
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning to Perceive : A Developmental Robotics Approach to Vision and Object Interaction

Permalink
https://escholarship.org/uc/item/6006z5wb

Author
Talbott, Walter A.

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6006z5wb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Learning to Perceive: A Developmental Robotics Approach to Vision and Object

Interaction

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Cognitive Science

by

Walter A. Talbott

Committee in charge:

Virginia de Sa, Chair

Gedeon Deák

Javier Movellan

Ayse Saygin

Terrence Sejnowski

Mohan Trivedi

2015

Copyright

Walter A. Talbott, 2015

All rights reserved.

The dissertation of Walter A. Talbott is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2015

iii

DEDICATION

To patience, understanding, and those who have displayed these qualities

beyond reasonable expectation.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgments . xi

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1

Chapter 2 An Expected Motion Information Model of Salience for Active

Cameras . 5

2.1 Introduction . 6

2.2 Expected Motion Information: Static Case 9

2.2.1 Optimizing Expected Motion Information 12

2.3 Predicting Saccade Distributions 13

2.4 Expected Motion Information: The Dynamic Case 15

2.4.1 Optimal Inference and Control 16

2.5 Preference for Motion . 17

2.6 Control Policies for Active Cameras 19

2.7 Conclusions . 20

Chapter 3 Infomax models of oculomotor control 22

3.1 Introduction . 22

3.2 Infomax Model . 24

3.2.1 Learning the control policy 27

3.3 Evaluation Methods . 30

3.3.1 Saccades . 30

3.3.2 Smooth pursuit . 31

3.3.3 Hand-eye coordination 31

3.4 Results . 32

3.4.1 Predictions of optimal saccades for static targets . . 32

3.4.2 Prediction of saccadic and smooth pursuit eye move-

ment for moving targets 33

v

3.4.3 Prediction of eye movement in Hand-eye coordination 34

3.5 Discussion . 35

3.6 Conclusions . 37

3.7 Acknowledgments . 37

Chapter 4 Visual Perception of Inertial Affordances: Computer Simulation . 39

4.1 Introduction . 39

4.1.1 Prior Work . 41

4.2 Problem Formalization . 42

4.2.1 Robot Dynamics 43

4.2.2 Control Policy . 43

4.3 Proposed Approach . 44

4.3.1 Estimating Material Density from Experience 46

4.3.2 Finding the Control Policy 50

4.4 Computer Simulations . 51

4.4.1 Simulation I: Modeling Mounoud and Bower’s 1974

study . 51

4.4.2 Simulation II: Center of Mass 52

4.4.3 Simulation III: Choosing a Grip for Hammering . . . 56

4.4.4 Simulation IV: Choosing a Grip for Tapping 59

4.4.5 Sensitivity Analysis 60

4.5 Conclusion . 62

Chapter 5 Visual Perception of Inertial Affordances: Physical Robot 64

5.1 Diego . 66

5.2 Controlling Diego: Trajectory Tracking 72

5.2.1 Introduction to PID control 73

5.2.2 Computed Torque Control 75

5.2.3 Controller Tuning 81

5.2.4 Visual Features . 82

5.3 Experiments . 84

5.3.1 Experiment 1: Computed torque tracking performance 84

5.3.2 Modeling Mounoud and Bower’s 1974 study 86

5.3.3 Experiment 2: Anticipatory Forces 88

5.3.4 Experiment 3: Generalizing to Novel Objects 90

5.3.5 Experiment 4: Response to Decoy 95

5.4 Discussion . 97

5.5 Conclusion . 101

Appendix A Linear System Identification . 103

A.1 Notation . 104

A.2 Dynamics . 105

A.3 Inertial Forces . 107

vi

A.4 Coriolis Forces . 111

A.5 Gravity . 112

A.6 Viscous Friction . 113

A.7 Equation of Motion . 114

Appendix B Isolating Unknown Parameters 116

Appendix C Estimating Density . 118

Bibliography . 122

vii

LIST OF FIGURES

Figure 1.1: Diego, the pneumatic humanoid robot 2

Figure 2.1: (a) A typical night driving scene in San Diego. (b) Image regions

expected to provide the most motion information. 7

Figure 2.2: Results in an example image . 8

Figure 2.3: Salience ratings for motion . 17

Figure 2.4: Salience in high- and low-temporal-resolution cameras 18

Figure 3.1: Schematic figure of how the SNR decreases as the eccentricity (x-

axis) differs increasingly from zero. 26

Figure 3.2: Finite horizon time segments . 28

Figure 3.3: Comparison of behavioral result and infomax predictions 33

Figure 3.4: Comparison of infomax and previous models 33

Figure 3.5: Representative eye movement responses to moving targets 34

Figure 3.6: Eye movements in the reaching task 35

Figure 4.1: Two uncommon objects. 41

Figure 4.2: Diagram of the proposed approach 45

Figure 4.3: Learning to estimate material density 53

Figure 4.4: Response to decoy object . 53

Figure 4.5: Objects used for Simulation II . 54

Figure 4.6: Estimates of material density . 55

Figure 4.7: Response to decoy object . 55

Figure 4.8: The novel object used for simulations III and IV 56

Figure 4.9: Illustration of the hammering behavior 57

Figure 4.10: Choosing the correct grasp for hammering 58

Figure 4.11: Choosing the correct grasp for tapping 61

Figure 4.12: Learning effect sensitivity analysis 61

Figure 5.1: Diego, the pneumatic humanoid robot 68

Figure 5.2: Cylinder Model . 69

Figure 5.3: Port area as a function of input voltage 70

Figure 5.4: Equilibrium pressure as a function of control signal 71

Figure 5.5: Schematic of the controller of Diego’s joints 72

Figure 5.6: Diagram of the network used to estimate the inverse dynamics com-

pensation . 79

Figure 5.7: Diagram of the network used for visual computed torque. 81

Figure 5.8: The set of rods used in the experiments 82

Figure 5.9: Example RGBD image for extracting rod radius and length 83

Figure 5.10: Comparison of PID and CT control 86

Figure 5.11: Potentiometer readings during trajectory tracking task 87

Figure 5.12: Response of the PID controller to grasping a heavy object 91

viii

Figure 5.13: Response of the VDNN controller to grasping the same object from

Figure 5.12 . 91

Figure 5.14: PID and VDNN comparison for heavy object 92

Figure 5.15: Response of the PID controller to grasping a novel object 94

Figure 5.16: Response of the VDNN controller to grasping the same object from

Figure 5.15 . 94

Figure 5.17: PID and VDNN comparison for novel object 95

Figure 5.18: Response of the PID controller to grasping the decoy object 97

Figure 5.19: Response of the VDNN controller to grasping the decoy object . . . 98

Figure 5.20: PID and VDNN comparison for decoy object 98

ix

LIST OF TABLES

Table 5.1: Differences between the simulated and robotic approaches 66

Table 5.2: Size of layers used for inverse model neural network. 79

Table 5.3: Object radius and length mean (standard deviation) in cm 83

Table 5.4: Trajectory tracking errors . 85

Table 5.5: Object length (cm) and mass (g) 87

Table 5.6: Anticipatory forces: δ mean and standard deviation 90

Table 5.7: Generalizing to novel objects: δ mean and standard deviation 93

Table 5.8: Response to decoy: δ mean and standard deviation 97

x

ACKNOWLEDGMENTS

Thanks are primarily due to my advisor Javier Movellan. He has set an admirable

example of how to approach difficult research topics, clearly explain difficult concepts,

and have the tenacity to pursue a project in the face of multiple setbacks. I have learned

a great deal from him, and this thesis would not have been possible without his help,

encouragement, and patience.

I’d like to thank Crane Huang for listening to my ideas, even the bad ones, and

helping me figure out which to focus on. Tingfan Wu put in a great deal of work getting

Diego the robot to be usable, and helped get me up to speed with how to use it. This

thesis would have taken twice as long without his work. I’d also like to thank my other

labmates at the Machine Perception Lab: Nick Butko, Paul Ruvolo, Jacob Whitehill,

Josh Susskind, Deborah Forster, Mohsen Malmir, and others, who have given helpful

feedback and helped make the lab an exciting place to be.

Thank you to my committee, for taking the time to listen to me and give construc-

tive feedback.

I’d also like to thank Carson Dance for her support and patience.

Finally, I’d like to thank Diego, who is one of the most stubborn robots I know.

Chapter 2, in full, is a reprint of the material as it appears in the Proceedings of the

International Conference on Development and Learning and Epigenetic Robotics. Talbott,

W and Movellan, J, 2012. The dissertation/thesis author was the primary investigator and

author of this paper

Chapter 3, in full, is a reprint of the material as it appears in the Proceedings of

the International Conference on Development and Learning and Epigenetic Robotics.

Talbott, W, Huang, H, and Movellan, J, 2012. The dissertation/thesis author was the

primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it was presented to the Affor-

xi

dances in Vision for Cognitive Robotics Workshop, Talbott, W and Movellan J, 2014.

Chapter 4 is currently being prepared for submission for publication of the material. The

dissertation/thesis author was the primary investigator and author of this paper.

Chapter 5, is currently being prepared for submission for publication of the

material. The dissertation/thesis author was the primary investigator and author of this

paper.

xii

VITA

2004 B. S. in Symbolic Systems, Stanford University

2005 M.Sc. with Distinction in Informatics, University of Edinburgh

2008 P.D.Eng. in User-System Interaction, Eindhoven University of

Technology

2015 Ph.D. in Cognitive Science, UC San Diego

PUBLICATIONS

W. Talbott, I. Fasel, J. Molina, V. de Sa, and J. Movellan, “Coordinating Touch and Vision

to Learn What Objects Look Like,” in Proceedings of the 33rd Annual Conference of

the Cognitive Science Society, L. Carlson, C. Hölscher, and T. Shipley, Eds. Cognitive

Science Society, 2011, pp. 562–567

W. Talbott, H. Huang, and J. Movellan, “Continuous-time infomax models of oculomotor

control,” in Proceedings of the International Conference of Development and Learning

and Epigenetic Robotics, 2012

W. Talbott and J. Movellan, “An expected motion information model of salience for

active cameras,” in Proceedings of the International Conference of Development and

Learning and Epigenetic Robotics, 2012, Best Paper Award

W. Talbott, T. Wu, and J. Movellan, “Estimating dynamic properties of objects from

appearance,” in Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE

Third Joint International Conference on, Aug 2013, pp. 1–6

W. Talbott and J. Movellan, “A computational framework for visual perception of inertial

affordances,” in Affordances in Vision for Cognitive Robotics Workshop at RSS, 2014

xiii

ABSTRACT OF THE DISSERTATION

Learning to Perceive: A Developmental Robotics Approach to Vision and Object

Interaction

by

Walter A. Talbott

Doctor of Philosophy in Cognitive Science

University of California, San Diego, 2015

Professor Virginia de Sa, Chair

A robot is a true blank slate, awash in sensory information inextricable from its

own actions. As such, it can be a powerful tool for investigating the space of problems

that an infant, or whatever innate machinery was granted to the infant by evolution,

must solve. The key observation is that the environment in which an infant develops

is the same as that in which a robot might exist. A robot may have a different view

on that environment, through different types or qualities of sensors. A robot may have

different capabilities for interacting with the environment, for example by having wheels

instead of legs. But, to act autonomously and coherently in the world, like an infant

xiv

learns to do, a robot must somehow make sense of its sensory information. The goal

of this thesis, broadly, is to enable the pneumatic humanoid robot, Diego, to actively

perceive the world. Specifically, three problems are addressed. How can a robot: (1)

identify interesting information in its sensory input, (2) direct its sensors to best acquire

meaningful information, (3) learn to generalize its experience to interact with novel

objects? To help answer these questions, this thesis presents: (1) a model of salience that

is suitable for active cameras, (2) a model of eye movements based on optimal control,

and (3) a framework and robotic implementation for visual perception of the inertial

properties of objects.

xv

Chapter 1

Introduction

William James poetically described the perceptual challenge faced by newborns,

writing, “The baby, assailed by eyes, ears, nose, skin, and entrails at once, feels it all as

one great blooming, buzzing confusion.” His suggestion is that the infant must interpret

multiple continuous streams of sensory information to generate a meaningful perception

of the statistical regularities present in the world. Compounding the confusion, the actions

of the newborn affect the sensations it receives. A strict interpretation of James’ ideas,

of the environment as undifferentiated chaos presented to a blank-slate infant, may not

aptly describe human infants, whose brains and bodies have been shaped by millions of

years of evolutionary pressures. However, James’ “buzzing confusion” is particularly

suited to describing the problem faced by scientists working with artificial agents, such

as robots. Wire several sensors together, throw in a few actuators, turn the power on,

and nothing will happen. A robot is a true blank slate, awash in sensory information

inextricable from its own actions. As such, it can be a powerful tool for understanding

the space of problems that an infant, or whatever innate machinery was granted to the

infant by evolution, must solve.

The key observation is that the environment in which an infant develops is the

1

2

Figure 1.1: Diego, the pneumatic humanoid robot

same as that in which a robot might exist. A robot may have a different view on that

environment, through different types or qualities of sensors. A robot may have different

capabilities for interacting with the environment, for example by having wheels instead

of legs. But, to act autonomously and coherently in the world, like an infant learns to do,

a robot must somehow make sense of the confusion.

Diego, the robot pictured in Figure 1.1, is a pneumatic humanoid robot that is

the motivation for this thesis. Diego was designed with actuators that approximate the

control problem faced by the human body. Stiff actuators, like the ones found in many

current robots, allow independent control of each joint, at the cost of increased energy

required to overcome the stiffness and move the joints. In contrast, the human body

has joints that are compliant (non-stiff), and pneumatic actuators are compliant as well.

Compliant actuators mechanically couple the different joints. In other words, moving

one limb creates significant forces in other limbs. Control signals sent to one joint must

therefore take into account the movement and forces across the entire body. This makes

3

the control problem more difficult with pneumatic actuators, in a way that is similar to

how human muscles do.

This thesis is a step on the path to enable Diego to perceive and act in the world.

Although there are many interrelated aspects of the broad problem of learning to perceive,

in this thesis we examine the following questions:

• How can a robot identify meaningful information in its sensory stream?

• How can a robot direct its sensors to best extract meaningful information?

• How can a robot learn to interact with objects it has never seen before?

To address the first question, Chapter 2 presents a model of visual salience that

is sensitive to the motions generated by an active robotic camera. This model is able

to explain human fixation data on still images, which we take as a measure for what is

interesting in the visual input. In addition, the model explains why, in cameras that do

not have very high temporal resolution, a policy like alternating saccades and fixations

makes sense in order to best extract information from the visual input.

Chapter 3 deals with directing sensors to extract meaningful information. The

chapter uses optimal control methods to explain the motor behavior of sensors, specifically

eyes, in the case where the task is to gather information about the environment. We show

that the model can explain saccade velocity profiles, as well as hand-eye coordination,

and smooth pursuit.

Chapters 4 and 5 describe the replication, in simulation and with Diego, of an

infant experiment in which object interaction is learned and generalized to novel objects.

Stiff actuators do not require internal models, since the control problem is made easier by

the design of the robot. This ease comes at a price of higher energy use. For compliant

actuators, like those in Diego and like human muscles, we find that internal models of

the body and object-body dynamics during manipulation, improve the performance of a

4

controller. We show that model-based controllers implemented on Diego display similar

behavior to the infants, and are susceptible to being tricked by surprising relationships

between visual and inertial properties of objects in the same way infants are.

Chapter 2

An Expected Motion Information

Model of Salience for Active Cameras

Faced with the challenge of learning about its environment, an important first

step for a robot is deciding how to direct its sensors to extract meaningful information.

Computational models of visual salience have been developed to predict where humans

tend to look in visual scenes, and thus they may provide useful heuristics for orienting

robotic cameras. However, as we show here, current models of visual salience exhibit

some important problems when applied to active robotic cameras. Here, we describe

a new model of visual salience, named EMI, specifically designed to work on robotic

cameras. The intuition behind this model is that, regardless of the task at hand, it is

critical for robot cameras to keep track of motion, be it caused by camera movement or

by world movement. Thus, it is reasonable for cameras to focus on image regions that

are expected to provide high information about future motion, and to do so in a way that

blurs the image as little as possible. We show that EMI predicts human fixations at least

as well as current models of visual salience. In addition, we show that EMI overcomes

the limitations that current visual salience models have when applied to robotic, active

5

6

cameras.

2.1 Introduction

Consider the night-driving scene pictured in Figure 2.1(a). Driving requires

keeping track of one’s vehicle’s motion as well as the motion of other vehicles. Thus,

it is important for the driver to look at regions of the scene expected to provide high

information about motion. As we show in this paper, it is possible to compute the

expected number of bits that each region of an arbitrary scene will provide about future

motion. Figure 2.1(b) shows, for example, the top 15% of the pixels in the night-driving

scene expected to provide the most information about future motion. To focus excessively

on other image regions while driving may have catastrophic consequences.

Humans have a wide range of tasks and goals while acting in the world, but

many of these tasks share a common need to keep track of how things move. It is thus

reasonable to expect that the saccade distributions produced by people would show an

aversion to image regions expected to provide little or no information about motion.

The study of eye saccade distributions in free viewing conditions has recently become

of interest in the computer vision, computational neuroscience, and machine learning

literature [6][7][8][9][10][11][12][13]. Much of the previous work explains saccade

distributions as the result of a bottom-up, task-free process known as visual salience.

Typically these models ignore the fact that the observers have active visual sensors

operating continuously. From the point of view of the observer, a static picture is in fact

constantly changing due to the fact that the eyes, head, and body of the observer are not

static.

Here, we propose that saccade distributions in free viewing conditions are the

residue left by a distribution of saccade policies that reflect a wide range of tasks and

7

(a) (b)

Figure 2.1: (a) A typical night driving scene in San Diego. (b) Image regions expected

to provide the most motion information.

goals. While it is difficult to infer what those tasks and goals are, most of them share a

common need to keep track of motion. As such, human saccade distributions should have

less density in image regions expected to provide little information about motion. Rather

than seeing saccade distributions as a result of a task-free, bottom-up process, here we

see them as the result of integrating over a wide range of task-driven policies. From this

point of view, distinctions such as bottom-up and top-down salience are unnecessary and

of little scientific value.

We show that Expected Motion Information (EMI) explains the saccade distribu-

tions obtained when people freely view static images as well as or better than previous

models. Contrary to many previous models, EMI predicts that avoidance of low EMI

image regions will be observed in a wide range of intelligent systems, natural and robotic.

The tasks of different systems may be different, the statistics of the world they are ex-

posed to may be different, but they all share a common need to avoid regions expected to

provide little information about motion.

We further show that, consistent with other emerging views of their shortcomings

[14], models of visual salience have important limitations when implemented in robot

cameras. The problem addressed here is that these models find motion highly salient

and thus, when used to control a camera, result in policies that maximize camera motion.

8

EMI

Itti

Figure 2.2: Results in an example image. Top Row: EMI model. Bottom Row: Itti’s

model. From Left to Right: Original Image. Top 20% most salient pixels. Itti’s model

salience and EMI maps. Human Saccade Distribution.

Contrary to this, EMI predicts a trade-off between focusing on new locations and the

process of moving to a new location. As such, it predicts the emergence of saccade-

like policies that minimize time spent in transition, rapidly moving visual sensors from

location to location and staying in that location for a period of time. This work may

provide clues on how to make robots that learn to scan the world on their own starting

with low level principles. Policies like the ones predicted by current visual salience

models, which continuously move a camera to maximize motion input, may not be

conducive to the development of object detectors. Policies like the ones predicted by

EMI, which rapidly saccade between image regions, may provide an easier path towards

learning object detectors in an unsupervised manner.

In the next section, we present the EMI model and show that it is a reasonable

contender for explaining human saccade distribution in free viewing conditions. We then

detail the problems that standard visual salience algorithms face when coupled to robotic

cameras, and how EMI solves these problems.

