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SUMMARY

Thymic epithelial tumors (TETs) are one of the rarest adult malignancies. Among TETs, thymoma 

is the most predominant, characterized by a unique association with autoimmune diseases, 

followed by thymic carcinoma which is less common but more clinically aggressive. Using multi-

platform omics analyses on 117 TETs, we define four subtypes of these tumors defined by 

genomic hallmarks and an association with survival and WHO histological subtype. We further 

demonstrate a marked prevalence of a thymoma-specific mutated oncogene GTF2I, and explore its 

biological effects on multi-platform analysis. We further observe enrichment of mutations in 

HRAS, NRAS, and TP53. Lastly, we identify a molecular link between thymoma and the auto-
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immune disease myasthenia gravis, characterized by tumoral over-expression of muscle auto-

antigens, and increased aneuploidy.

Abstract

Radovich et al. perform multi-platform analyses of thymic epithelial tumors. They identify high 

prevalence of GTF2I mutations and enrichment of mutations in HRAS, NRAS, and TP53 and link 

over-expression of muscle auto-antigens and increased aneuploidy in thymoma and patients’ risk 

of having myasthenia gravis.

Keywords

Thymoma; Thymic Carcinoma; Thymic Epithelial Tumors; TCGA; Genomics; Transcriptomics; 
Proteomics; Autoimmunity; Myasthenia Gravis

INTRODUCTION

Thymic epithelial tumors (TETs) represent the most common neoplasms of the anterior 

mediastinum, but are among the rarest of all cancers with an incidence of 0.15 cases per 

100,000 person-years (Engels, 2010; Engels and Pfeiffer, 2003). TETs exhibit a wide 

spectrum of clinical behaviors with 30-40% of patients with thymoma exhibiting co-existent 

autoimmune disorders, in particular thymoma-associated myasthenia gravis (TAMG). In 

advanced disease, 5-year median survival is 69% in thymoma and only 36% in thymic 

carcinoma (Scorsetti et al., 2016). The most commonly used histological classification and 

clinical staging system are the World Health Organization (WHO) and the Masaoka-Koga, 

respectively (Koga et al., 1994; Travis et al., 2015). Surgery is the cornerstone of treatment 

for early-stage TETs. Completeness of surgical resection represents the most important 

clinical factor influencing recurrence rates and prognosis. Other risk factors associated with 
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recurrence include: histology, clinical stage, and molecular signatures (Detterbeck et al., 

2011a; Gokmen-Polar et al., 2013). Although various systemic treatment options exist for 

patients with locally advanced or metastatic disease, none are curative.

The etiology of TETs is unknown with limited knowledge of the genomic underpinnings of 

thymoma and thymic carcinoma. Immunohistochemical analyses have revealed 

overexpression of EGFR, HER2, KIT, IGF-1R, and neurotrophin receptors (Scorsetti et al., 

2016). However, mutations in EGFR and KIT are uncommon (Scorsetti et al., 2016). A 

number of previous studies have performed molecular analyses of TETs using different 

platforms (Badve et al., 2012; Girard et al., 2009; Lee et al., 2007; Sasaki et al., 2002). 

Girard et al. documented that histological subtypes of thymoma exhibited differential 

molecular profiles with thymic carcinomas displaying more chromosomal gains and losses 

and occasionally harboring somatic mutations in KIT (Girard et al., 2009). Badve et al. also 

reported the association of distinct molecular clusters with different histological subtypes 

(Badve et al., 2012) that ultimately lead to the development of a nine gene expression 

signature (DecisionDX® Thymoma) that predicts the likelihood of metastasis (Gokmen-

Polar et al., 2013). Exome sequencing has revealed a high frequency of recurrent mutations 

in the GTF2I gene in type A and AB thymomas (Petrini et al., 2014). More recent data have 

demonstrated overexpression of a large microRNA cluster on chromosome 19 in type A and 

AB thymomas, which is associated with PI3K/AKT activation (Radovich et al., 2016). There 

have been few attempts at more comprehensive molecular analyses of TETs and these 

studies have utilized a limited number of molecular platforms (Ganci et al., 2014; Huang et 

al., 2013; Lopez-Chavez et al., 2015; Petrini et al., 2013; Wang et al., 2014). Nevertheless, 

these efforts have helped identify unique molecular changes in TETs such as an anti-

apoptotic gene signature and mutations in genes involved in histone modification, DNA 

methylation and chromatin remodeling in thymic carcinomas (Bellissimo et al., 2017; Huang 

et al., 2013; Petrini et al., 2013; Wang et al., 2014). Despite these discoveries, attempts to 

use molecular-targeted agents for treatment of TETs have met with limited success thus far 

(Chen et al., 2014). Herein, we present a multi-platform, comprehensive analysis of TETs as 

part of The Cancer Genome Atlas (TCGA) Project to uncover the integrated genomic 

landscape of these rare tumors.

RESULTS

Clinical outcomes and demographics

The clinical and pathological characteristics of patients and the 117 samples included in this 

study are shown in Table 1 and Table S1. Histologic subtypes for each sample were 

evaluated by WHO criteria. These include the A & AB subtypes defined by spindle/oval 

epithelial cell morphology (AB includes dense lymphocytic foci); B1, B2, and B3, which 

have epithelial cells with an epithelioid shape with a gradation of lymphocyte infiltration 

(B1=lymphocyte-rich to B3=lymphocyte-poor); micronodular thymoma (MN-T); and TC, 

which is defined as thymic carcinoma with histological features common of epithelial 

cancers (Dadmanesh et al., 2001; Travis et al., 2004). Myasthenia gravis (MG) was reported 

in 32 patients (27%) and 7 patients (6%) had other autoimmune diseases. Younger patients 

were more likely to have been diagnosed with an autoimmune disease, including MG 
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(p=0.031, median ages for patients with and without an autoimmune disease are 52 and 62, 

respectively). Consolidated histologic subtypes were associated with diagnosis of MG 

(p=0.00015), and lymphocyte component pattern (p=0.027). MG was associated with each 

of the histologic thymoma categories A and B but not with TC (p=0.0015).

After a median follow-up period of 38.3 months, there were 10 recurrences and 8 deaths; in 

half of these recurrent cases, local-regional recurrences were observed and presented 

primarily as pleural involvement (80%). Improved progression-free survival (PFS) was 

associated with earlier Masaoka stage (p=0.000058), lower T-stage (p=0.0018), and non-

Hispanic ethnicity (p=0.000375). Improved OS was associated with higher tumor 

lymphocyte component (p=0.018, lower quantile has worse OS), histology subtypes A and 

B1-2 (p=0.008), and younger age at diagnosis (p=0.017) (Figure S1). The presence of MG 

or other autoimmune disease was not significantly associated with survival.

The mutational landscape of TETs

Whole exome sequencing was performed on 117 tumor-normal pairs. After filtering one 

hyper mutated sample and 16 samples with few mutations, 100 pairs were used to identify 

significantly recurrent somatic mutations. MutSig2CV (Lawrence et al., 2013) identified 

four significantly mutated genes with q<0.1 (Figure 1). GTF2I was the most significant gene 

and had a high mutation frequency (39%), particularly in type A & AB thymomas. HRAS, 

TP53, and NRAS were recurrently mutated at lower frequencies. The vast majority of 

mutations in HRAS and NRAS occurred at known gain-of-function codons (HRAS: codon 

12, 13, 117; NRAS: codon 61). In TP53, all mutations were known pathogenic loss of 

function mutations. Clonality analysis using PyClone revealed that all four of the 

significantly mutated genes were predominately clonal (Figure S2A, S2B). This suggests 

that mutations in GTF2I, HRAS, NRAS, and TP53 are most likely founder mutations 

occurring at the onset or very early in tumor development. To further assess the potential 

mutational causes of thymoma, a non-negative matrix factorization (NMF) analysis was used 

to find enrichment of mutational signatures. As seen in Figure S2C, we observed an 

enrichment of C>T mutations that occurred within CpG di-nucleotides. This mutational 

signature is known to be associated with aging, and is congruent with the late-onset (median 

age= 60) demographic of this disease. A further survey of the data revealed a relatively low 

mutational burden in the vast majority of samples. When compared to 21 other cancers 

profiled by the TCGA, TETs have the lowest average tumor mutation burden (TMB) among 

adult cancers (average of 0.48 mutations per megabase), with only two pediatric cancers 

having a lower average TMB (rhabdomyosarcoma and medulloblastoma) (Figure 2).

Given the low mutational burden seen in TET, we analyzed the data to determine the 

prevalence of somatic copy number alterations (sCNA). We observed that the majority of 

patients had none or few sCNAs, whereas samples that harbored events had predominantly 

large-scale, whole- and arm-level sCNA that occurred predominantly in tumors without 

recurrently mutated genes (Figure 1, Figure S3A). The burden of arm-level sCNA is 

enriched in histological type B2 and B3 thymomas, and TC (Wilcoxon rank sum test, 

p=1.8×10−9) (Figure S3B-D). Lastly, analyses of RNA-seq data revealed no recurrent fusion 

events or viral/bacterial components associated with TETs.
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Integrated clustering to identify molecular subtypes

Traditionally, histological subtyping of TETs has been challenging because of histologic 

complexity, inter-observer inconsistency, and lack of prognostic consistency. Integrating the 

multiple TCGA platforms clustering results, we identified distinct molecular subtypes of 

TETs by a modification of the cluster-of-clusters-assignments (COCA) approach (Cancer 

Genome Atlas, 2012b). We utilized the centroids of platform-specific cluster assignments 

from the sCNV, mRNA, miRNA, DNA methylation, and reverse phase protein array (RPPA) 

data (Figures S3, S4, and S5) to develop a fuzzy assignment weighted matrix for each 

sample to each platform subtype centroid (Figure 3A). This matrix was then used as the 

input to consensus clustering of all samples allowing us to identify integrated molecular 

subtypes. We identify four molecular subtypes by this approach (Figure 3A) with high 

relatedness to a blinded pathologic review of WHO histopathologic subtypes (p < 0.0005). 

