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Abstract— Cold atmospheric plasmas (CAPs) are increasingly
used for applications requiring the processing of heat- and
pressure-sensitive (bio)materials. A key challenge in model-
based control of CAPs arises from the high computational
requirements of theoretical plasma models as well as lack
of mechanistic understanding of plasma-surface interactions.
Thus, control strategies that rely on simple, physics-based
models that can be adapted to mitigate plant-model mismatch
will be particularly advantageous for CAP applications. This
paper presents an optimal control approach for controlling the
nonlinear and cumulative effects of CAPs delivered to a target
surface using a simple system model. Through parsimonious
input parameterization, the solution to the optimal control
problem (OCP) is given by an arc sequence that does not include
any singular arcs. A data-driven adaptive algorithm based on
modifier adaptation is proposed to deal with the structural
plant-model mismatch by estimating the mismatch in the cost
and constraints of the OCP. The adaptive approach is shown to
converge to a Karush-Kuhn-Tucker (KKT) point of the OCP for
the true system. Moreover, a control strategy based on feedback
linearization and derivative estimation is proposed for online
tracking of path constraints in the presence of disturbances and
model uncertainty. The proposed approach is demonstrated by
simulations and real-time control experiments on a kHz-excited
atmospheric pressure plasma jet in Helium, in which the plasma
treatment time is minimized while delivering a desired amount
of nonlinear thermal effects to the target surface.

Index Terms— optimal control; modifier adaptation; feed-
back linearization; derivative estimation; cold atmospheric
plasmas.

I. INTRODUCTION

Cold atmospheric plasmas (CAPs) are a class of plasmas
generated in ambient conditions. These plasmas have been
shown to be uniquely promising for the treatment of heat-
and pressure-sensitive (bio)materials [1]–[3]. This is due to
the non-equilibrium nature of the generated plasma (i.e., the
electron temperature is very high, around 1-5 keV, while
the temperature of a background gas is close to room
temperature). Several reactions with the background gas and
the ambient air generate reactive species, as well as heat,
radiation, and electric fields. This induces effects that are
useful for industrial processing and manufacturing, surface
activation and modification [4], [5], as well as biomedical
applications such as plasma medicine [6], [7]. Atmospheric
pressure plasma jets (APPJs) have emerged as a popular
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class of CAP discharge devices [4], [8], [9]. In APPJs, an
electrode is placed in or around a dielectric tube and an
electric field is applied to a flowing gas, which generates a
visible plume that extends several centimeters beyond the tip
of the dielectric tube [10]. Although the generated plasma
and the plasma-surface interactions are difficult to model,
APPJs must be operated in a way that is reliable, effective,
and time-conscious for treatment, otherwise damage may
occur due to the cumulative and nondecreasing nature of
the plasma effects on a surface [11]–[13]. This corresponds
to the so-called dose delivery problem, where the goal is
to deliver a plasma “dose” (i.e., nonlinear and cumulative
effects of the plasma) to a target surface in a controllable and
reproducible manner. This problem is challenging because
the APPJ may need to move across the target surface, the
surface properties may change over time and space, and
the operation is sensitive to various disturbances such as
the tip-to-surface distance and ambient conditions. Moreover,
the plasma behavior is intrinsically variable and subject to
transition between different modes [14], [15].

Recent work has shown the promise of predictive con-
trol and learning-based control approaches for adaptive and
automated operation of APPJs [16]–[18]. Reduced-order,
physics-based models [19] as well as data-driven models
based on subspace identification [20] and linear parame-
ter varying identification [21] have been used to develop
model predictive control (MPC) strategies for constrained,
multivariable control of the nonlinear thermal effects of
plasma on surfaces. Hierarchical predictive control strategies
have also been shown to be useful in achieving spatially
uniform thermal dose delivery on one-dimensional and two-
dimensional surfaces [22], [23]. Furthermore, experimental
studies using cell and chemical assays have correlated oper-
ational parameters of CAPs such that real-time monitoring
of the plasma’s chemical effects can be effectively utilized in
an adaptive manner for feedback control [24]. These studies
were extended to develop data-driven models and MPC-
based strategies for targeted cancer cell treatment [25], [26].
In additional studies, reinforcement learning [27] and deep
learning methods [28], [29] demonstrated effective control
of APPJs for various applications.

Although recent work has shown that MPC facilitates
reproducible and effective operation of APPJs, important
challenges remain. MPC for controlling the nonlinear plasma
effects (i.e., plasma dose delivery) requires solving a non-
linear optimization problem, which can be computationally
expensive and may restrict real-time control to cases with
relatively large sampling times. This particularly poses a



challenge to the control of fast-sampling CAP applications,
as well as to point-of-use and portable applications in which
embedded control using resource-limited devices is needed.
Furthermore, MPC relies on a descriptive model of the
system dynamics that is amenable to online computations.
However, theoretical plasma models are computationally
expensive for real-time control, and models for complex
plasma effects on surfaces are not available due to lack of
fundamental understanding of plasma-surface interactions.
While there has been a growing interest in learning-based
MPC approaches that use reduced-order models combined
with online learning (see [30] and the citations therein),
these approaches still require the online solution of nonlinear
optimization problems. Several approaches for adaptive op-
timal control of nonlinear systems with model uncertainty
have been developed recently, mostly using a data-based
paradigm. For example, methods based on fuzzy control
and combination of feedforward and feedback control [31],
[32] or adaptive state observers [33], [34] were developed to
implement adaptive, decentralized, and fault-tolerant optimal
control for nonlinear systems, including large-scale systems,
and a similar method based on neural networks was proposed
by [35]. However, these methods typically require a specific
structure for either the model or mismatch, which may not
encompass the true system. Alternatively, methods based
on adaptive dynamic programming and concepts of deep
learning and actor-critic neural networks for reinforcement
learning were also developed for model-free optimal control
[36]–[39]. However, these approaches can be too general,
making it challenging to accurately estimate the model
parameters. Hence, these methods may not be suitable when
the mismatch between the true system and its model is
structural, as it is the case in the CAP application at hand
due to the unknown model structure for the plasma effects
on surfaces. In this case, it may be more effective to adapt
the optimization problem itself by considering its optimality
conditions.

This paper presents a data-driven, adaptive optimal control
approach for controlling the nonlinear thermal effects of
a kHz-excited APPJ in Helium on the target surface. The
main advantages of the proposed adaptive optimal control
approach include: (i) effective handling of significant plant-
model mismatch, which is especially important for plasma
applications for which high-fidelity models are not available;
(ii) elimination of online optimization, which makes the
proposed approach useful for control of fast-sampling APPJs;
and (iii) convergence to the optimal solution for the true
system, which can be used to improve the efficacy of CAP
treatments. First, the optimal control problem (OCP), which
can handle nonlinear costs and path constraints, is solved
offline using a reduced-order system model. Then, the OCP
is combined with a data-driven modifier adaptation algorithm
[40]–[42] to mitigate the effects of plant-model mismatch.
Modifier adaptation enables satisfying the optimality condi-
tions for the true (unknown) system upon convergence by
directly using system measurements to update modifiers that
are added to the cost and constraints of the OCP [40]. Hence,

an important feature of modifier adaptation is the mitigation
of infeasibility or suboptimal performance after convergence.
Furthermore, we prove that, if the adaptation converges to a
single solution, then this point is a KKT point of the OCP
for the true system.

Furthermore, to track active path constraints associated
with the optimal control sequence, we propose a control
strategy that leverages feedback linearization and derivative
estimation. Feedback linearization is a control method for
nonlinear systems based on exact linearization [43]–[45].
Although feedback linearization typically requires an ade-
quate model of the nonlinear system to avoid losing the
property of exact linearization, significant modeling errors
and disturbances are present in practice [46]. Nonetheless,
since input-output feedback linearization strategies rely on
the knowledge of values related to output derivatives, these
derivatives can be inferred from measurements via derivative
estimation. In particular, efficient algebraic approaches based
on finite impulse response (FIR) filters provide a deadbeat
property for the derivative estimates [47], [48]. This combi-
nation of feedback linearization and derivative estimation has
been shown to provide fast setpoint tracking in the presence
of disturbances and significant plant-model mismatch [49].

