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Abstract

As the scale of cosmological surveys increases, so does the complexity in the analyses. This complexity can often make it difficult to derive
the underlying principles, necessitating statistically rigorous testing to ensure the results of an analysis are consistent and reasonable. This is
particularly important in multi-probe cosmological analyses like those used in the Dark Energy Survey and the upcoming Legacy Survey
of Space and Time, where accurate uncertainties are vital. In this paper, we present a statistically rigorous method to test the consistency
of contours produced in these analyses, and apply this method to the Pippin cosmological pipeline used for Type Ia supernova cosmology
with the Dark Energy Survey. We make use of the Neyman construction, a frequentist methodology that leverages extensive simulations to
calculate confidence intervals, to perform this consistency check. A true Neyman construction is too computationally expensive for supernova
cosmology, so we develop a method for approximating a Neyman construction with far fewer simulations. We find that for a simulated data-set,
the 68% contour reported by the Pippin pipeline and the 68% confidence region produced by our approximate Neyman construction differ
by less than a percent near the input cosmology, however show more significant differences far from the input cosmology, with a maximal
difference of 0.05 in ΩM , and 0.07 in w. This divergence is most impactful for analyses of cosmological tensions, but its impact is mitigated
when combining supernovae with other cross-cutting cosmological probes, such as the Cosmic Microwave Background.

Keywords: cosmological parameters, type Ia supernovae, astrostatistics

1. Introduction

For much of the history of supernova cosmology, parameter
estimation was performed via Bayesian methods which max-
imise the likelihood by minimising a χ2 function between the
observed distance modulus of type Ia supernovae (SNe Ia) and
the distance modulus predicted by cosmological theory.

This method of parameter estimation is shown in Equation
4 of Riess et al. (1998) and Equation 4 of Perlmutter et al.
(1999), which detail the discovery of the accelerated expansion
of the Universe using type Ia supernovae (SNe Ia).

Since these early efforts, parameter estimation has expanded
in complexity to account for additional systematic uncertain-
ties (Conley et al., 2011), and to leverage large simulated
data-sets to correct for contamination of core collapse super-
novae (Kunz et al., 2012), and observational biases (Kessler
& Scolnic, 2017). This increased complexity is facilitated by
cosmological pipelines to perform accurate parameter estima-
tion. Due to the complex structure of modern cosmological
pipelines, it is no longer possible to analytically define a likeli-
hood function which describes the analysis being performed
by these pipelines. As such, it is difficult to rigorously test the

final cosmological contours produced by these cosmological
pipelines, and to validate that the reported uncertainties are
accurate.

There have been a number of attempts at developing al-
ternative Bayesian frameworks which do not suffer from a
non-analytic likelihood function. One such example is Ap-
proximate Bayesian Computation (ABC; Jennings et al., 2016;
Jennings & Madigan, 2017), which uses realistic simulations
to perform likelihood free parameter inference, at the cost
of dramatically increased computation time due to the large
number of simulations required. Another alternative Bayesian
framework is Bayesian hierarchical models (BHM), which was
implemented for supernova cosmology in (Steve; Hinton et al.,
2019), (UNITY; Rubin et al., 2015), and (BayeSN; Mandel
et al., 2021). BHMs utilise multiple layers of connected pa-
rameters, allowing for a more complex analytical likelihood
function to be defined.

Though these alternative frameworks have significant ad-
vantages over the χ2 minimisation methods, there has not
been wide-spread adoption of these techniques, and many
modern cosmological analyses, such as the Dark Energy Sur-
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2.1 Simulating a Supernova Data-set 2 SIMULATION & ANALYSIS WITH PIPPIN

vey (DES; Dark Energy Survey Collaboration et al., 2016),
PANTHEON+ (Brout et al., 2022), and simulations of the
upcoming Legacy Survey of Space and Time (LSST; LSST
Science Collaboration et al., 2009; Sánchez et al., 2022; Mitra
et al., 2022) still use the simpler χ2 method.

As modern analyses still use cosmological pipelines which
rely on the χ2 methodology, it is important to rigorously test
these cosmological pipelines. While each individual compo-
nent of the SN Ia analysis pipeline is well-tested (Lasker et al.,
2019; Kessler et al., 2019b; Popovic et al., 2021; Toy et al.,
2023; Taylor et al., 2023; Kelsey et al., 2023; Vincenzi et al.,
2023), a complete end-to-end consistency check is still neces-
sary to understand the effects and assumptions that propagate
between each individual step of the pipeline, and account for
any systematic issues that may arise.

