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INVESTIGATION

Learning Natural Selection from the Site
Frequency Spectrum

Roy Ronen,*,1 Nitin Udpa,* Eran Halperin,† and Vineet Bafna‡

*Bioinformatics and Systems Biology Program, University of California, San Diego, California 92093, †The Blavatnik School of
Computer Science and Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, Israel,

International Computer Science Institute, Berkeley, California 94704, and ‡Department of Computer Science and Engineering,
University of California, San Diego, California 92093

ABSTRACT Genetic adaptation to external stimuli occurs through the combined action of mutation and selection. A central problem in
genetics is to identify loci responsive to specific selective constraints. Many tests have been proposed to identify the genomic signatures
of natural selection by quantifying the skew in the site frequency spectrum (SFS) under selection relative to neutrality. We build upon
recent work that connects many of these tests under a common framework, by describing how selective sweeps affect the scaled SFS.
We show that the specific skew depends on many attributes of the sweep, including the selection coefficient and the time under
selection. Using supervised learning on extensive simulated data, we characterize the features of the scaled SFS that best separate
different types of selective sweeps from neutrality. We develop a test, SFselect, that consistently outperforms many existing tests over
a wide range of selective sweeps. We apply SFselect to polymorphism data from a laboratory evolution experiment of Drosophila
melanogaster adapted to hypoxia and identify loci that strengthen the role of the Notch pathway in hypoxia tolerance, but were missed
by previous approaches. We further apply our test to human data and identify regions that are in agreement with earlier studies, as
well as many novel regions.

NATURAL selection works by preferentially favoring car-
riers of beneficial (fit) alleles. At the genetic level, the

increased fitness may stem from two sources: either a de
novo mutation that is beneficial in the current environment
or new environmental stress leading to increased relative
fitness of an existing allele. Over time, haplotypes carrying
such variants start to dominate the population, causing re-
duced genetic diversity. This process, known as a selective
sweep, is mitigated by recombination and can therefore be
observed mostly in the vicinity of the beneficial allele. Im-
proving our ability to detect the genomic signatures of se-
lection is crucial for shedding light on genes responsible for
adaptation to environmental stress, including disease.

Many tests of neutrality have been proposed based on the
site frequency spectrum (Tajima 1989; Fay and Wu 2000;
Zeng et al. 2006; Chen et al. 2010; Udpa et al. 2011). We

start by describing these tests in a common framework de-
lineated by Achaz (2009). The data, namely genetic variants
from a population sample, is typically represented as a ma-
trix with m columns corresponding to segregating sites, and
n rows corresponding to individual chromosomes. The sam-
ple is chosen from a much larger population of N diploid
individuals, where chromosomes are connected by a (hid-
den) genealogy and mutations occurring in a certain lineage
are inherited by all of its descendants (Figure 1A). Thus, in
the example shown in Figure 1A, the mutation at locus 4
appears in four chromosomes from the sample, or 0.5 fre-
quency. Following Fu (1995), let ji denote the number of
polymorphic sites at frequency i/n in a sample of size n. The
site frequency spectrum (SFS) vector j and the scaled SFS
vector j9 are defined as

j ¼ ½j1; j2; . . . ; jn21�; j9 ¼ ½1j1; 2j2; . . . ; ðn2 1Þjn21�:
(1)

Thus, in Figure 1A, we have

j ¼ ½3;  1;  1;  1;  0;  0;  1�; j9 ¼ ½3;  2;  3;  4;  0;  0;  7�:
(2)
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In a constant-sized population evolving neutrally, the
branch lengths of various lineages (Kingman 1982), the
number of mutations on each lineage (Tajima 1989), and
the observed SFS (Fu 1995) are all tightly connected to the
population-scaled mutation rate u (= 4Nm) by coalescent
theory. Specifically, E(ji) = u/i for all i = (1, . . ., n 2 1).
This implies that each ji9ð¼ ijiÞ is an unbiased estimator of u
(Fu 1995) and that the scaled SFS j9 is uniform in expecta-
tion (as illustrated by the neutral curves in Figure 1).

However, this is not the case for populations evolving
under positive selection. We consider the case of a selective
sweep, where a single (de novo) mutation confers increased
fitness. Individuals carrying the mutation preferentially pro-
create with probability } 1 + s, where s is the selection
coefficient. As a result, the frequency of the favored allele
and of those linked to it rises exponentially with parameter
s, eventually reaching fixation at a rate dependent on s. Not
surprisingly, selective sweeps have a dramatic effect on the
scaled SFS. Near the point of fixation, the scaled SFS is
characterized by an abundance of very high-frequency alleles
and a near absence of intermediate frequency alleles (Figure
1E). Importantly, the scaled SFS of regions evolving under
selective sweeps differs even in the prefixation and postfixa-
tion regimes from that of regions evolving neutrally (Figure 1,
D and F).

To a first approximation, all tests of neutrality operate by
quantifying the “skew” in the SFS of a given population
sample, relative to that expected under neutral conditions.
A subset of these tests do so by comparing different estima-
tors of u. Following Achaz (2009), we note that any
weighted linear combination of j9 yields an unbiased
estimator:

E

 
1P
i wi

Xn21

i¼1

wi ji9

!
¼ u: (3)

Thus, known estimators of u can be rederived simply by
choosing appropriate weights wi. For instance,

ûW ¼ 1
an

X
i

1
i
ji9

�
wi ¼ i21;  Watterson 1975

�
ð4Þ

ûp ¼ 2
nðn2 1Þ

X
i

ðn2 iÞji9 ðwi ¼ n2 i;  Tajima 1989Þ
ð5Þ

ûH ¼ 2
nðn2 1Þ

X
i
iji9 ðwi ¼ i;  Fay and Wu 2000Þ:

ð6Þ

Since different estimators of u are affected to varying
extents by selective sweeps, many tests of neutrality are
based on taking the difference between two estimators.
These, also, can be defined as weighted linear combinations
of j9. For example (see Figure 2),

d ¼ ûp 2 ûW ¼
X
i

�
2ðn2 iÞ
nðn21Þ2

1
ian

�
ji9 ðTajima 1989Þ

ð7Þ

H ¼ ûp 2 ûH ¼
X
i

�
2n2 4i
nðn2 1Þ

�
ji9 ðFay and Wu 2000Þ

ð8Þ
In practice, d is normalized by its standard deviation, and
the normalized version is denoted D. The expected value of
both (D, H) equals 0 under neutral evolution, but , 0 for
populations evolving under selection. A potential caveat of
these tests is that although the scaled SFS changes consid-
erably with time (t) under selection (Figure 1), selection co-
efficient (s), and demographic history, the test statistic consists
of a single fixed-weight function. It is therefore not surprising
that the performance of these tests varies widely depending
on the values of these parameters.