Subtype 1 is primarily represented by type B, subtype 2 by type TC, subtype 3 is primarily 

type AB, and subtype 4 is a mix of types A and AB (Figure 3B). As expected, subtype 1 

(mostly type B) was heavily enriched for cases that were associated with MG. We also tested 

relationships between survival and molecular subtype and demonstrate an inferior overall 

survival for patients in subtype 2, which is predominantly comprised of thymic carcinoma 

cases (p <0.01) (Figure 3C). We observed that cases in subtypes 1 and 3 are associated with 

higher lymphocyte content (p < 0.01), GTF2I mutation is predominantly seen in subtypes 3 

and 4, and HRAS mutation is predominantly observed in subtype 4.

We also employed a complementary approach known as TumorMap, which generates a map 

of samples for interactive exploration, statistical analysis, and data visualization using the 

Google Maps API. Samples are arranged on a hexagonal grid based on similarity: samples 

with similar genomic profiles are placed near each other in the map, whereas dissimilar 

samples are placed further away. Clusters of samples that appear as “islands” in the map 

indicate groups of samples that share genomic features. This analysis, similar to COCA, 

revealed 4 distinct molecular clusters that were highly correlated with WHO histological 

subtype and COCA classifications (Figure 3D). We performed single-platform analyses as 

well as multi-platform PARADIGM analysis (copy-number + RNA-expression) to identify 

unique pathways and genomic hallmarks overlayed onto the TumorMap to differentiate the 

clusters (Figure 3D). Single-platform analyses demonstrated that type A & AB tumors are 

characterized by GTF2I mutations and overexpression of a large microRNA cluster on 

chromosome 19q13.42 (Figure 3D, Figure S4B). Type C tumors are characterized by loss of 

chromosome 16q (Figure 3D). Examination of the PARADIGM findings revealed up-

regulation of tumor suppression (p53) and down-regulation of oncogenes (MYC/Max, 

MYB, and FOXM1) in the A-like cluster (Figure 3D). The opposite is seen in the AB-, B-, 

and C-like clusters where tumor suppression is down-regulated (p53, and TAp73a), and 

oncogenes are up-regulated (MYC/Max, MYB, FOXM1, and E2F1) (Figure 3D). These 

results are in line with the known increased clinical aggressiveness observed in Type B and 

TC TETs.

GTF2I, a thymoma specific oncogene

Given the predominance of GTF2I mutations in type A & AB thymomas, we utilized our 

multi-platform data to further characterize GTF2I-mutated tumors. All of the mutations 
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occur at a single codon (L424H), a behavior potentially consistent with an oncogenic 

mutation (Figure 4A). GTF2I mutations are very rare in cancer with no observed L424H 

mutations in any other of the ~10,000 tumor samples profiled by the TCGA (Figure 4B). 

There are occasional (<1%) GTF2I mutations in other cancers and these are exclusively at 

sites other than L424H. We examined the transcriptional response associated with GTF2I 
mutations using RNA-seq data analysis (Figure 4C). We identified a set of genes that could 

predict wildtype and mutant status with 100% specificity and 77% sensitivity. Ten GTF2I 
mutant samples were misclassified by our predictor as wild type and all had a low variant 

allele frequency, concordant low tumor purity, and high lymphocyte grade (Figure S2B). The 

GTF2I mutants had higher expression of genes involved in cell morphogenesis, receptor 

tyrosine kinase signaling, retinoic acid receptors, neuronal processes, as well as the WNT 

and SHH signaling pathways. DNA methylation changes that associated with GTF2I 
mutations were indistinguishable from changes associated with histological type and 

lymphocyte grade (Figure 4D). RPPA data was available for 42 thymoma samples of types A 

or AB, of which 32 exhibited GTF2I mutations. After correcting for multiple hypothesis 

testing, we found 91 proteins to be significantly downregulated in the GTF2I mutant tumors. 

Pathway analysis demonstrated lower expression of the apoptosis, cell cycle, DNA damage 

response, hormone receptor signaling, breast hormone signaling, RAS/MAPK, RTK and 

TSC/mTOR pathways in GTF2I mutant tumors (Figure 4E). Transcript gene expression data 

for the same proteins used in the RPPA pathway analysis were in good concordance (Figure 

S5C).

Autoimmunity

In agreement with previous observations (Cufi et al., 2014; Travis et al., 2015), thymoma-

associated myasthenia gravis (TAMG) was more common in type B than type A and AB 

thymomas and absent in thymic carcinomas (TC) and micronodular thymomas (MNT). 

Excluding TC and MNT from further MG-related analyses, an observation was the higher 

prevalence of aneuploidy among MG+ thymomas (Figure 5A&B, Figure S6A-F). The MG 

association of aneuploidy among type B thymomas suggests that aneuploidy might not just 

be a surrogate marker of the more often aneuploid and MG prone type B thymomas (Zettl et 

al., 2000) but be of pathogenetic relevance for TAMG. The association of aneuploidy with 

MG was irrespective of whether MG was detected before, at the time, or after thymoma 

detection (Figure S6G-H). However, which gains and losses are functionally important could 

not be assessed as none of the observed arm-level and gene-level somatic copy number 

alterations at 6p, 7, 9, 12, 14 and 21 was significantly enriched in MG+ thymomas (Figure 

5C). Furthermore, MG status was neither associated with mutations in any single gene 

(including GTF2I) nor with any methylation signature or microRNA profile (data not 

shown).

Supervised clustering of all expressed genes revealed no MG-associated gene expression 

signature in type A/AB/B thymomas. Similarly, genes with a role in immunity and tolerance 

induction were not differentially expressed, including: MHC class I and II genes; proteases 

with a role in T cell selection; co-receptors, signaling and checkpoint molecules; apoptosis-

related genes; nor expression levels of surrogate genes of T cell subsets. We further could 
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not confirm overexpression of type I interferons and TLR3 in MG+ thymomas as previously 

reported (Cufi et al., 2014).

Abnormally low expression levels of self-antigens in the thymus underlie autoimmunization 

against them in many autoimmune diseases (Pugliese et al., 1997; Vafiadis et al., 1997). This 

prompted analysis of intratumoral transcript levels of the major autoantigens proposed in 

TAMG: the acetylcholine receptor (AChR) a-subunit (Masuda et al., 2012; Wilisch et al., 

1999); striational muscle antigens, titin and ryanodine receptors type I and II (RYR1, RYR2) 

(Huemer et al., 1992; Mygland et al., 1994); and cytokines (type I interferons, IL17, IL22) 

(Wolff et al., 2014). Expression levels of the AChR a-subunit gene (CHRNA1) were 3.0-fold 

higher (FDR=0) in the 32 MG+ than 72 MG- cases, while levels of the other subunit genes 

were largely unchanged. By contrast, genes with sequence similarities with the CHRNA1, 

TTN and RYR1/RYR2 were overexpressed in TAMG. Expression levels of the medium size 

neurofilament, NEFM, that exhibits immunogenic similarities with the AChR a-subunit 

(Schultz et al., 1999) and titin (Marx et al., 1996; Mencarelli et al., 1991) were 23.8-fold 

higher in MG+ compared to MG- thymomas and even higher (30-fold) in MG+ type A/AB 

subset (FDR=0) (Figure 5D). Furthermore, the mainly neuronal RYR3 that shares homology 

with muscular RYR1 and cardiac RYR2 was upregulated in MG+ thymomas (5.5-fold, 

FDR=0), with the highest upregulation in the B1/B2/B3 subset (Figure 5D). Taken together, 

MG in thymoma patients was associated with intratumoral overexpression of genes that 

show limited (NEFM) or extensive (RYR3) sequence similarity with major autoimmune 

targets.

Thymic carcinomas

Thymic carcinomas (TC) are a less common subset of TETs that entail a more aggressive 

clinical course. These tumors histologically resemble common epithelial tumors. To better 

understand this subset, we performed a focused analysis on the TC samples within our 

dataset (n=10). Mutational analysis did not identify any recurrently mutated genes in this 

subset (Figure 6A). When looking at arm-level sCNAs however, we did observe 8 of 10 

samples having a loss of Chromosome 16q. This observation has been previously reported in 

TC (Zettl et al., 2000). Evaluation of the Sanger Gene Census revealed several tumor 

suppressors in this region, including: CYLD, CBFB, CDH1, CDH11, CTCF, ZFHX3. When 

comparing the tumor mutation burden (TMB) between TC vs all other thymoma histologies, 

we observed a significant increase in TMB in TC samples (p=5.7e-05) (Figure 6B). Of 

distinct interest, a single TC sample exhibited an exceptionally high TMB (21.29 mutations 

per megabase), and was excluded from the analysis in Figure 6B to avoid skewing the 

results. However, a further analysis of this sample revealed a characteristic mutation pattern 

of SNVs most similar to COSMIC signature 6 (cosine similarity = 0.91, http://

cancer.sanger.ac.uk/cosmic/signatures) and a significant enrichment of 1-base indels (19% 

vs 5% in remaining samples), which is associated with microsatellite unstable tumors with 

defective DNA mismatch repair (Figure 6C). Interestingly, this sample has a pathogenic 

nonsense mutation (E37*) in MLH1 (https://www.ncbi.nlm.nih.gov/clinvar/variation/89641/) 

with a concomitant loss of MLH1 mRNA expression (2.6-fold down-regulation against the 

median). To our knowledge, this is the first report of a microsatellite unstable Thymic 

Carcinoma.
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DISCUSSION

The traditional classification of TETs has been based on the histologic appearance of the 

neoplastic epithelial cells and the relative abundance and type of lymphocytes. The WHO 

histologic classification has been shown to correlate with clinical outcomes such as tumor 

stage, clinical behavior and prognosis. However, with the exception of the differential 

expression of several epithelial and lymphocyte markers, the molecular basis of this 

classification system has not been completely explored (Travis et al., 2015). Our analyses 

demonstrate that broad histological subtypes (A, AB, B and TC) strongly associate with 

multiple classes of aberrations occurring at different levels. Importantly, this demonstrates 

that A/AB-type, B-type, and C-type tumors are very distinct biological entities and do not 

represent a histological continuum of diseases. A recent publication by Lee et al. using the 

publically available TCGA TET dataset also demonstrated separation of TETs into four 

clusters defined by: GTF2I mutations, T-cell signaling, chromosomal stability, and 

chromosomal instability (Lee et al., 2017).