In this paper, we present a new methodology to validate
the reported cosmological contours of current pipelines. For
this effort, we utilize Pippin (Hinton & Brout, 2020), which
automates a number of key components of the SuperNova
ANAlysis framework (SNANA; Kessler et al., 2009) used in
DES, LSST’s Dark Energy Survey Collaboration, and PAN-
THEON+. Pippin and SNANA provide substantial function-
ality, including simulations, light-curve fitting, photometric
classification training and evaluation, SNe Ia standardization
and bias corrections, and cosmological fitting.

Previous efforts to construct a confidence region include
those published in Brout et al. (2019a), who used 200 simulated
samples to demonstrate that the distribution of best fitting
cosmologies produced by their pipeline is consistent with the
average of many cosmological contours, which they took as
an estimate of the confidence region (CR). This estimate of
the CR, while informative, is not statistically rigorous.

To rigorously estimate the confidence region, we make use
of the Neyman construction (Neyman, 1937), a Frequentist
methodology that leverages simulations to produce a confi-
dence region. The Neyman construction does not assume the
CR is Gaussian or elliptical, and is robust to small sample sizes.
We compare the Frequentist confidence region produced from
the Neyman construction with the Bayesian contour produced
by our cosmological pipeline in order to test for consistency.
Producing a CR and comparing it to cosmological contours is
a powerful, rigorous, and independent method of evaluating
the output of a cosmological pipeline.

In Section 2 we describe the formalism employed by the
Pippin cosmological pipeline. Section 3 describes our Neyman
construction methodology. Finally, the results of applying our
methodology to the Pippin cosmological pipeline are presented
in Section 4.

2. Simulation & Analysis with Pippin

Here we briefly describe the simulation of realistic data-sets of
spectroscopically confirmed SN Ia, and the analysis procedure
used to produce a cosmological contour. Throughout this
analysis we make use of SNANA for simulation and analysis,
integrated into the Pippin pipeline.

2.1 Simulating a Supernova Data-set

We use the SALT2 (Guy et al., 2007) framework within SNANA
for simulating SNe Ia. This framework models type Ia super-
novae with five parameters: redshift, day of peak rest-frame
B-band brightness, stretch, color, and apparent peak brightness
in rest-frame B-band. SNANA produces simulated observed
fluxes by randomly selecting these model parameters from
associated probability distributions. SNANA also applies host-
galaxy extinction, k-correction, and galactic extinction. For
this analysis we use the SALT2 model produced by Taylor
et al. (2021), which was trained on a sample of 420 SNe Ia
spanning a redshift range of ∼0.1 to ∼0.9 with improved zero-
point calibration offsets and Milky Way extinction compared
to previous SALT2 models.

2.1.1 Bias Correction Simulations

In addition to data-like simulations, we also simulate much
larger data-sets to correct observational biases. As part of this
analysis, we investigate the impact of the cosmology on these
bias corrections. Our principal analysis uses only a single bias
correction simulation with the input cosmology set to our
nominal input cosmology (ΩM = 0.3, w = –1.0), but we repeat
our analysis using many bias correction simulations, with input
cosmologies equal to the input cosmology of the data-set they
are correcting, to see if this affects the Neyman construction.

2.2 Analysis

The supernovae in each simulated data-set are fit to determine
the SALT2 parameters: amplitude (x0), stretch (x1), and colour
(c). From here, the distance modulus of each SN Ia can be
computed via the Tripp equation (Tripp, 1998)

µ = mB + αx1 – βc + M – ∆µbias (1)

Hereα andβ are global stretch and colour nuisance parameters,
M is a global offset, and ∆µbias = µ – µtrue is a distance bias
correction, where µtrue is the true distance modulus.

Pippin makes use of the BEAMS with Bias Correction
(BBC; Kessler & Scolnic, 2017) framework to produce a Hub-
ble Diagram (HD) that has been corrected for both selection
effects and contamination. BBC uses the detailed simulations
described in Section 2.1.1 alongside the BEAMS (Kunz et al.,
2012) method to correct for both distance biases, contami-
nation, and selection effects (Kessler et al., 2019a). It then
uses a cosmology-independent method (Marriner et al., 2011,
SALT2mu;) to fit for global nuisance parameters and standard-
ise the SNe Ia magnitudes.