In this paper, these two control strategies (the data-
driven, adaptive OCP combined with feedback linearization
and derivative estimation for path constraint tracking) are
combined and demonstrated in simulations and real-time
control experiments using a kHz-excited APPJ in Helium.
To the authors’ best knowledge, this paper proposes for the
first time the combination of a data-driven, adaptive method
for solving OCPs based on modifier adaptation and the use
of a control strategy based on feedback linearization and
derivative estimation for path constraint tracking. This com-
bination is essential to enable the real-time implementation
of the proposed approach for adaptive optimal control. In
particular, we address the problem of directly minimizing
the plasma treatment time while delivering a desired amount
of nonlinear thermal effects to the target surface. Minimiz-
ing the treatment time is especially important for plasma
treatment of biomaterials, for example, in plasma biomedical
applications, which has not been addressed thus far.

II. PROBLEM DESCRIPTION

This section presents the kHz-excited APPJ testbed, a
reduced-order, physics-based model for describing the non-
linear thermal effects of the APPJ, and the OCP formulation.

A. APPJ Testbed

We aim to control a kHz-excited APPJ in Helium (He)
with prototypical use in biomedical applications. The APPJ
consists of a copper ring electrode wrapped around a quartz
tube that serves as both a dielectric barrier and the gas flow
channel, as depicted in Fig. 1. He gas flows through the
tube, and plasma ignition is achieved by applying a high
frequency alternating current (AC) voltage to the copper
electrode. The generated plasma is directed out of the tube
onto a grounded, glass-covered metal plate at a distance of 4



Grounded metal plate

Cover slip

Copper electrode

Amplifier
Function 

Generator

Microcontroller

Computer

Helium flow

IR camera

Surface temperature

Applied 

Power

Applied 

Voltage

ds(t)
Tg(t)

P̃(t)

qg(t)

T (t)

Fig. 1. Schematic of the kHz-excited APPJ in He.

mm below the tip of the tube. In general, the applied power
P̃ (W) and He flow rate qg (slm) are the manipulated inputs
to this setup, and the maximum surface temperature T (K)
is the measured output. For this study, the He flow rate
is set at 3 slm, and the applied power is used to control
the maximum surface temperature. Applied power cannot
be directly manipulated in the APPJ, but it is implemented
using an embedded proportional-integral (PI) controller on a
microcontroller (Arduino UNO) that manipulates the applied
voltage. Applied voltage is manipulated by generating a
sinusoidal waveform at a specified frequency using a function
generator (integrated circuit, XR-2602CP). This signal is
amplified using an amplifier (TREK 10/40A-HS) before
being sent to the copper electrode. Surface temperature is
measured through a radiometric infrared thermal camera
(Lepton FLIR 3). All advanced control strategies and data
acquisition are managed via a standard laptop CPU (2.4 GHz
Quad-Core Intel i5 processor) using Python. Offline compu-
tation of the OCP is done using custom MATLAB routines,
which are compiled to MEX files for efficient computation.
Measurements are taken at relatively fast timescales (≈ 0.2
s). Further details on the APPJ testbed can be found in [23].

B. Reduced-Order APPJ Model

We use a reduced-order, physics-based model to describe
the thermal effects of plasma on a target surface. The model
relies on the fundamental assumption that the mass and
energy transport along the plasma occurs at much faster
timescales than the surface temperature dynamics [19]. As
such, the thermal effects of the APPJ on a surface are
described by

dT
dt (t) =

hqg(t)γ (Tg(t)−T (t))
ρcpd(πr2)γ −φ

(
T (t)

)
, T (t0) = T0, (1)

and algebraic equations

Tg,0(t) =
η̄

qg(t)ρgcp,g
P̃(t)+T∞, (2)

Tg(t) = Tg,0(t)exp
(
−
∫ ds(t)

0 L(z, qg(t)
πr2 )−1dz

)
+T∞

(
1− exp

(
−
∫ ds(t)

0 L(z, qg(t)
πr2 )−1dz

))
, (3)

that imply

Tg(t) =
η̄

qg(t)ρgcp,g
exp
(
−
∫ ds(t)

0 L(z, qg(t)
πr2 )−1dz

)
P̃(t)+T∞, (4)

where T (t) is the surface temperature, P̃(t) is the applied
power, qg(t) is the gas flow rate, ds(t) is the APPJ tip-to-
surface distance, φ

(
T (t)

)
is an increasing function of T (t),

Tg,0(t) is the gas temperature at the tip of the APPJ, Tg(t)
is the gas temperature at the plasma incident point on the
surface, T0 is the initial surface temperature, L(z, qg(t)

πr2 ) is a

characteristic length that depends on the distance z and qg(t)
πr2 ,

ρ and cp are the constant density and constant heat capacity
of the surface, d is the surface thickness, r is the radius of the
plasma jet that results in a section area πr2, γ is a positive
exponent, hqg(t)γ(πr2)−γ is a heat transfer coefficient, η̄ is
an efficiency parameter, ρg and cp,g are the constant density
and constant heat capacity of the gas, and T∞ is the ambient
temperature. A detailed discussion of the model can be found
in [19].

Equations (1) and (4) are augmented with the following
ordinary differential equation that describes the cumulative
and nonlinear thermal effects of the plasma on a surface in
the units of cumulative equivalent minutes (CEM)

dCEM
dt (t) = KTre f−T (t), CEM(t0) = 0, (5)

where K and Tre f are constants that relate the surface
temperature T (t) to the accumulation of the thermal effects
CEM(t) on the surface. According to the definition of CEM
in (5), this quantity is used to compare the thermal effects of
plasma at different surface temperatures. For example, with
the values K = 0.5 and Tre f = 316.15 K, one can observe that
one minute at 316.15 K is equivalent to 15 s at 318.15 K
or 4 min at 314.15 K in terms of thermal effects of plasma.
We note that CEM was originally proposed to quantify the
thermal dose effects in hyperthermia treatment in the 1980’s
by [50]. Upon fixing a reference value d̄s for ds(t) and a
constant value q̄g for qg(t) and defining

Cp := ρcpπr2d
µ

, (6)

P(t) := exp
(
−
∫ ds(t)

d̄s
L(z, q̄g

πr2 )
−1dz

)
P̃(t), (7)

ϕ
(
T (t)

)
:= φ

(
T (t)

)
+

hq̄γ
g(T (t)−T∞)

ρcpd(πr2)γ , (8)

µ := η̄h(πr2)1−γ

q̄1−γ
g ρgcp,g

exp
(
−
∫ d̄s

0 L(z, q̄g
πr2 )

−1dz
)
, (9)

the thermal effects of the APPJ can be described by

dT
dt (t) =

1
Cp

P(t)−ϕ
(
T (t)

)
, T (t0) = T0, (10a)

dCEM
dt (t) = KTre f−T (t), CEM(t0) = 0, (10b)



where T (t) and CEM(t) are the states x(t), T (t) is the
measured output y(t), and P(t) is the manipulated input u(t).
As such, we arrive at the nonlinear state-space model

ẋ(t) = f
(
x(t),u(t)

)
, x(t0) = x0, (11a)

y(t) = cTx(t), (11b)

with x(t) :=
[

T (t)
CEM(t)

]
, y(t) := T (t), and u(t) := P(t). While

the structure of the physics-based model (10) is known, the
parameter Cp > 0 and the functional relationship ϕ

(
T (t)

)
,

with ϕ ′
(
T (t)

)
> 0, are unknown and subject to uncertainty.

Thus, although the model (10) is simple in terms of number
of states, its structure is fairly general owing to the presence
of the term ϕ

(
T (t)

)
with an unknown structure. Additionally,

while the power P(t) cannot be directly manipulated in the
APPJ, it is possible to control P(t) on fast timescales on
the order of milliseconds via the embedded PI controller
described in Section II-A. Hence, we can effectively use
P(t) as a manipulated input given the slow dynamics of the
surface temperature, which is on the order of seconds.

C. Optimal Control Problem

In this work, the control objective is to minimize the
plasma treatment time t f while (i) ensuring that a desired
amount CEMsp of thermal plasma effects is delivered to the
surface, that is, CEMsp−CEM(t f ) ≤ 0, and (ii) resolving
the surface temperature to its initial value T0 or lower,
that is, T (t f )−T0 ≤ 0. The overarching goal of minimizing
treatment time is a significant consideration in various CAP
applications (e.g., increasing throughput in biomaterials pro-
cessing or improving patient experience in plasma medicine).
Meanwhile, ensuring the delivery of a specified amount of
plasma effects and resolving the surface temperature to its
initial value or lower are critical since plasma effects are
cumulative and nonlinear (that is, plasma effects cannot be
retracted after the effects are delivered). Recall that the
dynamics of surface temperature can be relatively slow,
which means that a surface temperature above its initial
value may continue to affect the substrate despite the end of
treatment. Thus, over-administration of plasma effects may
result in burning and irreversible damage to the substrate
(e.g., tissue), while not delivering enough plasma effects
may not produce the desired effects on the substrate (e.g.,
disinfection) [11]–[14].