Figure 1 Impact of a selective sweep on
the scaled SFS. (A) The genealogy of
eight chromosomes with eight polymor-
phic sites falling on different branches,
and the corresponding SNP matrix. (B)
Two populations diverged from a source
population under neutral evolution, or
(C) with one under selection. (D–F) The
mean scaled SFS of 500 simulated sam-
ples from populations evolving neutrally
or under selection (s = 0.08), sampled at
t = 150 (D), 250 (E), and 2000 (F) gen-
erations under selection (see Methods
for simulation details).
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Additionally, naturally evolving populations may be sub-
ject to multiple selective forces, affecting many unlinked
loci. To limit the search to selective pressures acting on
a specific phenotype, cross-population tests are commonly
used. These tests are applied simultaneously to a population
under selection and to a genetically similar control popula-
tion that is not subject to the specific selection pressure.
Some common cross-population tests include XP-CLR (Chen
et al. 2010), XP-EHH (Sabeti et al. 2007), LSBL (Shriver
et al. 2004), Fst (Hudson et al. 1992), and Sf (Udpa et al.
2011). These tests can also be interpreted in the context of
the scaled SFS. For example, the EHH test considers the
change in frequency of a single haplotype (Sabeti et al.
2002). This is especially effective in the early stages of
a sweep, when the haplotype carrying the beneficial allele
increases in frequency while remaining largely intact.

Here, rather than inferring selection using fixed summary
statistics (such as u-based tests) of the scaled SFS, we pro-
pose inferring it directly using supervised learning. Specifi-
cally, we use support vector machines (SVMs) trained on
data from extensive population simulations under various
parameters. We consider the relative importance of features
in the scaled SFS for classifying neutrality from various types
of selective sweeps and find commonalities in these features
across the parameter space.

Although there have been recent applications of machine
learning to SFS- and LD-based summary statistics for
inferring selection (Pavlidis et al. 2010; Lin et al. 2011), to
the best of our knowledge, this study represents the first
attempt to apply supervised learning directly to the scaled
SFS to this end. In addition, whereas most supervised learning
approaches are inherently specific to parameters of the train-
ing data, here we propose a way to overcome this by leverag-
ing common attributes in the learned models of selection.

We develop an algorithmic framework, SFselect, which
can be applied in two ways. If the parameters of a sweep
(selective pressure, time under selection, etc.) are given,
a model of the scaled SFS can be trained to yield very high
sensitivity. We also consider the general, and more common,
case in which this information is unknown. Our results sug-
gest that there are distinct similarities in the trained models
of prefixation and postfixation regimes (of the beneficial
allele) and that these are maintained over a wide range of

selection coefficients. We leverage this to generate a discrim-
inative model that is robust over a wide range of values for
two parameters: selection coefficient and time since selec-
tion. Further results point to the robustness of our test under
a (plausible) demographic history of two extant human
populations. In addition, we develop a similar approach
(XP-SFselect) for cross-population testing based on the two-
dimensional SFS (Sawyer and Hartl 1992; Chen et al. 2007;
Gutenkunst et al. 2009; Nielsen et al. 2009). A software
package implementing our approach is available online at
http://bioinf.ucsd.edu/~rronen/sfselect.html.

To validate the utility of our framework, we applied XP-
SFselect to genetic variation data from two sources. The first
was a laboratory evolution experiment (Zhou et al. 2011)
where pooled sequencing was conducted on populations of
Drosophila melanogaster evolved under conditions of low
(4%) oxygen. We further applied XP-SFselect to data from
two human populations sequenced by the 1000 Genomes
Project (Abecasis et al. 2010): Northern European individu-
als from Utah (CEU) and Yoruba individuals from Ibadan,
Nigeria (YRI). While many of our identified regions agree
with those of previous studies in these populations, we also
identify many novel regions.

Methods

Population simulations

We simulated populations using the forward simulator mpop
(Pickrell et al. 2009). Each simulation instance was initial-
ized with a source population of size Ne = 1000 diploids
from a neutral coalescent using Hudson’s ms (Hudson 2002).
By randomly sampling from the source, we created three
separate populations of size Ne each, labeled selected, neutral1,
and neutral2. From this point, we evolved the populations
separately, introducing a single beneficial locus in the selected
population. Individuals carrying the advantageous allele had
higher likelihood to reproduce at each generation (} 1 + 0.5s
for heterozygous carriers, and } 1 + s for homozygous car-
riers). After t generations, we sampled (n = 100 diploids)
from each population and applied tests of neutrality.

We simulated genomic regions of size 50 kbp, with mutation
and recombination occurring at rates of m = 2.4 3 1027 and
r = 3.784 3 1028/base/generation. We note that these rates
are higher than realistic in humans (Nachman and Crowell 2000;
Campbell et al. 2012). For considerations of space and time,
we simulated populations with effective size Ne = 1000 rather
than Ne = 10,000, as considered more realistic in humans. We
therefore scaled m and r to obtain appropriate values of u =
4 Nem and r = 4 Ner. We simulated the beneficial allele under
selection coefficient s 2 {0.005, 0.01, 0.02, 0.04, 0.08}, or
{10, 20, 40, 80, 160} in units of 2Nes, and sampled the pop-
ulations after t 2 {0, 100, 200, . . ., 4000} generations under
selection, or {0, 0.05, 0.1, . . ., 2} in units of 2Ne. For each of
the 200 combinations of (s, t), we simulated 500 instances of
the source, selected, neutral1, and neutral2.

Figure 2 Weights (normalized wi) for two common neutrality tests based
on the difference between u estimators. (A) Tajima’s D weights, consist-
ing of the difference between the normalized weights of ûp and ûW. (B)
Fay and Wu’s H weights, consisting of the difference between the nor-
malized weights of ûp and ûH. Shown for n = 10 haplotypes.
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Binning, rescaling, and extending the SFS

For the scaled SFS vectors of unevenly sized population samples
to be directly comparable, we rescale and bin frequencies in
each sample to a fixed range [0, 1]. Empirically, the best results
were obtained using relatively few (�10) bins, as this reduced
the variance per bin. Additionally, variants that have reached
fixation in a given population are not informative in the context
of that population, but may be informative across populations.
We thus retain fixed variants unless fixed across all considered
populations and extend j (j9) with an additional entry jn (njn)
dedicated to these variants. Note, however, that the result from
Fu (1995) showing that E(ji) = u/i does not hold for i = n.

For a cross-population test, we use the joint frequency
spectrum of two populations, referred to as the cross-
population SFS, or XP-SFS (Sawyer and Hartl 1992; Chen
et al. 2007; Gutenkunst et al. 2009; Nielsen et al. 2009).
Given two population samples of size n and m, the XP-SFS
is defined as a n3 mmatrix j, where the jij entry represents
the number of polymorphic sites at frequency i/n in the first
sample, and j/m in the second sample. As in the single-pop-
ulation case, we obtained the best results using few (�8 3
8) bins, due to lower per-bin variance.