GTF2I L424H mutations are unique to TETs and is the most common mutation in this tumor 

type. This mutation was observed in 100% of the type A and 70% of type AB thymomas. 

Mutations in GTF2I have been described rarely in other tumor types and are present at 

different codons. RNA-seq identified higher expression of genes involved in cell 

morphogenesis, receptor tyrosine kinases, retinoic acid receptors, neuronal processes, as 

well as the WNT and SHH signaling pathways in the GTF2I mutant tumors. These results 

are similar to those observed when Gtf2ird1 was knocked out in a mouse model (Corley et 

al., 2016). GTF2IRD1 is a GTF2I family member, located near GTF2I, which was also 

upregulated in our dataset in GTF2I mutants. From this study, we also observe clonal, 

recurrent drivers in HRAS and NRAS. These potent oncogenes may play a role in 

determining prognosis, to be assessed in future studies with longitudinal follow-up. Also of 

note, we do not observe any viral etiology as reported before.

Autoimmunity is a hallmark of thymomas, with TAMG occurring in close to 30% of cases 

(Zekeridou et al., 2016). Thymoma represents the only TCGA tumor type to be analyzed 

that has a strong association with an autoimmune disease. This analysis demonstrates a 

significant association of aneuploidy with a cancer-associated autoimmune disease. 

However, still unknown is why TAMG patients have a limited spectrum of autoantibodies to 

the AChR, titin, and ryanodine receptors (RYR1, RYR2) (Gilhus et al., 2016; Klein et al., 

2013; Zekeridou et al., 2016). In non-thymic cancers, paraneoplastic autoimmune diseases 

typically emerge from immune processes directed to autoantigens that are common to the 

cancer and the target organ (Dalmau et al., 1992). By contrast, thymomas do not express 

bona fide complete AChR, titin and RYR proteins (Marx et al., 1992; Mygland et al., 1995; 

Siara et al., 1991) but rather proteins with cross-reacting AChR, titin and RYR epitopes 

(Marx et al., 1996; Mygland et al., 1995; Romi et al., 2002; Schultz et al., 1999). In this 

study, we confirm the TAMG-associated overexpression of the mid-size neurofilament gene, 

NEF, that harbors sequences coding for AChR and titin epitopes (Marx et al., 1996; Schultz 

et al., 1999). We also find that CHRNA1 and RYR3 are over-expressed in MG+ thymomas. 

With the observed overexpression of autoantigens in neoplastic thymic epithelial cells, 

defective negative T cell selection as the sole autoimmunizing mechanism is unlikely. In the 
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absence of enrichment of any immunological signature nor evidence of lymphocyte 

activation in MG+ thymomas, it appears more likely that “false-positive selection” driven by 

MHC-bound, autoantigen-derived peptides is operative or prevailing in MG+ thymomas to 

explain the focused anti-muscle autoimmunity in TAMG (Willcox, 1993).

As mentioned previously, the mutational burden in TETs is low, except for some TC 

samples. This low frequency of actionable mutations may in part explain the paucity of 

effective molecularly targeted therapies in these tumors (Loehrer et al., 2004; Palmieri et al., 

2002; Thomas et al., 2015). Whereas sunitinib (in thymic carcinoma), somatostatin receptor 

inhibitors (in TET patients expressing somatostatin receptors), everolimus (in thymomas and 

thymic carcinomas), and anti-IGF1R (in thymomas) have shown some activity, other agents 

including small-molecule inhibitors of EGFR, KIT, SRC, and cyclin-dependent kinase, 

histone deacetylase inhibitors, and anti-angiogenic drugs, have had little to no clinical 

activity (Chen et al., 2014; Scorsetti et al., 2016; Zucali et al., 2017). Even when present, the 

significantly mutated genes in TETs (GTF2I, HRAS, NRAS, and TP53) are not targetable at 

this time. An exception is the finding of a microsatellite unstable thymic carcinoma, which 

may suggest the use of immune checkpoint therapy for these very rare cases (Le et al., 

2015). Given the proportion of patients that we observed with no driver mutations or copy 

number alterations, future use of whole-genome sequencing may reveal structural variation 

or noncoding drivers of this disease.

In summary, TETs are a rare, histologically and molecularly heterogeneous group of tumors 

driven by a limited number of genomic events. A hallmark of these tumors is their 

association with autoimmunity linked through over-expression of muscle epitopes. 

Incorporation of molecularly defined subtypes for histological diagnosis, as well as drug 

development based on these genomic data, particularly targeting mutant GTF2I, may have 

significant clinical implications for patients with TETs.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

facilitated by the Lead Contact, Patrick J. Loehrer (ploehrer@iu.edu).

Experimental Models and Subject Details

Sample Acquisition—The TCGA THYM study accepted samples from patients 

diagnosed with thymic epithelial tumors. Samples were submitted to the TCGA 

Biospecimen Core Resource (BCR) from the following: Analytical Biological Services, Inc.; 

Barretos Cancer Hospital, Brazil; Baylor College of Medicine; Cleveland Clinic; Emory 

University; Greenville Health System; Hospital Louis Pradel; Indiana University School of 

Medicine; International Genomics Consortium; MD Anderson Cancer Center; Memorial 

Sloan-Kettering Cancer Center; Princess Margaret Hospital; Regina Elena National Cancer 

Institute; Roswell Park Cancer Institute; St. Joseph’s Hospital and Medical Center (Phoenix, 

AZ); Thoraxklinik Universitätsklinikum Heidelberg; University of Mannheim; University of 

New Mexico; Valley Hospital; and Yale University. Primary tumor samples and matched 
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germline control DNA (blood or blood components, including DNA extracted at the 

submitting site; non-neoplastic solid tissue) were obtained from patients who had received 

no prior treatment for their disease (chemotherapy or radiotherapy). Specimens were shipped 

overnight to the Biospecimen Core Resource using a cryoport that maintained an average 

temperature of less than −180°C.

TCGA Project Management has collected necessary human subjects documentation to 

ensure the project complies with 45-CFR-46 (the “Common Rule”). The program has 

obtained documentation from every contributing clinical site to verify that IRB approval has 

been obtained to participate in TCGA. Such documented approval may include one or more 

of the following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-

CFR-46 applicable. The two most common exemptions cited were are that the 

research fall under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. The was most common for collections 

in which the donors were deceased.

Cases were classified by the submitting institution in accordance with the World Health 

Organization (WHO 2004) categories of type A, AB, B1, B2, B3, or TC. Pathology quality 

control was performed on each tumor specimen from a frozen section slide prepared by the 

BCR. Hematoxylin and eosin (H&E) stained sections from each sample were subjected to 

independent pathology review to confirm that the tumor specimen was histologically 

consistent with the reported thymic epithelial tumor type. The percent tumor nuclei, percent 

necrosis, and other pathology annotations were also assessed. Tumor samples with ≥60% 

tumor nuclei (with exception for WHO Type B1 tumors which have high lymphocytic 

infiltration obviating the ability to have ≥60% tumor nuclei) and ≤20% necrosis were 

submitted for nucleic acid extraction.

Sample Processing—DNA and RNA were extracted and quality was assessed at the 

central BCR. RNA and DNA were extracted from tumor using a modification of the 

DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was 

processed using a mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA 

preparations that included RNA <200 nt suitable for miRNA analysis. DNA was extracted 

from blood using the QiaAmp DNA Blood Midi kit (Qiagen).
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RNA samples were quantified by measuring Abs260 with a UV spectrophotometer and 

DNA quantified by PicoGreen assay. DNA specimens were resolved by 1% agarose gel 

electrophoresis to confirm high molecular weight fragments. A custom Sequenom SNP 

panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify that tumor 

DNA and germline DNA representing a case were derived from the same patient. Five 

hundred nanograms of each tumor and germline DNA were sent to Qiagen (Hilden, 

Germany) for REPLI-g whole genome amplification using a 100 μg reaction scale. RNA was 

analyzed via the RNA6000 Nano assay (Agilent) for determination of an RNA Integrity 

Number (RIN), and only analytes with a RIN≥7.0 were included in this study. Only cases 

yielding a minimum of 6.9 μg of tumor DNA, 5.15 μg RNA, and 4.9 μg of germline DNA 

were included in this study.

Sample Qualification—The BCR received tumor samples with germline controls from a 

total of 200 cases, of which 124 cases qualified and were sent for further genomic analysis. 

Of the 76 that disqualified, 29 were disqualified during prescreening at the BCR for either 

prior treatment (22 cases) or a tissue sample that did not meet entry requirements (7 cases). 

The remaining cases did not pass quality control checks at the BCR, including 18 cases for 

insufficient tumor nuclei (<60%), 3 for insufficient tumor nuclei and excessive necrosis 

(>20%), 1 for unacceptable diagnosis during pathology review. Molecular quality control 

checks of the extracted nucleic acids resulted in the disqualification of 19 cases for 

insufficient germline DNA yield, 3 for RNA integrity scores of <7.0, 2 for insufficient 

germline DNA yields and low RIN score, and 1 did not have genotypically matched tumor 

and germline samples.

Ninety cases had sufficient residual tumor tissue following extraction of nucleic acids for 

proteomics assays. A 10 to 20 mg portion of snap-frozen tissue adjacent to the tissue used 

for molecular sequencing and characterization was submitted to MD Anderson for reverse 

phase protein array (RPPA) analysis.

Clinical Data—The clinical data collected included patient age, sex, race, ethnicity, height, 

weight, tumor anatomic location, World Health Organization (WHO 2004) histologic 

classification, Masaoka staging, history of myasthenia gravis, history of prior cancers, 

synchronous cancers and subsequent cancers including distant metastasis or second primary 

cancers, date and kind of treatments, vital status, date of death, and date of last contact.

Methods Details

Expert Pathology Committee Histologic Evaluation—A panel of 8 histopathologists 

with expertise in thymic pathology evaluated digital slides of the 127 thymic epithelial 

tumors that qualified for this study. These images were made available by Biospecimen Core 

Resource’s Virtual Imaging for Pathology, Education & Research application (VIPER). 