9

2.2 Expected Motion Information: Static Case

In this section, we examine an observer that is presented with a fixed image U and

has to estimate how much motion information it expects to obtain prior to seeing a future

image V . The formal model we use is a simplified version of G-Flow [15], originally

developed for tracking objects in computer vision applications. Let f : R2 → R
c be an

image that maps pixel locations x ∈ R
2 onto image values f (x) ∈ R

c. Each of the c

elements of f (x) can be seen as an image channel (e.g., a color channel). For a fixed

pixel location x ∈ R
2, let u = f (x) ∈ Rc. Let Θ ∈ R

2 be a random variable representing

an image displacement. Let V ∈ R
c be defined as follows

V = f (x+Θ)+W (2.1)

where W ∈ R
c is a zero mean Gaussian variable with covariance matrix σw. Given u and

a random sample v of V our task is to infer the value of the displacement Θ that generated

image v from image u. Note for a fixed value θ of Θ, we get

p(θ |u,v) ∝ p(u)p(θ |u)p(v | f ,θ) ∝ p(θ)p(v |u,θ) (2.2)

where

p(v |u,θ) = φ(v | f (x+θ),σw) (2.3)

and φ(· |µ,σ) is a multivariate Gaussian density function with mean µ and covariance

matrix σ. For small θ

f (x+θ)≈ f (x)+ Jθ (2.4)

10

where the Jacobian J ∈ R
c ×R

2 is defined as follows

J =
∂ f (x)

∂x′
=









∂ f1(x)
∂x1

∂ f1(x)
∂x2

...
...

∂ fc(x)
∂x1

∂ fc(x)
∂x2









=









J1

...

Jc









(2.5)

and

Ji =
∂ fi(x)

∂x′
= (

∂ fi(x)

∂x1
,
∂ fi(x)

∂x2
) (2.6)

Thus, for small θ

p(v |u,θ) = φ(d | Jθ,σw) (2.7)

where

d = v−u (2.8)

We let the prior distribution of θ be Gaussian with mean µθ and covariance matrix σθ.

We let this prior be such that only small values of θ are probable, thus making the linear

approximation of f valid with high probability. In this case,

log p(θ |u,v,ηw) =

−
1

2
(θ−µθ)

′ηθ(θ−µθ)−
ηw

2
(d − J θ)′(d − J θ)+ c (2.9)

where ηθ = σ−1
θ is the prior precision matrix and σw = I/ηw. We note that the log of the

posterior distribution has only linear and quadratic terms on θ and therefore it has to be

Gaussian. The expected value and covariance matrix of the posterior distribution can be

11

easily derived

E[Θ |u,v] = (ηθ + J′ηwJ)−1(ηθµθ + J′ηwd) (2.10)

Cov(Θ |u,v) =
(

ηθ + J′ηwJ
)−1

(2.11)

Note J′J and J′d are sums over image channels

J′J =
c

∑
i=1

J′i Ji (2.12)

J′d =
c

∑
i=1

J′i di (2.13)

A key measure used by the EMI model is the information that we expect the future image

V to provide about the Θ. This is given by the following mutual information function

I(Θ,V |u) = H(Θ |u)−H(Θ |V,u) = H(Θ)−H(Θ |V,u) (2.14)

H(Θ) represents the current motion uncertainty (entropy). Since we assume a Gaussian

prior we have

H(Θ) =
1

2
log

∣
∣
∣σθ

∣
∣
∣+ c (2.15)

where c is a constant we may ignore. The term H(Θ |V,u) represents the uncertainty

about motion we expect to have after observing the next image V . Note this is an expected

12

uncertainty and thus it requires integrating over all possible future images

H(Θ |V,u) =
∫

p(v)H(Θ | v,u)dv (2.16)

where

H(Θ |u,v) =
1

2
log

∣
∣
∣cov (Θ |u,v)

∣
∣
∣+ c

=−
1

2
log

∣
∣
∣ηθ + J′ηwJ

∣
∣
∣+ c (2.17)

where c is a constant. Note the posterior entropy is independent of v. Thus

H(Θ |V,u) =
∫

p(v |u)H(θ |u,v) dv

=−
1

2
log

∣
∣
∣ηθ + J′ηwJ

∣
∣
∣+ c (2.18)

An essential aspect of this equation is that the uncertainty about motion H(Θ, |V,u) that

we expect to have after we observe the future image V can be computed analytically prior

to observing that image. This allows using the current image to position the eye (or robot

camera) on locations of the image that are expected to provide high motion information

in the future.

2.2.1 Optimizing Expected Motion Information

In the previous section, we computed the expected motion information for a fixed

pixel location x. In general, we want to observe multiple pixels, in which case we work

with a collection of variables {Θx,ux,Vx} indexed by the location x. A saccade positions

the visual sensor at a given location providing access to a set of pixels S . We can measure

the expected motion information that the saccade will provide by summing expected

13

information over the pixels it gives access to

M(S ,v) = ∑
x∈S

I(Θx |Vx,ux) = ∑
x∈S

= H(Θx)−H(Θx |Vx,ux) (2.19)

where

H(Θx) =−
1

2
log |ηθ(x)|+ c (2.20)

is the current uncertainty about the future motion at pixel x and

H(Θx |Vx,ux) =−
1

2
log

∣
∣
∣ηθ(x)+ J′xηwJx

∣
∣
∣+ c (2.21)

is the uncertainty we expect to have after we observe the next image V . Note H(Θx |Vx,ux)

can be seen as a measure of the quality of the sensor available at pixel location x. A large

value of H(Θx |Vx,ux) indicates a bad sensor and a small value indicates a good sensor,

i.e. an image location expected to provide high information about future motion. Thus,

the expected future motion information M(S ,v) provided by a saccade S to a current

image u integrates two factors: On one hand, it likes locations where there is currently

high uncertainty about motion, i.e., H(Θx). On the other hand, it likes image locations

expected to reduce motion uncertainty, i.e., regions with low H(Θx | ,Vx,ux).

2.3 Predicting Saccade Distributions

We compared the performance of EMI and two popular models of visual salience:

Itti’s model [7] and the SUN model [10]. Itti’s model defines highly salient regions as

regions with higher response from a neural network then neighboring regions. SUN

models free viewing of images as a search task, where the likelihood of the observed

14

image given the target object is uniform. Under this assumption, the information provided

by an image region about the target object is inversely proportional to the logarithm

of its probability in naturally occurring images.The implementation of the Itti model

and the SUN model were downloaded from the Web sites of their developers. Our

implementation of EMI will also be made available on the Web.

We tested the models on a subset of 429 images from the NUSEF dataset [16].

The dataset contains probability distributions of fixations made by 75 subjects in free-

viewing conditions. Performance was measured in terms of the accuracy of the model in

a 2 Alternative Forced Choice Task (2AFC): On each trial, we randomly select two pixels:

one pixel fixated by at least one human and one pixel fixated by no human. The goal was

to discriminate which pixel was fixated by humans using only the salience values given

by the model. A 2AFC of 50 indicates that the salience value provides no information.

A 2AFC value of 80 indicates 80 % accuracy on the task. An advantage of the 2AFC

statistic (also known as the area under the ROC) is that it is independent of the relative

frequency of the two categories, and that it is invariant to monotonic transformation of

the salience values.

The performance of the SUN model averaged across the 429 images was 77.3 %.

The performance of Itti’s model was 81.17 % and the performance of the EMI model

was 81.77 %. The difference between the EMI model and the SUN model was large and

statistically significant t(428) = 18.46, p < 0.01. The difference between the EMI model

and Itti’s model was small but also statistically significant, t(428) = 2.48, p < 0.05.

Thus, it appears that expected motion information describes fixation distributions

at least as well as existing models of visual salience. Figure 2.2 shows an example of the

predictions made by EMI and by Itti’s model.

15

2.4 Expected Motion Information: The Dynamic Case

In previous sections, we analyzed an observer frozen in time who sees an image U

at time t and has to decide where to saccade next. Here, we extend the model to analyze

the continuous time dynamics of an observer operating with an active camera. The model

presented here can be seen as a combination of the I-POMDP of eye movements [17]

and the G-Flow model of object tracking [15]. While I-POMDP focuses on gathering

information about the location of a target object, here we focus on the problem of

gathering information about local motion.

We model the image formation process as a set of linear stochastic differential

equations. Let Yt ∈ R
n be a collection of point objects whose appearance and world

coordinates may change over time, e.g.,

dYt = dB
y
t (2.22)

where By is a Brownian process. We think of images as 2D clouds of these point objects.

Let St ∈ R
2 represent the location of the camera in world coordinates. This location can

be controlled via motor actions At

dSt = Atdt +dBs
t (2.23)

The local displacement vector Θt ∈ R
n represents the current location of the different

point objects in the image plane

dΘt = dSt +dBθ
t (2.24)

Here, dSt models motion due to controlled camera displacements and dBt models motion

due to other uncontrolled processes. Neither Θt , nor Yt are directly observable. Instead,

16

the observer has access to portions of the image Ut ∈ R
m

dUt =
1

τ
(f (Yt ,Θt)−Ut)dt +dBu

t (2.25)

where f (Yt ,Θt) is simply a permutation of Yt according to the current location Θt of

the point objects. Note Ut , will be a weighted average of the image Yt transformed by

the local shifts Θt and the previous images {Us : s < t}. Thus, a camera with a long

time constant (slow shutter) τ will produce images with high motion blur. The expected

motion information Mt(St ,Ut) is given by the EMI formula (2.19) applied to the set of

pixels of Ut visible at that time. Which pixels are visible depends on the current location

St of the camera. From the point of view of the EMI model, good policies move the

camera so as to gather large amount of information about the entire local motion vector

dΘt . For locations x ∈R2 that are not currently seen by the camera, the uncertainty of the

motion increases due to the effect of dBθ
t . For locations seen by the camera, uncertainty

will increase due to the passage of time, but it will also decrease due to the sensory Ut

provided by the camera. The amount by which it is expected to decrease is controlled

by the EMI equation (2.19). This is superficially related to the model of Najemnik and

Geisler (NG)[18] in that it is based on expected information gain. However, NG is a

model of visual search in a very specific task (e.g., search for a known pattern in a pink

Gaussian noise background). As such, its goal and scope are quite different from EMI.

2.4.1 Optimal Inference and Control

Optimal inference under a model similar to this used for a computer vision task

was analyzed in [15]. There, it is shown that inference can be handled with standard

Kalman filters with time dependent observation parameters. The main difference added

here is the use of camera motion blur.

17

1 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Speed

A
v
e
r
a
g
e

S
c
a
l
e
d

S
a
l
i
e
n
c
e

Itti

SUN

EMI

(a) (b)

Figure 2.3: Salience ratings for motion. (a) Movies are generated by sliding a box over

an image in a predefined path at different speeds, with motion-induced blur added as

described in the text. (b) Normalized mean salience from Itti and SUN model across the

frames of 20 videos plotted against speed of the video.

While the model is very simple, it already captures important trade-offs faced

when designing a camera controller. If the camera does not move, the uncertainty about

motion in the unseen portions of the scene will increase rapidly. On the other hand, if the

camera moves, motion blur will decrease the expected motion information provided by

the observed images.

In contrast, current visual salience models treat motion as a desirable (salient)

property of visual sequences. This is problematic both for developing robot cameras that

learn on their own how to maximize visual information gathering, and for modeling how

humans move their eyes. In the previous sections, we saw that EMI predicts well where

humans move their eyes. Here, we show that previous models of salience cannot predict

how humans move their eyes, whereas, at least qualitatively EMI, does not have such a

problem.

2.5 Preference for Motion

To explore the problems with current models of salience, we set up a test case by

constructing movies that scan a scene with varying speed and motion blur parameters.

18

SUN Itti EMI
0

0.5

1

1.5

2

S
c
a
l
e
d

S
a
l
i
e
n
c
e

Motion

Motion

Motion

SUN Itti EMI
0

0.5

1

1.5

2

2.5

S
c
a
l
e
d

S
a
l
i
e
n
c
e

Fixed
Motion
Saccade

Saccade

Motion Motion

high temporal resolution (no blur) standard temporal resolution (blur)

(a) (b)

Figure 2.4: Salience in high- and low-temporal-resolution cameras. Normalized

salience estimates from SUN, Itti & Koch, and EMI for the three policies, Fixed,

Random, and Saccade-like, in two conditions: (a) a high temporal resolution, non-

blurring camera, and (b) a standard temporal resolution camera. Notice that EMI rates

the motion policy more salient (higher quality policy) when there is no blur, but unlike

the other measures, prefers a saccade-like policy when camera movements generate

blur.

As backgrounds for these movies, we selected images from the NUSEF database [16].

Figure 2.3(a) shows a schematic for how these movies were generated: a small field of

view was moved along the background image following a fixed path at a standard speed.

This generated a video sequence Y . The camera representation U of the input sequence

was determined by the following model

dUt =
1

τ
(Yαt −Xt) (2.26)

Thus, α determines the speed at which the camera moves through the standard path. For

α = 1, it moves at the standard speed, for α = 2 it moves at twice the standard speed. The

parameter τ represents the time constant of the camera sensor. Large time constants mean

that the sensor blurs more through time. We used 20 different images as backgrounds,

and videos were generated for τ ∈ {1, 2} and α ∈ {1, 4/3, 2, 4, 10, 20}. We examined

19

the average visual salience of these movies as computed by the Itti & Koch model [7],

the SUN [8] model and EMI (see Figure 2.3(b)). As the speed of the movie increases,

the previous salience algorithms estimate higher salience. Such unconstrained preference

for motion is problematic. Any robotic implementation that attempts to maximize these

measures of salience would result in a robot that moves as much as possible in order to

increase how interesting it thinks its environment is. The problem is that these approaches

do not capture the fact that the reliability of the sensors decreases during motion, and

thus the amount of useful motion information extracted from the world is actually lower

when the camera moves very fast. As Figure 2.3(b) shows, EMI does not like high

camera motion, due to the fact that it produces temporal blur, which degrades the visual

information about motion.

Some previous work in robotics has attempted to design cameras that learn

appropriate compensatory movements to stabilize the image in a camera during self

motion [19]. Other work has dealt with the problem by requiring the head to remain

fixed [20] or only estimating salience after a movement has been completed [21]. These

approaches, however, do not explain why it is important to be wary of motion. The next

section provides an experimental argument that the EMI model deals with self-produced

motion in an intelligent way. EMI also predicts when saccadic camera movements, as

opposed to continuous camera motion, are desirable.

2.6 Control Policies for Active Cameras

To examine the type of exploratory behavior favored by SUN, Itti’s model, and

EMI, we evaluated the salience of a set of movies generated by three different camera

control policies. Extrapolating from these estimates, we can get a qualitative sense for

what types of eye movement policies the different algorithms would prefer. Here, a policy

20

defines the path of a movie frame across a background image, similar to the process

outlined in Figure 2.3(a), subject to the camera model from equation (2.26).

Three policies were considered. Under policy F, the camera remains fixed in

a constant location for the duration of the movie. Under policy M, the camera moves

rapidly and continuously around the image. Although the path changes direction, it does

not pause in any location. The third policy, S, mimics a series of saccades by moving

first to the left of the image, pausing there, and then moving to the right of the image.

The three policies, F, M, and S, were evaluated with two different sensory condi-

tions. The first condition used a camera model with very good temporal resolution, i.e.,

very small time constant τ. The second condition used a camera with temporal resolution

approximating that of the human eye.

The scaled salience estimates from the three algorithms for the movies associated

with policies F, R, and S are shown in Figure 2.4. Figure 2.4(a) shows the results with a

simulated high-shutter-speed (no motion blur) camera. In this case, the three salience

algorithms have the same preferences. They all prefer the high motion (M) policy. This

makes sense: since the camera sensor has a very small time constant, one loses no

information by moving the camera quickly. However, things change dramatically when

operating with a more realistic camera that produces motion blur, see Figure 2.4(b). In

this case, SUN and Itti’s model still prefer the high, continuous camera motion. EMI, on

the other hand, prefers the saccadic policy (S), presumably because it minimizes the loss

of information due to motion blur during saccadic flight.

2.7 Conclusions

Recent years have seen great advances in the development of computational

model of visual salience. While these models predict well where humans will look in

21

a scene, they have problems predicting how they will do so. As such, they are not well

suited for robotic cameras that learn to develop their own motor policies to maximize

visual sensory information. Here, we have proposed EMI as a model of salience which

explains saccade distributions at least as well as current models of visual salience while

solving their limitations for robotic applications. These limitations include a preference

for motion. This preference, when used to guide an active camera, would lead to policies

that move the camera without stopping. When we use EMI as a measure of the quality

of a movement policy, we see that it prefers ballistic behaviors that minimize time in

motion (when the cameras are blurry). In future work, we will apply the EMI measure of

salience to allow the Machine Perception Lab’s humanoid robot, Diego-san, to learn how

to move its cameras during explorations of novel objects.

Acknowledgments

This research was supported by NSF IIS 0968573 and NSF IIS 0808767.

Chapter 2, in full, is a reprint of the material as it appears in the Proceedings of the

International Conference on Development and Learning and Epigenetic Robotics. Talbott,

W and Movellan, J., 2012. The dissertation/thesis author was the primary investigator

and author of this paper

Chapter 3

Infomax models of oculomotor control

From a Bayesian point of view, learning is simply the process of making in-

ferences about the world based on incoming data. The efficiency of this learning is

determined by the quality of the information provided by the sensors. Thus, a critical

part of learning is the existence of a sensory-motor system designed to maximize the

information required to achieve goals. Here we show that a wide range of primate eye

movement phenomena can be elegantly explained from the point of view of infomax

control. The proposed approach describes the velocity profiles of saccadic eye move-

ments as well as previously existing models. In addition, the infomax approach explains

phenomena that are beyond the scope of previous models: non-saccadic eye movements,

and the difference in end point and velocity profiles observed in saccade-to-target and

reach-to-target tasks. The results suggest that the occulomotor control system evolved to

be a very efficient real time learning machine.

3.1 Introduction

From a Bayesian point of view, learning is simply the process of making in-

ferences about the world based on incoming data. The efficiency of this learning is

22

23

determined by the ability of the sensory-motor control system to maximize the informa-

tion needed to achieve goals (infomax control).

Humans make over 150,000 saccades per day, spending about 2 hours in saccadic

flight, during which useful vision is very poor. It is well known that the velocity profiles

of primate saccadic eye movements are quite stereotyped and adhere to consistent

relationships between amplitude, duration, and peak velocity. These relationships have

been called the “main sequence” [22].

Recent models of oculomotor control have been successful at describing saccade

velocity profiles using optimal control principles. Typically, these models focus on the

relationship between motor commands and forces applied to the eyes, and postulate

that the goal of the oculomotor system is to drive the eye to target locations as quickly

and accurately as possible. Some models postulate that the eyes minimize the expected

deviation from a target end point [23, 24]. Other models postulate that eye movements

minimize the time required to reach the target point [25], which turns out to be mathemat-

ically equivalent. These models ignore the sensory properties of the eyes and assume that

the goal of oculomotor control is to reach target points. How these targets are selected is

beyond the scope of the models. A recent class of models has focused on explaining how

the target points are selected using information maximization principles [26, 27]. Up to

now these models have focused on the sensory properties of the eyes (e.g., the fall-off of

sensitivity as a function of eccentricity) and have ignored their mechanical properties.

Here, we show that by jointly examining the sensory and mechanical properties of the

eyes it is possible to explain a range of new phenomena that were beyond the scope of

the previous models. The approach shows that a wide range of primate eye movement

phenomena reveal that the primate oculomotor system evolved to be a very efficient

real-time learning machine.

24

3.2 Infomax Model

To model oculomotor control, we first need to have a description of the system

of the eye. We follow [23] in using a state-space model with signal dependent noise to

describe the eye. We call the state of the eye at time t as Xt , and describe its changes

through time with

dXt = AXtdt
︸ ︷︷ ︸

drift

+BUtdt
︸ ︷︷ ︸

control

+(C+Ut)dBt
︸ ︷︷ ︸

noise

(3.1)

Xt =






Xe,t

Ẋe,t




 (3.2)

Where the matrix A represents the passive dynamics of the system, B describes the effects

of the control inputs Ut on the state, and C describes the effect of the Brownian motion

Bt on the state. Xt is the state matrix, which contains the eye position Xe,t and velocity

Ẋe,t Notice that the noise scales with the size of the control input, which gives rise to

a tradeoff between controlling the system and being certain of the system’s state. The

values in the A and B matrices were found from human saccades in [28], and like [23] we

use these values. These values were retrieved from horizontal saccades, and we model

saccades similarly in only one dimension.