Support vector classification

We train SVMs on normalized scaled SFS vectors (also
denoted by ji9 2 ℝn), derived from simulated populations
evolving both neutrally and under selection. Let us denote
class labels as yi 2 {21, 1} for selected and neutral, respec-
tively. Given a set of training data fji9; yigki¼1, the linear (soft-
margin) SVM returns a maximummargin separating hyperplane
w and an offset b0 using

argmin
w;b0

1
2
kwk2 þ C

X
i
ei

subject to :   yiðw⊺ji9þ b0Þ$ 12 ei; i ¼ 1; 2; . . . ; k

where w are feature weights representing the hyperplane,
ei $ 0 are slack variables designed to allow a data point to be
misclassified (ei . 1) or in the margin 0 , ei # 1, and C is
the penalty constant for misclassification. To classify new
data points using empirical FPR cutoffs, we use class prob-
abilities (Wu et al. 2004; Chang and Lin 2011) rather than
the binary decision function. For more detail on SVM imple-
mentation, see Supporting Information, File S1.

Finally, we use a linear kernel function so that the learned
weights are directly applicable to the scaled SFS, and are
thus more readily interpreted. We note the similarity of
the SVM decision function signðw⊺ji9þ b0Þ given learned
weights w = (w1, . . ., wn), to a weighted linear combination
of j9 given weights (w1, . . ., wn21) as in Tajima’s D or Fay
and Wu’s H. This will enable a qualitative comparison of
weights obtained from supervised learning to those of exist-
ing tests.

Results

Specific SVM tests (SFselect-s)

Initially, we assume prior knowledge of the time under
selection (t) and the selection coefficient (s). Under these
assumptions (later relaxed), we trained 200 different SVMs
on data corresponding to all combinations of (s, t) simu-
lated. We then applied each SVM to data simulated under
the corresponding parameters and evaluated power as com-
pared to several existing methods (Figure 3 and Figure S1).
For further details on power estimation, see File S1. We
compared our single-population SVMs to Tajima’s D (Tajima
1989) and Fay and Wu’s H (Fay and Wu 2000), which are
based on weighted linear combinations of the scaled SFS,
but also to the SweepFinder (Nielsen et al. 2005) and
v-statistic (Kim and Nielsen 2004) algorithms (as imple-
mented in SweeD) (P. Pavlidis, personal communication)

Figure 3 Power (5% FPR) of the SVM
test compared to other single-popula-
tion tests of neutrality. Shown for 200
data sets representing selective sweeps
with selective coefficients s 2 [0.01,
0.08], sampled at t 2 [0, 4000] gener-
ations under selection. SFselect-s (black)
assumes knowledge of (t, s), while SFse-
lect (blue) assumes no prior knowledge
of these parameters. Time is shown in
generations (bottom axes), and ln(2Ns)/s
generations (top axes). Dotted vertical
lines show the mean time to fixation of
the beneficial allele, which occurs at � 5
ln(2Ns)/s generations.
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and OmegaPlus (Alachiotis et al. 2012)). We compared our
cross-population SVMs to XP-CLR (Chen et al. 2010), XP-
EHH (Sabeti et al. 2007), and Fst (Hudson et al. 1992).

We make a number of observations: (i) power changes
proportionately to s for all tests, (ii) time to fixation of the
beneficial allele scales as ln(2Ns)/s (Campbell 2007), and
(iii) all tests reach peak power following fixation and decay
in the prefixation and postfixation regimes. We also note
that Tajima’s D performs better prefixation, due to the neg-
ative weights (expected inflation) assigned to low frequen-
cies and the positive weights (expected depletion) assigned
to intermediate frequencies (Figure 2), while Fay and
Wu’s H performs better postfixation, due to the relatively
high weights assigned to low- and intermediate-frequency
variants.

Invariably, our parameter-specific SVMs (SFselect-s) ex-
hibit higher power compared to the other tests across the
wide range of (s) and (t) combinations considered, remain-
ing powerful throughout much of the postfixation regime.
For example, at s = 0.08 the SVM shows 87% power after
2000 generations, vs. 42% for the next best method. Like-
wise, at s = 0.02, we see 85% power for the SVM at gener-
ation 1000 vs. 57% for the next best method. These results
demonstrate the potential of statistical learning of weight
functions for the scaled SFS. We next consider several mod-
els of the scaled SFS learned by our parameter-specific
SVMs.

Comparison with existing weighted linear combinations

We consider the feature weights learned by several of our
parameter-specific SVMs, compared with weight functions
of existing tests. Tajima’s D and Fay and Wu’s H (among
other tests) apply a weighted linear combination to the scaled
SFS and are thus conceptually similar to trained (linear)
SVMs. Differently put, both types of test represent linear
models of the scaled SFS under nonneutral evolution.

For several reasons, only qualitative comparisons can
be made. First, we use a rescaled and binned version of the
SFS. Unlike existing scaled SFS tests (such as D and H)
that consider all allele frequencies between 1 and n 2 1,
where n is the sample size, we rescale sample frequencies
to (0, 1] and bin them into n = 10 frequency bins (see
Methods). Second, while tests based on estimators of u

consider frequencies up to n 2 1, we extend the scaled
SFS with an additional bin representing fixed differences

(see Methods). Finally, the rescaled, binned, and extended
scaled SFS vectors are normalized prior to learning and
classification. Hence, although absolute values of the learned
weights cannot be directly compared, we nevertheless gain
insight from a qualitative comparison with existing scaled
SFS tests.

In Figure 4 we consider models learned by our specific
SVMs (SFselect-s) from data sets simulated under relatively
strong selection (s = 0.04), sampled at times where D or H
show high sensitivity. We consider differences and similari-
ties between these models and the weighted linear combi-
nations applied by D and H (Figure 2). For D, peak power
occurs near the mean time of fixation (e.g., t = 700 gener-
ations). We observe that the weights learned from this data
set do indeed bear some resemblance to those of Tajima’s D.
Both have moderately positive weights in the intermediate
frequency range, which gradually decay toward the higher
and lower frequencies (Figures 4A and 2A). However, the
models differ in their weight of the lowest frequency bin,
which is highly negative in Tajima’s D.

At t = 2000 generations, H shows higher sensitivity com-
pared to D. This is because unlike Tajima’s D, Fay and Wu’s
H does not consider an inflation of low-frequency alleles as
indicative of nonneutral evolution (Figure 2B). This helps
because after fixation, lower-frequency alleles are first to be
restored to neutral levels via de novo mutation. In contrast,
the weights learned from this data set are quite different
from those of H (Figures 4B and 2B), which was designed
to capture an excess in high-frequency alleles (Fay and Wu
2000). Specifically, we see positive linearly increasing
weights toward the higher frequencies. This is effective be-
cause de novo mutation takes longer to drift to higher
frequencies.