Slides consisted of H&E stained frozen sections of the cryomaterial that was used for the 

molecular studies, and H&E stained sections from the formalin-fixed paraffin embedded 

tumours scanned at 400× magnification. Histomorphologic features evaluated included the 

histotype according to the 2015 version of the WHO classification of thymic tumors (Travis 

et al., 2015); the estimated tumour content per area and proportion of lymphocytes per all 

Radovich et al. Page 12

Cancer Cell. Author manuscript; available in PMC 2019 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells in a given section (in 10% increments); the quality of tissue preservation, and the 

identity or (rarely) discrepancy between the paraffin and frozen section in each case. If 

available, immunohistochemical findings were retrieved from pathology reports and used to 

refine tumor classification. Tumor stage according to the Masaoka-Koga system (Detterbeck 

et al., 2011b) and the provisional TNM system proposed by ITMIG (Detterbeck et al., 2014) 

were checked on the basis of the pathology reports. Further group discussion and reviews 

allowed for consensus determination on the above histological and staging features.

DNA Methylation

Sample Preparation and Hybridization—The Illumina Infinium HM450 array 

(Bibikova et al., 2011) was used to assay 117 TCGA TET samples using standard protocols. 

Briefly, genomic DNA (1000 ng) for each sample was treated with sodium bisulfite, 

recovered using the Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA) according 

to the manufacturer’s specifications and eluted in 18 ul volume. After passing quality 

control, bisulfite-converted DNA samples were whole genome amplified followed by 

enzymatic fragmentation and hybridized overnight to BeadChips followed by a locus-

specific base extension with labeled nucleotides (cy3 and cy5). BeadArrays were scanned 

and the raw data were imported into custom programs in R computing language for pre-

processing and calculation of DNA methylation beta value for each probe and sample. 

Quality control and probe exclusions were done using standard protocols as previously 

described in (Cancer Genome Atlas Research, 2014a).

Clustering Analysis—We carried out an unsupervised consensus clustering as 

implemented in the Bioconductor package ConsensusClusterPlus (Wilkerson and Hayes, 

2010), with Euclidean distance and partitioning around medoids (PAM). Consensus 

clustering was applied to the DNA methylation data from the entire cohort, using the most 

variable 1% of CpG probes.

Epigenetically Silenced Genes—To identify epigenetically silenced genes we applied 

method previously described in (Cancer Genome Atlas Research, 2014b). Specifically, we 

first identify promotor CpG sites that meet several criteria: (a) at least 90% of normal 

samples should be clearly unmethylated (β <= 0.1) at that site, (b) at least 5% of tumor 

samples should clearly methylated (β >= 0.3) and (c) a t-test comparing expression levels in 

methylated (β >= 0.3) and unmethylated tumor samples (β < 0.1) should be significant at an 

FDR < 0.01. A gene is defined as epigenetically silenced if at least 25% of the promotor 

CpG sites meet all of these criteria. A total of 120 normal samples were used for this 

analysis including 10 each drawn at random from the 12 TCGA projects that include normal 

samples, such lung adenocarcinoma (Cancer Genome Atlas Research, 2014a), breast 

invasive carcinoma (Cancer Genome Atlas, 2012b), colon adenocarcinoma (Cancer Genome 

Atlas, 2012a), and others.

Estimation of Leukocyte Fraction—We estimated leukocyte fraction using an approach 

described in Carter et al (Carter et al., 2012). As a source of leukocyte DNA methylation 

level, we used DNA methylation data of peripheral blood mononuclear cells (PBMC) from 

six healthy donors (Reinius et al., 2012) (GSE35069).
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Additional Analyses—Fisher’s exact test was used to test for associations of DNA 

methylation clusters with mRNA expression clusters and significantly mutated genes. 

Analyses described above as well as plots including heat maps and scatterplots were carried 

out in R using standard methods and customized routines.

miRNA

microRNA Libraries and Sequencing—We generated microRNA sequence (miRNA-

seq) data for 117 tumor samples using methods described previously except that 1ug of total 

RNA (at 250ng/uL) was used as input instead of messenger RNA-depleted RNA (Chu et al., 

2016). Briefly, reads were aligned to the GRCh37/hg19 reference human genome, and read 

count abundance was annotated with miRBase v16 stemloops and mature strands. While the 

read counts included only exact-match read alignments,.bam files at CGHub 

(cghub.ucsc.edu) (Wilks et al., 2014) include all sequence reads. We used miRBase v20 to 

assign 5p and 3p mature strand (miR) names to MIMAT accession IDs.

Unsupervised Clustering of miRNA Mature Strands—To identify subtypes within 

the THYM cohort we used hierarchical clustering with pheatmap v1.0.2 in R. The input was 

a reads-per-million (RPM) data matrix for the 303 (top 25%) miRBase v16 5p or 3p mature 

strands that had the largest variances across the cohort. We transformed each row of the 

matrix by log10(RPM + 1), then used pheatmap to scale the rows. We used Ward.D2 for the 

clustering method with Pearson correlation and Euclidean as the distance measures for 

clustering the columns and rows respectively.

Differentially Abundant microRNAs—We identified miRs that were differentially 

abundant using unpaired two-class SAM analyses (samr v2.0) with an RPM input matrix and 

an FDR threshold of 0.05 (Li and Tibshirani, 2013).

miR Targeting—We assessed potential miRNA-gene targeting for all tumor samples by 

calculating miR-mRNA Spearman correlations with MatrixEQTL v2.1.1 (Shabalin, 2012), 

using gene-level normalized abundance RNA-seq (RSEM) data. We calculated correlations 

with a P value threshold of 0.05, then filtered the anticorrelations at FDR<0.05. We extracted 

miR-gene pairs that corresponded to functional validation publications (luciferase reporter, 

qPCR, Western blot) reported by miRTarBase V6.0 (Hsu et al., 2014). We used TargetScan 

7.0 for predicted targeting (Agarwal et al., 2015).

RNAseq

RNA Library Construction, Sequencing, and Analysis—One μg of total RNA was 

converted to mRNA libraries using the lllumina mRNA TruSeq kit (RS-122-2001 or 

RS-122-2002) following the manufacturer’s directions. Libraries were sequenced 

48×7×48bp on the Illumina HiSeq 2000 as previously described (Cancer Genome Atlas 

Research, 2012). FASTQ files were generated by CASAVA. RNA reads were aligned to the 

hg19 genome assembly using MapSplice 0.7.4 (Wang et al., 2010b). Gene expression was 

quantified for the transcript models corresponding to the TCGA GAF2.1 (http://tcga-

data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf), 

using RSEM (Li and Dewey, 2011) and normalized within-sample to a fixed upper quartile. 
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For further details on this processing, refer to Description file at the DCC data portal under 

the V2_MapSpliceRSEM workflow (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/

distro_ftpusers/anonymous/tumor/thym/cgcc/unc.edu/illumina hiseq_rnaseqv2/rnaseqv2/

unc.edu_THYM.IlluminaHiSeq_RNASeqV2.mage-tab.1.0.0/DESCRIPTION.txt) or our 

alignment pipeline summary at CGHUB (https://cghub.ucsc.edu/docs/tcga/

UNC_mRNAseq_summary.pdf).

Quantification of genes, transcripts, exons and junctions can be found at the TCGA Data 

Portal (https://tcga-data.nci.nih.gov/tcga/).

Unsupervised Clustering—A set of genes that were both highly expressed and variably 

expressed was identified and used for clustering. After restricting to genes with at least 75% 

non-zero RSEM values, the genes with the 1000 highest median absolute deviation (MAD) 

values were chosen. RSEM values identically equal to zero were replaced into smallest non-

zero value. Then a log2 transformation was applied and the values were median centered by 

gene and divided by MAD expression of each gene. Consensus clustering was applied using 

the ConsensusClusterPlus R package (Wilkerson and Hayes, 2010). Output from 

ConsensusClusterPlus along with gene expression heatmaps, principal components analysis, 

and silhouette plots suggested the presence of four expression subtypes: class one (n = 48), 

class two (n = 18), class three (n = 12), and class four (n = 46). The statistical significance of 

differences in overall survival times between the expression subtypes was assessed using the 

log rank test, as implemented in the survival R package. R 3.0.1 (R Core Team) was used to 

perform all statistical analyses and create all figures.

Differential Expression Analysis—The SAMR R package (Tusher et al., 2001) was 

used to identify differentially expressed genes between different expression subtypes and 

groups of patients defined by clinical characteristics using 1000 permutations. We then used 

the DAVID annotation database (Huang et al., 2007a; Huang et al., 2007b) to identify 

enriched pathways.

Supervised Clustering—The ClaNC R package (Dabney, 2006) was used to identify 

genes whose expression patterns characterize the RNA subtypes.

Gene Fusion Detection—In addition to quantifying gene expression, RNA sequencing 

can detect structural variants, including alternate splicing, intra-chromosomal fusions, and 

inter-chromosomal fusions. Two algorithms were used to identify gene fusions: AccuFusion 

(In-house tool), MapSplice (Wang et al., 2010b).

Virus Detection—In addition to quantifying gene expression, RNA sequencing can detect 

viral transcripts using virus database including HPyV 6, 7, 9, 10, 12 and MCPyV. An 

algorithm was used to identify viral transcripts: VirusSeq (Chen et al., 2013).

RPPA

RPPA Experiments and Data Processing—Protein was extracted using RPPA lysis 

buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L 

MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L 
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phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 ug/mL) from human 

tumors and RPPA was performed as described previously (Hennessy et al., 2007; Hu et al., 

2007; Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen tumors by 

Precellys homogenization. Tumor lysates were adjusted to 1 μg/μL concentration as assessed 

by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were manually 

serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 

arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-

Labs). Slides were probed with 218 validated primary antibodies followed by corresponding 

secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). 