In order to fit α, β, and M, BBC adopts the likelihood
L =

∏N
i=1 Li where

Li = PIa,iDIa,i + (1 – PIa,i)DCC,i (2)

Here PIa,i is the photometric classification probability for the
ith supernova to be an SN Ia. This is usually calculated via
a photometric classifier such as SuperNNova (Möller & de
Boissière, 2020), or Scone (Qu et al., 2021), however for our
analysis we do not simulate contamination, so PIa,i = 1. DIa,i
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2 SIMULATION & ANALYSIS WITH PIPPIN 2.3 Producing an experiment data-set

encodes the influence of SNe Ia on the likelihood, including
corrections for observational biases in the data-set. Details of
DIa,i are presented in Kessler & Scolnic (2017). The DCC,i com-
ponent encodes the effects of contaminants; however, since
our simulations are contaminant free, it is unimportant for this
analysis.

The end result of the BBC framework is a redshift-binned
HD. BBC can also provide an unbinned HD which Brout et al.
(2021) shows can result in smaller systematic uncertainties, but
is more computationally expensive. Since our analysis only
includes statistical uncertainties, we gain no benefit from using
an unbinned HD, therefore we only use the default, binned
HD.

This binned HD is passed to a cosmological fitter to pro-
duce the final cosmological contours. In this analysis we make
use of WFit, which measures a χ2 likelihood over a grid within
the parameter space. WFit has the advantage of being much
faster than other methods, although is only suitable for simple
test cases such as the one used in this paper, and not necessarily
suitable for final survey cosmological analysis. We allow the pa-
rameter space of ΩM to vary below 0, something which is not
usual for cosmological analyses, as our analysis requires WFit
to explore large sections of the ΩM , w parameter space, and
we do not wish to artificially truncate the likelihood surface
we produce.

2.3 Producing an experiment data-set

Our methodology can be used to validate the contour pro-
duced by any cosmological pipeline, and is not dependent on
the details of the data-set investigated by the cosmological
pipeline. As such, we test our methodology on a simple, sim-
ulated dataset which mimics the 3 year DES data-set (Brout
et al., 2019b), including the cadence, spectroscopic selection,
and observational noise (D’Andrea et al., 2018) of this data-set.
We assume a flat, cold dark matter (wCDM) cosmology with
H0 = 70km/s/Mpc, ΩM = 0.3, and w = –1.0. The DES 3 year
data-set includes a previously released low-z sample from sev-
eral sources. We simplify the low-z simulation by generating a
DES-like sample for 0.0 ≤ z ≤ 0.08 with the same statistics as
the low-z sample. Additionally, we only simulate SNe Ia and
do not consider contamination from core-collapse supernovae,
so that we can keep our analysis as simple as possible. The true
DES data-set includes data from a variety of telescopes, as well
as misclassified core-collapse SNe, so if our methodology were
to be used to test the DES analysis, these details will need to
be included in all simulations. The redshift distribution of our
DES and low-z simulated sample is presented in Figure 1. An
example of a simulated lightcurve is presented in Figure 2.

We analyse this simulated data-set with Pippin in order
to produce the cosmological contour that we aim to validate
(shown in Figure 3), and to calculate the best fitting cosmology:

Ωbest
M = 0.32+0.054

–0.075

wbest = –1.00 ± 0.16
(3)

Figure 1. The redshift distribution of the simulated DES sample and
simulated low-z sample.

Figure 2. An example of a simulated lightcurve in our simulated sample
which lies at z = 0.4.

Figure 3. The cosmological contour produced by Pippin for our simu-
lated data-set. The aim of our methodology is to test the consistency of
this contour. The central panel shows the 2-D 68% and 95% contours,
whilst the top and right panel show the marginalised, 1-D contour for
ΩM and w respectively. Here Ωbest

M = 0.320+0.054
–0.075 and wbest = –1.00 ± 0.16
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3.1 Calculating the percentile contour 3 METHODS

3. Methods

Here we describe our methodology for estimating the confi-
dence region of a cosmological data-set using Neyman con-
struction. To aid the reader, a glossary of terms used through-
out is provided in Table 1.

Table 1. A glossary of terms used in our methodology, which are defined
throughout the text

Parameter Description

Ωbest
M , wbest The best-fitting output cosmology for our experiment

data-set. Described in Section 2.3.