A generic formulation of the OCP is given as

min
u(·),t f

J
(
u(·), t f

)
= φ

(
x(t f ), t f

)
, (12a)

s.t. T
(
u(·), t f

)
= ψψψ

(
x(t f ), t f

)
≤ 0nψ

, (12b)

ẋ(t) = f
(
x(t),u(t)

)
, x(t0) = x0, (12c)

g
(
u(t)

)
=
[

u−u(t)
u(t)−u

]
≤ 0ng , (12d)

h
(
x(t)

)
≤ 0nh , (12e)

where t0 is the initial time; t f ∈ [t0, tmax] is the finite final
time with upper bound tmax; u(t) is the piecewise-continuous
input for all t ∈

[
t0, t f

)
with lower and upper bounds u and u;

x(t) is the nx-dimensional vector of piecewise-continuously

differentiable states for all t ∈
[
t0, t f

)
; f(x,u) is an nx-

dimensional vector function, smooth for all (x,u)∈Rnx×R;
g(u) is an ng-dimensional vector function, smooth for all
u ∈ R; h(x) is an nh-dimensional vector function, smooth
for all x ∈ Rnx ; and φ(x, t), ψψψ(x, t) are a scalar function
and an nψ -dimensional vector function, respectively, smooth
for all (x, t) ∈ Rnx × [t0, tmax]. We assume that h(1)(x,u) :=
∂h
∂x (x)f(x,u) depends explicitly on u.

In view of the aforementioned control objective, the
OCP (12) is cast as the minimization of the final time
t f needed to reach a desired thermal effect CEMsp in the
units of CEM and to return to a surface temperature below
the initial temperature T0 that ensures no accumulation of
thermal effects after the final time. Thus, the corresponding
cost function is simply the final treatment time

J
(
u(·), t f

)
= φ

(
x(t f ), t f

)
= t f , (13)

whose minimization is subject to the terminal constraints

T
(
u(·), t f

)
= ψψψ

(
x(t f ), t f

)
=
[

T (t f )−T0
CEMsp−CEM(t f )

]
≤ 02. (14)

In addition, the power P(t) is subject to a lower bound P
and an upper bound P, that is, the input constraints

g
(
u(t)

)
=
[

P−P(t)
P(t)−P

]
≤ 02, (15)

while the surface temperature is subject to an upper bound
T to ensure that the surface is not subject to excessive
temperatures, which corresponds to the state constraint

h
(
x(t)

)
= T (t)−T ≤ 0. (16)

The OCP is also subject to the dynamics f
(
x(t),u(t)

)
given by (10). The APPJ model (10) is a significantly
simplified model of the complex plasma-surface interactions,
and therefore, is subject to significant plant-model mismatch.
To this end, we resort to a data-driven adaptive algorithm
to update the OCP via modifier adaptation, as illustrated
in Fig. 2. Modifier adaptation relies on the estimation of
the mismatch of the terminal cost function and terminal
constraint functions between the true plasma treatment and
the model (10) after a treatment. Updates to the initial OCP
are determined offline using the estimated mismatches.

Additionally, as shown later in this paper, a portion of the
optimal control sequence relies on a state constraint-seeking
arc, specifically for tracking the surface temperature T (t).
Within this arc, we must keep T (t) at some reference point
without explicit knowledge of the dynamics of T (t). For
effective reference tracking, fast control computations on par
with system dynamics on the order of seconds are essential
since a control algorithm with computation times on the
order of seconds would be inappropriate. Here, we propose a
feedback linearization method with derivative estimation for
reference tracking. This tracking strategy ensures elimination
of steady-state error and rejection of input disturbances
despite incomplete knowledge of the model [49]. The overall
control strategy does not require solving any optimization
problem online, as the online computations are limited to
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simple, small-scale vector operations. This can be particu-
larly advantageous towards control of fast-sampling APPJ
applications using resource-limited embedded systems in the
pursuit of portable and automated biomaterials processing
and biomedical devices.

III. CONTROL STRATEGY

This section presents the data-driven, adaptive optimal
control approach as well as the feedback linearization strat-
egy with derivative estimation for path constraint tracking.

A. OCP Reformulation as a Numerical Optimization Prob-
lem

According to Pontryagin’s maximum principle, a solution
to (12) is optimal only if there exists an nψ -dimensional
vector ννν ≥ 0nψ

, an nx-dimensional vector λλλ (t), an ng-
dimensional vector µµµ(t)≥ 0ng , and an nh-dimensional vector
ηηη(t)≥ 0nh such that, for

χ
(
x(t f ), t f

)
= φ

(
x(t f ), t f

)
+ννν

T
ψψψ
(
x(t f ), t f

)
, (17)

the following conditions are satisfied [51].
(i) For almost every t,

(
λλλ (t),µµµ(t),ηηη(t)

)
6= 0nx+ng+nh .

(ii) The adjoint variables λλλ (t) are described, for almost
every t, by the differential equations

λ̇λλ (t) =− ∂ f
∂x
(
x(t),u(t)

)T
λλλ (t)− ∂h(1)

∂x
(
x(t),u(t)

)T
ηηη(t),

λλλ (t f ) =
∂ χ

∂x
(
x(t f ), t f

)T
, (18)

and, for each entry point η such that hk
(
x(η−)

)
< 0 and

hk
(
x(η)

)
= 0 for some k = 1, . . . ,nh, it holds that

λλλ (η−) = λλλ (η)− ∂hk
∂x
(
x(η−)

)T
(

f
(

x(η−)
)
−f
(

x(η)
))T

λλλ (η)

h(1)k

(
x(η−)

) . (19)

(iii) The Lagrangian function, defined as

L
(
x(t),u(t),λλλ (t),µµµ(t),ηηη(t)

)
= λλλ (t)Tf

(
x(t),u(t)

)
+µµµ(t)Tg

(
u(t)

)
+ηηη(t)Th(1)(x(t),u(t)), (20)

satisfies, for almost every t,

0 = ∂L
∂u

(
x(t),u(t),λλλ (t),µµµ(t),ηηη(t)

)
= ∂ f

∂u

(
x(t),u(t)

)T
λλλ (t)

+ ∂g
∂u

(
u(t)

)T
µµµ(t)+ ∂h(1)

∂u

(
x(t),u(t)

)T
ηηη(t). (21)

(iv) The Hamiltonian function, defined as

H
(
x(t),u(t),λλλ (t)

)
= λλλ (t)Tf

(
x(t),u(t)

)
, (22)

satisfies, for almost every t,

H
(
x(t),u(t),λλλ (t)

)
+ ∂ χ

∂ t

(
x(t f ), t f

)
= 0. (23)

(v) The Lagrange multipliers ννν , µµµ(t), and ηηη(t) satisfy

diag
(

ψψψ
(
x(t f ), t f

))
ννν = 0nψ

, (24)

and, for almost every t,

diag
(

g
(
u(t)

))
µµµ(t) = 0ng , (25)

diag
(

h
(
x(t)

))
ηηη(t) = 0nh , (26)

η̇ηη(t)≤ 0nh . (27)

These conditions imply that, for almost every t such that
the constraints g

(
u(t)

)
≤ 0ng and h

(
x(t)

)
≤ 0nh are not active,

µµµ(t) = 0ng , ηηη(t) = 0nh , and

∂H
∂u

(
x(t),u(t),λλλ (t)

)
= ∂L

∂u

(
x(t),u(t),λλλ (t),µµµ(t),ηηη(t)

)
= 0. (28)

If this condition (28) is sustained over an interval, then the

time derivatives
dq
(

∂H
∂u (x(t),u(t),λλλ (t))

)
dtq for q= 1,2, . . . must also

vanish over that interval, which corresponds to a singular arc.
Below, we show by contradiction that a singular arc cannot

occur for the APPJ modeled by (10). Firstly, we compute

∂H
∂u

(
x(t),u(t),λλλ (t)

)
= ∂ f

∂u

(
x(t),u(t)

)T
λλλ (t)

=
[

1
Cp

0
]
λλλ (t) (29)

and

d
(

∂H
∂u (x(t),u(t),λλλ (t))

)
dt = f

(
x(t),u(t)

)T ∂ 2f
∂u∂x

(
x(t),u(t)

