 2 Percentage Bias for BVS Methods 
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Figure 8 

Complexity 2 Standardize Bias for BVS Methods 
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Figure 9 

Complexity 2 MSE ratios for BVS Methods 
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Figure 10  

Complexity 1 Percentage Bias for BVS Methods 
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Figure 11 

Complexity 1 Standardized Bias for BVS Methods 
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Figure 12 

Complexity 1 MSE Ratios for BVS Methods  
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Figure 13  

Complexity 4 Percentage Bias for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 14 

Complexity 4 Standardize Bias for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 15  

Complexity 4 MSE Ratios for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 16 

Complexity 3 Percent Bias for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 17 

Complexity 3 Standardized Bias for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 18 

Complexity 3 MSE Ratios for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 19 

Complexity 2 Percent Bias for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 20 

Complexity 2 Standardized Bias for Spike-and-Slab Prior and Standard Missing Data Methods  
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Figure 21 

Complexity 2 MSE Ratios for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 22 

Complexity 1 Percent Bias for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 23 

Complexity 1 Standardized Bias for Spike-and-Slab Prior and Standard Missing Data Methods  
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Figure 24 

Complexity 1 MSE Ratios for Spike-and-Slab Prior and Standard Missing Data Methods 
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Figure 25  

Posterior Distribution of the Missingness Model Intercept 

 
 

 

 

 

Figure 26  

Posterior Distribution of Drink per Day at 8th Week 
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Figure 27  

Posterior Distribution of Treatment Condition 

 
 

 

 

 

Figure 28  

Posterior Distribution of Drinks per Drinking Day at Baseline 
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Figure 29  

Posterior Distribution of Cotinine at Baseline 

 
 

 

 

 

 

Figure 30  

Posterior Distribution of Drinking Days at Baseline 
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Figure 31  

Posterior Distribution of Age 

 
 

 

 

 

 

 

Figure 32  

Posterior Distribution of Gender 
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Figure 33  

Posterior Distribution of Nicotine Dependence 
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