Ω′
M , w′ A strategically selected input cosmology from which

150 realisations will be drawn. Described in Sec-
tion 3.1.

Ω⃗M , w⃗ A distribution of 150 best-fitting cosmologies, pro-
duced by processing the 150 realisations of Ω′

M , w′

with Pippin. Described in Section 3.1.

w∗(ΩM ) A one dimensional function that approximates Ω⃗M ,
w⃗. Found by fitting a Gaussian process through Ω⃗M ,
w⃗. Described in Section 3.1.1.

For a given input cosmology, the Neyman construction
provides a prescription for using simulations to calculate the
percentile contour, or the boundary of a confidence region,
that input cosmology lies on. By calculating these percentile
contours for a grid of input cosmologies, the confidence region
can be estimated as the set of input cosmologies which lie on
percentile contours less than or equal to the desired confidence
level. The extensive compute time of supernova simulations
makes it difficult to densely sample the parameter space, so
we instead create an approximate Neyman construction by
strategically choosing a small number of input cosmologies at
representative locations on the 68% contour.

In Section 3.1 we describe how to calculate the percentile
contour for a single cosmological input. In Section 3.2 we
describe how we find cosmological inputs which lie on the
68% percentile contour, and how we estimate the confidence
region.

3.1 Calculating the percentile contour

To calculate the percentile contour at any given cosmology
(Ω′

M , w′, which as noted above is chosen to lie at representa-
tive locations of the 68% contour), we simulate 150 SNe Ia
data-sets with Ω′

M , w′ as the true cosmological input, using
the procedure described in Section 2.3. Each data-set is pro-
duced with a different random seed, allowing for statistical
fluctuations between realisations. We analyse each of these
data-sets with Pippin to produce a distribution of best fitting
cosmologies (Ω⃗M , w⃗) in the space of measured ΩM and w.
The Neyman construction predicts that the percentile contour
for Ω′

M , w′ is the percentage of these best fitting cosmologies
encompassed by a coverage ellipse of this distribution. The
coverage ellipse is defined to be centered on Ω′

M , w′ and to
intersect Ωbest

M , wbest, which were calculated in Section 2.3,
Equation 3. This ellipse represents the probability of a data-set
with true cosmology Ω′

M , w′ having a best fitting cosmology

equal to Ωbest
M , wbest. Figure 4 shows an example of this calcu-

lation for Ω′
M = 0.188, w′ = –0.783, which lies at one extreme

end of the 68% contour we are testing. Figure 5 presents an
example Hubble Diagram for both Ωbest

M , wbest and Ω′
M , w′.

Figure 4. An example of using simulations to calculate the percentile
contour for Ω′

M , w′, where Ωbest
M , wbest represent the best fitting cos-

mology for our test data-set. We simulate 150 data-sets using Ω′
M , w′

as the input, and process each data-set with Pippin to find the best
fitting cosmology. The coverage ellipse is defined to intersect Ωbest

M ,

wbest. The percentile contour for Ω′
M , w′ is the percentage of best

fitting cosmologies contained within this coverage ellipse.

Figure 5. Top Panel: Hubble Diagram for Ωbest
M = 0.3, wbest = –1.0 and

Ω′
M = 0.188, w′ = –0.783. This includes both simulated distance moduli

and the analytic distance moduli based on the input cosmology. Bottom
Panel: Difference between the analytic distance moduli of Ωbest

M , wbest

and Ω′
M , w′.

3.1.1 Fitting the coverage ellipse

The distribution of best fitting cosmologies about Ω′
M , w′

usually follows the "banana" distribution that is typical of su-
pernova cosmology, and is due to the inherent degeneracy
between ΩM and w. This contour shape makes it difficult to
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3 METHODS 3.2 Estimating the confidence region

determine an accurate coverage ellipse around this distribu-
tion. To determine a coverage ellipse, we first fit a Gaussian
Process (GP) through Ω⃗M , w⃗ to produce the one-dimensional
function w∗(ΩM ), which approximates w as a function of ΩM
in the plane of Ω⃗M , w⃗. Next we subtract w∗(Ω⃗M ) from w⃗ to
transform the distribution of best fitting cosmologies into a
more elliptical distribution. We fit a coverage ellipse to this
transformed distribution which is centered on Ω′

M , w′ and
intersects Ωbest

M , wbest.
The percentile contour for Ω′

M , w′ is then the percentage
of the best fitting cosmologies covered by this coverage ellipse.
Figure 6 shows an example of this transformation and ellipse
fitting technique for Ω′

M = 0.188, w′ = –0.783, the same
cosmology as shown in Figure 4.