)T
λλλ (t)

− ∂ f
∂u

(
x(t),u(t)

)T ∂ f
∂x
(
x(t),u(t)

)T
λλλ (t)

=− 1
Cp

∂ f
∂T

(
x(t),u(t)

)T
λλλ (t)

=
[

ϕ ′(T (t))
Cp

log(K)KTre f−T (t)

Cp

]
λλλ (t). (30)

This implies that, in a singular arc,[
0
0

]
=

 ∂H
∂u

(
x(t),u(t),λλλ (t)

)
d
(

∂H
∂u (x(t),u(t),λλλ (t))

)
dt

= M λλλ (t), (31)



with

M =

 1
Cp

0

ϕ ′(T (t))
Cp

log(K)KTre f−T (t)

Cp

. (32)

Since µµµ(t) = 0ng , ηηη(t) = 0nh , and
(
λλλ (t),µµµ(t),ηηη(t)

)
6=

0nx+ng+nh , the condition λλλ (t) 6= 0nx holds. This is possible
only if M is singular, that is, det(M ) = 0. However, since

det(M ) = log(K)KTre f−T (t)

C2
p

> 0, (33)

M cannot be singular. Hence, singular arcs are not possible
for the model in (10). Note that this is the case indepen-
dently of (i) the cost function and constraints and (ii) the
functional relationship ϕ

(
T (t)

)
and the parameter Cp, that

is, independently of the model uncertainty.
Hence, at least one of the constraints g

(
u(t)

)
≤ 0ng and

h
(
x(t)

)
≤ 0nh is active for all times t. If a constraint

gk
(
u(t)

)
≤ 0 is active, then the input u(t) is such that

gk
(
u(t)

)
= 0, for k = 1, . . . ,ng. If a constraint hk

(
x(t)

)
≤ 0

is active, then the input u(t) is such that h(1)k

(
x(t),u(t)

)
= 0,

for k = 1, . . . ,nh. Thus, the optimal input u(t) is composed
of a sequence of arcs where each arc can be of type 1) input
constraint-seeking, such that it is determined by an equality
u(t) = u or u(t) = u that specifies an input bound, or 2) state
constraint-seeking, such that it is determined by an equality
h(1)k (x(t),u(t)) = 0 for some k = 1, . . . ,nh, that is, such that
a state constraint remains active [52]. Consequently, there is
a finite number of arc types from which arc sequences can
be formed. If we consider as plausible arc sequences only
sequences with a number of arcs no larger than some upper
bound n̄a and without consecutive arcs of the same type, it
follows that the number of plausible sequences is also finite.

Parsimonious input parameterization [53] is an effective
approach for describing the optimal input using only a
few decision variables, in contrast to infinite-dimensional
variables in the OCP (12). For a given plausible arc sequence
composed of ns + 1 input constraint-seeking arcs, the input
is defined by the following decision variables: the switching
times t̄1, . . . , t̄ns to these arcs and the final time t̄ns+1 = t f
[54]. The entry points in state constraint-seeking arcs are
given by the nη -dimensional vector ηηη = (η1, . . . ,ηnη

), but
switching to these arcs cannot occur at arbitrary times since
it depends on the states x(t). Consequently, the OCP reduces
to the problem of determining the optimal arc sequence and
the optimal switching times and final time.

For a given arc sequence, we describe the input in the
i-th time interval [t̄i−1, t̄i), for i = 1, . . . ,ns + 1, by using
the control law u(t) = c̃

(
x(t)

)
. For input constraint-seeking

arcs, c̃
(
x(t)

)
= u or c̃

(
x(t)

)
= u. For state constraint-seeking

arcs, c̃
(
x(t)

)
is such that h(1)k

(
x(t), c̃

(
x(t)

))
= 0 for some

k = 1, . . . ,nh. Then, upon eliminating input dependencies and
rewriting the OCP (12) in terms of the states x, the system
dynamics take the form

f̃
(
x(t)

)
:= f

(
x(t), c̃

(
x(t)

))
. (34)

Since the input parameters for the given arc sequence are
τττ :=

(
t̄1, . . . , t̄ns , t f

)
, the OCP (12) can be reformulated in

terms of the new decision variables as

min
τττ

φ̂(τττ) := φ
(
x(t f ), t f

)
, (35a)

s.t. ψ̂ψψ(τττ) := ψψψ
(
x(t f ), t f

)
≤ 0nψ

, (35b)

t̄i−1 ≤ t̄i, i = 1, . . . ,ns +1, (35c)

ẋ(t) = f̃
(
x(t)

)
, x(t0) = x0, (35d)

which is convenient for numerical optimization since there
are only N := ns + 1 decision variables. The decision vari-
ables τττ are considered as continuous variables. Also, they do
not need to be recast to a sampling time in real time since the
switching between arcs can take place at any time, including
between sampling times.

However, the explicit form of h(1)k

(
x(t),u(t)

)
is not exactly

known due to uncertainty of 1
Cp

and lack of knowledge
about ϕ

(
T (t)

)
in (10). Thus, to implement a state constraint-

seeking arc such that h(1)k

(
x(t),u(t)

)
= 0, for k = 1, . . . ,nh,

the constraint hk
(
x(t)

)
= 0 must be tracked via feedback con-

trol (see Section III-C). Recall that we consider a single state
constraint h

(
x(t)

)
= T (t)−T ≤ 0 that consists in an upper

bound for the temperature. Note that a similar constraint for
CEM(t) is not needed since CEM(t) is nondecreasing, which
means that a state path constraint CEM(t)−CEM ≤ 0 can
be recast as a terminal constraint CEM(t f )−CEM ≤ 0.

Since the model in the OCP (35) is not an exact rep-
resentation of the APPJ, the solution to (35) is not the
optimal solution for the true system. Next, we propose an
adaptive algorithm based on modifier adaptation to compute
the optimal solution to (35) for the true system despite the
presence of plant-model mismatch. In summary, the input
constraints (15) are satisfied by the choice of arc sequences,
the state constraints (16) are satisfied by the control strategy
for tracking of state constraints, and the terminal cost (13) is
optimized and the terminal constraints (14) are satisfied by
the adaptive algorithm based on modifier adaptation.

Remark 1: The reader may note that the developments
in this section were a consequence of the structure of the
dynamical system only and are valid independently of the
cost and constraints of the problem.

B. Adaptive Optimal Control via Modifier Adaptation
We propose an adaptive approach to deal with the mis-

match between the APPJ and its model (10) so as to converge
to the optimum of the true system. Note that this mismatch
can be structural, which implies that the model of ϕ

(
T (t)

)
can be structurally incorrect. To this end, we first estimate
the mismatch between the cost and constraint functions for
the true system and the model; and then use this estimation
of the mismatch to implement an adaptive algorithm to solve
the OCP (35) for the true system.

Each terminal cost and constraint function of the OCP is
expressed for the true system and the model, respectively, as

χ̂
p(τττ) := χ̃

(
xp(t f ), t f

)
, (36)

χ̂
m(τττ) := χ̃

(
xm(t f ), t f

)
, (37)



where xp(t) and xm(t) are the states x(t) that correspond to
τττ in the true system and the model, respectively. Suppose
that, at each iteration k of the algorithm, data for χ̂ p(τττ) are
available in the neighborhood of a set of points τττ1, . . . ,τττk
evaluated by the algorithm. More precisely, the data are
available not only for the nominal points τττ0

i = τττ i, for i =
1, . . . ,k, but also for the auxiliary points τττ

j
i , for i = 1, . . . ,k

and j = 1, . . . ,N, where τττ1 is the model optimum. Hence, the
goal is to describe the mismatch between the functions χ̂ p(τττ)
and χ̂m(τττ) from measurements of χ̂ p(τττ j

i ) and knowledge of
χ̂m(τττ j

i ), for i = 1, . . . ,k and j = 0, . . . ,N. To this end, we
use a method known as modifier adaptation, which uses so-
called modifiers to provide a description of the mismatch in
the cost and constraint functions [40].

