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Abstract

K(π, 1) Spaces in Algebraic Geometry

by

Piotr Achinger

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Arthur E. Ogus, Chair

The theme of this dissertation is the study of fundamental groups and classifying
spaces in the context of the étale topology of schemes. The main result is the
existence of K(π, 1) neighborhoods in the case of semistable (or more generally
log smooth) reduction, generalizing a result of Gerd Faltings. As an application to
p-adic Hodge theory, we use the existence of these neighborhoods to compare the
cohomology of the geometric generic fiber of a semistable scheme over a discrete
valuation ring with the cohomology of the associated Faltings topos. The other
results include comparison theorems for the cohomology and homotopy types of
several types of Milnor fibers. We also prove an `-adic version of a formula of
Ogus, describing the monodromy action on the complex of nearby cycles of a log
smooth family in terms of the log structure.
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“Proof is hard to come by.”

–Proposition Joe
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Chapter 1

Introduction

Let X be a suf�ciently nice topological space — for example, a CW complex or a manifold

(see §2.1.1 for the minimal assumptions we need). Assume thatX is connected, and pick a

base pointx 2 X . We callX aK(� ,1) spaceif its higher homotopy groups

� i (X , x), i = 2, 3, . . .

are zero. The homotopy type of such a space is completely determined by its fundamental

group � 1(X , x), and in particular the cohomology ofX with coef�cients in every local sys-

tem (a locally constant sheaf of abelian groups) can be identi�ed with the group cohomology

of the corresponding representation of� 1(X , x).

Similarly, in the context of algebraic geometry, a connected schemeX with a geometric

point x is a called aK(� ,1) schemeif the cohomology of everyétalelocal system agrees with

the cohomology of the corresponding representation of the fundamental group� ét
1

(X , x).

The importance of this notion was �rst revealed in the context of Artin's proof of the com-

parison theorem[ SGA73b, Exp. XI, 4.4] between the étale cohomology of a smooth scheme

X over C and the singular cohomology of the associated analytic spaceX an. The main step

in the proof is the construction of a covering ofX by K(� ,1) open subsets1 by constructing

certain “elementary �brations”.

1More precisely, Zariski open subsetsU such thatU an are K(� ,1) spaces and each� 1(U
an) is a “good

group” (cf. De�nition 2.1.13).
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CHAPTER 1. INTRODUCTION

Coverings byK(� ,1) schemes also play an important role inp-adic Hodge theory. In

the course of the proof of the comparison between thep-adic étale cohomology and Hodge

cohomology of a smooth proper scheme over ap-adic �eld K (called the Hodge–Tate de-

composition, or theCHT conjecture of Fontaine), Faltings showed[ Fal88, Lemma II 2.1]

that a smooth schemeX over OK can be covered by Zariski open subsetsU whose geomet-

ric generic �bersUK areK(� ,1) schemes. However, to tackle the more dif�cultCdR and

Cst conjectures this way, one needs an analogous statement forX semistableover OK . In his

subsequent work onCst, Faltings used a different approach, and remarked[ Fal02, Remark

on p. 242] that one could use theK(� ,1) property instead if it was known to hold in the

semistable case. Our main result proves that this is indeed true.

Theorem (Special case of Theorem 3.2.1). Let X be a semistable scheme overOK . Then X can

be covered (in the étale topology) by schemes U such that UK is a K(� ,1) scheme.

In addition, we provide comparison theorems for the homotopy types of several types of

Milnor �bers. Finally, in Theorem 5.4.4, we provide aǹ -adic version of the computation

of the monodromy action on nearby cycles in the log smooth case due to Ogus[ Ogu13,

Theorem 3.3] .

? ? ?

We start with a gentle introduction (§1.1) to the relevant concepts, concluding with an

informal statement of the results in §1.1.5. Section 1.2 discusses our main theorem: its

context, corollaries, and the idea of proof (which itself occupies Chapter 3). In §1.3, we

state the remaining results: the comparison theorems for Milnor �bers (Chapter 4) and the

“monodromy formula” (Chapter 5).

1.1 A non-technical outline

The results in this thesis all deal withone-parameter degenerationsof algebraic varieties and

the associated notions ofMilnor �bers, monodromy, and nearby cycles. We will start by

reviewing these concepts in the classical (complex analytic) setting (§1.1.1), then in the alge-

braic setting (§1.1.2). After discussing how these objects behave in the situation when the

degeneration issemistable(§1.1.3), and brie�y touching on the topic ofp-adic Hodge theory

(§1.1.4), we state the results of this thesis in §1.1.5.
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1.1. A NON-TECHNICAL OUTLINE

1.1.1 The classical theory over the complex numbers

In the complex analytic picture, one typically takes a small disc

S= f z : jzj < � g � C

as a base (parameter space) and considers a holomorphic mapf : X �! S from a complex

manifold (or more generally an analytic space)X . We think of f as of a family of spaces

X t = f � 1(t ) parametrized byt 2 S. Let S� = Snf0gbe the punctured disc,X � = X nf � 1(0) its

preimage. We assume thatf jX � : X � �! S� is a locally trivial �bration, i.e. that locally on S� ,

f topologically looks like the projectionX t � S� �! S� (in particular allX t are homeomorphic

for t 6= 0), and that the “special �ber”X0 = f � 1(0) is a deformation retract ofX . These

assumptions are satis�ed for� � 1 for example if f is proper [ GM88, 1.5, 1.7] .Usually

f � is assumed to be smooth (i.e., a submersion), so that the �bersX" (" 6= 0) are complex

manifolds, whileX0 acquires some singularities (which is why we callf a degeneration), as

in Figure 1.1.1.

One can study the topological properties off in the neighborhood ofX0, both globally

and locally, using the notions discussed below.

Milnor �bers

In the local situation, the original approach of Milnor[ Mil68] is as follows. Suppose that

X � CN , and letx 2 X0. Let Sx(" ) be the intersection ofX with a sphere (in the Euclidean

metric on CN ) of radius" � 1 and centerx. Consider the map

' x = argf : Sx(" ) nX0 �! S� arg
��! S1,

called theMilnor �bration . Milnor showed that, if X is smooth atx, ' x is a locally trivial

�bration whose �ber ' � 1
x

(1) (the Milnor �ber) is independent of" up to homeomorphism

(for " small enough). These results have been extended to the case of a generalX by Lê

[ Lê77] .

From our point of view, it will be more natural to work with the open ball Bx(" ) rather

than the sphere, and get rid of the argument map. LeteS� = f Re(z) < log� g. The map

exp :eS� �! S� is a universal cover ofS� . One can show (cf. Theorem 4.1.5) that for" � 1 the

space

Fx," = eS� � S Bx(" ) (1.1)

3
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