The uncertainty in the computed percentage is estimated
by performing 1000 bootstrap resamples of the distribution of
best fitting cosmologies, and typically results in an uncertainty
in the percentile contour of ±4%.

Figure 6. Top panel: A GP fit (w∗(Ω⃗M )) to the best fitting output
cosmologies of the 150 realisations with input cosmology: Ω′

M =
0.188, w′ = –0.783. Bottom panel: The same distribution of maximum
likelihood output cosmologies, transformed by subtracting w∗(Ω⃗M ) from
w⃗. This transformed distribution is more elliptical than the original
distribution, and is more appropriate for fitting coverage ellipses. We
show one such coverage ellipse in the bottom panel, scaled to intersect
with the experiment cosmology input. In this example 46% of the
simulations are covered by the ellipse, so this Ω′

M , w′ lies on the 46%
percentile contour.

3.2 Estimating the confidence region

We now have a statistically rigorous method of calculating
the percentile contour over the cosmological parameter space.
Using this method, we could compute a Neyman construc-
tion by computing the percentile contour across a grid that
covers the cosmological parameter space, and from this deter-
mine a confidence region. However, each evaluation of the
percentile contour requires 150 simulated data-sets, which is
computationally expensive. To more efficiently determine a
confidence region, we develop an approximate Neyman con-
struction method which requires far fewer simulations. Instead
of evaluating the percentile contour over the entire cosmologi-
cal parameter space, we use the bisection method to iteratively

find the input cosmologies that lie on the 68% percentile con-
tour. These cosmologies define the edge of the 68% confidence
region.

We first calculate the percentile contour for cosmologies
at several representative locations on the 68% contour. We
select two input cosmologies which are at the furthest extent
of the 68% contour, and two input cosmologies which are
at the closest region of the 68% contour to Ωbest

M , wbest. This
enables us to probe the consistency of the 68% contour across
its entire span. The cosmological inputs used in defining the
approximate Neyman construction, and the percentile contour
for each input are shown in Figure 7, and detailed in Table 2.
Inputs 1a, 1b, 1c, and 1d were chosen to lie on the 68% contour
of the original experiment cosmology posterior. A second set
of inputs (2a, 2b, 2c, and 2d) were chosen to compensate for
how far the previous set of coverage ellipses differed from 68%
coverage, as described below.

Figure 7. The input ΩM and w values for the experiment (Ωbest
M , wbest)

and the approximate Neyman construction (Ω′
M , w′).

If the input cosmologies lie at a percentile contour of < 68%
confidence, we select a new cosmology further from Ωbest

M ,
wbest, and conversely select a cosmology closer to Ωbest

M , wbest

if the initial percentile contour is > 68% confidence. This
allows us to find an input cosmology which lies on a percentile
contour within one standard deviation of 68%, as measured by
bootstrap resampling. Though the iterative method typically
converges to a percentile contour within one standard devia-
tion of 68% within 2 or 3 iterations, converging to exactly 68%
would take significantly more iterations. As such, once we are
within one standard deviation of 68%, we linearly interpolate
or extrapolate to find an input cosmology which lies exactly
on the 68% percentile contour.

Figure 8 shows this approximate Neyman Construction
technique for Ω′

M = 0.188, w′ = –0.783, the same cosmology
shown in Figures 4 and 6. This cosmology was found to lie
on the 46% ± 4% percentile contour, and after iteration the
cosmology Ω′

M = 0.145, w′ = –0.725 was found to lie on the
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4.1 Effect of Bias Correction Input Cosmology 4 RESULTS

65% ± 4% percentile contour, which is within one standard
deviation of 68%. We linearly extrapolated from these two
input cosmologies to find that Ω′

M = 0.138, w′ = –0.716 lay
on the 68% percentile contour. Figure 9 shows the coverage
ellipses fit to each cosmological input.