Suppose that the unknown function

gχ∗(τττ) = χ̂
p(τττ)− χ̂

m(τττ)'
[
1 (τττ− τττ1)

T][εχ∗

λλλ
χ∗

]
, (38)

with εχ∗ := χ̂ p(τττ1)− χ̂m(τττ1), λλλ
χ∗ = ∂ χ̂ p

∂τττ
(τττ1)

T− ∂ χ̂m

∂τττ
(τττ1)

T,
is sampled at τττ = τττ

j
i , for i = 1, . . . ,k and j = 0, . . . ,N, as

yχ

j (i) = gχ∗(τττ j
i )+ eχ

j (i), i = 1, . . . ,k, j = 0, . . . ,N, (39)

where yχ

j (i) is the measurement of gχ∗(τττ j
i ) with noise eχ

j (i).
Note that, if τττ−τττk had been used in (38) instead of τττ−τττ1,
the unknown function gχ∗(τττ) would still be approximated by
an affine function of τττ . In that case, the only difference would
be that εχ∗ would vary for each value of k. However, the
formulation in (38) allows using the same regressor τττ − τττ1
and obtaining a nearly constant value of εχ∗ for each value
of k. Based on the data yχ

j (i) and the mismatch model

yχ

j (i) = h j(i)T
[

ε
χ

k
λλλ

χ

k

]
+ eχ

j (i), i = 1, . . . ,k, j = 0, . . . ,N,(40)

with h j(i) := [1 (τττ
j
i−τττ1)

T ]T, we aim to estimate an affine ap-

proximation gχ

k (τττ) of gχ∗(τττ). Defining θθθ
χ

k :=
[

ε
χ

k
λλλ

χ

k

]
, yχ(i) :=[

yχ

0 (i) · · · yχ

N(i)
]T, eχ(i) :=

[
eχ

0 (i) · · · eχ

N(i)
]T, H(i) :=[

h0(i) · · · hN(i)
]T, we then have

yχ(i) = H(i)θθθ χ

k + eχ(i), i = 1, . . . ,k. (41)

Additionally, upon defining yχ

k :=
[
yχ(1)T · · · yχ(k)T

]T,
eχ

k :=
[
eχ(1)T · · · eχ(k)T

]T, Hk :=
[
H(1)T · · · H(k)T

]T,
we have

yχ

k = Hkθθθ
χ

k + eχ

k . (42)

Assuming that the noise realizations eχ

0 (1), . . . ,e
χ

N(1),
. . . ,eχ

0 (k), . . . ,e
χ

N(k) for τττ0
1, . . . ,τττ

N
1 , . . . ,τττ

0
k , . . . ,τττ

N
k are inde-

pendent and identically distributed (i.i.d.) and drawn from
a normal distribution with zero mean and variance σ2

χ , the
maximum-likelihood estimate of θθθ

χ

k is

θ̄θθ
χ

k =
(
HT

k Hk
)−1HT

k yχ

k . (43)

Also, the maximum-likelihood estimate of gχ

k (τττ) is

ḡχ

k (τττ) =
[
1 (τττ− τττ1)

T]
θ̄θθ

χ

k . (44)

Since ḡχ

k (τττ) is an estimate of the mismatch χ̂ p(τττ)− χ̂m(τττ),
χ̂m

k (τττ) := χ̂m(τττ)+ ḡχ

k (τττ) represents an estimate for χ̂ p(τττ).
This can be used to obtain estimates of the cost and constraint
functions φ̂ p(τττ) and ψ̂

p
j (τττ) of the OCP (35) for the true

system. Hence, based on the data available in the neighbor-
hood of the set of points τττ1, . . . ,τττk at each iteration k of the
adaptive algorithm, the following OCP is solved:

τττk+1 := argmin
τττ

φ̂
m(τττ)+ ḡφ

k (τττ), (45a)

s.t. ψ̂
m
j (τττ)+ ḡ

ψ j
k (τττ)≤ 0, j = 1, . . . ,nψ ,(45b)

t̄i−1 ≤ t̄i, i = 1, . . . ,ns +1, (45c)

ẋm(t) = f̃
(
xm(t)

)
, xm(t0) = x0. (45d)

Assume that the quality of the initial model specified by
the cost and constraint functions χ̂m(τττ) and the modified
models specified by the functions χ̂m

k (τττ) is such that the
model optimum τττ1 and the subsequent solutions τττk+1 are in
the basin of attraction of a global optimum of the OCP (35)
for the true system. Then, if the adaptive algorithm converges
to a single point, the true system converges to its global
optimum, as shown in the following theorem.

Theorem 1: Suppose that the OCP (45) is solved at each
iteration k of the adaptive algorithm. If the algorithm con-
verges to a single point τττ∞, then τττ∞ is a Karush-Kuhn-Tucker
(KKT) point of the OCP (35) for the true system. Moreover,
assuming that the points τττk are in the basin of attraction of
a global optimum of the OCP (35) for the true system, τττ∞

is a global optimum of the OCP (35) for the true system.
Proof: Assume that the adaptive algorithm converges

to a single point τττ∞. This implies that the algorithm eval-
uates the cost and constraint functions χ̂ p an arbitrarily
large number of times not only for τττ∞ but also for the
auxiliary points τττ

j
∞, for j = 1, . . . ,N. From the properties of

maximum-likelihood estimation and (43)-(44), this implies
that ḡχ

∞(τττ∞) = gχ∗(τττ∞),
∂ ḡχ

∞

∂τττ
(τττ∞) =

∂gχ∗

∂τττ
(τττ∞), which in turn

implies that χ̂m
∞ (τττ∞) = χ̂ p(τττ∞),

∂ χ̂m
∞

∂τττ
(τττ∞) =

∂ χ̂ p

∂τττ
(τττ∞), and τττ∞

is a KKT point of the OCP (45) for k→∞ if and only if τττ∞

is a KKT point of the OCP (35) for the true system. Since
τττ∞ is the solution to the OCP (45) for k→ ∞, τττ∞ is also a
KKT point of the OCP (35) for the true system. Then, since
the only KKT point of the OCP (35) for the true system that
is in the basin of attraction of a global optimum of that OCP
is the global optimum itself, τττ∞ is a global optimum of the
OCP (35) for the true system.

Note that the convergence of the algorithm to a single
point is an easily verifiable condition, which then guarantees
convergence to a KKT point of the OCP (35) for the true
system. Upon assuming a relatively mild technical condition
related to the basin of attraction of a global optimum of
that OCP, this KKT point is also guaranteed to be a global
optimum of the OCP (35) for the true system. Hence,
the proposed approach provides a way to account for the
mismatch between the true system and the model.

In summary, the interface between the blocks of the
control architecture in Fig. 2 is as follows: the “APPJ” block
sends the signal T (t) to the “Cost & Constraint Estimation”



block; the “Cost & Constraint Estimation” block sends the
information about the plant and model cost and constraints
χ̂ p(τττ), χ̂m(τττ) that correspond to the points τττ0

k , . . . ,τττ
N
k ; the

“Modifier Adaptation” block uses the information received
for the previously evaluated points τττ

j
i to update and solve

the OCP and sends the information τττk+1 to the “Feedback
Controller” block; the “Feedback Controller” block activates
feedback control when the state constraint is active according
to the switching times in τττk+1 and computes the signal P̃(t)
for the “APPJ” block based on T (t), as specified next.

C. Feedback Control for Path Constraint Tracking

As discussed in Sections II-C and III-A, one of the
objectives is to control the output yc(t) := T (t) to the
setpoint r(t) := T −∆T (t), where ∆T (t)≥ 0 is a piecewise-
constant back-off parameter, to satisfy the state constraint
h
(
x(t)

)
= T (t)− T ≤ 0, by manipulating the input u(t) :=

P(t). The constraint tightening enabled by a nonzero back-off
parameter has been shown to be an effective way for ensuring
path constraint satisfaction in the presence of plant-model
mismatch [55]. Note that f

(
x(t),u(t)

)
is a smooth function

and the relative degree of yc(t) with respect to u(t) is one,
which implies that yc(t) is an absolutely continuous function
of t that depends only on the absolutely continuous states
x(t). Furthermore, one can write

ẏc(t) = ẏu(t)+ ẏa(t), (46)

with

ẏu(t) = su
(
x(t)

)
:=−ϕ

(
T (t)

)
, (47)

where su
(
x(t)

)
is a fully unknown function of the absolutely

continuous states x(t) only, and

ẏa(t) = sa
(
y(t),u(t)

)
:= 1

Cp
P(t), (48)

where sa
(
y(t),u(t)

)
is a function of the current outputs y(t)

and inputs u(t) that is partially known with some modeling
error. In addition, sa

(
y(t),u(t)

)
is an affine function of the

inputs, that is,

sa
(
y(t),u(t)

)
= βa

(
y(t)
)
+Ba

(
y(t)
)
u(t), (49)

for βa
(
y(t)
)

:= 0 and the nonzero scalar Ba
(
y(t)
)

:= 1
Cp

.
We note that sa

(
y(t),u(t)

)
is partially known with some

modeling error as

s̃a
(
y(t),u(t)

)
= β̃a

(
y(t)
)
+ B̃a

(
y(t)
)
u(t), (50)

where β̃a
(
y(t)
)

:= 0 and B̃a
(
y(t)
)

:= 1
C̃p

are the modeled

counterparts of βa
(
y(t)
)

and Ba
(
y(t)
)
.