Although previous models have assumed that the endpoint of a saccade, which

we will call Z, is known exactly, here we introduce target uncertainty by treating Z as a

random variable. Especially if this target is presented in the periphery, subjects will be

unsure of the target’s location due to sensory uncertainty. Here we model the belief of

the target’s location as a Gaussian distribution. Additionally, we assume target has its

25

own dynamics described by

dZt = ηtdt +ndVt (3.3)

where ηt is the model of the target’s velocity, and dVt is Brownian motion, with magnitude

determined by n. We assume the model of the target dynamics is known. The model

could potentially be learned or estimated from the observations of the target, but we do

not address this issue here. Even though the dynamics are known, Z is not, so we need a

model for how the eye learns about the location of the target.

Similar to [29], who use a POMDP framework to examine hand-eye coordination,

we model the observations Y that the eye collects about the target. These observations

change through time as

dYt = (Xe,t −Zt)g(Xe,t ,Zt , Żt)dt +dWt (3.4)

If the observations were noiseless and accurate, they would give the eccentricity of the

target with respect to the location of the eye. However, the observations are contaminated

by noise, dWt , and the signal-to-noise ratio (SNR) is defined by the visual acuity function

g. We choose the following form of the visual acuity function

g(Xt ,Zt , Żt) = e

−











1

ρ
((Xe,t −Zt)β)

ρ

︸ ︷︷ ︸

eccentricity

+
1

2
(Ẋe,t − Żt)

2γ
︸ ︷︷ ︸

velocity











(3.5)

where ρ and β define the shape and width of the falloff in SNR due to the target’s

eccentricity, and γ defines the width of the falloff in SNR due to the relative velocity

of the eye. For computational simplicity, we restrict ρ to be an even number so we can

26

avoid using an absolute value on (Xe,t −Zt). For example, if we assume the velocity term

is zero, and ρ = 4, Figure 3.1 shows a schematic of how the SNR would decrease as the

eccentricity (on the x-axis) diverges from zero in either direction.

0
0

1

Figure 3.1: Schematic figure of how the SNR decreases as the eccentricity (x-axis)

differs increasingly from zero.

A similar shape would hold for the velocity term of the visual acuity function

as well. The velocity term models the cost of moving the eyes rapidly. In humans,

saccadic suppression masks high-frequency visual information during fast eye movements.

Similarly, in the model, a high velocity of the eye with respect to the target reduces

the SNR of the observations. This sets up another tradeoff. If the eye is far from a

stationary target, the controller must decide whether it is better to make slow movements

that generate more reliable observations, or fast, unreliable movements to decrease the

eccentricity of the target. The optimal action will depend on the values of the parameters

ρ, β, and γ, and the relative cost of action and uncertainty. Taken together, (3.1), (3.3),

(3.4), and (3.5) describe the system to be controlled. What remains is to find a control

policy that can generate the actions Ut from times 0 to final time horizon T such that the

system is driven to a desired state.

27

3.2.1 Learning the control policy

To find the optimal policy, we first need to define an objective function. Here

we use a quadratic objective function, and use iterative Linear Quadratic Gaussian

(iLQG) [30] control, which will require dealing with both the partial observability and

the non-linearity from (3.5). In this paper, we will model eye movements in three tasks

(target-directed saccades, smooth pursuit, and eye-hand coordination). Objective function

in (3.8) will be modified based on task goals.

For the moment, we will focus on target-directed saccades. In this task, we use

data collected from horizontal saccades in humans [31]. The participants were asked to

saccade from a central fixation point to a flashed target at different amplitudes. Because

the task involves positioning the eyes as close as possible to the target, we start with a

term for minimizing the squared error between eye and target. Additionally, we include a

term to model the cost of action. Let the cost function take the form

(X −Z)2 +U2Q (3.6)

where Q is a scalar that captures the tradeoff in cost related to being far from the target

point and making actions.

The expression in (3.6) will be the cost function if the target location Z is known.

However, because the location Z is unknown, we cannot use this cost directly. Instead,

we need to take the expected value of (3.6), which leads to

(X − Ẑ)2 +σZ +U2Q (3.7)

where E[Z] = Ẑ and σZ is the variance of the estimate of the target location. With (3.7),

we have a quadratic cost function. Notice that even in a situation where the task is to

28

move to a specified location, there is still pressure to find a solution that maximizes the

information about the target location.

Saccade Fixation

Time
0 T T+F

Figure 3.2: Finite horizon time segments. The two segments of the finite horizon used

for control. First, from time 0 to time T , there is no penalty for the distance from the

eye to the target. Second, during fixation (from time T to time T +F), the penalty on

the eye position is enforced. The penalty on the magnitude of the action U is enforced

for the entire horizon.

In this target-directed task, the entire eye movement in one trial includes first a

saccade and then a short fixation period at the target. To apply the cost function (3.7) to

the entire movement, we also separate the movement control into these two segments, as

shown in Figure 3.2. The first segment, which we will call the saccade, only contains

penalties on the actions. The second segment, from time T to time T +F , which we call

the fixation, also includes the penalty on the state of the eye. With this, the complete

minimization objective becomes

∫ T+F

T
((Xt − Ẑ)2 +σZ)dt +

∫ T+F

0
U2

t Qdt (3.8)

Following [30], we include Ẑ and σZ in the state X , and plan according to the

belief state. Using an extended Kalman-Bucy filter, we can find the dynamics of Ẑ and

29

σZ . The extended Kalman-Bucy filter equations are as follows

dẐt = ηdt +KtdIt (3.9)

dIt = (dYt − f (Xt , Ẑt ,
˙̂Zt))dt (3.10)

Kt = σZ,t
∂

∂Ẑt

f (Xt , Ẑt ,
˙̂Zt) (3.11)

dσZ,t =−K2
t dt +n2

t dt (3.12)

where we’ve defined

f (Xt , Ẑt ,
˙̂Zt) = (Xe,t − Ẑt)g(Xt , Ẑt ,

˙̂Zt) (3.13)

and g is as in (3.5). Using the product rule, we can find

∂

∂Ẑt

f (Xt , Ẑt ,
˙̂Zt) = g(Xt , Ẑt ,

˙̂Zt)(1−β(Xe,t − Ẑt)
ρ) (3.14)

Using the above equations, we can incorporate the observation process Y with the estimate

of the target location and give the dynamics of Ẑ and σZ in relation to time.

The final step is to augment the A and B matrices from (3.1) to include the

dynamics of Ẑ and σZ in relation to changes in the other state variables. We can find the

necessary terms in the augmented matrices by taking the partial derivatives of (3.12) with

respect to Xe,t , Ẋe,t , Ẑ, and σZ . This will allow us to linearize the dynamics of the system

around a given state or sequence of states.

With the linearized dynamics, the belief state Ẑ, and the quadratic cost function,

we can now solve for a control policy using iLQG. The policy learned by iLQG is a

closed-loop policy. This means the optimal action at a given time can depend on the state

rather than just the time; in other words, the optimal policy can react to changes in the

30

environment. This feature of the policy is interesting, and differs from previous models,

and its implications are discussed in more detail in Section 3.5. Once the control policy

has been learned, it can be applied to a noise-free simulation to give an the expected

trajectory of the eyes for a set of parameters.

3.3 Evaluation Methods

To evaluate the suitability of the infomax model for describing oculomotor con-

trol, we looked at three different eye movement paradigms. The first is in describing the

velocity profiles of horizontal saccades, as was described earlier. Second, we examined

the qualitative suitability of our model for predicting smooth pursuit in amenable situa-

tions in simulation. We also examined a task where the eye played a supportive role to

the hand, which had to reach a target.

3.3.1 Saccades

To learn the parameters of the system that describes the eye’s movement and

observations, we perform a pattern search to minimize the root squared error between the

velocity profiles of 5, 10, 20, 30, 40, and 50 degree saccades generated by the optimal

controller under the fixed set of parameters and the behavioral data from [31]. We allow

the saccade duration T to change with each amplitude, but all other parameters are held

constant across amplitudes.

To compare the infomax model to other models, we use a cross-validation

paradigm, where each amplitude saccade is held out in turn. The parameters for each

model are set from the remaining amplitudes, and an optimal movement for the held-out

amplitude is generated with the learned parameters. Then, the error is calculated, and

averaged across the amplitudes.

31

3.3.2 Smooth pursuit

To model eye movements other than saccade, we need only make minimal changes

to the objective function (3.8). Rather than considering the task where the eyes are

required to move to a particular location (as was the case in our model of the saccade task

from [31]), here we only consider the goal of minimizing the variance of the estimate of

the target location. As such, the objective comes closer to pure information maximization,

and is defined as

∫ T+F

T
σZdt +

∫ T+F

0
U2

t Qdt. (3.15)

Although we have tried the following experiments with an objective function closer to

(3.8) with similar results, it is more compelling to show that even without a strict penalty

on the location of the eyes, we can generate qualitatively similar behavior to smooth

pursuit, so we will focus on this case.

3.3.3 Hand-eye coordination

We model eye movements in a rapid reaching task (data collected and described

by [32]) in two conditions: Eye+hand, in which the reward is given based on the endpoint

of hand movement; Eyes only, in which the reward is given based on the endpoint of

saccadic eye movement. In the experiment, subjects were instructed to reach the target

at a distance of 20 cm (25 degree visual angle) from the starting location either with

hand (Eyes+hand) or eye (Eyes only) movement at a time window of 600 ms. For the

former, subjects can freely move their eyes and thus eye movements only serve to guide

hand movements. For the latter, subjects’ reward will be based on the endpoints of

eye movements and thus eye movements contribute directly to the task goal. We used

Eyelink1000 system to track eye movement and Phasespace motion capture system to

32

record hand movement in the experiment.

We model the hand as a point mass, and used the dynamics for the hand as

described in [25].

For Eyes+hand condition, without constraint on eye movement to the target, the

objective function for eye movement is

∫ T+F

T
((Xh,t − Ẑ)2 +σZ)dt +

∫ T+F

0
U2

t Qdt (3.16)

where Xh,t is the position of the hand at time t.

For Eyes only condition, with the task goal of moving eyes to the target, similar

as the target-directed saccade task, the objective function for eye movement is (3.8).

3.4 Results

3.4.1 Predictions of optimal saccades for static targets

Figure 3.3 compares the infomax model prediction of saccade velocity profiles

over a range of amplitudes. Optimal velocity profiles (Fig 3.3b) captured the important

shape features shown in behavioral data (Fig. 3.3a) (i.e. symmetric for low amplitudes

and asymmetric/left-skewed peak for high amplitudes). The optimal positions (Fig. 3.3c)

also show similar trajectories as in the observed behavior.

In Figure 3.4, we compare infomax with previous models (Internal Model from

[33]; Minimum Variance Model from [24]). RSE comparison (Fig. 3.4c) suggests there is

no significant difference (summed over all velocity profiles between behavior and model

predictions) between those 3 models (p>0.1).

33

a I-MoV

0 50 100 150

0

200

400

600

0 50 100 150

0

200

400

600

I-MoV Position

0 50 100 150
0

10

20

30

40

Behavior
Infomax

cb

0 50 100 150
Time (ms)

200

400

V
e
lo

ci
ty

 (
d
e
g
 s
−

1
)

0 50 100 150
Time (ms)

0 50 100 150
Time (ms)

10

20

30

40

P
o
s
it
io

n
 (

d
e
g
)

200

400

V
e
lo

ci
ty

 (
d
e
g
 s
−

1
) 600

400

200

0

600

400

200

0

40

30

10

0

20

InfomaxBehavior

Figure 3.3: Comparison of behavioral result and infomax predictions. a. Observed

velocity profiles of horizontal saccades when the target is at 5◦, 10◦, 20◦, 30◦, 40◦ and

50◦ ([31]). b. Optimal saccadic velocity profiles for corresponding amplitudes shown in

a. c. Optimal eye positions (solid blue line) and observed eye positions (dashed black

line) for the amplitudes shown in a.

0 50 100 150

0

200

400

600

Internal Model

0 50 100 150

0

200

400

600

Min. Variance

I−MoV IF OL
0

200

400

600

800

1000

a b c

0 50 100 150
Time (ms)

0 50 100 150
Time (ms)

200

400

V
e

lo
ci

ty
 (

d
e

g
 s
−

1
)

200

400

V
e

lo
ci

ty
 (

d
e

g
 s
−

1
)

RSE

M.V

600

400

200

0

600

400

200

0

600

400

200

0

800

1000

IMInfomax

Figure 3.4: Comparison of infomax and previous models. a. Internal Model from [33].

b. Minimum Variance Model from [24]. c. Mean RSE over all the amplitudes, error

bars show the standard error of the mean.

3.4.2 Prediction of saccadic and smooth pursuit eye movement for

moving targets

Figure 3.5a and 3.5b show infomax prediction for eye movements when the target

moves at 20 deg/s with no location difference between initial fixation and the onset of

the moving target. Eye velocity trace in Fig. 3.5a suggests the eye will increase velocity

rapidly and continuously until reaches the target velocity (∼ 40 ms after target onset),

and then track the target using pursuit eye movements. Eye position trace in Fig. 3.5b

shows eye positions closely match target locations.

Figure 3.5c and 3.5d shows model prediction of eye movement when the moving

target is initially located 5 deg to the right of fixation, and then moves to the right at

34

10 deg/s. Eye velocity trace in Fig. 3.5c shows the eye will first make a quick catch-up

saccade-like movement to the target (∼150 ms after target onset) and then track the

moving target at a matching speed. The eye position trace in Fig. 3.5d suggests the eye

will reach the target at the end of the first quick movement and then track the target

position.

I-Mov
Target

0 200 400 600
0

5

10

15

20

25

0 200 400 600
0

2

4

6

8

10

12

a b

c d

Infomax
Target

0 200 400 600 0 200 400 600

15

10

5

0

20

25

6

4

2

0

8

10

12

Velocity Position

0 200 400 600
0

2

4

6

8

10

12

0 200 400 600
0

20

40

60

80

Time (ms)

0 200 400 600 0 200 400 600
Time (ms)

60

40

20

0

80

6

4

2

0

8

10

12

200

400

V
e
lo

ci
ty

 (
d
e
g
 s
−

1
)

200

400

V
e
lo

ci
ty

 (
d
e
g
 s
−

1
)

10

20

30

40

P
o
s
it
io

n
 (

d
e
g
)

0

0

10

20

30

40

P
o
s
it
io

n
 (

d
e
g
)

Figure 3.5: Representative eye movement responses to moving targets. Top row: a.

Eye velocity trace (solid blue line) and b. corresponding eye position and target position

in response to a zero-offset target moving rightward at 20 deg/s (dashed green line).

Bottom row: c. Eye velocity trace (solid blue line) and corresponding eye position and

target position in response to a moving target initially located at 5 deg in the right visual

field and then moves rightward at 10 deg/s (dashed green line).

3.4.3 Prediction of eye movement in Hand-eye coordination

Figure 3.6a shows model predictions of eye movement in hand-eye combination

(solid blue) and eyes only (solid red) conditions. Comparing with behavioral data (dashed

blue, dashed red lines) observed in the experiment (Figure 3.6b), eye movement endpoints

in the task show that subjects undershoot target with saccadic eye movements when the

35

task goal is to reach the target with the hand (top panel in Figure 3.6b). However, the

undershooting disappeared when the task goal was to fixate the target with eye movements

(bottom panel in Figure 3.6b). Infomax predictions (Fig. 3.6a) of optimal eye positions

for the hand-eye condition (solid blue) and eye only (solid red) are consistent with this

observation from the behavioral data (dashed blue and red).

0 20 40 60 80 100
0

5

10

15

20

25

Time (ms)

P
o

s
it
io

n
 (

d
e

g
)

fr
o

m
 s

ta
rt

Eye+hand

Eyes only

a b

20

10

0

10

20

Target

Hand

220

Target

Hand

Eye

\\

Eye+hand

Target

Hand

\\

Eyes only

20 cm

Figure 3.6: Eye movements in the reaching task. a. Comparison between infomax

prediction of optimal eye positions (solid lines) and behavioral data (dashed lines). b.

Eye movement endpoints in Eye+hand condition (top panel) and in Eyes only condition

(bottom panel). Green circle is the target; red dots are hand endpoints in Eye+hand

condition; black dots are eye endpoints.

3.5 Discussion

We showed that saccadic eye movements emerge as the solution to an information

maximization problem with sensors that have a limited field of view and limited tem-

poral resolution. The information maximization principle explains the velocity profiles

observed in saccadic eye movements as well as previous principles, including minimum

end-point variance [23] and minimum time [25]. More importantly, information max-

imization explains eye movement phenomena that were beyond the scope of previous

models. We showed that, for moving targets, infomax generates both saccades and

36

smooth pursuit eye movements. When target onset location is close to the initial eye

fixation (foveal), infomax predicts smooth pursuit eye movement which closely tracks

target positions. When the target appears in a peripheral location, infomax predicts a

catch-up saccade followed up by smooth pursuit eye movement. Qualitatively, this be-

havior was observed in empirical studies [34, 35]. While previous models [36] explained

smooth pursuit from the point of view of minimizing tracking errors, here we explain

both saccadic movements and smooth pursuit from the point of view of maximizing

information about the location of a target.

We designed an experiment in which target tracking and information maximiza-

tion make different predictions. Subjects were instructed to reach a target with their hands

(Hand condition) or with their eyes (Eye condition). Subjects were rewarded based on

the endpoints of hand movements or eye movements, respectively. For the Eye condition,

subjects made eye movements as predicted both by the infomax approach and by the

target tracking approach. However, for the Hand condition, eye movements undershot

the target by ∼2.5 degrees. This result was predicted by the information maximization

approach but contradicted the target tracking models. According to the infomax model,

the reason why people undershoot in the Hand condition but not in the Eye condition

is that moving the eyes close to the target does not improve the accuracy of the hand

motion.

It should be noted that the infomax model generates closed-loop control policy

for the eyes. At first glance, this might seem an undesirable feature since saccades

are widely believed to be open-loop, ballistic movements. However, due to the limited

temporal bandwidth of our eye model, when the eyes move quickly they provide very

little visual information, and thus virtually operate in open loop mode. The decision to

move slowly in closed loop mode, or quickly in open loop mode, can be seen as the result

of optimizing a common information maximization principle.

37

3.6 Conclusions

From a Bayesian point of view, learning is equivalent to making inferences based

on the information gathered by the sensors. Efficient learners are thus those that control

their sensors so as to maximize the expected value of information. Here, we showed that

a wide range of properties of the oculomotor system, including the velocity profiles of

saccades, the transition between smooth pursuit and saccadic movements, and eye hand

coordination in reaching tasks can be explained from the point of view of information

maximization. In summary we showed that, by considering that the occulomotor system

has evolved to be a very efficient real-time learning machine, one can make sense of a

wide range of phenomena that were previously addressed using different principles or

that were beyond the scope of previous models.

It should be noted that our work is agnostic with respect to brain implementation

issues. For example, while we show that saccadic movements and smooth pursuit

movements serve a common goal (information maximization) it is perfectly plausible for

the two forms of movements be controlled by different brain systems. It is also possible

that, as recently suggested [35, 37], saccades and pursuit are two outcomes of a single

sensorimotor system. Regardless, our work suggest that the brain systems involved in

oculomotor control have evolved to serve a common computational principle: efficient,

real-time learning.

3.7 Acknowledgments

This research was supported by NSF IIS 0968573 and NSF IIS 0808767.

Chapter 3, in full, is a reprint of the material as it appears in the Proceedings of

the International Conference on Development and Learning and Epigenetic Robotics.

Talbott, W, Huang, H, and Movellan, J, 2012. The dissertation/thesis author was the

38

primary investigator and author of this paper.

Chapter 4

Visual Perception of Inertial

Affordances: Computer Simulation

We present a Model Predictive Control approach to visual affordances. Under

this framework, visual information is used to estimate the inertial parameters of internal

models of physical objects. Model Predictive Control algorithms then generate and

update motor control policies based on the existing internal models. Finally, the torques

and accelerations observed while applying the control policies provide a training signal to

refine the mapping between visual features and inertial model parameters. We show that

the proposed approach models the results of existing behavioral experiments, suggests

and makes predictions for new experiments, and is amenable for implementation in

humanoid robots.