As stated previously, our fixed differences bin (rightmost)
has no equivalent in Tajima’s D or Fay and Wu’s H. It is neg-
atively weighted in both models shown because the beneficial
allele (as well as hitchhiking alleles) has fixed, leading to many
differentially fixed variants.

Comparison with previous learning-based methods

We further compared our results with two recent tests based
on supervised learning of summary statistics. The first, by
Pavlidis et al. (2010), applies SVMs to values of two tests:
the v-statistic (Kim and Nielsen 2004), which is based on LD
information, and the SweepFinder L-statistic (Nielsen et al.

Figure 4 Feature weights learned by
parameter-specific SVMs. (A) Feature
weights of the SVM trained on (s =
0.04, t = 700), a regime in which Taji-
ma’s D is sensitive. (B) Feature weights
of the SVM trained on (s = 0.04, t =
2000), a regime in which Fay and Wu’s
H is sensitive. We note that the right-
most feature (representing fixed differ-
ences) has no equivalent in D or H.

Learning Selection from the SFS 185



2005), which is based on the SFS. Additionally, the correla-
tion between the genomic positions yielding maximal values
of these tests is also used as a feature for learning. We used
improved implementations of these algorithms, namely SweeD
(P. Pavlidis, personal communication) for SweepFinder and
OmegaPlus (Alachiotis et al. 2012) for the v-statistic. The
second approach we compare to, by Lin et al. (2011), applies
boosting to weak logistic regression classifiers learned from
LD- and SFS-based summary statistics computed within a re-
gion. Namely, up (Tajima 1989), uH (Fay and Wu 2000), uW
(Watterson 1975), Tajima’s D (Tajima 1989), Fay and Wu’s
H (Fay and Wu 2000), and iHH (Sabeti et al. 2002).

In Figure 5 we show the power of SFselect-s compared to
Pavlidis et al. (2010) and Lin et al. (2011) under different
sweep parameters. Both SFselect-s and Lin et al. (2011) show
higher power compared to Pavlidis et al. (2010) across the
sweep types considered. In addition, we observe that overall
SFselect-s and Lin et al. (2011) show similar power, apart
from a slight advantage to Lin et al. (2011) in a number of
time points under weaker selection (s = 0.01, 0.02).

We note that our feature set bears some conceptual
similarity to that of Lin et al. (2011). With the exception of
the iHH features, Lin et al. (2011) effectively learn from a small
set of weighted linear combinations of the scaled SFS. Our
framework demonstrates that similar power can be achieved
by learning directly from the scaled SFS. In fact, our analysis
shows that the small difference in observed power is explained
by the iHH features (Figure S4). Furthermore, the fundamental
nature of our feature set enables our framework to potentially
learn linear combinations that are not captured by the set used
in Lin et al. (2011). In addition, we emphasize that although
SFselect-s and Lin et al. (2011) show similar power in the
parameter-specific case, in practice the parameters of a selective
sweep are seldom known. Next, we develop a generalized test

that can be applied without a priori knowledge of these
parameters.

Generalized SVM test (SFselect)

Learning-based approaches, by definition, require training
data. In the context of selection, this typically implies
simulating populations undergoing a selective sweep. As
a result, the parameters used in the simulation process are
inevitably reflected in the trained models. Previous imple-
mentations of learning-based approaches have been geared
toward specific sweep parameters (Pavlidis et al. 2010; Lin
et al. 2011; as well as SFselect-s). Although we are able to
learn powerful models (and thus, tests) using this framework,
such models are difficult to apply in practice. This is because
in most cases, the parameters (s, t) of a sweep are unknown.

To develop a test that performs well in practice, we must
either estimate these parameters or design a test that is
robust to them. As a first step, we compare the feature
weights learned by parameter-specific SVMs across different
values of (s, t). In Figure 6, we show the cosine distance
between all (�20,000) pairs (wi, wj), defined as

Dcos
�
wi;wj

�¼12
wi �wj

jjwijj2  
����wj

����
2

: (9)

Remarkably, we see two strong similarity blocks across all
selection coefficients, partitioned roughly at the time of
fixation: a near-fixation similarity block encompassing time
points close to (before and including) fixation of the bene-
ficial allele, and a post-fixation similarity block encompassing
the later time points. Importantly, the similarity is transitive
across selection coefficients, meaning that trained SVMs in
a given block are similar not only to each other, but also to
SVMs in corresponding blocks of other selection coefficients.
For instance, members of the near-fixation block in s = 0.01

Figure 5 Power (0.05 FPR) of SFselect-s
compared to tests based on supervised
learning of summary statistics. We com-
pare to Pavlidis et al. (2010) and Lin
et al. (2011). Shown for 200 data sets
representing selective sweeps with se-
lective coefficients s 2 [0.01, 0.08], sam-
pled at t 2 [0, 4000] generations under
selection. Time shown in generations
(bottom axes), and ln(2Ns)/s generations
(top axes). The dashed vertical lines
(gray) show the mean time to fixation
of the beneficial allele, which occurs at
�5 ln(2Ns)/s generations.
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(spanning times t 2 [700, 1800]) show high similarity to
members of the near-fixation block of s = 0.04 (spanning
times t 2 [200, 500]). In the weaker selective pressures
(s = 0.005,0.01), transitions between the two regimes are not
as stark, due to the increased variance in fixation times (Durrett
2002). This pairwise similarity structure is generally maintained
in cross-population SVMs as well (Figure S2).

Based on these findings, we retrained exactly two regime-
specific SVMs denoted wnear and wpost. We trained these
SVMs on data corresponding to the observed similarity
blocks, aggregated over the relevant time points of selection
coefficients s 2 [0.02, 0.08]. For a given point j9, we use the
estimated class probabilities from these SVMs to define our
test score simply as

Sðj9Þ¼ max
�
Prðj9jw nearÞ; Pr

�
j9jwpost

��
: (10)

In Figure 7 we show the feature weights learned by these
general SVMs (see Figure S3 for feature weights of the cor-
responding cross-population SVMs). As expected when re-
quiring less knowledge apriori, the general two-stage SVM
has less power to detect selective sweeps compared to the
parameter-specific SVMs. Nevertheless, it dominates over
existing methods across much of the (s, t) parameter space
(Figure 3), most notably so in the time points following fixa-
tion of the beneficial allele. In certain regimes, D or H perform
similarly to our general model. This is in part because the
feature weights are somewhat similar. Particularly, we note
the similarity between the near-fixation SVM weights and D
(Figure 2). For a corresponding analysis of power of the gen-
eral cross-population SVM test (XP-SFselect), see Figure S1.

Finally, the class probabilities returned from wnear and
wpost also carry information on whether a given data point
is in the prefixation or postfixation regime. By simply con-
sidering the maximum of the two values, we were able to
infer the regime with .70% accuracy across times and se-
lection pressures, excluding only those surrounding regime
transitions, which are inherently unclear (Figure 7C).