The goal is to control the output yc(t) to the setpoint
r(t) while the function su

(
x(t)

)
that corresponds to the

derivative ẏu(t) is fully unknown, the functions βa
(
y(t)
)

and
Ba
(
y(t)
)

are partially known with some modeling error, and
the input u(t) and the output y(t) are subject to disturbances.
The feedback control strategy for tracking must also ensure
elimination of steady-state error and rejection of constant
input disturbances without any integral term, as well as fast
convergence of the controlled output to the setpoint.

Note that r(t) is piecewise-constant, but may be discontin-
uous, which implies that ṙ(t) = 0 between time instants with
discontinuity of r(t). If the true system (11) were perfectly
known, one could use the input-output feedback linearization
law [45]

u(t) = Ba
(
y(t)
)−1
(

v(t)− ẏu(t)−βa
(
y(t)
))

(51)

to set the rates of variation v(t) for ẏc(t) as

ẏc(t) = v(t). (52)

For the variation rate v(t), one could choose the control law
[56]

v(t) = τ
−1
c
(
r(t)− yc(t)

)
, (53)

which would ensure exponential convergence of yc(t) to r(t)
with time constant τc in the ideal case of perfectly known
functions su

(
x(t)

)
, βa

(
y(t)
)
, and Ba

(
y(t)
)
, and no input

or output disturbances. However, the function su
(
x(t)

)
that

corresponds to the derivative ẏu(t) is fully unknown, while
the functions βa

(
y(t)
)

and Ba
(
y(t)
)

are partially known
with some modeling error. Furthermore, there is a difference
between the system input u(t) and the actuator input ũ(t) :=
P̃(t) due to the input disturbance d(t) := u(t)− ũ(t); and a
difference between the sensor output ỹ(t) := T̃ (t) and the
system output y(t) := T (t) due to the output disturbance
w(t) := ỹ(t)−y(t). We define the sensor output ỹc(t) := ỹ(t)
and the disturbance wc(t) := ỹc(t)− yc(t).

In the presence of these disturbances, it is not possible to
use directly the control laws (51) and (53). However, one
can approximate these control laws by replacing u(t) and
y(t) by ũ(t) and ỹ(t), βa

(
y(t)
)

and Ba
(
y(t)
)

by β̃a
(
ỹ(t)
)

and B̃a
(
ỹ(t)
)
, as well as the unknown derivative ẏu(t) by its

estimate ˆ̇yu(t). This yields

ũ(t) = B̃a
(
ỹ(t)
)−1
(

ṽ(t)− ˆ̇yu(t)− β̃a
(
ỹ(t)
))

, (54)

ṽ(t) = τ
−1
c
(
r(t)− ỹc(t)

)
. (55)

Now, (46)–(48) can be used to estimate the value ˆ̇yu(t) of the
unknown derivative by applying an finite impulse response
(FIR) filter to the sensor outputs ỹc(t) and the available rates

˜̇ya(t) = s̃a
(
ỹ(t), ũ(t)

)
(56)

in the interval [t−∆t, t], where ∆t is the size of the filter
window. We use the definition

˜̇yu(t) = ˙̃yc(t)− ˜̇ya(t)

= ẇc(t)+ ẏu(t)+ ẏa(t)− ˜̇ya(t). (57)

Appendix A provides more details about the continuous-
time derivative estimation of ˆ̇yu(t). If ỹc is absolutely con-
tinuous and D(ỹc, t) is defined as in Appendix A, then one
can show that

D(ỹc, t) = ˜̇yu(t)+R( ˜̇yu, t)+W ( ˜̇ya, t)

= W ( ˜̇yu, t)+W ( ˜̇ya, t), (58)



with

R( ˜̇yu, t) :=
∫

∆t
0 6
(

τ

∆t −
(

τ

∆t

)2
)

˜̇yu(t−∆t+τ)− ˜̇yu(t)
∆t dτ, (59)

W ( ˜̇ya, t) :=
∫

∆t
0 6
(

τ

∆t −
(

τ

∆t

)2
)

˜̇ya(t−∆t+τ)
∆t dτ. (60)

We now note that

ˆ̇yu(t) = D(ỹc, t)−W ( ˜̇ya, t), (61)

which implies that, from (58),

ˆ̇yu(t) = ˜̇yu(t)+R( ˜̇yu, t) = W ( ˜̇yu, t). (62)

From (62) and the definition of R( ˜̇yu, t), one can observe
that, if ˜̇yu(t−∆t + τ) is constant for τ ∈ [0,∆t], the estimate
ˆ̇yu(t) yields the desired value ˜̇yu(t). This results in a dead-
beat property. In addition, one can show that this estimate
minimizes both the mean squared error and the effect of
measurement noise wc(t) for a given ∆t [56].

In summary, the proposed controller via feedback lin-
earization and continuous-time derivative estimation is given
by (54), (55) with (50), (56), (61) for the system (46)–(49).
It can be shown that this feedback control strategy eliminates
steady-state error and rejects constant input disturbances
without any integral term and forces the controlled output
to converge exponentially to its setpoint [56].

IV. APPLICATION TO THE OPTIMAL CONTROL OF THE
THERMAL EFFECTS OF AN APPJ

This section demonstrates the performance of the proposed
data-driven, adaptive optimal control approach in simulations
and real-time control experiments for controlling the nonlin-
ear thermal effects of the kHz-excited APPJ in He depicted
in Fig. 1. The hardware and software platform used to deploy
the online part of the proposed control architecture has been
described in detail in Section II-A.

A. Control Objective

As discussed in Section II-C, in CAP applications for
biomaterials processing, it is important to treat a surface in
a minimal time to deliver a desired amount of cumulative,
nonlinear plasma effects. In this work, the control objective
consists in minimizing the treatment time t f such that a
desired amount of thermal effects is delivered and that the
surface temperature is resolved back to its initial temperature.
The cost and constraints of the OCP for the control of
the APPJ are given in (13)–(16). The APPJ is subject to
state (surface temperature T ≤ T ) and input bounds (power
P ∈ [P,P]).

It follows from Section III-A that the optimal input u(t)
is composed of a sequence of constraint-seeking arcs that
include:
• g1

(
u(t)

)
= P−P(t)≤ 0 is active and P(t) = P,

• g2
(
u(t)

)
= P(t)−P≤ 0 is active and P(t) = P, or

• h
(
x(t),u(t)

)
= T (t)−T ≤ 0 is active and Ṫ (t) = 0.

From the structure of the APPJ model (10) and the OCP, the
optimal arc sequence is composed of three arcs: in the first
arc, P(t) = P so that T (t) increases as quickly as possible
until the path constraint T (t)−T ≤ 0 becomes active; in the
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Fig. 3. Evolution of the cost (in blue) and constraints (in red) as a function
of the iteration number k of the adaptive optimal control algorithm. The
dashed lines represent the optimal values.

second arc, Ṫ (t) = 0 so that the path constraint T (t)−T ≤ 0
remains active; and, in the third arc, P(t) = P so that T (t)
decreases as quickly as possible until the terminal constraints
are satisfied. This arc sequence is optimal independently of
the functional relationship ϕ

(
T (t)

)
and the parameter Cp.

Switching from the first arc to the second arc cannot occur
at an arbitrary time since it depends on the temperature T (t).
Moreover, since the explicit form of Ṫ (t) is not exactly
known, control via feedback linearization and derivative
estimation is used to track the constraint T (t)− T = 0 in
the second arc (see the enclosed blue area in Fig. 2). As
such, since the optimal arc sequence is known, the OCP
reduces to the problem of determining the optimal switching
time t̄1 from the second arc to the third arc and the optimal
final time t f . Hence, the decision variables are τττ := (t̄1, t f ).
Finally, modifier adaptation is used to converge to the optimal
values of these decision variables for the true system despite
the presence of plant-model mismatch.