Signal was captured using a DakoCytomation-catalyzed system and DAB colorimetric 

reaction. Slides were scanned in a CanoScan 9000F. Spot intensities were analyzed and 

quantified using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate spot 

signal intensities (Level 1 data). The software SuperCurveGUI (Hu et al., 2007), available at 

http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 

values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve 

("supercurve") was plotted with the signal intensities on the Y-axis and the relative log2 

concentration of each protein on the X-axis using the non-parametric, monotone increasing 

B-spline model (Tibes et al., 2006). During the process, the raw spot intensity data were 

adjusted to correct spatial bias before model fitting. A QC metric was returned for each slide 

to help determine the quality of the slide: if the score was less than 0.8 on a 0-1 scale, the 

slide was dropped. In most cases, the staining was repeated to obtain a high quality score. If 

more than one slide was stained for an antibody, the slide with the highest QC score was 

used for analysis (Level 2 data). Protein measurements were corrected for loading as 

described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) using median centering across 

antibodies (level 3 data). In total, 218 antibodies and 85 TET (THYM) samples were used 

for the analysis. Final selection of antibodies was also driven by the availability of high 

quality antibodies that consistently pass a strict validation process as previously described 

(Hennessy et al., 2010). These antibodies are assessed for specificity, quantification and 

sensitivity (dynamic range) in their application for protein extracts from cultured cells or 

tumor tissue. Antibodies are labeled as validated and used with caution based on degree of 

validation by criteria previously described (Hennessy et al., 2010).

RPPA arrays were quantitated and processed (including normalization and load controlling) 

as described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R 

package SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/

OOMPA (Hu et al., 2007; Tibes et al., 2006). Raw data (level 1), SuperCurve 

nonparameteric model fitting on a single array (level 2), and loading corrected data (level 3) 

were deposited at the DCC.

Data Normalization—We performed median centering across all the antibodies for each 

sample to correct for sample loading differences. Those differences arise because protein 

concentrations are not uniformly distributed per unit volume. That may be due to several 

factors, such as differences in protein concentrations of large and small cells, differences in 

the amount of proteins per cell, or heterogeneity of the cells comprising the samples. By 

observing the expression levels across many different proteins in a sample, we can estimate 
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differences in the total amount of protein in that sample vs. other samples. Subtracting the 

median protein expression level forces the median value to become zero, allowing us to 

compare protein expressions across samples. Those data were used for the analysis of 

THYM samples.

Consensus Clustering—We used consensus clustering to cluster the THYM samples 

(Fig. 7A). Pearson correlation was used as distance metric and Ward was used as a linkage 

algorithm for the clustering. A total of 85 samples and 218 antibodies were used in the 

analysis. We identified four robust sample clusters, with most of the “AB” pathology 

subtype samples clustering together in cluster 4. The RPPA clusters showed statistically 

significant association with pathology subtype and lymphocyte grade, with most of the grade 

4 samples falling in cluster 3. To illustrate the role of cell signaling and other pathways in 

THYM, we calculated ten pathway scores based on a previously described method and 

grouped them by the RPPA clusters (Fig. 7B) (Akbani et al., 2014). The analysis showed 

that cluster 2 had significantly low cell cycle, apoptosis, TSC/mTOR and core reactive 

pathway activity. On the other hand, cluster 1 had high EMT activity, whereas clusters 3 and 

4 showed significantly high cell cycle, hormone signaling and TSC/mTOR pathway activity, 

along with low RAS/MAPK and breast reactive activity.

Cluster of Cluster Analysis—Cluster of Cluster Analysis (CoCA) was performed using 

data from methylation, miRNA, mRNA, copy number and RPPA platforms using a fuzzy 

clustering approach. Data matrix that was used to do platform specific subtype clustering 

and platform specific cluster assignments were used to generate centroids for each cluster. 

Membership of each sample to each cluster was then obtained by correlation of each sample 

values to centroid of cluster. This correlation matrix was used for consensus clustering. 

Consensus clustering was performed using R package ConsensusClusterPlus_1.24.01, with 

90% resampling for 1000 iterations of hierarchical clustering based on pearson correlation 

distance (Monti et al., 2003; Wilkerson and Hayes, 2010). Kaplan Meier survival estimates 

for CoCA clusters were estimated using R package survival_2.38-3. Fisher exact test was 

used for examining association of CoCA cluster to clinical variables.

Microbiome—Our microbial detection pipeline is based on BioBloomTools (BBT, 

v1.2.4.b1), which is a Bloom filter-based method for rapidly classifying RNA-seq or DNA-

seq read sequences (Chu et al., 2014). We generated 43 filters from ’complete’ NCBI 

genome reference sequences of bacteria, viruses, fungi and protozoa, using 25-bp k-mers 

and a false positive rate of 0.02. We ran BBT in paired-end mode with a sliding window to 

screen FASTQ files from 117 RNA-seq libraries (49-bp PE reads), and 117 matched tumor/

normal whole exome libraries (49-bp PE reads). In a single-pass scan for each library, BBT 

categorized each read pair as matching the human filter, matching a unique microbial filter, 

matching more than one filter (multi-match), or matching neither human nor microbe (no-

match). For each filter, we then calculated a reads-per-million (RPM) abundance metric as:

Abundance metric = #reads mapped to the microbe
#reads mapped to human in the sample ∗ 106

Radovich et al. Page 17

Cancer Cell. Author manuscript; available in PMC 2019 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To detect genomic integration of specific viruses we performed de novo assembly of RNA-

seq and DNA-seq sequence data with ABySS v1.3.4 (Simpson et al., 2009), using for each 

library the reads classified by BBT as human, the virus, multi-match and no match. We then 

merged the k-mer assemblies for each library with Trans-ABySS v1.4.8 (Robertson et al., 

2010) to generate the working contig set. We re-ran BBT on these contigs, applying only 

human and specific virus filters, identifying contigs that matched to both filters. We 

identified any integration breakpoints in such multi-matched contigs by using BLAT v34 

(Kent, 2002) to align each contig to the human GRCh37/hg19 reference sequence, and to 

virus reference sequences. We retained contig alignments in which: a) the aligned human 

and viral sequences summed to at least 90% of the contig length, and b) the human and viral 

aligned overlapped by less than 50%. Human breakpoint coordinates were annotated against 

RefSeq and UCSC (Kuhn et al., 2013) gene annotations (downloaded from the UCSC 

genome browser on 30-Jun-2013). Breakpoints that had at least 3 spanning mate-pair reads 

or 5 flanking mate-pair reads were considered potential integration sites.

PARADIGM—PARADIGM is a computational model that identifies significantly altered 

pathways from an integrated analysis of copy number and gene expression of a patient or 

sample (Vaske et al., 2010). This integrated analysis is performed in the context of pathway 

entities. These entities comprise biological molecules, small molecules, complexes, or 

abstract concepts that represent cellular processes such as apoptosis or endothelial cell 

migration (Schaefer et al., 2009). The PARADIGM graphical model represents such entities 

as nodes and generates an integrated pathway activity (IPA) for each entity of a patient. A 

gene IPA score, for example, refers to the final active protein inferred from copy number, 

expression, and signaling from other genes in the pathway. Here we use PARADIGM to 

generate IPA scores for each of the 117 TET patients.

We clustered PARADIGM IPAs using the UCSC consensus clustering RData script v.1.0.0 

available though medbook.ucsc.edu. These PARADIGM inputs were merged real IPAs to be 

clustered by samples (patients). The clustering conditions used a k-means algorithm, average 

final linkage, and 500 repetitions with a k-max of 10. Clustered heatmaps of patient IPAs 

were graphed with attribute color assignments. As a quality check, we computed a silhouette 

score for each k to measure goodness of fit for each patient in a cluster. The silhouette score 

used Euclidian distance to compute both similarity of a patient with other patients in a 

clusters, and separation of patients in different clusters (Rousseeuw, 1987). To perform 

significance testing on cluster attribute enrichment, we applied Benjamini-Hochberg p value 

correction (BH FDR) on Fisher Exact p values to compute False Discovery Rate (FDR). 

This produced a ranked list of clinical attributes based on p value per cluster, annotated with 

FDR.

TumorMap—TumorMap is a tool that generates a map of cancer samples for interactive 

exploration, statistical analysis, and data overlay visualization. These visualizations, which 

employ the Google Maps API, arrange samples on a hexagonal 2-dimensional grid based on 

a sample-by-sample similarity matrix. Samples can be annotated according to different 

attributes to allow the user to explore new associations in clinical data. Maps can be from a 

single platform or multiple merged platforms. This later approach uses Bivariate 
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Standardization similarity space Transformation (BST), adapted from Faith et al’s CLR, to 

integrate multiple similarity matrices into a single matrix of sample-sample associations 

(Faith et al., 2007). Here we use an integrative approach to reveal the relationship between 

the molecular and clinical attributes of TET patients based on a multi-platform co-cluster 

analysis.

We first created a sparse sample-by-sample similarity matrix from each of the platform 

clusters. This similarity matrix comprises the top 10 highest ranked Spearman correlations 

per sample as implemented by the sklearn.metrics.pairwise submodule (Pedregosa et al., 

2011). We performed this rank on each of the platform clusters, and combined them with the 

BST pipeline. The BST pipeline averages Z scores of each sample-sample similarity 

between platform matrices, resulting in a single similarity matrix. This single matrix was 

inputted to the physics-based layout engine DrL, an open source version of VxOrd created 

by Sandia National Labs (Martin et al., 2011). DrL treats sample similarities as spring 

constants and searches for a spatial configuration among samples that minimizes system 

tension. This ultimate spatial configuration was mapped in 2D using TumorMap v0.5, 

available on medbook.ucsc.edu, and colored samples by clinical attribute.

Multi-Center Mutation Calling

UCSC—Single nucleotide somatic mutations were identified by RADIA (RNA AND DNA 

Integrated Analysis), a method that combines the patient matched normal and tumor DNA 

whole exome sequencing (DNA-WES) with the tumor RNA sequencing (RNA-Seq) for 

somatic mutation detection (Radenbaugh et al., 2014) (software available at: https://

github.com/aradenbaugh/radia/). The inclusion of the RNA-Seq data in RADIA increases the 

power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating 

the DNA and RNA, mutations that would be missed by traditional mutation calling 

algorithms that only examine the DNA can be rescued back. RADIA classifies somatic 

mutations into 3 categories depending on the read support from the DNA and RNA: 1) DNA 

calls – mutations that had high support in the DNA, 2) RNA Confirmation calls – mutations 

that had high support in both the DNA and RNA, 3) RNA Rescue calls – mutations that had 

high support in the RNA and weak support in the DNA. Here RADIA identified 7,363 DNA 

mutations, 718 RNA Confirmation mutations, and 369 RNA Rescue mutations.