4.1 Introduction

Consider the two objects in Figure 4.1. Most people have not encountered these

objects before, yet they have strong intuitions about which object is better for mashing

39

40

potatoes and about how to grasp it for doing so. This is an example of a visual affordance,

our intuition of how to interact with a novel object based on visual inspection. There is

experimental evidence that infants already use visual affordances when interacting with

objects. In a classic experiment, [38] showed that by 9 months of age infants estimated

inertial properties of objects based on visual information. Rods of different sizes were

given to infants at arm’s length, so that when the experimenter released the object the

infant’s arm either dropped, raised, or remained stable. Infants soon learned to predict the

weight of the rod from its length, as shown by the fact that the initial arm-drop decreased

as new rods were presented. After this learning had occurred, infants were given a hollow

decoy rod that broke the learned relationship between length and weight. The infants’

arms lifted up significantly, indicating that the infants had learned a visual affordance:

prior experience taught them to modulate the forces to be applied to a new object in

response to the visual perception of that object.

In this paper, we explore a computational approach for how visual affordances

may be developed and applied in the context of motor planning and motor control. We

focus on perception of the inertial properties of objects (e.g., weight, center of mass,

moment of inertia). We propose an approach that can model the phenomena from [38],

suggest and predict the results of novel experiments, and be implemented in physical

robots.

The approach we propose has three main components:

1. A visual system that predicts inertial properties of objects based on their visual

features.

2. A proprioceptive system that estimates inertial properties of objects from observed

joint torques and resulting accelerations. The proprioceptive system is used to

update the predictions of the visual system.

41

Figure 4.1: Two uncommon objects.

3. A model predictive controller that can both run internal simulations of object

dynamics for anticipatory choices, and control behavior in the physical world.

4.1.1 Prior Work

[39] presented one of the pioneering approaches to robotic affordance learning.

In their approach, a robot poked objects and observed whether or not they rolled. This

allowed the robot to learn to predict whether new objects will roll based on visual

information alone. Other approaches focused on learning to choose from a discrete set

of actions based on the results of these actions on visually similar objects [40] [41] [42]

[43]. For example, in [40], a robot performs predefined movements with color-coded

tools to move a puck on a flat surface. The results of each movement are recorded, and

the previous results are used to select behaviors to move the puck to desired locations.

One limitation of these approaches is that they do not generalize past the actions in their

pre-defined sets.

[44] argues for an approach similar to ours: rather than classifying a discrete set

of affordances directly from visual features, the approach first makes inferences about

intermediate object properties, such as material or size. Then, the presence or absence of

a set of affordances (pushable, liftable, etc.) is classified using the intermediate features.

42

Our approach differs from this previous proposal in that, instead of predicting specific

affordance labels, we learn to map visual features into internal models of objects. These

internal models are then used within a Model Predictive Control (MPC) approach to

generate control policies for a wide range of tasks and situations.

There is evidence that humans use internal models of their own bodies and of

external objects in order to formulate motor control plans [45]. There is also evidence

that the cerebellum plays an important role in the formation adaptation and real time

use of these internal models. For example [46] had subjects in an fMRI scanner learn to

track a target with the cursor of a computer mouse with a rotated coordinate frame. The

cerebellar activations showed one pattern that was proportional to the error between the

mouse cursor and a tracking target, and another pattern that showed increased activation

even after the error decreased to baseline levels. They propose that this activation is

evidence of an internal model being learned and remaining active when the task is

performed.

In the next sections, we formalize the problem we are trying to solve, specify

the proposed approach, and run computational experiments to explore how the approach

behaves in different conditions of interest.

4.2 Problem Formalization

The goal of our approach is to explain phenomena like the one illustrated in

Figure 4.1, in which people can make predictions for how to choose and use novel objects

for a wide range of tasks. We formalize this problem from the point of view of MPC:

we aim to develop closed loop control policies for articulated bodies (robots) that use

rigid objects (e.g., tools) to achieve goals. These control policies are developed by using

by using optimal control methods applied to internal models of the world. Our goal is

43

for the visual appearance of the objects to modulate the resulting control policies in an

intelligent manner, i.e., a manner that is optimal with respect to a well defined function.

4.2.1 Robot Dynamics

The dynamics of a rigid articulated body, such as a robot, follow the standard

equation of motion

M(θt)θ̈t = τt +N(θt , θ̇t) (4.1)

where θt is the vector of joint angles at time t, θ̇t the angular velocities, θ̈t the angular

accelerations, M(θt) is the moment of inertia matrix of the entire articulated body, τt the

vector of torques applied by the rotational joint actuators, and N(θt , θ̇t) is the vector of

gravitational, friction and Coriolis/Centripetal forces.

We model a stably grasped object as a change to the robot itself. An object

attached to the robot by a grasp changes the robot’s geometry, inertial properties and

equation of motion. Here, we use the parameter λ to represent the inertial properties of

the grasped object. The equation of motion for the resulting robot-object system is

M(θt ,λ)θ̈t = τt +N(θt , θ̇t ,λ) (4.2)

4.2.2 Control Policy

Formally, a control policy c is a mapping between robot states (angles, and

angular velocities) and actions (torques applied to each joint), i.e.,

τt = c(θt , θ̇t) (4.3)

44

Goals are formulated in terms of a scalar function that captures the expected reward

resulting from using a control policy over a finite period of time [0,T]

ρ(c) =
∫ T

0
E[Rt |c]dt (4.4)

where Rt is the reward rate and T is the terminal time. The reward rate Rt is simply a

function that expresses the desirability of achieving a robot’s state at a particular point

in time t. For example, Rt could be the Euclidean distance, at time t, between a target

location and the tip of a robotic finger.

The problem is to find a control policy ĉ that maximizes ρ(c) subject to the

dynamics in (4.2), where the inertial properties λ of the object are not completely known.

Moreover we want for the control policy to be modulated by the visual appearance of

the object, in a principled manner. In the case where the robot can use multiple tools to

achieve a task, the robot can generate a policy for using each tool. Then, it can choose

the tool with the highest expected reward.

4.3 Proposed Approach

We formalize the lack of knowledge of the object’s inertial properties by using

a probability distribution, p(λt | vt ,st), over inertial parameters of the object (weight,

center of mass, moment of inertia). Here λt represents the inertial properties of the object

observed at time t. vt represents the visual information observed while manipulating

objects up to time t, and st is the proprioceptive information (joint torques and angular

accelerations) obtained while manipulating objects up to time t. This probability distri-

bution is the mathematical expression for the visual perception and learning of inertial

affordances.

Suppose at time t the robot is presented a new object. Prior experience observing

45

Figure 4.2: Diagram of the proposed approach. The numbered components correspond

to the components described in the text.

and manipulating objects (vt ,st) allows the robot to predict probable inertial parameters

for the current object: p(λt | vt ,st). Based on this prediction, the robot formulates a

control policy to achieve a goal using the object. The control policy is implemented, and

as a result of it the robot grasps the object and manipulates it. During the manipulation,

the robot keeps track of the joint torques and resulting joint accelerations. This new data

is used to update the probability distribution of inertial parameters given visual features.

Figure 4.2 shows the different components of the proposed approach: (1) A

visual system generates a probability distribution of object inertial properties based

on their visual properties (e.g. color, texture, shape). Given a new image, the system

generates a probability distribution over object geometry and density. This is then used

to compute a probability distribution over probable inertial object properties (weight,

center of mass, moment of inertia) given their observable visual features. (2) A Model-

Predictive Control system that generates control policies to achieve goals given the

current probability distribution over object inertial parameters. The control system uses

an MPC approach, i.e., it utilizes internal models with the known inertial parameters of

the robot, plus the available distribution of inertial object parameters to formulate control

policies. These control policies are then applied in the physical world. The results are

46

used to update the internal model. (3) A proprioceptive system that infers the posterior

distribution over the inertial properties of objects given: a prior distribution over inertial

object parameters, observed torques applied to the robot joints, and the resulting angular

accelerations observed on the joints. This is used as a teaching signal to update the

probability distribution generated by the visual system.

4.3.1 Estimating Material Density from Experience

A key aspect of our approach is the ability to use prior experience seeing and

manipulating objects to generate reasonable control policies for novel objects and tasks.

This is achieved by estimating the density of the parts which comprise objects. Basically

when a new object is observed, we form a 3D model of the object as a collection of

3D ellipsoids. Algorithms for inferrring 3D ellipsoids from 2D images are well known

in the computer vision community [47]. This geometric model, in combination with

the proprioceptive information (joint torques and angular acceleratiors) observed while

maniputating the object provides enough information to estimate the density of the

different object parts. Once the densities of the object parts are known (via proprioceptive

data), the mapping between the visual appearance of parts (e.g., color and texture) and

material densities can then be learned using standard machine learning methods. This

allows to readily generate internal dynamical models of new objects. In this section we

show that once the 3D geometry of the object is known, the density of its parts can be

estimated from the proprioceptive information (joint torques and angular accelerations)

using a simple linear regression model.

As said before we model rigid objects as a set of n uniform-material ellipsoids,

each with visually-estimated geometry parameterized by center µi and axis lengths

ai,bi, and ci. While manipulating the object the robot’s propioceptive system provides

information about the torques applied to each joint and the resulting accelerations.

47

Let τt be the vector of joint torques observed at time t. Assuming an inverse

dynamics model of the robot is available, we can decompose τt into two components,

a component due to the dynamics of the robot itself, and a component caused by the

grasped object

τt = τr
t + τo

t (4.5)

It is well known that the articulated bodies dynamics equation (4.2) is linear with

respect to the inertial parameters of the system (see Appendix A). Thus we can write the

dynamics in the following linear form

τo
t = Ktγ (4.6)

where, Kt is a known matrix function of the robot-plus-object kinematics and joint

accelerations, and γ is a vector containing the unknown the inertial parameters of the

object.

We next show that γ is itself a linear function of the vector of object densities δ,

which we aim to estimate. The 10 inertial parameters of the object, γ = (m,mx,Vec6[I])
′,

are:

• the object’s mass, m

• the object’s center of mass times its mass, mx

• the object’s inertial matrix, I, in the object’s frame, with origin o as reference.

Vec6[I] extracts the 6 elements from the upper triangle of the symmetric matrix I.

First, we write I in a form linear on the masses mi of each component. Using the

48

parallel axis theorem, we can write the total inertia of the object as

I = ∑
i

Ii −mi[di]
2
× (4.7)

where di is the vector from the origin of the object’s frame, o, to µi, mi is the mass

of ellipsoid i, Ii is the inertia of ellipsoid i around its center of mass, and [di]× is the

skew-symmetric cross-product matrix constructed from the vector di. Since we know the

geometry of ellispoid i, and the form of the inertial matrix for ellipsoids, we can write

Ii =









1
3
(b2

i + c2
i) 0 0

0 1
3
(a2

i + c2
i) 0

0 0 1
3
(a2

i +b2
i)









mi (4.8)

= Gimi (4.9)

and

I = ∑
i

Ii −mi[di]
2
× (4.10)

= ∑
i

(Gi − [di]
2
×)mi (4.11)

Also,

x =
∑i midi

m
(4.12)

m = ∑
i

mi (4.13)

49

We want to estimate

δ =









δ1

...

δr









(4.14)

where δi is the density of material i. The color of each component indicates which of a set

of r materials makes it up. This information gives an n× r matrix A where element Ai j is

vi if object component i is made of material j, and 0 otherwise. Here, vi is the volume of

component i, which is known, and allows estimation of the density of materials rather

than the mass of the components, since









m1

...

mn









= A









δ1

...

δr









(4.15)

Combining (4.11), (4.12), and (4.15), we can write

γ = HAδ (4.16)

where

H =









1n

d1 . . .dn

Vec6[G1 − [d1]
2
×] . . .Vec6[Gn − [dn]

2
×]









(4.17)

and 1n is a row vector of n ones. Finally, we have

τo
t = KtHAδ (4.18)

50

Here the torque vector τo
t , and the Kt ,H,A matrices are known. Thus we can infer the

desired vector of object densities using simple linear regression methods. In practice, we

use Bayesian linear regression methods to update, after each trial, a Gaussian estimate

of the density of a set of materials. Here, K is a stacked matrix containing Kt for all

observed timesteps in a trial, and similarly τo is a stacked vector of all τo
t . For a prior belief

N (µδ,σδ) and our data K and τo
t , we get the parameters of the posterior distribution:

σ̄δ = (σ−1
δ

+η(KHA)′(KHA))−1

µ̄δ = σ̄δ(σ
−1
δ

µδ +η(KHA)′τo) (4.19)

This approach contains a parameter, η, for the variance of the observation noise.

In our case, we can think of the inverse of this parameter, roughly, as a learning rate.

4.3.2 Finding the Control Policy

Once we have internal models of the objects, we use optimal control methods,

applied to those models, to generate optimal policies. In this paper we generate Mini-

mum Angular Acceleration policies for articulated bodies [48]. These policies have the

advantage of generating human-like trajectories, adhering to a well-defined optimality

framework, and being computationally efficient. In order to handle the uncertainty over

the inertial parameters of grasped objects, we sample from the available distribution of

parameter values, and compute the optimal control policy given the sampled parameter.

The control policy is applied to the physical world and the results are used by the propri-

oceptive system to improve the probability distribution of inertial parameters from the

visual component.

51

4.4 Computer Simulations

We run 4 computer simulations of the proposed approach. The goal of the

simulations is to gain insights about how the approach behaves before we implement it in

a physical robot. The first simulation focuses on the Mounoud and Bower (1974) study

previously described [38]. The second simulation describes an additional experiment

suggested by the approach and specifies the predictions made by the model. The third

and fourth simulations show that, under the proposed approach, visual affordances can

generalize to novel objects and tasks.

For the simulations, we use a 7 degree-of-freedom model of the human arm. The

first joint (shoulder) has 3 degrees of freedom, the second joint (elbow) has 2 degrees

of freedom and the third joint (wrist) has 2 degrees of freedom. The links are simulated

as ellipsoids with the density of ice. Gravitational forces use the Earth surface standard.

The simulator is implemented in Matlab using the Gaussian mechanics approach to

articulated bodies [49]. The equations of motion are integrated using a the Euler method.

Our implementation was validated using the Matlab Robotics Toolbox [50].

4.4.1 Simulation I: Modeling Mounoud and Bower’s 1974 study

[38] showed that infants older than 9 months use visual information to adapt

their motor behavior towards novel objects. Here we simulate their experiment using the

following procedure: On each trial, an ellipsoidal object of a given length and material is

presented to the robot arm. The robot reaches out horizontally and is given the object

(the object is attached to the hand). The desired behavior is to hold the object fixed at the

same height where it was given.

The first 4 objects, which we call the training objects, are all of the same density,

but varied in length. The last object, which we call the decoy, has a much lower density

52

but is length-matched to one of the training objects. The training objects are presented in

order from shortest to longest. The color and axis lengths of the ellipsoids are used as

visual features. There are well known approaches from the computer vision literature to

estimate geometric properties of 3D ellipsoidal objects from 2D projections, e.g. [47].

Here, we assume that these or other algorithms were used to estimate these 3D geometric

properties.

On each trial, the proprioceptive system uses the observed torques and accelera-

tions measured while holding the object to estimate the inertial properties of the object.

This estimate is used to update the probability distribution of object density given its

observed color. On the next trial, a new object is presented. The most probable density

given the observed visual features is used to estimate the object’s inertial parameters,

λ. This estimate is used by the controller to generate a policy to keep this new object

as level as possible. Figure 4.3 shows the magnitude of the drop in arm height for each

of the first 4 objects. As observed in the Mounoud and Bower experiment, we found

a decrease in the magnitude of arm drop between trials. This is due to the fact that on

each trial, the model improves its estimates of the objects’ weights based on the observed

visual properties and the inferred density (see Figure 4.3).

Figure 4.4 shows the height of the held object through time. As observed in the

[38] experiment, by trial 4 the object is held near the target level, but the arm lifts the

decoy object much higher than the target level. This result confirms that the computational

approach outlined here can reproduce the results of the Mounoud and Bower experiment.

4.4.2 Simulation II: Center of Mass

The Monoud and Bower experiment was designed to test visual perception of

one inertial property of objects (their weight). Here, we explore a generalization of their

original experiment designed to test visual perception of a different inertial property

53

0 1 2 3 4
1500

2000

2500

3000

3500

4000

4500

Trial

D
en

si
ty

 (
k
g
/m

3
)

1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

Trial

M
ax

 h
an

d
 d

is
p
la

ce
m

en
t

(m
)

Figure 4.3: Learning to estimate material density. (Left) Estimated distribution,

N (µ,σ), of material density after each trial. Solid line shows µ. Dashed lines show ±σ.

Trial 0 shows the initial belief. Horizontal line shows true density. (Right) Magnitude

of arm drop for each trial. The drop is reduced from trial to trial, even though the mass

of the objects increases.

0 1 2 3
−0.05

0

0.05

0.1

0.15

time (s)

V
er

ti
ca

l
h

an
d

 p
o

si
ti

o
n

 (
m

)

Trial 4

Decoy

Figure 4.4: Response to decoy object. The vertical position of the object over 3 seconds

for trial 4 and the decoy object. The decoy object, which is much less dense than its

appearance suggests, is mistakenly lifted above the desired height, which is at 0m.

54

Figure 4.5: Objects used for Simulation II. The three objects used for Simulation II.

Object center of mass is indicated by an X. Object 3 is the decoy object: it has the

appearance of object 1, but the inertial properties of object 2. All objects have the same

mass.

(center of mass). We propose a novel experiment and run computer simulations to specify

the predictions made by our model. For this experiment, we used 3 different objects, each

of which is made of 3 aligned ellipsoidal components (see Figure 4.5). The 3 objects

weigh the same, however they have different centers of mass. The first object has two

components made of wood (low density) near the hand, and one component made of

steel (high density) farthest from the hand. The second object is the reverse, i.e., the steel

is near the hand, and the wood is farther from the hand. The third object, the decoy in

this experiment, has the appearance of the first object, but the density distribution of the

second. Because its density and appearance are inconsistent with the learned affordance,

we expect behavior similar to the decoy response from the first experiment.

As in Simulation I, we present each object to the robot when the arm is horizontal,

and observe the drop or lift relative to the initial height. The training objects, objects 1

and 2, are presented 3 times each, and the decoy object is presented once. The density

estimate of each material is updated after each trial. Figure 4.6 shows the estimates of

the material densities on a trial by trial basis.

Figure 4.7 shows how the robot arm behaves in response to the decoy objects.

The results are similar to Simulation I, where an exaggerated lift of the decoy object is

observed.

55

0 1 2 3 4 5 6
0

2000

4000

6000

8000

Trial

D
en

si
ty

 (
k
g
/m

3
)

1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

Object

M
ax

 h
an

d
 d

is
p

la
ce

m
en

t
(m

)

Figure 4.6: Estimates of material density. (Left) Estimates of each material’s density

after each trial. Trial 0 shows the initial belief. Horizontal lines shows true density.

Although neither material is given to the robot in isolation, it is able to estimate the

density of both materials. (Right) Magnitude of arm drop for each trial.

0 1 2 3
−0.01

0

0.01

0.02

0.03

time (s)

V
er

ti
ca

l
h

an
d

 p
o

si
ti

o
n

 (
m

)

Trial 6

Decoy

Figure 4.7: Response to decoy object. The vertical position of the object over 3 seconds

for trial 6 and the decoy object. The decoy object is mistakenly lifted above the desired

height, which is at 0m.

56

Figure 4.8: The novel object used for simulations III and IV. The object is made of the

same materials as the object from simulation II, but in a different shape.

The exaggerated response to the decoy, although smaller than when the decoy’s

weight is overestimated as in Simulation I, is still observed even though the training and

decoy objects have the same weight. We also see that dynamic properties of a compound

object can be estimated from the visual features of the object, and used to plan behavior.

The inertial properties of objects can give the robot important information about how

an object will behave in particular situations. The final two simulations explore how

this information can help the robot generalize its experience to novel tasks with a novel

object.

4.4.3 Simulation III: Choosing a Grip for Hammering

In this simulation, the robot’s goal is to efficiently hit a nail with sufficient force

using the object in Figure 4.8, which is novel to the robot. The robot never interacts

with this object directly, but rather uses its experience with similar objects to predict how

to use the novel object. This is analogous to the human intuition about how to use the

objects in Figure 4.1 despite never interacting with them. Specifically, the robot chooses

how to use the object by choosing between grasp locations, each of which results in a

different hammering behavior.