Fly models of hypoxia adaptation

We applied XP-SFselect to polymorphism frequency data
from pooled whole-genome sequencing of D. melanogaster
(Zhou et al. 2011). In this study, fly populations evolved for
many generations (�200) in increasing levels of hypoxia
(eventually reaching 4% O2), while genetically similar con-
trols were kept in room air (21% O2) for cross-population
analysis. The hypoxic stress was so strong that no wild-type
fly survives in the final stage. Consequently, for a subset of
adaptive variants needed to survive under such conditions,
the population under selection had likely reached a postfix-
ation regime. At the same time, selective sweeps may be
ongoing for other variants. In that study, we used a log-ratio
statistic (Sf) that applies fixed weights to the scaled SFS and
is sensitive to postfixation signal (Udpa et al. 2011).

Applying a 1% genomic control FDR (see, for instance,
Chen et al. 2010) in overlapping windows, and collapsing
significant windows within 100 kbp of each other, we found
17 significant regions using Sf. At the same time, XP-SFselect
identified 25 significant regions (Table S1, Figure S5, Figure
S6, Figure S7, and Figure S8) including 11/17 (65%) of the
Sf regions. Many of the strongest candidates identified in

Figure 6 Pairwise cosine distance between 200
trained SVMs. SVMs were trained on data sim-
ulated under different selection pressures s 2
[0.01, 0.08], sampled at different times under
selection t 2 [0, 4000] generations. Boundaries
between selection pressures are denoted by
black lines and mean times to fixation by blue
dashed lines. We observe two similarity blocks
at each selection pressure, corresponding to
“near fixation”and “postfixation” of the bene-
ficial allele. The stronger the selection (e.g., bot-
tom right) the earlier/shorter the near-fixation
stage, and vice versa.
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Zhou et al. (2011), including HDAC4 and hang, were also
found by XP-SFselect. In addition, XP-SFselect identified 14
unique regions as significant. For a breakdown of significant
windows by regime, see Table 1.

There is some evidence that XP-SFselect is more robust
than Sf. For instance, one region deemed significant by Sf,
but not XP-SFselect, appears to be an artifact. This region
(chrX:14.61–14.85 Mb) is significant under Sf due to little
haplotype diversity in the adapted population, caused by
a large block of fixed SNPs. Importantly, the control popu-
lation also shows reduced diversity in this region, with the
same block present at �80% frequency. This is likely the
result of an event prior to population divergence and, thus,
not caused by the hypoxic stress. Sf correctly identified low
diversity in the adapted population, but weighed the high-
frequency (nonfixed) alleles in controls as evidence of
increased diversity instead (Udpa et al. 2011). In contrast,
XP-SFselect correctly identifies the frequency difference of
20% as uninteresting genome wide.

XP-SFselect may also be more sensitive. The main conclu-
sion of Zhou et al. (2011) was that the Notch pathway is
genetically involved in hypoxia tolerance, based on the pres-
ence of two Notch inhibitory genes (HDAC4 and Hairless) in
significant regions. We confirmed these with XP-SFselect but
also identified another significant region (chrX:2.87–3.44
Mb) containing a third component of the Notch pathway—
the Notch gene itself (Figure 8). Upon further inspection, the
Notch gene shows an interesting profile. We see very little
diversity in the adapted population (mean coding SNP fre-
quency, 0.99), while corresponding control frequencies are
low (mean, 0.26). These include a nonsynonymous SNP
(S29P) fixed in the adapted population and completely ab-
sent in controls. This serine is located in the N-terminal signal
peptide, important for moving Notch to the membrane, where
activation can occur. A key feature of the signal peptide is a long
stretch of hydrophobic residues that stabilize by forming a he-
lical structure. The serine at position 29 is in the middle of this
stretch, and is hydrophilic, potentially impairing the ability of
the signal peptide to form the helix. Replacing the serine with
a hydrophobic proline may increase the stability (and thus

efficiency) of the signal peptide in guiding Notch to the
membrane.

Models of human demography

To assess the ability of our framework to detect selection under
complex demographic scenarios, as in many extant human
populations, we simulated data under a more involved model.
A strength of our framework is that if the demographic history
is well characterized, a specific model of the SFS that is fine-
tuned to that history can be learned. Focusing on the recent
demographic histories of Northern Europeans and Western
Africans, we note that multiple models can potentially explain
the observed patterns of polymorphism (Schaffner et al. 2005;
Voight et al. 2005; Fagundes et al. 2007) and that a clear
consensus has not yet been reached.

We use a model described recently by Gravel et al. (2011),
with two instantaneous bottlenecks followed by a period of
exponential growth in the European population (Figure 9). In
this demographic scenario, we simulated a beneficial (s =
0.02, 0.005) allele in the European population, introduced
at various time points [20, 25, and 50 thousand years ago
(kya)]. In our simulations, we assume neutral evolution prior
to the populations separating. As a result, we do not expect
cross-population tests to have a distinct advantage, as their
main strength is to decrease the effect of shared selection in
the ancestral population.

We evaluated the power of single- and cross-population
SVMs trained on the simulated data to detect selection.
Table 2 shows power of the SVMs at various time points,

Table 1 Regime of selection as determined by SVM

Near-fixation
regime

Postfixation
regime

XP-SFselect and Sf windows 75 274
XP-SFselect-only windows 211 8

The number of genomic windows found significant under XP-SFselect (568 overall)
with higher class probabilities for the near-fixation, or the post-fixation regime.
Showing windows found only by XP-SFselect, as well those identified by both XP-
SFselect and Sf. These results imply that while Sf is sensitive to the post-fixation
regime, XP-SFselect captures both types of selection.

Figure 7 Feature weights of the two
generalized regime SVMs and regime
inference rates. (A) Weights learned by
the near-fixation SVM. (B) Weights
learned by the postfixation SVM. Minor
allele frequencies were distributed to
n = 11 bins, with the last bin dedicated
to fixed differences. (C) Fraction of true
positives with postfixation class proba-
bility greater than that of near fixation,
as function of time. Due to lower absolute
number of true positives in the weaker
selection pressures (s = 0.01, 0.02), we
observe increased variance. The shaded
region surrounding 4ln(2Ns)/s generations
contains the mean times to fixation of the
beneficial alleles.
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compared with other tests. As in constant-sized populations,
we observe that Fay and Wu’s H is less powerful except in
the late stages (e.g., 50 kya for s= 0.02) and that among the
cross-population tests, XP-CLR is generally more powerful
than XP-EHH. Additionally, we note that both the single- and
cross-population SVMs show significantly higher power than all
other tests. Finally, as postulated, we did not observe a consistent
advantage for cross-population over single-population tests.