Figure 8. Example of finding the edge of the 68% confidence region.
Ω′

M , w′ 1a was defined with an input cosmology on the extreme end
of the Pippin 68% contour, and was found to lie on the 46% ± 4%
percentile contour. Ω′

M , w′ 2a was found iteratively, and lies on the
65% ± 4% percentile contour. Linearly extrapolating from these two
cosmological inputs gives us 68% Ω′

M , w′.

Table 2. The input ΩM and w values for the experiment and approxi-
mate Neyman construction input cosmologies, as well as the percentile
contour each cosmological input lies on.

Cosmology Input Input Percentile

Input ΩM w Contour

Experiment 0.3 -1.0 -

1a 0.188 -0.783 46% ± 4%

1b 0.38 -1.25 74% ± 4%

1c 0.307 -0.977 47% ± 4%

1d 0.292 -1.02 62% ± 4%

2a 0.145 -0.725 65% ± 4%

2b 0.37 -1.204 66% ± 4%

2c 0.3075 -0.9765 67% ± 4%

2d 0.2917 -1.0205 70% ± 4%

4. Results

In the previous section we describe how we computed the
location of the 68% confidence region at four strategically
selected cosmological inputs in the ΩM – w plane using an
approximate Neyman construction. The results are presented
in Table 3 and shown in Figure 10.

We see the largest difference between the experiment cos-
mology 68% contour and the 68% confidence region in the
first input cosmology, which lies in the top left quadrant of
the cosmological contour. We find a shift of ∼0.05 in ΩM and
a shift of ∼0.07 in w. The second input cosmology, which
lies in the bottom right quadrant has a shift of ∼0.007 in ΩM
and ∼0.03 in w. These input cosmologies lie at the furthest
extent of the 68% cosmological contour from Ωbest

M and wbest.
In contrast, the third and fourth input cosmologies, which lie
much closer to the experiment input cosmology, have a shift
of ≲0.001 in both ΩM and w. The increase in discrepancy as
we probe parameter space that is further from the experiment
input cosmology is expected, as the BBC bias correction is
only performed at a single point in cosmological parameter
space, the best-fitting cosmology. The bias correction de-
pends on the input cosmology, thus the BBC bias correction
produces a contour which is accurate close to the best-fitting
cosmology, but induces an offset in the contour at parameter
space further from the best-fitting cosmology.By contrast, our
Neyman construction method applies this bias correction in a
cosmologically dependent manner across the entire parameter
space, removing this offset.

This offset is important to consider, especially when com-
bining supernova contours with other cosmological probes
such as the cosmic microwave background. Fortunately, it
is the region of posterior space close to the input cosmology
which overlaps with the contours of other cross-cutting probes.
As such this offset is unlikely to significantly affect multi-probe
cosmological analyses.

Where this offset could be significant is in the investiga-
tion of cosmological tensions, where accurate uncertainties
of the tails are vital to successfully assess the significance of
the tension. In these cases, it may be useful to use a method
like our approximate Neyman construction to produce more
accurate and statistically rigorous measure of the uncertainty
in a cosmological fit.

Table 3. Comparison between the 68% confidence region determined
from our approximate Neyman construction, and the 68% contour of
the experiment cosmology. The absolute difference is the difference
between the cosmologies at the edge of the 68% contour produced by
Pippin, and the cosmologies at the edge of the 68% confidence region
produced by our approximate Neyman construction.

Cosmology Ω′
M w′ ΩM Absolute w Absolute

Input Difference Difference

1 0.138 -0.716 0.05 0.07

2 0.373 -1.216 0.007 0.03

3 0.308 -0.976 0.001 0.001

4 0.2918 -1.02 0.0002 0.0

4.1 Effect of Bias Correction Input Cosmology

We repeat our analysis with bias correction simulations that use
a cosmology that is nearer to the data-set they are attempting
to correct, rather than a single bias correction shared amongst

6



4 RESULTS 4.1 Effect of Bias Correction Input Cosmology

Figure 9. Coverage ellipses fit to the maximum likelihood distribution of each Neyman input cosmology, transformed to
{
Ωm, w – w∗(ΩM )

}
. The

coverage ellipse is defined to be centered on the Neyman input, scaled such that it contains the experiment cosmology input. The title of each plot
shows the percentage of maximum likelihood output cosmologies covered by the ellipse, this is our numerical estimate of likelihood. The uncertainty
in this estimate is calculated via 1000 bootstrap resamples and is 4%.
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5 CONCLUSIONS