The robot makes choices between grasps based on running its estimate of the

object’s inertial properties through its MPC component. Although the framework allows

comparison of multiple grasp locations, we focus on comparing two: one grasp, gs, holds

57

Figure 4.9: Illustration of the hammering behavior. The top panel shows the start point.

The bottom panel shows the hammer striking the simulated nail.

58

0 10 20 30
0.5

0.6

0.7

0.8

0.9

1

Trial

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

G
ra

sp

high learning rate

low learning rate

Figure 4.10: Choosing the correct grasp for hammering. The probability of choosing

the correct grasp for hammering with a novel test object efficiently as a function of

amount of experience with different objects. Shown for both a low and a high learning

rate.

the hammer by the steel end, and the other, gw, holds the wooden end.

A trial follows these steps:

1. The robot is given a training object (not the decoy) from Figure 4.5 and must hold

it as level as possible.

2. The robot’s belief about material density is updated.

3. The robot compares grasps for hammering with the novel object (Figure 4.8). The

robot does the comparison using internal model simulations. It doews not perform

the hammering task or otherwise interact physically with this novel object.

The MPC component of the proposed framework generates hammering control policies

(Figure 4.9) for each grasp using the inertial model of the object generated from the

estimated material density. These control policies give rewards for each grasp, which

we will call rw and rs for grasps gw and gs respectively. These rewards are inversely

proportional to the squared torque required to generate the desired force. For this task,

the optimal choice is gw, which is to hold the wooden end of the object. Gravity acting

on the higher-density, steel end of the hammer generates more downward torque when

59

that steel end is distant from the hand than when it is more proximal. When gs is selected,

the robot must itself generate the additional torques that gravity provides in gw, which

costs energy. Because the task is to hit the nail with high force, choosing gw results in a

net energy savings over gs.

We model the robot choice response using a softmax function, popular in the

response choice literature [51]. Figure 4.10 shows the probability of a correct choice, p,

as a function of trial number for different values of the learning rate η−1 from (4.19).

The probability p is calculated as the softmax function applied to the rewards:

p =
exp(αrw)

exp(αrw)+ exp(αrs)
(4.20)

where α is a constant that accounts for the scale of the rewards. This figure highlights

that sufficient information is contained in the robot’s interactions with the training objects

to learn the correct behavior on a novel object in a single trial, but that the framework

can also arrive at the correct answer when it learns more slowly.

4.4.4 Simulation IV: Choosing a Grip for Tapping

In this final simulation we require the robot to use a novel object (Figure 4.8) for

a novel task. Rather than hammering efficiently by generating a large force at a small

cost, the goal is to tap a point with the object by producing a small force at a small cost.

This simulation compares the same two grasps as Simulation III, grasping the steel end

gs, and grasping the wooden end gw. Gravity acting on the higher-density, steel end of the

hammer again generates more downward torque when that steel end is distant from the

hand than when it is more proximal. But, in this simulation, the goal is to tap the point

with a small force. So, the additional torques from gravity when grasping the wooden

end must be counteracted by the robot, which consumes energy. The optimal choice is gs.

60

A trial follows the same steps as in Simulation III:

1. The robot is given a training object (not the decoy) from Figure 4.5 and must hold

it as level as possible.

2. The robot’s belief about material density is updated.

3. The robot compares grasps for tapping with the novel object (Figure 4.8). The

robot does not perform the tapping task or otherwise interact with this novel object.

Figure 4.11 shows the probability of choosing the correct grasp as a function of

number of trials for different values of the learning rate η−1 from (4.19). Note that the

initial belief of material density was chosen to give a 0.5 probability in Simulation III,

and the same initial belief is used here. Because the task is different, the initial belief

results in a different probability of being correct. But again, we see that the robot can

learn to predict which grasp is best as soon as after one trial with the training objects.

Together, simulations III and IV highlight the ability of the framework to use

prior experience with similar objects to generalize competently to novel objects, and to

using those objects for novel tasks. This ability comes from the underlying estimation of

the inertial parameters of the novel objects, which are used as a compact representation

of how the object will react to forces that the robot can apply.

4.4.5 Sensitivity Analysis

Since our goal is to implement this framework in a physical robot, we would

like to estimate how sensitive the framework is to noise. Here, we examine the effect of

adding zero-mean Gaussian noise to three signals: the joint accelerations and torques

from the proprioceptive system, and the estimated geometry of the object components.

We are interested in how the results from the simulations hold up subject to

increasing levels of noise. For this analysis, we focus on simulation I. Specifically, we

61

0 10 20 30
0.5

0.6

0.7

0.8

0.9

1

Trial

P
ro

b
ab

il
it

y
 o

f
C

o
rr

ec
t

G
ra

sp

high learning rate

low learning rate

Figure 4.11: Choosing the correct grasp for tapping. The probability of choosing the

correct grasp for tapping with a novel test object efficiently as a function of amount of

experience with different objects. Shown for both a low and a high learning rate.

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Noise (proportion of signal power)

L
ea

rn
in

g
 I

n
d

ex

Acceleration

Torque

Visual Features

Figure 4.12: Learning effect sensitivity analysis. An index of whether the behavioral

result is reproduced as a function of the amount of noise in the joint accelerations,

torques, and object geometry. The index is the sum of displacement reduction between

non-decoy trials, and the displacement increase for the decoy trial, scaled to between 0

(no evidence of learning) and 1 (evidence equal to or greater than in the noiseless case).

62

repeat the simulation with different levels of noise, and examine whether the indicator of

learning is present: the displacement of the arm is reduced from trial to trial. Also, we

see whether the displacement is again increased when the decoy object is presented.

The acceleration signal is important for the proprioceptive system that generates

estimates of the density of a held object because it is used to compute Kt in (4.6). This

matrix depends non-linearly on the accelerations. Figure 4.12 shows the effect of different

levels of acceleration noise on the evidence of learning. The Learning Index plotted in

Figure 4.12 is calculated by adding the reduction in displacement from the consistent

objects to the increase in displacement from the decoy object. This index is scaled

between 0 and 1, where 0 means no evidence for learning is observed, and 1 means

evidence equal to or greater than the noiseless case is observed. This index increases

when both the consistent objects are learned (reducing the displacement between trials),

and when the decoy object is mistakenly lifted (increasing the displacement. When the

index is 0, the learning is not observed. The figure shows that, for the acceleration signal

at low levels of noise, the effect observed in simulation I is preserved. As the noise

increases, however, the effect decreases. When the noise power is roughly half of the

acceleration signal power, the effect disappears.

When noise is added to the torques and the visual estimates of the object’s axes

lengths, we observe a lower impact on the effect of learning. Figure 4.12 shows that for

all noise levels investigated, the effect was still present.

4.5 Conclusion

We proposed a computational framework for visual perception of inertial affor-

dances. The approach combines three modules: (1) a visual system that predicts inertial

properties from visual information. (2) a proprioceptive system that uses observed forces

63

and accelerations to teach the visual system. (3) A Model Predictive Controller that uses

internal models to generate control policies.

The proposed approach is designed to reproduce humans’ ability to use visual

information to plan how to use novel objects in novel ways. Our approach is based on the

use of internal models of our own bodies and of external tools. Model-based approaches

have become popular for solving complex tasks in humanoid robots [52]. In addition,

there is mounting evidence that internal models are part of the machinery for motor

control used by the brain [45].

Our simulations show that the proposed approach can replicate behaviors observed

in human experiments, and make predictions for new experiments. The approach can

also be implemented in robots to use visually perceived affordances in a manner similar

to the way humans do.

Acknowledgments

This research was supported by NSF IIS 0968573 and NSF IIS 0808767.

Chapter 5, in part, is a reprint of the material as it was presented to the Affor-

dances in Vision for Cognitive Robotics Workshop, Talbott, W and Movellan J, 2014.

Chapter 4 is currently being prepared for submission for publication of the material. The

dissertation/thesis author was the primary investigator and author of this paper.

Chapter 5

Visual Perception of Inertial

Affordances: Physical Robot

In the previous chapter we proposed a computational framework for learning to

perceive the inertial properties of objects. We used computer models to illustrate how the

approach explains the Mounoud and Bower [38] weight conservation experiment and

predicts results for new possible experiments. These simulations were a first step toward

reproducing the experiment on a robot.

In this chapter we implement the proposed approach in a complex humanoid

robot named Diego. To do so, we have to modify some aspects of the computational

model.

Table 5.1 describes the major differences between the computer simulations in the

previous chapter and the physical robot implementation described in this chapter. There

are three differences, but they ultimately derive from one key problem: The parametric

physics model (PPM) used in the simulations does not match well enough with the data

collected from the actual robot. Although the sensitivity analysis on the simulations

suggested the approach was resistant to random, unsystematic noise, we find that the data

64

65

collected from the robot was systematically different from what was predicted from the

physics model. This is likely due to physical phenomena that are difficult to capture with

a parametric physics model, like complex friction forces, and forces caused by cables

and other artifacts that are part of the robot.

An inverse dynamics model is a method for estimating the joint torques τ that

cause desired joint accelerations, θ̈d . For a given joint position θ and joint velocity θ̇. In

the PPM, the torques can be derived as follows:

τ = M(θ)θ̈+N(θ, θ̇) (5.1)

where M(θ) is the inertial matrix, and N(θ, θ̇) are the gravitational, friction, and Coriolis

forces. A PPM can learn estimates for the functions M and N from data, and can therefore

be used to compute the torques required to produce a desired acceleration. We collected

a dataset D =
{

θt , θ̇t , θ̈t ,τt

}
from the physical robot, where t indexes the sample time.

Then, we used the PPM to estimate τ̂t , given θt , θ̇t , and θ̈t . The correlation between

model predictions and observed torques was quite high (r=0.91), but the model is not

able to control the robot accurately.

Deep neural networks (DNN) are a machine learning framework for learning

arbitrary functions [53]. They consist of layers of simple models of neurons, that take

weighted inputs from previous layers, and produce output for the next layer by applying

a non-linear activation function to the sum of the weighted inputs. Their components

are simple, and they can be trained by stochastic gradient descent, but they have a large

representational capacity. Recently, DNN approaches have proven beneficial for various

problems (for a review, see [54]). Here, we explore the application of DNN to learning

and inverse dynamics model directly from recorded data. When we use a DNN approach

instead of PPM, we obtain a higher correlation (r=0.97) between the DNN estimate and

66

Table 5.1: Differences between the simulated and robotic approaches

Simulation Robot

Dynamics Model Analytical physics Deep neural network (DNN)

Object learning Estimate material density Learn new DNN dynamics model

Object control

modification

Geometry estimated from vision

plus estimated material density

gives analytical physics model

Visual arbitrator network weights

output of multiple DNN dynamics

models

the recorded data that is good enough to control the physical robot accurately, and to

reproduce the Mounoud and Bower experiment introduced in the previous chapter.

This chapter is organized as follows. In Section 5.1, we introduce the robot,

Diego, that the experiments are conducted on. Next, we introduce the methods we

use to control Diego to follow trajectories: PID control, computed torque based on

a parametric physics model, and DNN-based Computed Torque. Finally, we explain

the Visual Computed Torque controller, which is how the framework accommodates

controlling different objects based on their visual features. In Section 5.3 we present the

experiments we conducted to examine the DNN model, and to replicate the Mounoud

and Bower experiment from the previous chapter. Section 5.4 discusses the results of the

experiments.

5.1 Diego

Diego, in Figure 5.1, is a pneumatic humanoid robot that has 38 potentiometers for

measuring joint angles, and 88 controllable valves for actuating the pneumatic cylinders.

As described in [55], pneumatic actuators are an attractive choice because of their high

force-to-friction ratio, their low cost, their compliance, and their similarity to muscle in

terms of their dynamic time constants. However, these advantages come at the cost of

increased control complexity. The complexity arises mainly from two facts:

67

1. Stiff actuators, like the ones found in many current robots, allow independent

control of each joint, at the cost of increased energy required to overcome the

stiffness and move the joints. In contrast, the human body has joints that are

compliant (non-stiff), and pneumatic actuators are compliant as well. Compliant

actuators mechanically couple the different joints. In other words, moving one

limb creates significant forces in other limbs. Control signals sent to one joint must

therefore take into account the movement and forces across the entire body.

2. Pneumatic actuators behave like non-linear series-elastic actuators. In practice,

this means that rather than directly controlling the forces that apply to the differ-

ent joints, like in standard robots, we effectively control non-linear springs that

indirectly control the joints.

The following section describes how, in the face of the difficulties, we control

Diego’s joints to follow trajectories. It first introduces some characteristics of the robot.

Then, it discusses the two different modeling approaches outlined in Table 5.1.

Each of Diego’s joints is instrumented with 3 sensors: a potentiometer for mea-

suring the joint angle, and two pressure sensors for measuring the pressure in each of the

chambers of the pneumatic cylinder that actuates the joint. The joint angle θ j,t of joint j at

time t is related to the potentiometer reading q j,t by the transformation q j,t = γ jθ j,t +β j

where γ j and β j are calibration parameters. The 2 pressure sensors give readings pe
j,t

and p
f
j,t in Volts, where pe

j,t is the pressure reading from the extensor chamber (Chamber

1 in Figure 5.2) that extends the cylinder’s rod, and p
f
j,t is the reading from the flexion

chamber (Chamber 2) that retracts the rod. A pressure reading pc
j,t in chamber c (in

Volts), is related to the measured pressure (in Pascals) πc
j,t = νc

jπ
c
j,t +ηc

j where νc
j and ηc

j

are calibration parameters.

The linear extension of the rod of the pneumatic actuator drives the joints of the

robot. Each chamber of the actuator is connected to two constant pressure sources, atmo-

68

Figure 5.1: Diego, the pneumatic humanoid robot

sphere and compressor pressure, by a valve that determines the areas of the connection

ports to each source. The voltage accepted by each valve is between 0 and 10V, and this

signal controls the areas of the two ports (one to compressor and one to atmosphere).

The area of the ports of each chamber is a function of the voltage that, in the ideal case,

looks like Figure 5.3. In this figure, we see that with a control signal of 0V, the chamber

is open maximally to the atmosphere source, and minimally to the compressor source.

At 5V, both ports are minimally open. At 10V, the port to the compressor is maximally

open, and the port to the atmosphere remains minimally open.

For one model of a cylinder, the force Fj,t generated by actuator j is related to

the difference in pressures between the two chambers as follows, where the time index

on the force, pressure, and sensor reading has been dropped for brevity:

Fj = a j(π
e
j −π

f
j)

(5.2)

69

Figure 5.2: Cylinder Model

where a j is the area of the bore. The torque τ j generated around the joint is related to

Fj by the moment arm J j j(θ j) so that τ j = J j j(θ j)Fj. The moment arm is also known

as the Jacobian of the joint angle with respect to the rod extension. Note that the

torque produced at a given joint angle changes only if the difference of pressures in the

chamber change. So, we control the torque around each joint by controlling the ratio of

compressor/atmosphere port areas at each valve.

Each joint j has two associated control signals ue
j,t and u

f
j,t , one for each valve

controlling the opposing chambers in the cylinder. These voltage signals range from 0 to

10 Volts. To reduce the degrees of freedom the controller must deal with, we use a single

control signal u j,t , which we then translate to the two voltages as

ue
j,t = 5+u j,t

u
f
j,t = 5−u j,t (5.3)

As Figure 5.4 shows, if the chambers are at equilibrium pressure, and the control signal

ut = 0, the ports to both sources in each chamber will be almost closed (except for a

70

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Volts

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
m

a
x
im

u
m

 o
p
e
n
 p

o
rt

 a
re

a

Figure 5.3: Port area as a function of input voltage. Shows the proportion each port is

open to a single chamber as a function of voltage, where 1 is fully open, and 0 is fully

closed. The solid green line is the port to the atmospheric pressure, and the dashed blue

line is the port to the compressor.

71

6 4 2 0 2 4 6

Voltage

100

50

0

50

100

P
re

ss
u
re

 D
if
fe

re
n
ce

6 4 2 0 2 4 6
10
20
30
40
50
60
70
80
90

100

P
re

ss
u
re

Chamber 1
Chamber 2

Figure 5.4: Equilibrium pressure as a function of control signal. The x-axis of both

the top and bottom graph is the control signal u j,t . (Top) Equilibrium pressure in

each chamber of the cylinder using independent commands defined in (5.3). (Bottom)

Equilibrium pressure difference between the two chambers as a function of u j,t

small leakage), which means the pressures will stay near their current value. As ut

is raised higher than 0, the extension chamber will have its ports open more to the

compressor than atmosphere, and so will increase in equilibrium pressure. Additionally,

the flexion chamber will have its ports more open to atmosphere than compressor, and

so will decrease in equilibrium pressure. The resulting pressure difference will create

an extension force. The opposite, a flexion force, will be generated when ut is lowered

below 0.

Next, we describe the methods used to control Diego’s joints to follow a desired

trajectory [55]. A schematic of the method is shown in Figure 5.5. The first controller

specifies a desired pressure difference based on potentiometer readings. This desired

pressure difference is then given to another controller that issues the commands to the

72

Figure 5.5: Schematic of the controller of Diego’s joints

valves to change the pressures. The controllers used for this approach are described in

the following sections.

5.2 Controlling Diego: Trajectory Tracking

A trajectory is a sequence of potentiometer readings qd
j,t , in Volts, indexed by

the time t and joint j. The goal of trajectory tracking is to send motor commands u j,t to

a robot to generate a sequence of potentiometer readings q j,t that match, as closely as

possible, the desired readings qd
j,t . Since the potentiometer readings are linearly related

to the angle of the joints, following a trajectory of potentiometer readings corresponds to

a trajectory of joint angles.

Figure 5.5 shows the controller we use on Diego’s joints. The controller takes a

desired trajectory as input, and outputs a sequence of voltage signals to the pneumatic

actuator valves, using a pair of controllers. The first is a proportional-integral-derivative

(PID) controller that takes the desired potentiometer reading and the observed potentiome-

ter reading as input, and outputs a desired pressure difference to the second controller.

The second controller is a proportional controller that takes the output of the first con-

troller and the measured difference of pressure sensors as input, and outputs voltage

signal u j,t to the valves. Below we describe these controllers in more detail. In doing so,

for notational simplicity, we drop the joint index j, noting that the description applies to

each joint.

73

5.2.1 Introduction to PID control

One of the most popular methods for controlling a system is proportional control.

Take the example of controlling the position of one of Diego’s joints. Define the error

εt = qd
t −qt between the desired and measured potentiometer readings. When applied to

Diego, ut is a voltage sent to the actuator valves, whose relationship to the equilibrium

force generated by the actuator is shown in Figure 5.4. A proportional (P) controller,

defines ut as

ut = kpεt (5.4)

where kp is a tunable parameter known as the proportional gain. Note this control law

generates forces such that forces will be generated that reduce the error. If qt < qd
t ,

ut will increase the pressure difference between the chambers. The resulting positive

force will increase the potentiometer reading. One way to think of a P controller is as a

spring attached between the current measurement and the desired measurement. If the

spring constant kp is too large, the spring will produce large forces in response to small

disturbances, and lead to oscillation (or instability). If the spring constant is small, the

generated forces may be insufficient to reduce the error and track the desired trajectory.

Proportional controllers are simple, but subject to oscillations and steady-state

errors. Steady-state error can be illustrated with a simple example. Consider a system that

attempts to maintain the vertical position of a mass at position xd with an actuator that

uses proportional control to apply an upward force f = kpε (where the error ε = (xd −x)).

Gravity generates a downward force g on the mass. In the steady state, when the mass is

not moving, both forces acting on the mass will be equal. Since we know f = kpε= g> 0,

we see that the steady-state error must be non-zero in this system. We also see that one

way to reduce the steady state error is to increase kp. However, as kp increases, the forces

74

generated in response to small disturbances also increases, which can lead to stiffness

and instability.

One way to mitigate the oscillatory and steady-state error effects is to use a

proportional-integral-derivative (PID) controller that defines the control signal as

ut = kpεt + kd ε̇t + ki

∫ t

0
εsds (5.5)

where kd and ki are tunable parameters. From before, we think of kp as a spring attached

to the desired measurement. The kd parameter can be thought of as a viscous friction

acting on that spring, which can dampen oscillations. The ki parameter helps offset

steady-state errors. As the error integral increases, so does the amount of force applied to

the system from the integral term.