Washington University − Exomes and Validation

Exome Capture: Illumina libraries were constructed as described previously. Unique, 6bp 

molecular barcodes were used to identify individual samples. Prior to exome capture, 

individual libraries were pooled. Pools were captured using Nimblegen SeqCap EZ Human 

Exome Library v3.0 combined with additional 120-mer IDT custom probes, targeting 

cancer-related viruses. Pools were sequenced in multiple lanes of Illumina HiSeq 2000 

flowcells to achieve a minimum coverage of 20× across 80% of coding target exons.

Custom Capture Validation of Somatic Mutations: A second, independent set of Tumor 

and Normal Illumina libraries were generated from the original aliquots. These were 

enriched by performing hybrid capture using Roche Nimblegen SeqCap EZ custom capture 

oligos. When available, genomic DNA was utilized for library construction starting material, 
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alternatively Qiagen WGA amplified DNA was used when insufficient material was 

available. Each sample library received unique, dual molecular barcodes prior to pooling. 

The target regions for somatic indels and point mutations were defined as a 100bp region 

surrounding the mutation site. Probes designed with >5 mismatches were discarded. 

Additional 120-mer IDT probes targeting cancer-related viruses were combined with 

SeqCap custom probes prior to capture. Target and probe bed files are available at http://

genome.wustl.edu/pub/custom_capture/

Read Alignment for Exome and Custom Capture: Validation Each lane or sub-lane of 

data was aligned with bwa v0.5.9 (Li and Durbin, 2009). to GRCh37-lite + accessioned 

target viruses (ftp://genome.wustl.edu/pub/reference/GRCh37-lite_WUGSC_variant_2/) 

Defaults are used in both bwa aln and bwa sampe (or bwa samse if appropriate) with the 

exception that for bwa aln four threads are utilized (−t 4) and bwa’s built in quality-based 

read trimming (-q 5). ReadGroup entries are added to resulting SAM files using gmt sam 

add-read-group-tag. This SAM file is then converted to a BAM file using Samtools v0.1.16, 

name sorted (samtools sort -n), mate pairings assigned (samtools fixmate), resorted by 

position (samtools sort), and indexed using gmt sam index-bam. Read Duplication Marking 

and Merging

Reads from multiple lanes, but the same sequencing library are merged, if necessary, using 

Picard v1.46 MergeSamFiles and duplicates are then marked per library using Picard 

MarkDuplicates v1.46. Lastly, each per-library BAM with duplicates marked is merged 

together to generate a single BAM file for the sample. For MergeSamFiles we run with 

SORT_ORDER=coordinate and MERGE_SEQUENCE_DICTIONARIES=true. For both 

tools, ASSUME_SORTED=true and VALIDATION_STRINGENCY=SILENT are 

specified. All other parameters are set to defaults. Samtools flagstat is run on each BAM file 

generated (per-lane, per-library, and final merged).

SNV Callers: We detected somatic SNVs using Samtools (Li et al., 2009) v0.1.16 (samtools 

pileup –cv -A -B), SomaticSniper (Larson et al., 2012) v1.0.4 (bam-somaticsniper -F vcf -G 

-L -q 1 -Q 15), Strelka (Saunders et al., 2012) v0.4.6.2 (with default parameters except for 

setting isSkipDepthFilters = 1), and VarScan (Koboldt et al., 2012) v2.2.6 (–min-coverage 3 

–min-var-freq 0.08 –p value 0.10 –somatic-p value 0.05 –strand-filter 1).

SNV Caller combination and filtering

First, Samtools calls were retained if they met all of the following rules inspired by MAQ:

Site is greater than 10bp from a predicted indel of quality 50 or greater.

The maximum mapping quality at the site is ≥ 40.

Fewer than 3 SNV calls in a 10 bp window around the site.

Site is covered by at least 3 reads and less than 1,000,000,000 reads.

Consensus quality ≥ 20.

SNP quality ≥ 20.
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After these filters were applied, Samtools and SomaticSniper calls were unioned using joinx 

v1.9 (https://github.com/genome/joinx; joinx sort –stable –unique). The resulting merged set 

of variants were additionally filtered to remove likely false positives2,4. We used bam-

readcount v0.4 (https://github.com/genome/bam-readcount) with a minimum base quality of 

15 (-b 15) to generate metrics and retained sites based on the following requirements:

Minimum variant base frequency at the site of 5%.

Percent of reads supporting the variant on the plus strand ≥ 1% and ≤ 99% (variants 

failing these criteria are filtered only if the reads supporting the reference do not show 

a similar bias).

Minimum variant base count of 4.

Variant falls within the middle 90% of the aligned portion of the read.

Maximum difference between the quality sum of mismatching bases in reads 

supporting the variant and reads supporting the reference of 50.

Maximum mapping quality difference between reads supporting the variant and reads 

supporting the reference of 30.

Maximum difference in aligned read length between reads supporting the variant base 

and reads supporting the reference base of 25.

Minimum average distance to the effective 3’ end§ of the read for variant supporting 

reads of 20% of the sequenced read length.

Maximum length of a flanking homopolymer run of the variant base of 5.

After this filtering, the SomaticSniper/Samtools calls were additionally filtered to high 

confidence variants by retaining only those sites where:

The average mapping quality of reads supporting the variant allele was ≥ 40

The SomaticScore of the call was ≥ 40.

VarScan calls were retained if they met the following criteria:

VarScan reported a somatic p value ≤ 0.07.

VarScan reported a normal frequency ≤ 5%.

VarScan reported a tumor frequency ≥ 10%.

VarScan reported ≥ 2 reads supporting the variant.

VarScan variants passing these criteria were then filtered for likely false positives using bam-

readcount v0.4 and identical criteria as described above for SomaticSniper. Fully filtered 

calls as described above for SomaticSniper and VarScan were then merged with calls from 

Strelka using joinx v1.9 (joinx sort –stable –unique) to generate the final callset.

Indel Callers: We detected indels using the GATK (McKenna et al., 2010) 1.0.5336 (-T 

IndelGenotyperV2 –somatic –window_size 300 -et NO_ET), retaining only those which 

were called as Somatic, Pindel (Ye et al., 2009) v0.2.2 (-w 10; with a config file generated to 
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pass both tumor and normal BAM files set to an insert size of 400), Strelka (Saunders et al., 

2012) v0.4.6.2 (with default parameters except for setting isSkipDepthFilters = 1), and 

VarScan (Koboldt et al., 2012) v2.2.6 (–min-coverage 3 –min-var-freq 0.08 –p value 0.10 –

somatic-p value 0.05 –strand-filter 1). Indel Caller Filtering and Combination

Pindel calls were retained if they had:

No support in the normal data.

Had more reads reported by Pindel than reported by Samtools at the indel position or 

if the number of supporting reads from Pindel was ≥ 8% of the total depth at the 

position reported by Samtools.

Samtools reported a depth less than 10 at the region and Pindel reported more indel 

supporting reads than reads mapped with gaps at the site of the call.

A Fisher’s exact test p value ≤ 0.15 was returned when comparing the number of 

reads with gapped alignments versus reads without in the normal to the tumor.

VarScan indel calls were retained if they met the following criteria:

VarScan reported a somatic p value ≤ 0.07.

VarScan reported a normal frequency ≤ 5%.

VarScan reported a tumor frequency ≥ 10%.

VarScan reported ≥ 2 reads supporting the variant.

Broad Institute

Identification of Somatic Mutations: Alignments were first subjected to quality control to 

avoid mix-ups between tumor and normal samples, as well as cross-contamination between 

tumor samples using ContEst (Cibulskis et al., 2011). We used the MuTect algorithm version 

1.1.62 to generate somatic mutation calls, which were subsequently filtered to remove any 

spurious calls due to shearing-induced generation of 8-oxoguanine (Costello et al., 2013). 

Indels were identified using the IndelLocator algorithm as previously described (Costello et 

al., 2013). Details and tools are available at www.broadinstitute.org/cancer/cga.

Mutation Annotation: Functional annotation of mutations was performed with Oncotator 

(Ramos et al., 2015) (http://www.broadinstitute.org/cancer/cga/oncotator) using Gencode 

V18.

BC Cancer Agency

Strelka Variant Caller: Strelka (Saunders et al., 2012) (v1.0.6) was used to identify 

somatic single nucleotide variants, and short insertions and deletions from the TCGA 

THYM exome dataset. All parameters were set to defaults, with the exception of 

“isSkipDepthFilters”, which was set to 1 in order to skip depth filtration given the higher 

coverage in exome datasets. 123 pairs of libraries were analyzed. When a blood sample was 

available, it served as the matched normal specimen; otherwise, the matched normal tissue 

was used. The variants were subsequently annotated using SnpEff (Cingolani et al., 2012), 
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and the COSMIC (v61) (Forbes et al., 2010) and dbSNP (v137) (Smigielski et al., 2000) 

databases.

Baylor College of Medicine

Multicenter Mutation Calling: At BCM, mutations in BAM files were detected as follows: 

Atlas-SNP (Bang et al., 2010) of the Atlas2 Suite (Challis et al., 2012) was run to list all 

variants found in multiple reads at a single locus; and variants were annotated with dbSNP 

by ANNOVAR (Wang et al., 2010a) and COSMIC (Catalogue Of Somatic Mutations In 

Cancer). The variants were further filtered to remove all those observed fewer than 4 times 

or were present in less than 0.04 of the reads. Normal variant ratio must be less than 1% of 

tumor variant ratio. At least one variant had to be mapping quality of Q20 or better, and the 

variant had to lie in the central portion of the read. In addition, at least one variant must 

appear in both forward and reverse orientations. COSMIC variants were exempted from 

above filters. Insertion or deletion variants (“indels”) were discovered by similar processing 

except that the initial processing was with Atlas-Indel of the Atlas2 Suite, and indels must 

have been observed in 10 of the reads with ratio of 0.15. All the variants were compared to a 

population of normal genomes and any matching variant was removed; then the file were 

further filtered by removing variants with normal sample coverage less than 2 or tumor 

variant coverage less than 0.05 or genes with greater than 2 variants for the same sample.