Application to human populations

As no clear consensus exists on the demographic history of
any human population, we applied our general SVM test
(XP-SFselect) to data from two human populations se-
quenced by the 1000 Genomes Project (Abecasis et al.
2010): individuals of Northern European descent from Utah
(CEU, 88 individuals) and Yoruban individuals from Nigeria
(YRI, 85 individuals). These populations have been consid-
ered in several studies of selection (Frazer et al. 2007; Sabeti
et al. 2007; Pickrell et al. 2009; Chen et al. 2010); thus we
expected our results to overlap with previously reported
regions. Using a 0.2% genomic control FDR in overlapping
windows, and collapsing significant windows within 100
kbp of each other, we identified 339 distinct regions, of
which 217 overlap known genes. As expected, several of
the regions we find have been previously reported. We do,
however, find signal in regions that have not so far been
reported and may be of phenotypic interest. In Table S2,
we list 40 regions showing the strongest signal of selective
sweep using XP-SFselect. We used SnpEff (Cingolani et al.
2012) to annotate the functional impact of mutations and

extracted all high-impact (splice or nonsense) mutations as
well as all nonsynonymous mutations deemed damaging by
SIFT (Kumar et al. 2009). In Table S3 we list the subset of
these SNPs that fall within significant regions and show
a high-frequency differential ($30%) between the two pop-
ulations (we find 11 such SNPs genome wide).

Known regions identified by XP-SFselect: We compared the
significant regions found by XP-SFselect to the top regions
identified in four previous studies of the same populations:
Chen et al. (2010), Pickrell et al. (2009), Frazer et al. (2007),
and Sabeti et al. (2007). Of the 339 regions, 36 were reported
in these studies (8 of top 40). This partial overlap likely stems
from the considerable difference in density between the gen-
otyping data used in the previous studies and that of whole-
genome sequencing. When considering the top 1% of our
results, however, the overlap becomes substantial (see Figure
10). Specifically, the overlap was 35.3% for Frazer et al.
(2007), 47.8% for Pickrell et al. (2009), 57.9% for Sabeti
et al. (2007), and 67.5% for Chen et al. (2010).

Of the previously reported regions, particularly noteworthy
are the genomic regions of KITLG (12q21.32) and SLC24A5
(15q21.1), found at 0.002 and 0.1% of the genome wide
distribution, respectively. Variation in these genes has been
associated with skin pigmentation and was reported to show
evidence of selection (Pickrell et al. 2009). Additionally, we
found the region containing the lactase gene (LCT) significant
at 0.16% genome wide. Several studies have reported this
gene as showing evidence of selection in Northern European
populations (Bersaglieri et al. 2004; Chen et al. 2010).

Figure 8 Signatures of selective sweeps affect-
ing Notch pathway in hypoxia tolerant flies. XP-
SFselect and Sf on fly chromosome X. The
regions highlighted in gray were found signifi-
cant by both Sf and XP-SFselect. The region
highlighted in yellow is an artifactual region
deemed significant under Sf, but not under
XP-SFselect. The region highlighted in green
contains the Notch gene, which activates the
Notch signaling pathway. The mutation S29P
may enhance the activity of Notch by improving
the stability of the signal peptide domain. The
region highlighted in red contains the HDAC4
gene, including the mutation A1009S near the
active site of the protein, which may reduce its
ability to affect Notch gene targets. Both of
these mutations are consistent with hypoxia-
tolerant flies genetically activating the Notch
pathway as a mechanism of adaptation.

Learning Selection from the SFS 189

http://www.genetics.org/content/suppl/2013/06/13/genetics.113.152587.DC1/TableS2.pdf
http://www.genetics.org/content/suppl/2013/06/13/genetics.113.152587.DC1/TableS3.pdf


Novel regions identified by XP-SFselect: We identified a
region (1q44) significant at 0.01% genome wide, containing
a cluster of olfactory receptor (OR) genes: OR2T8, OR2L13,
OR2L8, OR2AK2, and OR2L1P. Notably, the subregion con-
taining OR2L8, OR2L13, and OR2AK2 has particularly low
diversity in Northern Europeans, with a dense block of 97
nearly fixed SNPs (mean frequency, 0.95) in comparison to the
same block in Western Africans (mean frequency, 0.24). This
block also includes six nonsynonymous SNPs, of which two
were deemed damaging (rs10888281 and rs4478844; see
Table S3). Olfactory receptors make up the largest gene fam-
ily, containing several hundreds of genes, many of which are
pseudogenes. It has been suggested that a subset of (intact)
OR genes are subject to selection in several human popula-
tions (Gilad et al. 2003; Pickrell et al. 2009), but to the best
of our knowledge this OR cluster has not been identified as
under selection in Northern European or Western African
populations.

Additionally, the regions containing MSR1 (macrophage
scavenger receptor 1) and MASP2 (mannan-binding lectin
serine protease 2) were found significant at 0.07% and
0.09% of the genome wide distribution, respectively. These
genes also contained 2 of the 11 variants with high-
frequency differential between the populations that were
deemed damaging (rs435815 and rs12711521; see Table
S3). Interestingly, the ortholog of MSR1 has been shown
to confer a protective effect from malaria infection in a re-
cent study on mice (Rosanas-Urgell et al. 2012). At the same
time, it has been shown to have a strong signal of balancing
selection in African primate populations (Tung et al. 2009).
Likewise, MASP2 has been associated with immune re-
sponse to several diseases, including Chagas disease (Boldt
et al. 2011), hepatitis C (Tulio et al. 2011), and placental
malaria (Holmberg et al. 2012). Mutations in this gene

(including rs12711521 (Boldt et al. 2011), see Table S3)
have been linked to both the activity (Thiel et al. 2009)
and expression levels (Thiel et al. 2007) of the protein. Such
a sharp signal at these loci may imply a differential disease
landscape between the two populations. For instance, it is
conceivable that the YRI population has had to adapt at
these loci to deal effectively with malaria, whereas CEU
individuals have not had this stress.

Computational considerations

Our approach is composed of three main steps: data simula-
tion, model training, and region classification. The first step,
simulation, is performed with external tools and is therefore
outside the scope of this article. For training and classification,
there are two options. One may use our pretrained general
model for classifying genomic regions as selected or neutral.
This approach is very fast: a complete cross-population scan of
the human genome (of the CEU and YRI populations)
completed in under 2 hr on a standard desktop with 4 GB
RAM. We note that this was done on whole-genome sequenc-
ing data, with considerably more variants than genotyping.

Another option is to train on data simulated under a specific
model (e.g., given a known demographic scenario). The com-
putational space and time required for training strongly de-
pend on the size of the training data. In our experience,
training a specific model (�1000 training examples) required
under 1 min, while training the general model (�90,000 train-
ing examples) required close to 2 hr.

It should also be noted that training can potentially be
faster. We used the LIBSVM implementation (Graf et al. 2003;
Chang and Lin 2011; Pedregosa et al. 2011) due to its capa-
bility to calculate class probabilities, which enabled better
control of FPR. A strictly linear SVM implementation, such
as the one used by LIBLINEAR (Fan et al. 2008), will yield
much better scaling of training times.