We next describe the two-level controller used to control Diego (schematic in

Figure 5.5).

Position Controller

Target trajectories are specified in potentiometer readings qd
t . The position

controller we use in Diego (Figure 5.5) takes these desired readings as input, and generates

an error between the desired and the measured potentiometer voltage: εt = qd
t −qt . We

let d̂t be the output of a PID controller that operates on the potentiometer error signal:

d̂t = kpεt + kd ε̇t + ki

∫ t

0
εsds (5.6)

The output of this controller, d̂t , is a desired pressure difference between the two

chambers of the actuator. Recall that the difference in pressure specifies the torque at the

joint. Thus, the controller attempts to generate forces that reduce the error. However, the

desired pressure difference must be translated into a voltage command to the valves, so

75

we use a separate controller to do so.

Pressure Difference Controller

The position controller specifies the difference in pressure that the pneumatic

actuator should achieve. We use d̂t as the desired pressure difference, and set the error

signal ψt = d̂t − dt where dt is the observed difference in pressure readings (in Volts)

between the two chambers of the actuator, dt = pe
t − p

f
t .

For the pressure difference controller, we set ut = kuψt . The full controller (from

Figure 5.5) for the extensor chamber of an actuator can be written:

ue
t = 5+ut

= 5+ kuψt

= 5+ ku(d̂t −dt)

= 5+ ku(kpεt + kd ε̇t + ki

∫ t

0
εsds−dt) (5.7)

and similarly for the opposing chamber voltage u
f
t .

u
f
t = 5−ut

= 5− ku(kpεt + kd ε̇t + ki

∫ t

0
εsds−dt) (5.8)

5.2.2 Computed Torque Control

PID control treats gravitational, inertial and friction forces as error. As a conse-

quence it typically requires the use of very large values of the spring parameter kp, which

in turns results in high stiffness and high energy consumption. Consider for example an

arm held out parallel to the ground, holding a weight. Gravity produces a large torque

that needs to be compensated by using large gain values in the controller. When the

76

arm is lowered and perpendicular to the ground, gravity produces no torque on the joint,

however the large gain needed in the controller will make the joint very stiff. Stiffness

can in turn result in large energy consumption as well as potentially dangerous behavior

when unexpected disturbances occur. The integral term can help reduce the error, but can

also lead to dangerous behavior. If the cause of the steady-state error is removed, like

when the arm is lowered, the integral term will still generate forces to compensate for

the now-absent forces. One potential solution is to compensate for known disturbances,

like gravity and friction, in tandem with a PID controller. This approach is generally

known as computed torque (CT) [56]. For our purposes, we will use inverse dynamics

compensation control, henceforward referred to as simply CT control.

CT control uses an inverse dynamics model to map from the current joint angle

vector θ, velocity θ̇, and desired acceleration θ̈d to a torque τc
t that should be applied to

compensate for external forces and achieve the desired acceleration. We consider two

such functions, one that is derived from the PPM, and one that is learned directly from

recorded data using a DNN. The physics approach was used in the previous chapter, for

the simulations, and the DNN approach is used for the robot implementation.

Computed torque with parameterized physics models

The PPM approach is based on the robot dynamics explained in Appendix A. It

is presented here to contrast it with the DNN approach. The articulated body dynamics

equation can be written.

τt = M(θt)θ̈t +N(θ, θ̇) (5.9)

where τt is the vector of torques due to the robot’s actuators at time t, M(θt) is the inertial

matrix, and N(θ, θ̇) are the gravitational, friction, and Coriolis forces.

77

The type of CT control examined here uses the inverse dynamics function to

define the computed torque f (θ, θ̇, θ̈d) = τc
t using (5.9) as follows [57]:

τc
t = M(θt)θ̈

d
t +N(θ, θ̇) (5.10)

Given τc
t , the next step is to identify the pressure readings p̂e

t and p̂
f
t , in Volts, that

produce the torque desired for each joint. There are an infinite number of solutions, so we

introduce a constraint by choosing a constant sum of the pressure readings s = p̂e
t + p̂

f
t .

From (5.2), we relate pressure readings and torques

τc
j,t = J j j(θ j)

(

a(pe
t − p

f
t)
)

(5.11)

where J j j(θ) is the moment arm of joint j. Since the moment arm and the area a are

known, we get the desired pressure reading difference dc = p̂e − p̂ f that can be added to

the output of the positional PID controller, to specify

d̂t = dc + kpε(t)+ ki

∫ t

0
ε(s)ds+ kd

d

dt
ε (5.12)

This controller replaces the PID controller in (5.6), and sends d̂t to the pressure difference

P controller. This approach is also called the PIDF approach in [55].

The parameters of the PPM can be identified from recorded observations of joint

torques, positions, velocities, and accelerations. Appendix A describes how the inverse

dynamics equation is a linear function of the inertial parameters, and describes how these

parameters can be identified.

78

DNN Computed Torque

Using the PPM requires explicitly modeling friction and other phenomena like

joint limits and self-contact forces, which is notoriously difficult. In simulated experi-

ments, the physical model matches the simulated physics exactly, but this is not the case

in the real world. Rather than trying to augment the physical model to better represent

the behavior of the real world, another approach is to use a function approximator to

learn a direct mapping from the joint angle measurements to the pressure difference

measurements that produce the observed acceleration. Here we use a deep neural network.

Using the Torch framework [58], we construct a DNN similar to the one depicted in

Figure 5.6.

The inputs to the model at time t are the potentiometer readings, qt−b:t+ f in

a window from time t − b to time t + f , where b and f are tunable parameters, and

the sampling rate is 100Hz. We tried multiple values for b and f , and found the best

performance for b = f = 2. The DNN is trained to approximate the inverse dynamics,

which is a function mapping the joint angles, joint angle velocities, and accelerations

to the torques that cause the accelerations. The potentiometers at the joints of Diego

can only measure the position of the joint. Typically, these readings are converted into

velocities and accelerations by finite differencing. This process introduces noise, and

so temporally smoothed versions of the readings are used. Here, we do away with this

complexity. Since differentiation is a linear operator, we allow the network to learn a

filter over the consecutive sensor readings themselves. Note that the input here is the

reading from the potentiometer at each joint, q, rather than the joint angle, θ. In the PPM

approach, the known calibration parameters γ and β convert the voltage from the sensors

to joint angles as θ = q−β
γ , but the neural network uses the sensor readings directly.

The target output of the neural network at time t is a 38-dimensional vector p,

where each entry p j = pe
j − p

f
j is the difference in pressure sensor readings, in Volts,

79

Table 5.2: Size of layers used for inverse model neural network. The first three layers

are replicated for each of the 38 joints. Values are those found to have best validation

error.

Layer 1 2 3 4 5 6 7

#neurons 5 10 5 190 240 70 38

Figure 5.6: Diagram of the network used to estimate the inverse dynamics compensation.

Exact number of layers and nodes is shown in Table 5.2

between the two chambers (extension pe
j, and flexion p

f
j) in the pneumatic actuator for

joint j. Figure 5.6 shows the architecture of the net used to map from potentiometer

sensor readings to observed pressure sensor differences. First, the potentiometer readings

are separated by joint, and processed through 3 fully-connected layers of neurons with

hyperbolic tangent (tanh) activation functions. Then, the top layers of these joint-

separated branches are combined into another set of fully-connected layers that take

information from all joints into account. Different architectures, activation functions, and

sizes of layers were examined, and Table 5.2 shows the size of the layers for the network

that was found to have the best validation error.

80

Once the neural network is trained, its predicted p vector are used to generate

a desired pressure difference control signal d̂ j,t to send to the pressure difference P

controller of joint j:

d̂ j,t = p j + kpε j(t)+ ki

∫ t

0
ε j(s)ds+ kd

d

dt
ε j (5.13)

Visual Deep Learning Computed Torque Control (VCT)

As Table 5.1 indicates, the approach from the previous chapter uses visual features

to estimate the analytical physics model of the robot+object system, and uses this model

to generate torques to match the desired acceleration. But, as previously mentioned, the

PPM approach is not accurate enough, so we must include visual features into the deep

learning approach. To do so, we change the architecture of the deep network to that

reflected in Figure 5.7.

In this architecture, there are n DNN CT expert networks. Each of these networks

is trained with data recorded while Diego held a different object. These experts each

output their estimate for the target p vector. For expert e this output is p̂e. There is also

a gating network, whose n-dimensional output, w weights the output of each expert to

give the final estimate p̂ = ∑e we p̂e. The input to the gating network, v, is a visual signal.

This could be a convolutional neural network that takes pixels as input. Here, we use

features derived from the RGBD images taken from a depth camera. Using the Point

Cloud Library [59], we extract the length and radius of the red cylindrical object Diego

interacts with, and use these as the visual features.

We will use the acronym VDNN when referring to VCT implemented with the

DNN inverse models and arbitrator network, and VPPM when referring to VCT with the

PPM inverse model.

81

Figure 5.7: Diagram of the network used for visual computed torque.

5.2.3 Controller Tuning

To allow Diego to track a target trajectory efficiently, the gains kp, ki, and kd for

both the PID alone and the VDNN controller must be set. Since these parameters can

dramatically change the performance of the controller, we automate the process of setting

the parameters to facilitate comparison between the two.

To find gains that follow the desired trajectory described above, we perform a

grid search to minimize the tracking error:

ρ = min
s

αs+
1

T − s

T

∑
t=s

[

qt −qd
t−s

]2

(5.14)

where qt is the potentiometer reading, in Volts, at time t in the observed trajectory, qd
t is

the desired joint angle at time t, and α is a penalty for delay, which we set to 0.01 for our

experiments. We include the delay penalty because we observe that when required to

follow the trajectory exactly, the robot produces juddering movements. Instead, we want

82

Figure 5.8: The set of rods used in the experiment. The rods of the same length are a

rod of the same density as the other lengths, and a decoy rod that has lower density. The

rods are coated with a red plastic to help Diego grasp them more securely.

a controller that gives a good, smooth fit to the trajectory even if there is a small offset in

time.

Each value on the grid is repeated once with each of the first three objects, but

never with the decoy object, or the largest object. The trajectory was the same as we use

for the Mounoud and Bower experiment: the arm raises, grabs an object, and holds steady.

The grid search examines each joint in isolation, and for each joint the grids are adapted

by hand until the results show a minimum value that was not at the border of the grid.

The best parameter values for each joint are combined to give the final, whole-arm PID

gains. Once these gains are found, we fix them for conducting the experiments described

in Section 5.3. The parameters are the same for both the PID and the VDNN controllers.

5.2.4 Visual Features

To implement a VCT controller, we need to confirm that Diego can successfully

distinguish the objects used in the experiments based on visual features. These objects

are shown in Figure 5.8.

Using a Microsoft Kinect depth camera and the Point Cloud Library [59], each

83

Table 5.3: Object radius and length mean (standard deviation) in cm

Estimated Radius Estimated Length Actual Radius Actual Length

Object 1 2.61 (0.37) 14.1 (1.3) 2.5 13.5

Object 2 2.59 (0.40) 19.1 (0.9) 2.5 18.5

Object 3 2.62 (0.31) 23.8 (2.2) 2.5 23

Decoy 2.58 (0.34) 23.2 (1.4) 2.5 23

Object 4 2.54 (0.48) 27.5 (1.8) 2.5 27

Figure 5.9: Example RGBD image for extracting rod radius and length. Pixels colored

in green represent the estimate of which points belong to the object

rod’s radius and length is estimated. Figure 5.9 shows an example frame gathered from

the depth camera. Pixels colored in bright green represent the estimate of which points

belong to the object. The radius and length are estimated as the mean of the estimates

from 60 such frames. For all objects, these estimates were within 1cm of the actual

values as measured by hand. Table 5.3 shows the mean and standard deviation for each

of the objects’ radius and length estimates, as well as the actual measurements.

84

5.3 Experiments

5.3.1 Experiment 1: Computed torque tracking performance

First, we compare the performance of PID control alone and the DNN CT ap-

proach on a trajectory tracking task. We examine the tracking error of each on a recorded

trajectory while Diego’s left hand grasped the largest object in Figure 5.8. Because the

PID controller does not have a model of the system, we expect the changing orientations

of the joints with respect to gravity will create disturbances that the PID controller will

not consistently reject.

Consider the elbow joint, for example. When the arm is oriented such that gravity

is perpendicular to the axis around which the elbow rotates, the PID controller must

generate larger forces to move against the effect of gravity. But, when the elbow is

oriented such that gravity is parallel to the joint axis, gravity has no effect. In this case,

smaller forces are required to move the arm. However, since the PID defines its control

signal based only on positional error, it cannot differentiate between these two scenarios.

If the DNN model has learned the inverse dynamics well enough, the DNN CT

approach can generate compensatory forces that make the output of its associated PID

controller independent of the joint axis orientation with respect to gravity. Here, we

measure this effect by examining the trajectory tracking error. We hypothesize that the

DNN CT approach will have a lower tracking error than the PID approach.

Methods

To specify the target trajectory, during a 120 second period, Diego’s joints are

moved by hand while the potentiometer readings are recorded. These readings are used

as the desired positions to be tracked.

The DNN CT controller here is learned using data while grasping the same object

85

Table 5.4: Trajectory tracking errors

Controller Mean Standard Deviation

DNN CT 0.035 .011

PID 0.066 0.002

held during tracking. The structure of the network is shown in Figure 5.6 and Table 5.2.

Because the DNN CT model corresponds exactly to the object being held, visual features

are not used in this experiment. Both of the controllers use the same PID parameters,

which were set following the procedure described in Section 5.2.3.

We use each controller to track the target trajectory 10 times. On each trial, we

measure the tracking error as defined in (5.14). A t-test is performed to examine whether

there is a difference between the tracking error for the two controllers.

Results

Table 5.4 shows the mean and standard deviation of the tracking error for each

controller type. The mean tracking error (5.14) for the DNN CT approach is 0.035. The

mean for PID is higher, 0.066, and this difference is significant (p< 0.00005, t=10.5,

df=9).

Figure 5.10 shows an image captured during trajectory tracking for the PID

controller on the left, and with DNN CT on the right. The desired position of the robot at

the time was with the object near Diego’s mouth, and with the object held upright. The

PID controller is unable to bring the object to the mouth, but the DNN CT controller can.

Figure 5.11 shows the potentiometer readings through time for the forearm joint

for one trial of each controller. From Section 5.1 we know that these potentiometer

readings are linearly related to the joint angles. For the forearm specifically, increased

potentiometer readings mean an increased joint angle. When the arm is hanging down, the

increased joint angle means the thumb is rotated toward the body. Lower potentiometer

86

Figure 5.10: Comparison of PID and CT control. An image from the same time step

while following a trajectory that involves moving the object near Diego’s mouth and

keeping the object upright. PID control alone is on the left, and DNN CT control (using

the same PID parameters) is on the right. Note that the object is held higher with the

DNN CT control, and the orientation of the object is more upright.

readings mean rotation away from the body in that position. The desired trajectory is the

solid black line, the dashed blue line is the PID controller, and the solid red line is the

DNN CT controller. Other joints look similar, in that the DNN CT is more stable and

follows the desired trajectory more closely.

From this experiment, we can see that the DNN CT approach allows lower error

trajectory tracking than PID alone. This also suggests that the inverse dynamics model

can be learned well enough by the DNN to improve the control of Diego’s joints. Next,

we examine whether visual features of an object can be used to weight the output of

several DNN models trained on different objects.

5.3.2 Modeling Mounoud and Bower’s 1974 study

In the previous chapter (section 4.4.1), we show via computer simulations that our

proposed framework for visual affordances can replicate the results of the Mounoud and

Bower experiment. Here, we examine whether the framework can replicate the results in

87

0 10 20 30 40 50
1

2

3

4

5

6

Time (s)

P
o
te

n
ti
o
m

e
te

r
R

e
a
d
in

g
 (

V
)

Figure 5.11: Potentiometer readings during trajectory tracking task for the forearm

joint. The desired trajectory is the solid black line, the dashed blue line is the PID

controller, and the solid red line is the DNN CT controller.

Table 5.5: Object length (cm) and mass (g)

Object Length (cm) Mass (g)

1 13.5 310

2 18.5 445

3 23 550

Decoy 23 150

4 27 650

an actual robot, Diego.

The following experiments are performed using a set of five rods (Figure 5.8) of

varied length and weight. Of those five, four have the same density, and the fifth is a

decoy; it has the same length as the middle rod, but is considerably lighter. We label the

rods from the shortest (Object 1), to the longest (Object 4), and label the rod with lower

density matched in length to Object 3 the decoy. Table 5.5 describes the characteristics

of the rods.

We are interested in reproducing the following three experiments from the

Mounoud and Bower paper:

1. Learn to generate correct anticipatory forces for grabbing an object based on

88

experience holding it. (Section 5.3.3)

2. Generalize forces to objects not previously explored. (Section 5.3.4)

3. Show an error on the decoy object based on its surprising mass-length relationship.

(Section 5.3.5)

For each trial of the following experiments, Diego tracks a target trajectory

intended to mimic the infants grasping of the rods presented by the experimenter. The

left arm is raised to horizontal, the left hand closes around the object presented by the

experimenter, and the goal is for Diego to keep the arm at the same position as before the

object was grasped.

The following experiments examine two controllers:

1. VCT using DNN CT experts, (VDNN henceforward)

2. PID control

5.3.3 Experiment 2: Anticipatory Forces

One feature of the Mounoud and Bower experiment is that the infants were able,

after experience with a rod, to generate anticipatory forces that reduce the error observed

in arm position after the object is grasped. In this experiment, we examine whether the

VDNN controller can generate anticipatory forces while grasping Object 3. If the VDNN

controller is able to generate anticipatory forces for holding the object level, we expect

the error to be lower when the VDNN controller is used than when the PID controller

alone (here used as experimental control) is used to grasp the object. If this hypothesis

is correct, it would indicate that using a VDNN model to make predictions about what

forces need to be applied can allow better control of a robot at the instant of contact with

an object, rather than relying on reactions to a changing situation.

89

Methods

Pilot trials revealed that the elbow shows the largest movement when a heavy

object is grasped. The elbow is oriented such that gravity is perpendicular to the elbow’s

joint axis. Thus, when an object is grasped, the gravitational forces are converted to

torques around the elbow’s axis, and these torques generate movement if they are not

compensated by a controller.

To simplify analysis, we focus on the potentiometer reading at the elbow. When

the elbow is fully extended, the potentiometer reading is low. As the elbow flexes, the

potentiometer reading increases. The dependent measure δ is the elbow potentiometer

reading that gives the largest deviation from the desired trajectory of the elbow:

δ = argmax
qt

|qd −qt | (5.15)

where qt is the recorded potentiometer reading of the elbow, qd is the target potentiometer

reading, and t is restricted to the 0.5 second period directly after the object is grasped.

During this period, qd is constant, and is set to 1.4.

A trial with the VDNN controller consists of the following steps:

1. Extract visual features from the object.

2. Using the visual features as input to the arbitrator network, generate control signals

from the VDNN while attempting to track the target trajectory.

3. Measure the δ of the trial.

A trial with the PID controller tracks the same target trajectory, but with no visual

modulation.

Fifteen trials are run with each controller, and a t-test is performed to examine if

there is a difference in δ between the VDNN and PID controllers.

90

Table 5.6: Anticipatory forces: δ mean and standard deviation

Controller Mean Standard Deviation

VDNN 1.22 0.028

PID 0.82 0.029

Results

Table 5.6 shows the dependent measure δ (5.15) for the VDNN and PID con-

trollers. A two-sample t-test shows that the means are significantly different (p<1x10−16,

t=53.8, df=14).

Figure 5.17 shows the potentiometer recordings from the elbow as well as the

desired trajectory. The plot shows the arm rising between 6 and 9 seconds, grasping the

object just after 9 seconds (the sharp drop in both traces), and trying to hold steady until

the end of the plot. Many of the arm joints beside the elbow show a similar, if smaller,

effect.

Figure 5.12 shows the arm position after the object is grasped with the PID

controller alone. Figure 5.13 shows the same point in the trajectory for the VDNN

controller. These are sample frames taken from two trials of the experiment.

These results indicate that the VDNN controller allows the robot to grasp the

object and stay closer to the desired trajectory than the PID controller alone does.