Copy number analysis

SNP-based Copy Number Analysis—DNA from each tumour or germline sample was 

hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis Platform 

of the Broad Institute as previously described (McCarroll et al., 2008). Briefly, from raw. 

CEL files, Birdseed was used to infer a preliminary copy-number at each probe locus (Korn 

et al., 2008). For each tumour, genome-wide copy number estimates were refined using 

tangent normalization, in which tumour signal intensities are divided by signal intensities 

from the linear combination of all normal samples that are most similar to the tumour 

(Cancer Genome Atlas Research, 2011). This linear combination of normal samples tends to 

match the noise profile of the tumour better than any set of individual normal samples, 

thereby reducing the contribution of noise to the final copy-number profile. Circular Binary 

Segmentation (CBS) (Olshen et al., 2004) was used to segment patient-level normalized 

copy-number estimates. As part of this process of copy-number assessment and 

segmentation, regions corresponding to germline copy-number alterations were removed by 

applying filters generated from either the TCGA germline samples from the previous TCGA 

studies or from samples in this cohort.

ABSOLUTE—Allelic copy number, whole genome doubling, and purity (tumour 

cellularity) and ploidy estimates were calculated using the ABSOLUTE algorithm (Carter et 

al., 2012). ABSOLUTE integrates somatic SNV (SSNV) mutations in its analysis; the input 

mutations were analyzed using MuTect (Cibulskis et al., 2013) and can be obtained from 

gdac.broadinstitute.org. Because many TET samples contained few or no somatic copy 

number alterations (SCNA), the purity prediction may be less reliable due to estimation from 

only mutations.
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PyClone and TITAN—We used PyClone (Roth et al., 2014) v0.12.9 to assess the clonality 

of validated mutations with deeper coverage of SSNV loci; only 88/117 samples that had at 

least 2 mutations with > 50 read depth were analyzed. For these 88 samples, PyClone used 

input SCNA events analyzed by TITAN (Ha et al., 2014) v1.5.8 (from whole exome 

sequencing). All parameters for both PyClone and TITAN were initialized to the defaults. 

The tumor content was initialized to 1.0, such that the clonally dominant cluster (SSNVs 

observed to be present in the highest fraction of tumour cells) will be the new, estimated 

purity. To do this, we identified the cluster having the largest average cellular prevalence 

across the mean of the posterior distribution for each mutation within the cluster. For 

samples that had less than 5% of the genome altered by SCNA, we reassigned the purity to 

the PyClone average cellular prevalence as the new purity; otherwise, the ABSOLUTE 

purity was used.

Next, we corrected the CBS segments for each patient using the estimated purity. This 

correction allows the amplitude of the SCNA segments to be comparable on the same scale 

and extenuates the signals for samples with lower purities. Therefore, application of a 

uniform threshold (e.g. +/−0.3 log2 copy ratio) to determine deletions and gains (as is done 

by GISTIC) is now more appropriate. To do this, we applied the following correction to 

adjust the log2 copy ratio l for segment t to obtain the purity-ploidy-corrected log2 copy 

ratio, r t

S = 2n + (1 − n)ϕ

c = 2
ltS − 2n
(1 − n)

r t = log2( c
ϕ )

GISTIC—Using these purity-ploidy-corrected copy ratios of the segmented copy number 

profiles for tumour and matched control DNAs, we applied Ziggurat Deconstruction, an 

algorithm that parsimoniously assigns a length and amplitude to the set of inferred copy-

number changes underlying each segmented copy number profile (Mermel et al., 2011). 

Then, we determined statistically significant focal copy number alterations using GISTIC 

2.09.

Data and Software Availability—All raw genomic and clinical data has been made 

available at the NCI Genomic Data Commons: https://gdc.cancer.gov/

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD 
Anderson Cancer Center

https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core.html

   

Biological Samples

Tumor and normal tissue 
samples

TCGA Network See experimental methods and https://gdc.cancer.gov/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

DNA/RNA AllPrep kit Qiagen 80204

mirVana miRNA Isolation Kit Ambion/ThermoFisher AM1560

QiaAmp DNA Blood Midi kit Qiagen 51185

AmpFLSTR Identifiler Applied Biosystems/ThermoFisher A30695

RNA6000 Nano assay Agilent 5067-1511

Illumina Infinium HM450 array Illumina WG-314-1003

Zymo EZ DNA methylation kit Zymo Research D5004

lllumina mRNA TruSeq kit Illumina RS-122-2001

Nimblegen SeqCap EZ Exome 
Kit v3.0

Nimblegen 06465692001

Affymetrix SNP 6.0 arrays Affymetrix/ThermoFisher 901182

   

Deposited Data

Raw genomic and clinical data NCI Genomic Data Commons https://gdc.cancer.gov/

TCGA GAF2.1 TCGA http://tcga-data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf

   

Software and Algorithms

ConsensusClusterPlus (Wilkerson and Hayes, 2010) http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

pheatmap v1.0.2 N/A https://www.rdocumentation.org/packages/pheatmap/versions/1.0.2

samr v2.0 (Li and Tibshirani, 2013; Tusher et 
al., 2001)

https://www.rdocumentation.org/packages/samr/versions/2.0

MatrixEQTL v2.1.1 (Shabalin, 2012) https://www.rdocumentation.org/packages/MatrixEQTL/versions/2.1.1

miRTarBase V6.0 (Hsu et al., 2014) http://mirtarbase.mbc.nctu.edu.tw/

TargetScan 7.0 (Agarwal et al., 2015) http://www.targetscan.org/vert_71/

MapSplice 0.7.4 (Wang et al., 2010b) http://www.netlab.uky.edu/p/bioinfo/MapSplice2

V2_MapSpliceRSEM workflow TCGA https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/thym/cgcc/unc.edu/illuminahiseq_rnaseqv2/rnaseqv2/unc.edu_THYM.IlluminaHiSeq_RNASeqV2.mage-tab.1.0.0/DESCRIPTION.txt

survival R package N/A https://www.rdocumentation.org/packages/survival/versions/2.41-2

DAVID annotation database (Huang et al., 2007a; Huang et al., 
2007b)

https://david.ncifcrf.gov/

ClaNC R package (Dabney, 2006) http://www.stat.tamu.edu/~adabney/clanc/

VirusSeq (Chen et al., 2013) http://odin.mdacc.tmc.edu/~xsu1/VirusSeq.html

Array-Pro Analyzer Media Cybernetics N/A

SuperCurveGUI (Hu et al., 2007) http://bioinformatics.mdanderson.org/Software/supercurve

MicroVigene VigeneTech, Inc. N/A

BioBloomTools (BBT, v1.2.4.b1) (Chu et al., 2014) http://www.bcgsc.ca/platform/bioinfo/software/biobloomtools

ABySS v1.3.4 (Simpson et al., 2009) http://www.bcgsc.ca/platform/bioinfo/software/abyss

Trans-ABySS v1.4.8 (Robertson et al., 2010) http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss

DrL (Martin et al., 2011) http://www.cs.sandia.gov/~smartin/software.html

TumorMap v0.5 N/A https://tumormap.ucsc.edu/

RADIA (Radenbaugh et al., 2014) https://github.com/aradenbaugh/radia/

bwa v0.5.9 (Li and Durbin, 2009) https://github.com/lh3/bwa

Samtools v0.1.16 (Li et al., 2009) https://github.com/samtools/samtools

Picard N/A https://github.com/broadinstitute/picard

SomaticSniper v1.0.4 (Larson et al., 2012) https://github.com/genome/somatic-sniper

Strelka v0.4.6.2 (Saunders et al., 2012) https://sites.google.com/site/strelkasomaticvariantcaller/

VarScan v2.2.6 (Koboldt et al., 2012) http://dkoboldt.github.io/varscan/

joinx v1.9 N/A https://github.com/genome/joinx

bam-readcount v0.4 N/A https://github.com/genome/bam-readcount

GATK 1.0.5336 (McKenna et al., 2010) https://software.broadinstitute.org/gatk/

Pindel v0.2.2 (Ye et al., 2009) https://github.com/genome/pindel

ContEst (Cibulskis et al., 2011) http://archive.broadinstitute.org/cancer/cga/contest

MuTect (Cibulskis et al., 2013) https://github.com/broadinstitute/mutect

Oncotator (Ramos et al., 2015) http://www.broadinstitute.org/cancer/cga/oncotator

SnpEff (Cingolani et al., 2012) http://snpeff.sourceforge.net/

Atlas2 Suite (Challis et al., 2012) https://sourceforge.net/projects/atlas2/files/

ANNOVAR (Wang et al., 2010a) http://annovar.openbioinformatics.org/en/latest/

ABSOLUTE (Carter et al., 2012) http://archive.broadinstitute.org/cancer/cga/absolute

PyClone (Roth et al., 2014) http://compbio.bccrc.ca/software/pyclone/
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https://gdc.cancer.gov/
http://tcga-data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://www.rdocumentation.org/packages/pheatmap/versions/1.0.2
https://www.rdocumentation.org/packages/samr/versions/2.0
https://www.rdocumentation.org/packages/MatrixEQTL/versions/2.1.1
http://mirtarbase.mbc.nctu.edu.tw/
http://www.targetscan.org/vert_71/
http://www.netlab.uky.edu/p/bioinfo/MapSplice2
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/thym/cgcc/unc.edu/illuminahiseq_rnaseqv2/rnaseqv2/unc.edu_THYM.IlluminaHiSeq_RNASeqV2.mage-tab.1.0.0/DESCRIPTION.txt
https://www.rdocumentation.org/packages/survival/versions/2.41-2
https://david.ncifcrf.gov/
http://www.stat.tamu.edu/~adabney/clanc/
http://odin.mdacc.tmc.edu/~xsu1/VirusSeq.html
http://bioinformatics.mdanderson.org/Software/supercurve
http://www.bcgsc.ca/platform/bioinfo/software/biobloomtools
http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss
http://www.cs.sandia.gov/~smartin/software.html
https://tumormap.ucsc.edu/
https://github.com/aradenbaugh/radia/
https://github.com/lh3/bwa
https://github.com/samtools/samtools
https://github.com/broadinstitute/picard
https://github.com/genome/somatic-sniper
https://sites.google.com/site/strelkasomaticvariantcaller/
http://dkoboldt.github.io/varscan/
https://github.com/genome/joinx
https://github.com/genome/bam-readcount
https://software.broadinstitute.org/gatk/
https://github.com/genome/pindel
http://archive.broadinstitute.org/cancer/cga/contest
https://github.com/broadinstitute/mutect
http://www.broadinstitute.org/cancer/cga/oncotator
http://snpeff.sourceforge.net/
https://sourceforge.net/projects/atlas2/files/
http://annovar.openbioinformatics.org/en/latest/
http://archive.broadinstitute.org/cancer/cga/absolute
http://compbio.bccrc.ca/software/pyclone/