Figure 10. Comparison between the 68% confidence region determined
from our approximate Neyman construction, and the 68% contour of
the experiment cosmology. The confidence region is consistent with
the contour close to the input cosmology, but displays an offset at
the extreme ends of the contour. This offset is likely due to the bias
correction method used by BBC, which is most accurate close to the
input cosmology.

all realisations. Figure 11, and Table 4 show the results of this
repeat analysis. Our results are very similar to the case when
we shared the bias correction simulation amongst all realisa-
tions, with the first and second cosmological input deviating
the most. Overall, these results reinforce our suggestion that
the offset present between the cosmological contour and con-
fidence region is caused by the BBC bias correction, however
the choice of bias correction does not significantly affect our
consistency test. If computational cost is a concern, using only
one bias correction simulation shared amongst all realisations
will significantly reduce the computational cost of our approx-
imate Neyman construction method, without significantly
reducing the quality of the consistency test.

Table 4. As for Table 3, but varying the bias correction simulation to
match the input cosmology.

Cosmology Ω′
M w′ ΩM Absolute w Absolute

Input Difference Difference

1 0.125 -0.698 0.063 0.085

2 0.371 -1.21 0.009 0.004

3 0.308 -0.977 0.001 0.0

4 0.292 -1.02 0.0 0.0

5. Conclusions

In this paper we present a statistically rigorous method for
checking the consistency of contours produced in a cosmolog-
ical analysis. To achieve this, we implement an approximate
Neyman construction which requires far less computation

Figure 11. As per Figure 10, but varying the bias correction simulation
to match the input cosmology. Very similar results are found, indicating
that the cosmology used for the bias correction is not significantly
impacting the results.

than a true Neyman construction. This approximate Neyman
construction is then used to define the 68% confidence region
for a single cosmological realisation. We use this confidence
region to test the consistency of the 68% contour produced
by the BBC framework, as integrated in Pippin, although this
method can be used to test the consistency of any cosmolog-
ical parameter estimation method. This represents the first
time the BBC framework has been tested with a statistically
rigorous methodology.

Our analysis showed that, for a DES-3YR like dataset, Pip-
pin is producing reasonable, consistent parameter estimates.
There was some discrepancy between the CR and the cos-
mological contour when considering the farthest extent of
the 68% contour. This discrepancy was, at maximum, a shift
of ∼0.05 in ΩM , and ∼0.07 in w, and was likely due to the
accuracy of BBC’s bias correction being best when close to
the input cosmology, and degrading in regions of parame-
ter space which are far from the input cosmology. It is also
important to recognise that this does not correspond to an
equivalent error in the reported maximum posterior cosmo-
logical parameters. When considering cosmological inputs
close to the experiment cosmology input, the confidence re-
gion and cosmological contour had near perfect agreement.
As such any overall discrepancy is unlikely to significantly
effect the results of a cosmological analysis, especially when
multiple cross-cutting probes are combined. However, this
shift is important when considering analyses concerned with
assessing cosmological tensions - where the precise shape and
size of the contour are vitally important to the analysis.

We see very similar results when each realisation had its
own bias correction simulation, rather than sharing one bias
correction simulation amongst all realisations, indicating that
a sensible choice of bias correction is not likely to significantly
effect our consistency checks.
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Overall, we believe our method for consistency checking
cosmological contours with an approximate Neyman construc-
tion represents an important improvement in the statistical
rigour applied to cosmological analyses, and should become
a standard step in all cosmological analyses. Our methodol-
ogy can also be used to rigorously test cosmological contours
for other cosmological probes, which have similarly complex
pipelines. We believe this method will be particularly useful
for future analyses, such as the DES 5-year supernova analysis,
and the upcoming LSST survey. We plan to repeat this anal-
ysis using simulations that match the DES 5-year supernova
analysis to test the consistency of those results.
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6.1 Data availability

The data underlying this article are available in the article
and in its online supplementary material. The code used
throughout this article is available at https://github.com/dessn/
BiasValidation.

6.2 Software

Pippin (Hinton & Brout, 2020), SNANA (Kessler et al., 2009),
ChainConsumer (Hinton, 2016), Numpy (Harris et al., 2020),
MatPlotLib (Hunter, 2007), SciKit-Learn (Pedregosa et al.,
2011), Scipy (Virtanen et al., 2020)

6.3 Facilities

This work was completed in part with resources provided by
the University of Chicago Research Computing Center.
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