5.3.4 Experiment 3: Generalizing to Novel Objects

Mounoud and Bower showed that, after experience with one rod, the error on the

next rod presented was reduced compared to if the infant was presented that rod first.

This suggests that infants are generalizing the visual-proprioceptive relationship they are

learning while exploring one of the objects. Here, we investigate whether our approach

can reproduce this phenomenon, using an object with which the VDNN was not trained.

91

Figure 5.12: Response of the PID controller to grasping a heavy object. The left image

shows the position of the arm at the start of the grasp, which is the desired location.

The image on the right shows the object at its farthest displacement from the desired

trajectory.

Figure 5.13: Response of the VDNN controller to grasping the same object from

Figure 5.12. The left image shows the position of the arm at the start of the grasp,

which is the desired location. The image on the right shows the object at its farthest

displacement from the desired trajectory.

92

6 7 8 9 10 11 12 13
0

0.5

1

1.5

Time (s)

P
o
te

n
ti
o
m

e
te

r
(V

)

Figure 5.14: PID and VDNN comparison for heavy object. Potentiometer measure-

ments at the elbow around the time the object is grasped (just after 9 seconds). The

thick black line shows the desired trajectory. The solid red line shows the mean value

for the VDNN controller trials. The solid blue line shows the mean value for the PID

controller trials. The dashed lines show the standard deviation.

In this experiment, we examine whether the VDNN controller can produce

anticipatory forces for an object that it has never seen before. Since the visual and inertial

features of Object 4 are consistent with the three objects on which the VDNN was trained,

we hypothesize that the VDNN will be able to extrapolate to the larger Object 4 and

produce a smaller error than a PID alone.

Methods

For this experiment, the target trajectory is the same as the previous experiment:

raise arm to horizontal, grasp object, remain level. The object grasped in this experiment

is the largest object in the set, Object 4. Object 4 was not shown to the VDNN controller

during training. It is larger and heavier than all other objects used in the experiments, but

has the same density as the other non-decoy objects. We compare the δ of the VDNN on

object 4 with that of a PID controller on object 4.

The dependent measure δ is given in (5.15).

93

Table 5.7: Generalizing to novel objects: δ mean and standard deviation

Controller Mean Standard Deviation

VDNN 1.19 0.022

PID 0.70 0.025

Fifteen trials are run with each controller, and a t-test is performed to examine if

there is a difference in δ between the VDNN and PID controllers.

Results

Table 5.7 shows the mean and standard deviation of the dependent measure δ for

both the VDNN and PID controllers. A t-test reveals a significant difference between the

controllers (p <1x10−17,t=56.0,df=14). This difference indicates that the VDNN is able

to produce reasonable forces for an object it has never seen before. Since the relationship

between the visual features (like the length) and the inertial properties of Object 4 are

similar to the objects with which the VDNN was trained, it is able to scale the forces

appropriately to extrapolate.

Figure 5.17 shows the distribution of potentiometer readings for the different

conditions across trials. Note that the PID controller has a very large standard deviation

near the end of the plot. This is because several trials were unstable. Since the PID

parameters were not tuned on this object, the controller was not able to stably compensate

for some errors and produced high-velocity oscillations.

Figure 5.15 shows the arm position after the object is grasped with the PID

controller alone. Figure 5.16 shows the arm position at the same point in the trajectory,

but where the VDNN controller is used.

94

Figure 5.15: Response of the PID controller to grasping a novel object, heavier than

the objects in a test set. The left image shows the position of the arm at the start of

the grasp, which is the desired location. The image on the right shows the object at its

farthest displacement from the desired trajectory.

Figure 5.16: Response of the VDNN controller to grasping the same object from

Figure 5.15. The left image shows the position of the arm at the start of the grasp,

which is the desired location. The image on the right shows the object at its farthest

displacement from the desired trajectory.

95

6 7 8 9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

P
o
te

n
ti
o
m

e
te

r
(V

)

Figure 5.17: PID and VDNN comparison for a novel object, heavier than the objects

in the test set. Potentiometer measurements at the elbow around the time the object is

grasped (just after 9 seconds). The thick black line shows the desired trajectory. The

solid red line shows the mean of the VDNN controller trials. The solid blue line shows

the mean of the PID controller trials. The dashed lines show the standard deviation

5.3.5 Experiment 4: Response to Decoy

In the Mounoud and Bower experiment, infants mistakenly lift a decoy object.

Since the object looks the same as one they have previously grasped, they lift with more

force than is required for the lighter decoy. Here we investigate whether the decoy object,

that does not match the learned visual-inertial relationship, produces the same mistaken

lift in our framework as it does in infants. This experiment explores the response of the

VDNN controller to the decoy object.

The anticipatory forces generated by the VDNN in the previous experiments allow

more accurate trajectory tracking than a PID alone. The VDNN is able to compensate

for the additional forces due to gravity starting from the instant when the objects were

grasped. The VDNN represents a framework for learning to interact with different objects

in the environment, capitalizing on regularities between visual and inertial properties

of objects. Since the VDNN is learning this visual-inertial relationship, we expect that,

when we alter this relationship, the VDNN will make an error by lifting the decoy

96

object. The Mounoud and Bower experiment shows that infants make an error when the

visual-inertial relationship is broken.

If the VDNN replicates the phenomenon observed in infants, we expect the elbow

to lift higher than the target trajectory with the VDNN controller when the decoy object

is presented. Since there is no visual modulation in the PID controller, we expect the PID

controller to show a small drop at the elbow commensurate with the smaller weight of

the decoy object compared to the other objects used in the experiment.

Methods

For this experiment, the target trajectory is the same as the previous experiment:

raise arm to horizontal, grasp object, remain level. The object grasped in this experiment

is the decoy, which was never shown to the VDNN during training.

Fifteen trials are run with each controller, and a t-test is performed to examine if

there is an difference in δ (5.15) between the VDNN and PID controllers. Additionally,

a one-sample t-test is performed to examine if the VDNN controller generates a lift

compared to the desired trajectory.

Results

Table 5.8 shows the dependent measure δ (5.15) for the VDNN and PID con-

trollers. A t-test reveals a difference between the two controllers (p<1x10−15, t=41.2,

df=14). A one-sample t-test reveals that the VDNN has mean different from the desired

trajectory, which has a value of 1.40 (p<1x10−13, t=28.8, df=14). Figure 5.20 shows the

potentiometer reading from the elbow as the object is grasped. Notice that the VDNN

controller overshoots the desired trajectory. The VDNN specifies CT forces based on the

visual features of the object it interacts with. Because the decoy object and Object 3 have

very similar visual features (see Table 5.3), and the VDNN was trained to generate forces

97

Table 5.8: Response to decoy: δ mean and standard deviation

Controller Mean Standard Deviation

VDNN 1.49 0.012

PID 1.30 0.014

Figure 5.18: Response of the PID controller to grasping the decoy object. The left

image shows the position of the arm at the start of the grasp, which is the desired

location. The image on the right shows the object at its farthest displacement from the

desired trajectory.

for the heavy Object 3, the forces it estimates for the decoy object are larger than what

the mass of the decoy require. Thus, the elbow rises to produce the overshoot we see in

Figure 5.20.

Figure 5.18 shows a frame after the decoy object has been grasped by the PID

controller. Figure 5.19 shows the same frame but when the VDNN controller grasps the

object. Notice the angle of the forearm with respect to the elbow is sharper in the VDNN

case, and that the object is higher.

5.4 Discussion

We explored whether our framework for visual affordances can reproduce the

following phenomena in a complex humanoid robot: (1) learning to generate correct

anticipatory forces to hold objects closer to level, (2) generalizing experience with objects

to novel but consistent objects, and (3) being susceptible to overcompensating for a decoy

98

Figure 5.19: Response of the VDNN controller to grasping the decoy object. The

left image shows the position of the arm at the start of the grasp, which is the desired

location. The image on the right shows the object at its farthest displacement from the

desired trajectory.

6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

Time (s)

P
o
te

n
ti
o
m

e
te

r
(V

)

Figure 5.20: PID and VDNN comparison for decoy object. Potentiometer measure-

ments at the elbow around the time the object is grasped (just after 9 seconds). The thick

black line shows the desired trajectory. The solid red line shows the VDNN controller.

The dashed blue line shows the PID controller

99

object. These phenomena have been observed in human infants, and suggest that humans

use internal models to plan motor commands to interact with objects in the world. In

the previous chapter, we suggested a framework for how these models might be learned

and used, which is based on a parameterized articulated-body physics model (PPM).

Here, we found that parametric physics models are not accurate enough at predicting

the inverse dynamics for a complex robot like Diego. By making some changes to the

approach, namely using a deep neural network (DNN) as an inverse dynamics model, we

were able to improve the accuracy of the predictions of the torques required to generate

desired accelerations. This required a change to how anticipatory forces are generated

for objects based on visual features. Rather than using the articulated body physics and

estimates of density, the new approach uses an arbitrator network to weight the output of

several DNN expert inverse model networks. These changes have several implications,

including:

• Generalization to other areas of joint space. Because the PPM is a physics

model, it describes motions across the entire range of the robot joint angles (and

also different grasp configurations of an object). In contrast, the DNN approach,

since it is learned directly from experience, requires experience in the area of joint

space where testing will be done. Interestingly, there seems to be some evidence

that learned dynamic models in humans do not generalize well to different areas of

joint space [60]. In their study, subjects learn to generate anticipatory forces while

trying to hold an object in the same location while rotating it. Given practice when

the object is at a particular orientation with respect to the hand, subjects generate

only about half the anticipatory forces when the same object is in a different

orientation with respect to the hand. This suggests that there may not be a global

representation of the hand/object dynamics for all possible orientations of the hand

and object, as would be expected from the parameterized physics model.

100

• Generalization to other object shapes. The PPM approach depends on the visu-

ally extracted geometry of an object to create an inverse dynamics model. Because

this can generalize to any geometry, this approach is well suited for estimating

dynamic models of objects with novel shape. In simulations, this approach works

well. But, if the model is not powerful enough to capture the dynamics of an

actual robot, this approach will not succeed. The DNN approach, in contrast,

learns directly from experience. Because the DNN approach is a general function

approximator, given enough data and computational power, it will be able to model

the dynamics of the objects it has learned. In a recent result, a DNN was taught

to play Atari directly from visual input [61]. The approach here is similar in that

control is learned directly from visual input and experience.

• Prior knowledge requirements. The cost of the greater generalization of the

PPM is that there is a great deal of knowledge that must be supplied by a human

to the robot. The DNN model learns from experience, and so does not require

knowledge of, for example, the robot’s geometry or sensor calibrations. In a

sense, the PPM has been given a shortcut: physics prescribes a good, succinct

representation of an object’s dynamics through its density and geometry. The DNN

model, given enough representational power and data, could potentially learn a

similar representation implicitly. Additionally, in the case where the PPM itself is

not representative enough to explain the data, the extra effort required to learn the

DNN model pays off in better accuracy on data similar to what has been learned.

The flexibility of the function-approximating deep neural network that makes up

the DNN approach means it can adapt to different situations and learn from experience.

But this flexibility comes at a cost of reduced generalization. However there is evidence

that humans do not generalize as well as would be predicted from a PPM.

101

5.5 Conclusion

We implement a computational model of inertial affordances on a physical robot.

The implementation is inspired by the model described in the Chapter 4. However, in the

process of implementing the approach, we made changes to the original model. Namely,

the parametric physical model was replaced by a deep neural network that learns the

robot dynamics from sensor readings.

Changing the underlying dynamic model to the DNN also requires a change

to the way we generalize control to new objects. In the previous chapter, this is done

analytically using a physics model. In this chapter, we use an approach composed of

arbitrator network that utilizes visual features to predict the robot dynamics when the

robot grasps a new object.

When tested on the physical robot Diego, the neural network approach produced

more accurate control (compared to a PID controller) on objects that had a density

similar to previously experienced objects. When the density was different than previously

experienced, the approach showed behavior qualitatively similar to the behavior shown

by infants.

As robotic applications expand, and robots become more ubiquitous, they will

need to interact with the objects that humans interact with. One way to allow this

interaction is to engineer robots with high-friction joints and powerful actuators. Robots

designed this way are able to move objects easily, but at the cost of higher stiffness

and energy use. Not only is this undesirable given a limited battery, but from a safety

standpoint. Any human in the way of a robot like this would risk serious injury. Another

approach is to use compliant robots, like Diego. Compliant robots require less energy,

and are not as stiff as typical robots. This confers safety and energy use advantages, but

at the expense of increased control complexity. The framework we explore in this chapter

102

is one method for making control of these robots easier. The framework learns how to

interact with objects based on experience. Such an approach lays the groundwork for

altricial robots that, through interaction with their environments, can build competence

autonomously. Rather than requiring human intervention to solve a novel problem, a

developmental robot may discover the solution itself. The work presented in this thesis is

one step on the long road toward that goal.

Acknowledgments

This research was supported by NSF IIS 0968573 and NSF IIS 0808767.

Appendix A

Linear System Identification

In this appendix, we show how the dynamics equations for articulated bodies are

linear on the inertial parameters. These parameters are:

• mi: the mass of link i

• mibi: the mass times the center of mass

• Ii: the inertial matrix of link i

• ηi: the coefficient of viscous friction at joint i

For a more thorough treatment, see [[49]], from which this appendix is distilled. Articu-

lated bodies are a series of rigid links connected by joints. Here, we focus on revolute

joints with 1 degree of freedom (dof), but the similar results hold for prismatic joints.

Multiple-dof joints can be modeled as a series of 1-dof joints with zero-length links

between them.

103

104

A.1 Notation

• fk: the frame of reference of link k. Its origin is at the parent joint for that link.

The world coordinate frame is f0.

• lk−1: The fk−1 coordinates of the origin of fk. The fk−1 coordinates of joint k. The

fk−1 coordinates of the parent joint for link k.

• yk−1: The f0 (world) coordinates of the origin of fk. The f0 coordinates of joint k.

The f0 (world) coordinates of the parent joint of link k.

• bk: The fk coordinates of the center of mass of link k.

• xk: The f0 (world) coordinates of the center of mass of link k.

• uk: The fk−1 coordinates of the axis of rotation for joint k.

• θk: The angle of rotation for joint k. The vector of all joint angles is θ.

• rk: The rotation of fk with respect to fk−1. Thus the columns of rk have the fk−1

coordinates of the fk unit axes.

rk = e[ukθk]× (A.1)

We define r0 = I3, the 3×3 unit matrix.

• sk: The rotation of fk with respect to the world f0. Thus sk has the world coordinates

of the fk unit axes

sk = r1:k = r1 · · ·rk (A.2)

105

• vk: The f0 (world) coordinates of the axis of rotation for joint k.

vk = sk−1uk (A.3)

• Jk: The Jacobian of the center of mass of link k

Jk =
∂xk

∂θ
(A.4)

• Hk: The Jacobian of the origin of fk+1, which we have defined as yk.

Hk =
∂yk

∂θ
(A.5)

• [·]×: The skew-symmetric cross-product matrix constructed from a vector

A.2 Dynamics

We begin with the dynamics equation from (4.1)

M(θt)θ̈t = τt +N(θt , θ̇t) (A.6)

and expand N to explicitly represent the Coriolis, gravitational, and viscous friction

torques

M(θt)θ̈t +Cθ̇ = τt + τ
g
t + τv

t (A.7)

where τt is the torque due to the robot’s motors at time t. The terms M and C are the sums

of inertia and Coriolis terms from each link, M = ∑Mi and C = ∑Ci. We can also write

106

Mi and Ci in terms of the Jacobian, Ji, of the center of mass of link i, and its temporal

derivative, J̇i =
d
dt

Ji

Mi = miJ
′
i Ji (A.8)

Ci = J′i J̇i (A.9)

We can write Ji as

H0 = 0 (A.10)

Ji = Hi−1 − si[bi]×s′iwi (A.11)

where wi = (v1,v2, · · · ,vi,0, · · · ,0).

We can also write

J̇i = Ḣi−1 +[ẋi − ẏi−1]
′
×wi +[xi − yi−1]

′
×ẇi (A.12)

where

Ḣ0 = 0 (A.13)

Ḣi = Ḣi−1 +[ẏi − ẏi−1]
′
×wi +[yi − yi−1]

′
×ẇi (A.14)

ẋi − ẏi−1 = (Ji −Hi−1)θ̇ = [xi − yi−1]
′
×wiθ̇ (A.15)

ẏi − ẏi−1 = (Hi −Hi−1)θ̇ = [yi − yi−1]
′
×wiθ̇ (A.16)

107

and

ẇi = (v̇1, · · · v̇i,0, · · · ,0) (A.17)

v̇ j =
n

∑
k=1

θ̇k

∂v j

∂θk

(A.18)

.

Using these definitions of Ji and J̇i, we examine each of the terms in the dynamics

equation (A.7) and write them in a form linear in the inertial parameters.

A.3 Inertial Forces

We first write (A.8) linear on the inertial parameters mi,bi, and Ii.

Miθ̈ =mi H ′
i−1Hi−1θ̈

︸ ︷︷ ︸

a
[1]
i

−H ′
i−1si

︸ ︷︷ ︸

p
[1]
i

mi[bi]× s′iwiθ̈
︸ ︷︷ ︸

p
[2]
i

+ w′
isi

︸︷︷︸

p
[3]
i

(mi[bi]×)s′iHi−1θ̈
︸ ︷︷ ︸

p
[4]
i

+ w′
isi

︸︷︷︸

p
[5]
i

Ii s′iwiθ̈
︸ ︷︷ ︸

p
[6]
i

(A.19)

108

Then we have

Miθ̈ =a
[1]
i mi

− p
[1]
i mi[bi]×p

[2]
i

+ p
[3]
i mi[bi]×p

[4]
i

+ p
[5]
i Ii p

[6]
i (A.20)

Next we use the facts that Vec[a] = a if a is a vector, and:

Vec[abc] = (c′⊗a)Vec[b] (A.21)

so that

Vec[p
[1]
i [mibi]×p

[2]
i] = ((p

[2]
i)′⊗ p

[1]
i)Vec[[mibi]×] (A.22)

Vec[p
[3]
i mi[bi]×p

[4]
i] = ((p

[4]
i)′⊗ p

[3]
i)Vec[[mibi]×] (A.23)

Vec[p
[5]
i Ii p

[6]
i] = ((p

[6]
i)′⊗ p

[5]
i)Vec[Ii] (A.24)

Moreover

Vec[[mibi]×] = D3bimi (A.25)

109

where

D3 =





























0 0 0

0 0 −1

0 1 0

0 0 1

0 0 0

−1 0 0

0 −1 0

1 0 0

0 0 0





























(A.26)

and

Vec[Ii] = D6Vec6[Ii] (A.27)

where

D6 =





























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1





























(A.28)

110

and and Vec6[I] extracts the 6 unique element in the upper triangle of I

Vec6[I] = [I1,1, I1,2, I1,3, I2,2, I2,3, I3,3]
′ (A.29)

Thus

Miθ̈ = a
[1]
i mi +a

[2]
i mibi +a

[3]
i Vec6[Ii]

(A.30)

where

a
[1]
i = H ′

i−1Hi−1θ̈ (A.31)

a
[2]
i =

(

− (p
[2]
i)′⊗ p

[1]
i +(p

[4]
i)′⊗ p

[3]
i

)

D3

(A.32)

a
[3]
i =

(

(p
[6]
i)′⊗ p

[5]
i

)

D6 (A.33)

111

A.4 Coriolis Forces

We can expand (A.9) as

Ciθ̇ =mi H ′
i−1Ḣi−1θ̇

︸ ︷︷ ︸

a
[4]
i

+H ′
i−1[wiθ̇]

2
×si

︸ ︷︷ ︸

q
[0]
i

mibi

−H ′
i−1si

︸ ︷︷ ︸

q
[1]
i

mi[bi]× s′iẇiθ̇
︸ ︷︷ ︸

q
[2]
i

+ w′
isi

︸︷︷︸

q
[3]
i

mi[bi]× s′iḢi−1θ̇
︸ ︷︷ ︸

q
[4]
i

+w′
i[wiθ̇]×si

︸ ︷︷ ︸

q
[5]
i

Ii s′iwiθ̇
︸ ︷︷ ︸

q
[6]
i

+ w′
isi

︸︷︷︸

q
[7]
i

Ii s′iẇiθ̇
︸ ︷︷ ︸

q
[8]
i

(A.34)

Thus

Ciθ̇ = a
[4]
i mi

+q
[0]
i mibi

−q
[1]
i mi[bi]×q

[2]
i +q

[3]
i mi[bi]×q

[4]
i

+q
[5]
i Iiq

[6]
i +q

[7]
i Iiq

[8]
i (A.35)

Using the properties of Vec[·], this can be written

112

Ciθ̇ = a
[4]
i mi +a

[5]
i bimi +a

[6]
i Vec6[Ii]

(A.36)

where

a
[4]
i = H ′

i Hiθ̇ (A.37)

a
[5]
i = q

[0]
i +

(

− (q
[2]
i)′⊗q

[1]
i +(q

[4]
i)′⊗q

[3]
i

)

D3

(A.38)

a
[6]
i =

(

(q
[6]
i)′⊗q

[5]
i +(q

[8]
i)′⊗q

[7]
i

)

D6

(A.39)

A.5 Gravity

The derivation of the torque due to gravity uses the fact that, for an articulated

body, when a force f is applied to a point p (in world coordinates) on the articulated

body, the vector of torques τ generated at each joint is computed as

τ =

(
∂p

∂θ′

)′

f (A.40)

which is the transpose of the Jacobian of p times the force. Since gravity acts at the

center of mass of a link, and the force is gmi, the torque generated by gravity from each

113

link is tau
g
i = J′i gmi. Using this and the definition of Ji, we can write

τg = ∑
i

τ
g
i (A.41)

τ
g
i = mi

(

H ′
i−1 +w′

isi[bi]×s′i

)

g

= mi H ′
i−1g

︸ ︷︷ ︸

a[7]

+ w′
isi

︸︷︷︸

h[1]

(mi[bi]×) s′ig
︸︷︷︸

h[2]

= a[7]mi +h[1]mi[bi]
′
×h[2]

= a
[7]
i mi +

(

(h[2])′⊗h[1]
)

[mibi]×

= a
[7]
i mi +

(

(h[2])′⊗h[1]
)

D3Vec[mibi]

= a[7]mi +a[8]mibi (A.42)

Thus

τ
g
i = a

[7]
i mi +a

[8]
i bimi (A.43)

where

a
[7]
i = H ′

i−1g (A.44)

a
[8]
i =

(

(h[2])′⊗h[1]
)

D3 (A.45)

A.6 Viscous Friction

The viscous friction on each joint is linear on etai.