B. Closed-loop Simulations

We simulate the true system with the following equation
for the unknown function ϕ

(
T (t)

)
,

ϕ
(
T (t)

)
= UA

Cp

(
T − Tb+T∞

2

) log(T−T∞)−log(T−Tb)
log(T (t)−T∞)−log(T (t)−Tb)

, (63)

with Cp =
ρcpπr2d

µ
and UA = 2πrdkβ

µ
. Parameters for this

simulated true system are given in Table I of Appendix B,
while system constraints and objective values are given in
Table II. Uncertainty in the APPJ model (10) is considered
by describing the unknown function ϕ

(
T (t)

)
with structural

mismatch as ϕ̃
(
T (t)

)
= ŨA

Cp

(
T (t)− Tb+T∞

2

)
and the values

of the model parameters as C̃p = 0.8Cp and Ũ = 0.8U .
Additionally, the true system input u(t) = P(t) is not known
due to input disturbances d(t). These input disturbances can
represent the effect of a varying tip-to-surface distance and
are given by zero-mean Gaussian noise with a standard
deviation σd = 0.1 W. Thus, the decision variable in the
OCP is the known actuator input ũ(t) = P̃(t), for which the
input bounds P− P̃(t) ≤ 0 and P̃(t)−P ≤ 0 are applicable.
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Fig. 4. Closed-loop simulation results. Evolution of T (t), CEM(t), and P̃(t) over time for the nominal point of iteration k = 5, with the setpoint in the
second arc and upper bound T for T (t) and the lower and upper bounds P and P for P̃(t) represented by solid red lines and the terminal constraints for
T (t) and CEM(t) represented by dashed red lines.
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Fig. 5. Closed-loop simulation results for nominal MPC without measurement noise. Evolution of T (t), CEM(t), and P̃(t) over time, with the upper
bound T for T (t) and the lower and upper bounds P and P for P̃(t) represented by solid red lines and the terminal constraints for T (t) and CEM(t)
represented by dashed red lines.
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Fig. 6. Evolution of the cost (in blue) and constraints (in red) as a function
of the iteration number k of the adaptive optimal control algorithm for
different initial conditions (T0 = 312.15 K). The dashed lines represent the
optimal values.

Finally, the measurements of T (t) are corrupted by zero-
mean Gaussian noise with a standard deviation σT = 0.1 K.

The OCP (35) is first solved using the uncertain model
(10). This procedure yields the optimal values of the decision

variables t̄∗1 = 93.99 s and t∗f = 111.72 s. This corresponds
to a worse cost than the optimal cost of 109.45 s in the
absence of the plant-model mismatch, while the constraints
are inactive and feasible with T ∗(t∗f ) − T0 = −0.120 K,
CEMsp −CEM∗(t∗f ) = −0.017 min. These values of the
decision variables become the first point τττ1 evaluated by
the adaptive algorithm, from which the algorithm should
converge to the true solution. To this end, the algorithm uses
measurements of the terminal constraints. At each iteration
k of the adaptive algorithm, besides the nominal point τττk,
N = 2 auxiliary points τττ

j
k are evaluated. The step away from

each nominal point to obtain an auxiliary point corresponds
to +1.0 s for t̄1 and +1.0 s for t f . Since the proposed OCP
for the considered setup is solved offline, that is, between
consecutive runs of the APPJ, the time needed to solve it
does not need to be extremely low. Nevertheless, the OCP
is solved in less than one second.

Five iterations of the adaptive algorithm are performed to
examine the convergence to the true system. Fig. 3 shows the
evolution of the cost and constraints for the true system. We
observe that the cost for the true system already approaches
its optimal value at the iteration steps k = 2 and k = 3, while
the constraints become active with a slight violation. From
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Fig. 7. Closed-loop simulation results for different initial conditions (T0 = 312.15 K). Evolution of T (t), CEM(t), and P̃(t) over time for the nominal
point of iteration k = 5, with the setpoint in the second arc and upper bound T for T (t) and the lower and upper bounds P and P for P̃(t) represented by
solid red lines and the terminal constraints for T (t) and CEM(t) represented by dashed red lines.

iteration k = 4, both the cost and the constraints for the true
system become almost equal to their optimal values, which
indicates convergence to the optimal solution to the nonlinear
thermal effects delivery problem for the true system. After
five iterations, the cost for the true system converges to
t∗f = 109.72 s, which is nearly equal to the optimal cost of
109.45 s for the true system. The violation of the constraints
T ∗(t∗f )−T0 ≤ 0 and CEMsp−CEM∗(t∗f ) ≤ 0 remains under
0.02 K and 0.025 min for all the iterations, respectively.

For each point τττ
j
k evaluated by the adaptive algorithm,

the proposed control strategy via feedback linearization
and derivative estimation is used to track the constraint
T (t)− T = 0 in the second arc. This control strategy en-
sures elimination of steady-state error and rejection of input
disturbances despite the fact that the controller does not
include any integral term and uses an incomplete model,
that is, without knowledge of ϕ

(
T (t)

)
. The nominal values

τc = 1 s and ∆t = 3 s of the design parameters are used.
This choice is based on the assumption that the unknown
rate ϕ

(
T (t)

)
remains approximately constant in a window

of ∆t = 3 s. Fig. 4 shows the evolution of T (t), CEM(t),
and P̃(t) over time in the true system for the nominal point
of iteration k = 5. The control strategy successfully tracks
the constraint T (t)− T = 0 in the second arc despite the
existence of measurement noise and the lack of knowledge
about the true system. In this case, it is adequate to set the
back-off parameter to ∆T (t) = 0 since the violation of the
path constraint T (t)−T ≤ 0 is negligible.

To demonstrate the advantage of the proposed adaptive
scheme with respect to a widely used control strategy,
simulation results are also obtained for the nominal MPC
approach formulated in Appendix C (that is, MPC without
model correction or re-identification, but with online output
sampling from the true system) using CasADi [57], which
are shown in Fig. 5. Fig. 5 shows that, even in the ideal
case of no measurement noise and no disturbance, MPC
reaches a cost (i.e., minimum treatment time) of 111.56 s,
which is not a significant improvement with respect to the
performance obtained by solving the OCP offline using the
nominal model, for which a cost of 111.72 s is obtained. In

contrast, recall that the proposed adaptive scheme reaches a
cost of 109.72 s, which is significantly closer to the optimal
cost of 109.45 s for the true system. Furthermore, the costly
computation time of MPC (on the order of several seconds)
is significantly greater than the proposed path constraint
tracking (on the order of milliseconds or less). In this case,
we would require that the OCP is solved every several
seconds, which is insufficient for the plasma application.
While Fig. 3 and Fig. 4 show the results for T0 = 310.15 K,
it is also important to assess whether the proposed method is
robust to changes in the initial conditions. Hence, Fig. 6 and
Fig. 7 present the corresponding results for T0 = 312.15 K.
These figures show that the conclusions of the simulation
results are also valid for different initial conditions.

The fact that the solution computed after 5 iterations of
the proposed adaptive approach is nearly optimal for the true
system is further supported by the following facts: the arc
sequence and the control strategy ensure that the temperature
increases as quickly as possible in the first arc, remains at the
upper bound in the second arc, and decreases as quickly as
possible in the third arc, which ensures that the final time that
corresponds to the terminal cost is minimal for the final CEM
that is achieved; and the terminal constraints for the final
temperature and final CEM are marginally satisfied, which
indicates that these terminal constraints are nearly active and
confirms that the solution is nearly optimal. In addition,
the computational time needed by the proposed algorithm
for real-time implementation is very small owing to the
simplicity of the proposed control strategy, and even the
computational time in the offline part of the algorithm, that
is, between consecutive runs of the APPJ, is not significant.
Hence, the proposed approach appears to have benefits over
alternative methods for the application under study, which
validates the applicability of the proposed approach. In
summary, the closed-loop simulation results indicate that,
despite the existence of disturbances and structural mismatch
between the true system and its model, the combination of
the adaptive algorithm with an appropriate control strategy
for tracking of active path constraints enforces convergence
of the true system to the optimal solution to the OCP with
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Fig. 8. Labeled (corresponding with Fig. 1) image of the kHz-excited APPJ
in He used in the real-time control experiments. As described in Section
II-A, the setup has the following configuration: A standard laptop CPU
(2.4 GHz Quad-Core Intel i5 processor) is connected to the Arduino UNO
(outlined in black) to send the computed input (applied power, P̃(t)) values
to the setup. The applied power is used to compute an applied voltage via an
embedded PI controller. The applied voltage is sent to a function generator
(integrated circuit, XR-2602CP; not pictured) and amplifier (TREK 10/40A-
HS; not pictured). The high-frequency, high voltage signal is used to excite
Helium gas via a copper electrode. Helium gas flows (qg(t)) downward from
an external source through the transparent quartz tube. Surface temperature
is measured via a thermal camera (outlined in red) placed above the plasma
incidence with the surface. A subimage (outlined in orange) of the plasma
jet when powered on (emitting a plasma beam) is located in the upper right
corner.

negligible constraint violation.