Discussion

The site frequency spectrum is heavily skewed under
positive selection. Using supervised learning, we sought to
develop a test that would yield not only improved power to
detect a sweep, but also insight into the behavior of the SFS

Table 2 Power (0.05 FPR) of different tests on data simulated
under a demographic model

s kya D H XP-CLR XP-EHH SFselect-s XP-SFselect-s

20 0.64 0.05 0.58 0.22 0.85 0.80
0.02 25 0.82 0.22 0.77 0.28 0.89 0.88

50 0.97 0.95 0.99 0.40 0.99 0.99

20 0.04 0.04 0.06 0.06 0.29 0.40
0.005 25 0.05 0.03 0.04 0.05 0.23 0.48

50 0.45 0.11 0.41 0.25 0.71 0.66

The beneficial allele was simulated in the Northern European population (CEU),
while the Western African population (YRI) evolved neutrally and was used as
control for the cross-population tests.

Figure 9 The demographic model used to simulate the CEU and YRI
populations. The model is shown with time flowing downward. Model
parameters are as described by Gravel et al. (2011), including a growth
rate of 0.48% per generation in the European expansion period. We
simulated an allele under positive selection (s = 0.02, 0.005) introduced
20, 25, and 50 kya (assuming 25 years per generation).
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under various sweep types. The scaled SFS, being uniform in
expectation under neutrality, provided a natural choice of
features to learn from. Rather than a fixed weight function
that performs well only under certain regimes, we were able
to learn multiple weight functions of the scaled SFS, each
providing optimal performance in its respective regime. When
combined, these resulted in a usable test that improves over
existing methods for both simulated and real data.

Although SVMs are standard practice in supervised
learning, other classification methods are also applicable.
A popular alternative is logistic regression, with optional (L1

or L2 norm) regularization of the model. While logistic re-
gression has the advantage of providing a naturally contin-
uous output, it proved less effective for our purposes. The
two methods performed similarly in the single-population
test, but we observed a noticeable decrease in power of
the cross-population test (Figure S9 and Figure S10). This
is likely due to the difference in loss function. While SVMs
use a one-sided hinge loss, with no penalty for well-classified
points outside the classification margin, logistic regression
minimizes the log loss. Here, correctly classified points—
including those outside the SVM margin—incur a (small)
penalty. This may have a significant impact if the data are
dense near the margins, which is likely the case for the XP-
SFS vectors.

Given prior information on a population’s history and
mode of selection, one may wish to apply weights to the
regime SVMs, thereby increasing the sensitivity of the test.

In our fly data, we can safely assume a postfixation regime
for those loci most (and earliest) affected by selection, due
to the high selective stress and relatively long time (�200
generations). Thus, we can increase the sensitivity in those
regions by weighting down the probabilities returned from
the near-fixation SVM. Of course, this will decrease the sen-
sitivity for regions in near-fixation regime. When applying
no such bias to the regime of selection, our results indicate
that SFselect can identify both types of selection, while pre-
vious methods were limited to specific regimes (Table 1).

Finally, although SFselect has high power in the near-
fixation and postfixation regimes, there may be room for
improvement in early selection. We note that tests based on
haplotype diversity, such as iHH (Sabeti et al. 2002), are
considered advantageous in this regime. To increase sensi-
tivity in this regime, one might incorporate frequencies of
dominant haplotypes as additional features. Moreover, al-
though here we considered only the hard sweep model of
positive selection, one might use a similar framework to in-
vestigate more complex scenarios, including the soft sweep
model. Our results suggest that applying statistical learning
directly to the scaled SFS can provide valuable insights for
detecting nonneutral evolutionary processes.
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Power and False Positive Rate. In order to evaluate the power of SFselect and XP-

SFselect to detect positive selection as compared to other neutrality tests, we applied these

tests to several datasets simulated under different model parameters. For a given test on

a given dataset, the power at 5% false positive rate (FPR) was estimated as the fraction

of test-statistic values exceeding a set threshold when applied to the selected samples. The

threshold was set to the top 5% of the null distribution, obtained by applying the test

to neutral samples. For cross-populations tests (including XP-SFselect) we used the same

procedure, only applying the test to selected vs. neutral samples, while the null was obtained

by applying the test to neutral1 vs. neutral2 samples.

SVM implementation details. We used a linear (dot product) kernel function SVM.

Linear kernels have two important advantages. First, because feature-weights learned by

a linear SVM represent a maximum-margin separating hyperplane of the training data in

the problem space (rather than in a higher dimensional space), they correspond to the

relative importance of features in separating the training data, making the trained SVM

easily interpretable. Secondly, normalization of the training and testing data is done in the

input space, without the need for complicated normalization of the kernel function itself

(Graf et al. 2003).

The SVM implementation we used was from the LIBSVM library (Chang and Lin 2011),

packaged in the python library scikit-learn (Pedregosa et al. 2011). For the parameter-specific

SVMs, where we lacked sufficient simulated data to hold the test data out of training, we

report power as the mean over 50-fold cross validation. For the general two-stage SVM

(SFselect and XP-SFselect), testing and training were done on completely separate datasets.
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Figure S1: Power (0.05 FPR) of the cross-population SVM test compared to other cross-

population tests of neutrality. Shown across selection pressures s∈ [0.01, 0.08] and times τ ∈ [0, 4000].

The (black) line labelled ‘XP-SFselect-s’ shows power when assuming knowledge of the selection

coefficient and the time (τ and s, respectively). The (blue) line labeled ‘XP-SFselect’ shows power

when no prior knowledge of (s, τ) is assumed. Time is shown in generations (bottom axes), and

ln(2Ns)/s generations (top axes). The dashed vertical lines (grey) show the mean time to fixation

of the beneficial allele, which occurs at ≈ 5 ln(2Ns)/s generations.
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Figure S2: Pairwise cosine distance between 200 SVMs trained on cross-population data (matrices

of the XP-SFS scaled to 8 × 8 frequency bins, and vectorized). The data was simulated under

different selection pressures s ∈ [0.005, 0.08], and sampled at different times under selection τ ∈
[0, 4000] generations. Selection pressure boundaries are denoted by black lines, and mean time to

fixation for each pressure is denoted by dashed blue lines. We observe two main similarity blocks at

each selection pressure, corresponding to ”near fixation” and ”post-fixation” of the beneficial allele.