114

τv = ∑
i

τv
i (A.46)

τv
i =−θ̇iηi (A.47)

A.7 Equation of Motion

Using the definitions above, we can now express (A.7) as follows

τ =∑
i

(a
[1]
i +a

[4]
i −a

[7]
i)mi

+∑
i

(a
[2]
i +a

[5]
i −a

[8]
i)bimi

+∑
i

(a
[3]
i +a

[6]
i)Vec6[Ii]

+diag[θ̇]η

(A.48)

In matrix form and making the dependence on time explicit

τt = ctγ (A.49)

ct =
(

a
[1]
1 +a

[4]
1 −a

[7]
1 , . . . ,a

[1]
n +a

[4]
n −a

[7]
n ,

a
[2]
1 +a

[5]
1 −a

[8]
1 , . . . ,a

[2]
n +a

[5]
n −a

[8]
n ,

a
[3]
1 +a

[6]
1 , . . . ,a

[3]
n +a

[6]
n ,diag[θ̇]

)

, (A.50)

115

and

γ =







































m1

...

mn

m1b1

...

mnbn

Vec6[I1]

...

Vec6[In]

η1

...

ηn







































(A.51)

Appendix B

Isolating Unknown Parameters

If the inertial parameters of some of the links are known, we can modify the terms

in (A.49) so that only the unknown parameters are estimated. This is the method used to

estimate the inertial parameters of objects in (4.6) given an inverse model of the robot.

To estimate only some links, first separate the terms in ct and γ into those that are

known and those that are unknown.

τt = ck
t γk + cu

t γu (B.1)

If there are n total links, k known links, and u unknown links, then

• τt is an n×1 vector

• γ is an 11n×1 vector

• γk is an 11k×1 vector

• γu is an 11u×1 vector

• ct is an n×11n matrix

• ck
t is an n×11k matrix

116

117

• cu
t is an n×11u matrix

Since τk = ck
t γk is known, we are left with

τt − τk = cu
t γu (B.2)

which is in the same form as (A.49). From this, the unknown parameters can be estimated.

Note that τk can be estimated with any inverse model, not necessarily one that requires

knowledge of the inertial parameters.

Appendix C

Estimating Density

In this appendix, we show that γ, the inertial parameters of the links, is itself a

linear function of the vector of object densities δ, which we aim to estimate. The 10

inertial parameters of the object, γ = (m,mx,Vec6[I])
′, are:

• the object’s mass, m

• the object’s center of mass times its mass, mx

• the object’s inertial matrix, I, in the object’s frame, with origin o as reference.

Vec6[I] extracts the 6 elements from the upper triangle of the symmetric matrix I.

First, we write I in a form linear on the masses mi of each component. Using the

parallel axis theorem, we can write the total inertia of the object as

I = ∑
i

Ii −mi[di]
2
× (C.1)

where di is the vector from the origin of the object’s frame, o, to µi, mi is the mass

of ellipsoid i, Ii is the inertia of ellipsoid i around its center of mass, and [di]× is the

skew-symmetric cross-product matrix constructed from the vector di. Since we know the

118

119

geometry of ellispoid i, and the form of the inertial matrix for ellipsoids, we can write

Ii =









1
3
(b2

i + c2
i) 0 0

0 1
3
(a2

i + c2
i) 0

0 0 1
3
(a2

i +b2
i)









mi (C.2)

= Gimi (C.3)

and

I = ∑
i

Ii −mi[di]
2
× (C.4)

= ∑
i

(Gi − [di]
2
×)mi (C.5)

Also,

x =
∑i midi

m
(C.6)

m = ∑
i

mi (C.7)

We want to estimate

δ =









δ1

...

δr









(C.8)

where δi is the density of material i. The color of each component indicates which of a set

of r materials makes it up. This information gives an n× r matrix A where element Ai j is

vi if object component i is made of material j, and 0 otherwise. Here, vi is the volume of

component i, which is known, and allows estimation of the density of materials rather

120

than the mass of the components, since









m1

...

mn









= A









δ1

...

δr









(C.9)

Combining (C.5), (C.6), and (C.9), we can write

γ = HAδ (C.10)

where

H =









1n

d1 . . .dn

Vec6[G1 − [d1]
2
×] . . .Vec6[Gn − [dn]

2
×]









(C.11)

and 1n is a row vector of n ones. Finally, we have

τo
t = KtHAδ (C.12)

Here the torque vector τo
t , and the Kt ,H,A matrices are known. Thus we can infer the

desired vector of object densities using simple linear regression methods. In practice, we

use Bayesian linear regression methods to update, after each trial, a Gaussian estimate

of the density of a set of materials. Here, K is a stacked matrix containing Kt for all

observed timesteps in a trial, and similarly τo is a stacked vector of all τo
t . For a prior belief

121

N (µδ,σδ) and our data K and τo
t , we get the parameters of the posterior distribution:

σ̄δ = (σ−1
δ

+η(KHA)′(KHA))−1

µ̄δ = σ̄δ(σ
−1
δ

µδ +η(KHA)′τo) (C.13)

Bibliography

[1] W. Talbott, I. Fasel, J. Molina, V. de Sa, and J. Movellan, “Coordinating Touch

and Vision to Learn What Objects Look Like,” in Proceedings of the 33rd Annual

Conference of the Cognitive Science Society, L. Carlson, C. Hölscher, and T. Shipley,

Eds. Cognitive Science Society, 2011, pp. 562–567.

[2] W. Talbott, H. Huang, and J. Movellan, “Continuous-time infomax models of ocu-

lomotor control,” in Proceedings of the International Conference of Development

and Learning and Epigenetic Robotics, 2012.

[3] W. Talbott and J. Movellan, “An expected motion information model of salience for

active cameras,” in Proceedings of the International Conference of Development

and Learning and Epigenetic Robotics, 2012, Best Paper Award.

[4] W. Talbott, T. Wu, and J. Movellan, “Estimating dynamic properties of objects from

appearance,” in Development and Learning and Epigenetic Robotics (ICDL), 2013

IEEE Third Joint International Conference on, Aug 2013, pp. 1–6.

[5] W. Talbott and J. Movellan, “A computational framework for visual perception of

inertial affordances,” in Affordances in Vision for Cognitive Robotics Workshop at

RSS, 2014.

[6] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid

scene analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, no. 11, pp. 1254–1259, Nov 1998.

[7] L. Itti and C. Koch, “Computational modelling of visual attention,” 2001.

[8] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “Sun: A bayesian

framework for saliency using natural statistics,” Journal of Vision, vol. 8, no. 7,

2008.

[9] A. Torralba, “Contextual modulation of target saliency,” in In Advances in Neural

Information Processing Systems. MIT Press, 2002, pp. 1303–1310.

122

123

[10] D. Gao, V. Mahadevan, and N. Vasconcelos, “The discriminant center-surround

hypothesis for bottom-up saliency,” in Advances in Neural Information Processing

Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA:

MIT Press, 2008, pp. 497–504.

[11] N. Bruce and J. Tsotsos, “Saliency based on information maximization,” in Ad-

vances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and

J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 155–162.

[12] W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric

approach to bottom-up visual saliency,” in Advances in Neural Information Pro-

cessing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, Eds. Cambridge, MA:

MIT Press, 2007, pp. 689–696.

[13] L. W. Renninger, J. M. Coughlan, P. Verghese, and J. Malik, “An information maxi-

mization model of eye movements,” in Advances in Neural Information Processing

Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press,

2005, pp. 1121–1128.

[14] B. W. Tatler, M. M. Hayhoe, M. F. Land, and D. H. Ballard, “Eye guidance in

natural vision: Reinterpreting salience,” Journal of Vision, vol. 11, no. 5, 2011.

[15] T. Marks, J. R. Hershey, and J. R. Movellan, “Tracking motion, deformation, and

texture using conditionally gaussian processes,” Pattern Analysis and Machine

Intelligence, vol. 32, no. 2, pp. 348–363, February 2010.

[16] S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T.-S. Chua, “An eye fixation

database for saliency detection in images,” in ECCV 2010, Crete, Greece, 2010.

[17] N. J. Butko and J. R. Movellan, “I-POMDP: An infomax model of eye movement,”

Proceedings of the 2008 IEEE International Conference on Development and

Learning (ICDL), 2008.

[18] J. Najemnik and W. Geisler, “Optimal eye movement strategies in visual search,”

Nature, vol. 434, no. 7031, pp. 387–391, 2005.

[19] F. Panerai, G. Metta, and G. Sandini, “Learning vor-like stabilization reflexes in

robots,” in in 8th European Symposium on Artificial Neural Networks, 2000.

[20] M. Hikita, S. Fuke, M. Ogino, T. Minato, and M. Asada, “Visual attention by

saliency leads cross-modal body representation,” in Development and Learning,

2008. ICDL 2008. 7th IEEE International Conference on, aug. 2008, pp. 157 –162.

[21] N. Butko, L. Zhang, G. Cottrell, and J. Movellan, “Visual saliency model for

robot cameras,” in Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, may 2008, pp. 2398 –2403.

124

[22] C. M. Harris and D. Wolpert, “The main sequence of saccades optimizes speed-

accuracy trade-off,” Biological cybernetics, vol. 95, no. 21–29, 2006.

[23] C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines motor plan-

ning,” Nature, vol. 394, no. 6695, pp. 780–784, Aug. 1998.

[24] R. J. Van Beers, “Saccadic eye movements minimize the consequences of motor

noise,” PLoS One, vol. 3, no. 4, p. e2070, 2008.

[25] H. Tanaka, J. W. Krakauer, and N. Qian, “An optimization principle for determining

movement duration,” Journal of neurophysiology, vol. 95, no. 6, pp. 3875–3886,

2006.

[26] J. Najemnik and W. S. Geisler, “Optimal eye movement strategies in visual search,”

Nature, vol. 434, no. 7031, pp. 387–391, Mar. 2005.

[27] N. J. Butko and J. R. Movellan, “Infomax control of eye movements,” Autonomous

Mental Development, IEEE Transactions on, vol. 2, no. 2, pp. 91–107, 2010.

[28] D. Robinson, “Models of the saccadic eye movement control system.” Kybernetik,

vol. 14, no. 2, pp. 71–83–, Dec. 1973.

[29] T. Erez and E. Todorov, “Inverse dynamics optimal control for domains with

contacts,” 2011.

[30] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal

feedback control of constrained nonlinear stochastic systems,” in American Control

Conference, 2005. Proceedings of the 2005, june 2005, pp. 300 – 306 vol. 1.

[31] H. Collewijn, C. Erkelens, and R. Steinman, “Binocular co-ordination of human

horizontal saccadic eye movements.” J Physiol, vol. 404, pp. 157–82–, 1988.

[32] H. Huang, M. Plank, S. Gepshtein, and H. Poizner, “Target predictability and eye-

hand coordination in a rapid reaching task,” Journal of Vision, vol. 12, no. 9, p. 411,

2012.

[33] H. Chen-Harris, W. M. Joiner, V. Ethier, D. S. Zee, and R. Shadmehr, “Adaptive

Control of Saccades via Internal Feedback,” The Journal of Neuroscience, vol. 28,

no. 11, pp. 2804–2813, 2008.

[34] D. A. Robinson, J. L. Gordon, and S. E. Gordon, “A model of the smooth pur-

suit eye movement system,” Biological Cybernetics, vol. 55, pp. 43–57, 1986,

10.1007/BF00363977.

[35] C. J. Erkelens, “Coordination of smooth pursuit and saccades,” Vision Research,

vol. 46, no. 1–2, pp. 163–170, 2006.

125

[36] S. Grossberg, K. Srihasam, and D. Bullock, “Neural dynamics of saccadic and

smooth pursuit eye movement coordination during visual tracking of unpredictably

moving targets,” Neural Netw., vol. 27, pp. 1–20, Mar. 2012.

[37] J.-J. Orban de Xivry and P. Lefevre, “Saccades and pursuit: two outcomes of a

single sensorimotor process,” The Journal of Physiology, vol. 584, no. 1, pp. 11–23,

2007.

[38] P. Mounoud and T. Bower, “Conservation of weight in infants,” Cognition, vol. 3,

no. 1, pp. 29 – 40, 1974.

[39] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning about objects

through action - initial steps towards artificial cognition,” in Robotics and Automa-

tion, 2003. Proceedings. ICRA ’03. IEEE International Conference on, vol. 3, sept.

2003, pp. 3140 – 3145 vol.3.

[40] A. Stoytchev, “Learning the affordances of tools using a behavior-grounded ap-

proach,” in Towards Affordance-Based Robot Control, ser. Lecture Notes in Com-

puter Science, E. Rome, J. Hertzberg, and G. Dorffner, Eds. Springer Berlin /

Heidelberg, 2008, vol. 4760, pp. 140–158.

[41] J. Sinapov and A. Stoytchev, “Learning and generalization of behavior-grounded

tool affordances,” in Development and Learning, 2007. ICDL 2007. IEEE 6th

International Conference on, july 2007, pp. 19 –24.

[42] R. Jain and T. Inamura, “Learning of tool affordances for autonomous tool manipu-

lation,” in System Integration (SII), 2011 IEEE/SICE International Symposium on,

dec. 2011, pp. 814 –819.

[43] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning object

affordances: From sensory–motor coordination to imitation,” IEEE Journal of

Robotics, vol. 24, no. 1, pp. 15–26, 2008.

[44] T. Hermans, J. M. Rehg, and A. Bobick, “Affordance prediction via learned object

attributes,” in International Conference on Robotics and Automation Workshop on

Semantic Perception, Mapping, and Exploration. Citeseer, 2011.

[45] G. Pezzulo, M. Candidi, H. Dindo, and L. Barca, “Action simulation in the human

brain: Twelve questions,” New Ideas in Psychology, 2013.

[46] H. Imamizu, S. Miyauchi, T. Tamada, Y. Sasaki, R. Takino, B. PuÈtz, T. Yoshioka,

and M. Kawato, “Human cerebellar activity reflecting an acquired internal model

of a new tool,” Nature, vol. 403, no. 6766, pp. 192–195, 2000.

[47] G. Cross and A. Zisserman, “Quadric reconstruction from dual-space geometry,” in

International Conference on Computer Vision, Jan 1998, pp. 25–31.

126

[48] J. Movellan, “Minimum angular acceleration control of articulated body dynamics,”

in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference

on, Oct 2012, pp. 5006–5011.

[49] J. R. Movellan, Physics for Robotics and Animation: A Gaussian Approach.

MPLab, UCSD, 2011.

[50] P. Corke, “A robotics toolbox for matlab,” IEEE Robotics and Automation Magazine,

vol. 3, no. 1, pp. 24–32, 1996.

[51] J. I. Yellot, “The relationship between luce’s choice axiom, thustone theory of

comparative judgement, and the double exponential distribution.” Journal of Mathe-

matical Psychology, vol. 15, pp. 109–144, 1977.

[52] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An integrated

system for real-time model predictive control of humanoid robots,” International

Conference on Humanoid Robots, 2013.

[53] S. Haykin, Neural networks : a comprehensive foundation. Upper Saddle River,

N.J: Prentice Hall, 1999.

[54] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,

vol. 61, pp. 85–117, 2015, published online 2014; based on TR arXiv:1404.7828

[cs.NE].

[55] E. Todorov, C. Hu, A. Simpkins, and J. Movellan, “Identification and control of a

pneumatic robot,” in Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd

IEEE RAS and EMBS International Conference on. IEEE, 2010, pp. 373–380.

[56] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[57] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Computed torque control with non-

parametric regression models,” in American Control Conference, 2008, 2008, pp.

212–217.

[58] “Torch, a scientific computing framework,” torch.ch.

[59] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China,

May 9-13 2011.

[60] J. N. Ingram, I. S. Howard, J. R. Flanagan, and D. M. Wolpert, “Multiple grasp-

specific representations of tool dynamics mediate skillful manipulation,” Current

Biology, vol. 20, no. 7, pp. 618 – 623, 2010.

torch.ch

127

[61] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–

533, 2015.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	Abstract of the Dissertation
	Introduction
	 An Expected Motion Information Model of Salience for Active Cameras
	Introduction
	Expected Motion Information: Static Case
	Optimizing Expected Motion Information

	 Predicting Saccade Distributions
	Expected Motion Information: The Dynamic Case
	Optimal Inference and Control

	Preference for Motion
	Control Policies for Active Cameras
	Conclusions

	Infomax models of oculomotor control
	Introduction
	Infomax Model
	Learning the control policy

	Evaluation Methods
	Saccades
	Smooth pursuit
	Hand-eye coordination

	Results
	Predictions of optimal saccades for static targets
	Prediction of saccadic and smooth pursuit eye movement for moving targets
	Prediction of eye movement in Hand-eye coordination

	Discussion
	Conclusions
	Acknowledgments

	Visual Perception of Inertial Affordances: Computer Simulation
	Introduction
	Prior Work

	Problem Formalization
	Robot Dynamics
	Control Policy

	Proposed Approach
	Estimating Material Density from Experience
	Finding the Control Policy

	Computer Simulations
	Simulation I: Modeling Mounoud and Bower's 1974 study
	Simulation II: Center of Mass
	Simulation III: Choosing a Grip for Hammering
	Simulation IV: Choosing a Grip for Tapping
	Sensitivity Analysis

	Conclusion

	Visual Perception of Inertial Affordances: Physical Robot
	Diego
	Controlling Diego: Trajectory Tracking
	Introduction to PID control
	Computed Torque Control
	Controller Tuning
	Visual Features

	Experiments
	Experiment 1: Computed torque tracking performance
	Modeling Mounoud and Bower's 1974 study
	Experiment 2: Anticipatory Forces
	Experiment 3: Generalizing to Novel Objects
	Experiment 4: Response to Decoy

	Discussion
	Conclusion

	Linear System Identification
	Notation
	Dynamics
	Inertial Forces
	Coriolis Forces
	Gravity
	Viscous Friction
	Equation of Motion

	Isolating Unknown Parameters
	Estimating Density
	Bibliography