REAGENT or RESOURCE SOURCE IDENTIFIER

TITAN (Ha et al., 2014) https://github.com/gavinha/TitanCNA

GISTIC 2 (Mermel et al., 2011) http://software.broadinstitute.org/software/cprg/?q=node/31
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Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Neoplasms of the thymus are among the rarest of malignancies, but the most common 

cancer of the anterior mediastinum. These tumors have a unique biology including a 

strong association with autoimmune disorders (such as myasthenia gravis, pure red cell 

aplasia and hypogammaglobulinemia), and a lack of specific therapeutic targets for 

metastatic disease. Using a multi-omic platform approach as part of The Cancer Genome 

Atlas (TCGA), we define the mutational landscape of thymic epithelial tumors. These 

results provide a comprehensive resource to understand the biology of TETs and inform 

subsequent drug development studies. Taken together, this effort represents the largest 

and most comprehensive molecular analysis of thymic epithelial tumors to date.
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HIGHLIGHTS

• Multi-omics definition of four robust molecular TET subtypes associated with 

survival

• Thymomas have the lowest mutational burden among adult cancers

• Enrichment of HRAS, NRAS, TP53, and recurrent GTF2I mutations are 

observed

• Expression of autoimmune targets and aneuploidy links thymoma to 

myasthenia gravis
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Figure 1. 
The landscape of DNA mutation in TETs. The matrix in the center of the figure represents 

individual mutations in TET patients, color-coded by type of mutation, for the significantly 

mutated genes which include: GTF2I, HRAS, NRAS, and TP53. The rate of synonymous 

and non-synonymous mutations for each sample is displayed at the top of the matrix. The 

barplot on the left of the center matrix shows the number of mutations in each gene. The 

barplot to the right of the matrix displays the q-values for the most significantly mutated 

genes. The bottom half of the figure depicts the arm level sCNAs for each sample color-

coded by the type of CNA. The barplot on the left depicts the number of total sCNAs for 

each sample. See also Figure S2 and S3.
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Figure 2. 
Tumor mutation burden (TMB) in TETs (THYM) compared to 21 other cancers profiled by 

the TCGA. The proportional presence of mutational transitions and transversions by cancer 

lineage are depicted in the histograms at the bottom of the figure.
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Figure 3. 
Integrative unsupervised clustering of subtypes from five data platforms. (A) Consensus 

clustering separated TET samples into four molecular subtypes (n=117). The blue and white 

heatmap at the top shows sample consensus. The blue and yellow heatmap in the center 

shows the correlation to each individual data type cluster membership centroid. The bottom 

displays the presence (black) or absence (gray) of a mutation in one of the four significantly 

mutated genes. (B) Summary of samples in each cluster by WHO histological subtype. (C) 
Survival differences across molecular subtypes. Survival data was missing for a sample in 
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cluster 3. (D) Map of samples generated from TumorMap colored by pathology status. 

Samples are placed according to similarities in their genomic profiles integrating all the 

platforms. For each cluster, single-platform hallmarks are listed above the thin line, whereas 

PARADIGM results are listed below the thin line. See also Figures S3, S4, and S5.
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Figure 4. 
Multi-platform analysis of the thymoma specific oncogene GTF2I. (A) Lollipop plot of 

GTF2I demonstrating all the mutations observed in GTF2I. Green boxes mark the GTF2I-

like repeat regions. (B) The frequency of somatic mutations in GTF2I in other cancer 

lineages as compared to TETs. (C) GTF2I mutational gene expression signature in thymoma 

type A and AB. (D) GTF2I methylation signature in type A and AB. Ten misclassified 

samples are also reported, based on the RNAseq data. (E) Box plots of pathway scores of 

GTF2I mutant (red) and wild type (blue) tumors. Box plot display the median value, upper 
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and lower quartiles, the whiskers represent the interquartile range, and outliers are marked 

with dots. P values are based on the ANOVA test.
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Figure 5. 
Patterns of sCNA and gene expression associated with autoimmunity. (A-B) The prevalence 

of altered chromosome arms were compared between the positive (MG+) and negative (MG

−) status of myasthenia gravis for all samples across histology types (A) and only the subset 

of samples in B1, B2, B3 histology types (B). For the boxplots: line in the box indicates the 

median; lower and upper hinges correspond to the first and third quartiles; upper and lower 

whiskers extend to 1.5 × interquartile range; outlier data are shown as points. (C) Gene-level 

sCNA frequency landscape for samples with B1, B2, B3 histology, comparing between the 

history of myasthenia gravis status. The χ2 test of independence was applied to arm-level 

sCNA for each chromosome arm to determine significantly enriched events between MG+ 

and MG- status. False discovery rate (q) less than 0.05 (−log q value = 3) are shown for 

gains (red) and deletions (blue). (D) Log2 normalized gene expression of selected 

differentially expressed genes. See also Figure S6.
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Figure 6. 
Genomic analysis of thymic carcinomas. (A) The landscape of DNA mutation in Type TC 

tumors. The matrix at the top of the panel depicts clinical information. The center of the 

panel depicts individual mutations in Type TC tumors, color-coded by type of mutation, for 

the previously identified significantly mutated genes and focal copy number changes. The 

bottom half of the panel depicts the arm level sCNAs for each sample color-coded by the 

type of CNA. The barplot on the left depicts the number of total sCNAs for each sample. (B) 
A box plot demonstrating the TMB of samples by histology. Lines in the boxes indicate the 

median; lower and upper hinges correspond to the first and third quartiles; upper and lower 

whiskers extend to 1.5 × interquartile range; outlier data are shown as points. In order to 

avoid skewing the results, one hypermutated TC sample and one TC sample with a TMB=0 

were excluded. (C) The normalized profile of COSMIC signature 6 (microsatellite unstable 

tumors) and the SNV mutation spectra of the hyper-mutated TC sample (TCGA-ZB-A966) 
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along 96 base substitution types in tri-nucleotide sequence motifs (top) and the heatmap of 

cosine similarity between the mutation spectra in TCGA-ZB-A966 and thirty curated 

COSMIC signatures.
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Table 1

Demographics and clinical parameters of our patient population. See also Table S1 and Figure S1.

Parameter Total (%)

Total number 117

Median age (range), years 60 (17 – 84)

Gender

 Male 61 (52)

 Female 56 (48)

Race

 Caucasian 97 (83)

 Black 6 (5)

 Asian 12 (10)

 Data missing 2 (2)

Ethnicity

 Hispanic 9 (8)

 Non-Hispanic 94 (80)

 Data missing 14 (12)

Masaoka stage

 I 36 (31)

 IIA 39 (33)

 IIB 19 (16)

 III 15 (13)

 IVA 1 (1)

 IVB 5 (4)

 Data missing 2 (2)

Histologic subgroup:

 Thymoma (total 105)

  Type A 10 (9)

  Type AB 48 (41)

  Type B1 12 (10)

  Type B2 25 (21)

  Type B3 10 (9)

 Thymic carcinoma (TC) (total 10) 4 (3)

  Squamous cell carcinoma 4 (3)

  Undifferentiated carcinoma 1 (1)

  Large-cell neuroendocrine carcinoma 1 (1)

  Thymic carcinoma, NOS

 Micronodular Thymoma (MNT) 2(2)
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Parameter Total (%)

Underwent surgery

 Median sternotomy 72 (61)

 Clamshell sternotomy 1 (1)

 Lateral thoracotomy 22 (19)

 Video-assisted thoracoscopic surgery (VATS) 14 (12)

 Type of surgery not-specified 8 (7)

Extent of surgical resection

 R0 (no residual tumor) 97 (83)

 R1 (microscopic residual tumor) 9 (8)

 R2 (macroscopic residual tumor) 4 (3)

 RX (presence of residual tumor cannot be assessed) 2 (2)

 Data missing 5 (4)

Adjuvant radiation therapy 39 (33)

Adjuvant systemic therapy (total 14)

 Platinum- and/or anthracycline-containing combination 6 (43)

 Other systemic therapy 4 (29)

 Targeted therapy 2 (14)

 Data missing 2 (14)

Recurrence of thymic tumor (total 10)

 Locoregional recurrence 5 (50)

 Locoregional recurrence and distant metastasis 3 (30)

 Distant metastasis 2 (202)

Autoimmune disease (total 39)*

 Myasthenia gravis only 32 (82)

 Non-myasthenia gravis autoimmune disease only 7 (18)

 Data missing** 6 (5)

Onset of myasthenia gravis (total 32)

 Myasthenia gravis diagnosed prior to thymoma 20 (62.5)

 Myasthenia gravis and thymoma diagnosed simultaneously 7 (22)

 Myasthenia gravis diagnosed after thymoma 4 (12.5)

 Data not available 1 (3)

Secondary malignancy (total 22)

 Diagnosed after thymic tumor 10 (45)

 Diagnosed prior to thymic tumor 9 (41)

 Diagnosed synchronously 3 (14)

*
One patient with type AB thymoma had acetylcholine receptor antibodies in serum but no clinical evidence for myasthenia gravis. This case has 

not been included among patients with autoimmune disease.
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**
Data on both MG and other autoimmune disease is not available in 1 case and data on non-MG autoimmune disease alone is not available in 5 

cases; these represent 5% of 117 cases.
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