The stronger the selection pressure (e.g., bottom right) the earlier and shorter the near-fixation

stage, and vice versa.
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Figure S3: Feature weights learned from the XP-SFS on data corresponding to the two observed

regimes of selection: (A) near-fixation, and (B) post-fixation. Minor allele frequencies were dis-

tributed to 8× 8 bins, where the rightmost column (top row) was dedicated to alleles fixed in the

selected (neutral) population. Decision function constants were β0=−0.80, and β0=−0.56 for the

near-fixation, and post-fixation SVMs, respectively.
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Figure S4: Power (0.05 FPR) of neutrality tests based on supervised learning. The line

labelled ‘SFselect-s’ shows power of the regular parameter-specific SVMs, while the line labelled

‘SFselect-s-iHH’ shows power when including the iHH features described in Lin et al. (2011). Shown

for selection pressures s ∈ [0.01, 0.08] and times τ ∈ [0, 4000], with time in generations (bottom

axes), and ln(2Ns)/s generations (top axes). The dashed vertical lines (grey) show the mean time

to fixation of the beneficial allele, which occurs at ≈ 5 ln(2Ns)/s generations.
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Figure S5: XP-SFselect values on Drosophila chromosome 2L.
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Figure S6: XP-SFselect values on Drosophila chromosome 2R.
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Figure S7: XP-SFselect values on Drosophila chromosome 3L.
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Figure S8: XP-SFselect values on Drosophila chromosome 3R.
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Figure S9: Power of SFselect using SVM and logistic regression, at different times and selection

pressures. Performance appears nearly identical regardless of the underlying classification method.

In the legend, ’l1’ and ’l2’ refer to the regularization term used with logistic regression.
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Figure S10: Power of XP-SFselect using SVM and logistic regression, at different times and

selection pressures. We observe a marked decrease in power (cyan and orange (LR) compared to

blue (SVM)) with logistic regression. In the legend, ’l1’ and ’l2’ refer to the regularization term

used with logistic regression.
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Table S1: List of significant regions under XP-SFselect for the fly hypoxia experiments

described in Zhou et al. (2011).

Chr Region XP-SFselect

2L 11895542-12055542 3.36

2R 170962-1308962 3.25

2R 1040962-21174962 4.00

3L 175762-301762 3.55

3L 763762-833762 2.85

3R 15318233-15642233* 3.58

3R 15846233-16076233* 2.73

3R 17014233-17064233 2.59

X 378615-440615 2.78

X 676615-728615* 2.60

X 1420615-1480615 2.70

X 2046615-2122615 4.77

X 2630615-2758615 3.91

X 2872615-3444615 3.89

X 4818615-4892615 3.60

X 12996615-13374615* 4.02

X 15092615-15160615 2.84

X 16110615-16160615* 2.62

X 16276615-16488615* 4.86

X 18154615-18248615 2.87

X 18564615-18686615* 2.60

X 18838615-18930615* 3.08

X 19092615-19358615* 3.74

X 20504615-20986615* 4.18

X 22064615-22412615* 4.24

*Shared with Sf
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Table S2: The top 40 non-overlapping regions identified genome-wide by XP-SFselect.

Chr Position (Mb) Max XP-SFselect Genes Study

X 66.10-66.56 4.38657

12 88.24-88.36 4.38258

X 99.00-99.16 4.34082 LOC442459 Frazer et al. (2007)

8 52.67-52.82 4.31338 PXDNL, PCMTD1 (Frazer et al. 2007)

X 35.27-35.38 4.27039

12 123.61-123.78 4.20905 MPHOSPH9, C12orf65,

CDK2AP1, SBNO1

12 88.90-89.00 4.20736 KITLG (Pickrell et al. 2009)

4 148.54-148.79 4.19501 TMEM184C, PRMT10,

ARHGAP10

10 100.78-100.94 4.19111 HPSE2

10 31.47-31.55 4.14863 (Chen et al. 2010)

X 110.08-110.37 4.13684 PAK3 (Sabeti et al. 2007);

(Frazer et al. 2007)

2 13.69-13.90 4.12967

11 105.99-106.22 4.11825

X 80.24-80.38 4.10921 HMGN5

13 71.98-72.12 4.10127 DACH1

4 52.88-53.14 4.09292 LRRC66, SGCB, SPATA18

2 150.39-150.49 4.07069 MMADHC

15 44.29-44.39 4.05108 FRMD5

1 142.66-142.87 4.04074

11 40.22-40.32 4.02215 LRRC4C

16 15.14-15.30 4.01629 NTAN1, RRN3, MIR3180-4

2 97.68-97.85 3.99585 FAHD2B, ANKRD36

4 159.35-159.44 3.9884

2 104.76-104.83 3.97891

17 73.30-73.44 3.96581 GRB2, MIR3678

20 60.66-60.73 3.93865 LSM14B, PSMA7, SS18L1

4 41.96-42.11 3.93681 TMEM33, DCAF4L1,

SLC30A9

15 28.19-28.27 3.91923 OCA2 (Chen et al. 2010)

1 158.15-158.24 3.89804 CD1D, CD1A

13 41.39-41.54 3.8952 SUGT1P3, ELF1

1 100.67-100.77 3.88985 DBT,RTCD1, MIR553

X 65.54-65.91 3.87444 EDA2R

17 53.79-53.87 3.87161 TMEM100, PCTP

18 30.40-30.58 3.86989 C18orf34

1 248.07-248.16 3.86911 OR2T8, OR2L13, OR2L81,

OR2AK2, OR2L1P

16 79.80-79.88 3.86909 (Chen et al. 2010);

(Frazer et al. 2007)

X 108.00-108.15 3.82083

18 15.04-15.15 3.81846 (Frazer et al. 2007)

2 167.50-167.60 3.81693

X 74.42-74.72 3.80593 UPRT, ZDHHC15

The right-most column specifies the studies, if any, in which the corresponding regions were reported

as showing signal of selection.
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Table S3: Potentially damaging SNPs found in regions with strong evidence of non-

neutral evolution.

Chr Position rsID AA SIFT Gene ENSEMBL CEU YRI

1 11090916 rs12711521 D371Y p = 0.04 MASP2 ENST00000400897 0.86 0.1

1 248084909 rs34508376 M197R p=0.01 OR2T8 ENST00000319968 0.64 0.05

1 248113026 rs10888281 Y289* — OR2L8 ENST00000357191 0.94 0.25

1 248129240 rs4478844 V203M p=0.00 OR2AK2 ENST00000366480 0.67 0.05

2 27424636 rs1395 S481F p=0.05 SLC5A6 ENST00000310574 0.74 0.16

5 138720108 rs11242462 W45* — SLC23A1 ENST00000508270 0.29 0.80

5 177378959 rs7720935 splice — RP11-423H2.3.1 ENST00000507072 0.94 0.40

8 16043667 rs435815 splice — MSR1 ENST00000445506 0.11 0.54

19 44932972 rs1434579 G662R p=0.04 ZNF229 ENST00000291187 0.40 0.04

20 2291722 rs6048066 I163L p=0.01 TGM3 ENST00000420960 0.006 0.49

SNPs found in the top 0.2% of XP-SFselect regions, deemed damaging by SIFT (nonsynonymous,

with p-value ≤ 0.05) or SnpEff (nonsense or splice-site variant). Frequencies in CEU and YRI

populations also shown. Splice site donor mutations are indicated by splice in the AA column.
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