C. Real-time Control Experiments

We now demonstrate the adaptive optimal control ap-
proach on the kHz-excited APPJ in He described in Section
II-A and shown in Fig. 8. We use the same OCP formulation
and APPJ model (10). However, for the experimental study
(i) the bounds for the applied power were adjusted to
P = 1.5 W to prevent accidental shutoff of the APPJ and
P = 4.5 W to allow for switching between the first and
second arcs; and (ii) the feedback linearization control was
tuned to better control the physical system. The solution
to the OCP is computed in MATLAB first, once again in
less than one second, which yields the optimal values of
the decision variables t̄∗1 = 85.8 s and t∗f = 101.7 s. The
constraints are inactive and feasible with T ∗(t∗f ) − T0 =
−1.8 K, CEMsp−CEM∗(t∗f ) =−0.22 min. These values of
the decision variables become the first point τττ1 evaluated
by the adaptive algorithm. For five iterations of the adaptive
algorithm, besides an experimental run at the nominal point
τττk, two additional experiments are run for the N = 2 auxiliary

points τττ
j
k. Again, the step away from each nominal point to

obtain an auxiliary point corresponds to +1.0 s for t̄1 and
+1.0 s for t f . To mitigate run-to-run variations, experiments
are procedurally performed with the same initial conditions
(P̃ = 2 W, qg = 3 slm) to reach an initial surface tempera-
ture T = 310.15 K before collecting experimental data and
applying the control approach.

As in the simulation case study, at each point τττ
j
k evaluated

by the adaptive algorithm, the control strategy via feedback
linearization and derivative estimation is used to track the
constraint T (t)−T = 0 in the second arc without assuming
any knowledge of the rate ϕ

(
T (t)

)
. The design parameters

were chosen as τc = 3 s and ∆t = 5 s to improve control
performance under the limitations of the physical system
(i.e., restricted measurement frequency). Fig. 9 shows the
resulting evolution of T (t), CEM(t), and P̃(t) over time for
the nominal point of iterations k = 1,3,5. The experimental
results suggest that the control strategy adequately tracks the
constraint T (t)−T = 0 in the second arc despite the existence
of measurement noise and the lack of knowledge about the
true system. Run-to-run variations appear to affect the initial
stages of control significantly. Nonetheless, the proposed
adaptive optimal control approach is able to converge to the
desired CEM setpoint in as few as five iterations despite
the simple physics-based model (10) used in the OCP. In
practice, back-off parameter tuning to mitigate the temper-
ature constraint violation should be addressed according to
the specifications of the application. The solution computed
after 5 iterations of the proposed adaptive approach is nearly
optimal for the true system for the reasons mentioned for the
simulation case study, and the computational time is again
small.

V. CONCLUSIONS

This paper proposed an adaptive optimal control approach
for controlling the delivery of thermal effects of plasma while
minimizing the plasma treatment time. This approach relies
on: (i) Pontryagin’s maximum principle and parsimonious
input parameterization to convert the OCP into a numerical
optimization problem with only a few decision variables; (ii)
modifier adaptation to update the OCP such that it converges
to the optimal solution for the true APPJ system after few
iterations; and (iii) feedback linearization and derivative esti-
mation for online tracking of some active path constraints in
the solution to the OCP. The proposed approach is a relatively
simple and intuitive way to optimize the delivery of plasma
effects to a surface, and overcomes the loss of optimality
due to plant-model mismatch. Closed-loop simulations and
real-time control experiments demonstrated that the approach
enables convergence to the optimal solution for the true
plasma jet despite the existence of measurement noise and
plant-model mismatch. The approach proposed in this paper
is potentially applicable to other nonlinear, uncertain systems
other than cold atmospheric plasmas. Future work will focus
on extending the proposed approach to more complex models
of APPJs and controlling nonthermal effects of plasma.
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Fig. 9. Real-time control experiments on the kHz-excited APPJ in He. Evolution of T (t), CEM(t), and P̃(t) over time for the nominal point of iterations
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APPENDIX

A. Continuous-time Derivative Estimation

An infinite impulse response (IIR) filter can also be
applied to ỹc(t) and ˜̇ya(t), which results in a linear observer
[58], [59]. However, the following results about derivative
estimation correspond to the FIR filter. The key advantages
of the FIR filter with respect to an IIR filter are the property
of deadbeat estimation of the unknown derivative after the
window size ∆t, instead of asymptotic convergence, and the
minimization of the effect of measurement noise wc(t) for a
given ∆t without the need to tune the observer parameters.

Since r(t) may be discontinuous, the same is valid for ũ(t)
and ˜̇ya(t) and, consequently, for u(t), ẏa(t), and ẏc(t). On the
other hand, since x(t) is absolutely continuous, the same is
valid for y(t) and ẏu(t). We assume that w(t) is absolutely
continuous, thus the same is valid for ỹ(t) and ỹc(t). The
fact that these functions are absolutely continuous is used in
some technical results in this paper. We propose to compute
the estimate ˆ̇yu(t) as the quantity that minimizes the mean
squared error between the sensor output ỹc(t−∆t + τ) and
the predicted output ŷc(t −∆t + τ) for τ ∈ [0,∆t], with the
goal of minimizing the effect of wc(t) for a given ∆t. This
mean squared error is defined as

J(t) = 1
∆t
∫

∆t
0 ε̂(t−∆t + τ)2dτ, (64)

where the prediction error is

ε̂(t−∆t + τ) = ỹc(t−∆t + τ)

− ŷc(t)−
∫

τ

∆t
ˆ̇yc(t−∆t +ζ )dζ , (65)

with

ˆ̇yc(t−∆t + τ) = ˆ̇yu(t)+ ˜̇ya(t−∆t + τ). (66)

The predicted output ŷc(t) that minimizes the mean
squared error J(t) is given by

ˆ̇yu(t) = 1
∆t2

∫
∆t
0
(
12 τ

∆t −6
)

υ(t−∆t + τ)dτ, (67)

where

υ(t−∆t + τ) = ỹc(t−∆t + τ)−
∫

τ

∆t
˜̇ya(t−∆t +ζ )dζ . (68)

Hence, we define D(ỹc, t) as

D(ỹc, t) := 1
∆t2

∫
∆t
0
(
12 τ

∆t −6
)

ỹc(t−∆t + τ)dτ. (69)

The function D(ỹc, t) corresponds to the continuous-time
version of the differentiation Savitzky-Golay filter of order
1, which was developed originally for the discrete-time case
[60] and is known as algebraic time-derivative estimation
in the continuous-time case [48]. Also, the use of a smaller
window size ∆t of the differentiation filter amplifies the effect
of measurement noise in wc(t).

B. Parameter Values

Parameter values for the adaptive control approach are
given in Table I and Table II.

TABLE I
SIMULATED APPJ MODEL PARAMETERS

Parameter Description Value

K Base of exponential dependence of varia- 0.5tion of CEM on the surface temperature

Tre f
Reference temperature for variation of 316.15 KCEM

T∞ Ambient temperature 298.15 K
Tb Surface bulk temperature 308.15 K
ρ Surface density 2800 kg m−3

cp Surface heat capacity 795 J kg−1 K−1

r Radius of the plasma jet 1.5×10−3 m
d Surface thickness 0.2×10−3 m
k Heat transfer coefficient 1.43 W m−2 K−1

β Dimensionless constant of heat transfer 90.82
µ Dimensionless constant of heat capacity 9.84×10−4

C. Nominal Model Predictive Control Formulation

The optimal control problem (OCP) for nominal model
predictive control (MPC) utilizes the same OCP formulation
to minimize the treatment time as described in general in (12)



TABLE II
CONTROL PARAMETERS

Parameter Description Value
T0 Initial surface temperature 310.15 K
CEMsp Desired thermal effect in CEM 1.5 min
P Lower bound for applied power 1.0 W
P Upper bound for applied power 5.0 W
T Upper bound for surface temperature 316.15 K

and specifically in (13)–(16). The specific OCP is replicated
here for clarity,

min
P(·),t f

t f , (70a)

s.t.
[

T (t f )−T0
CEMsp−CEM(t f )

]
≤ 02, (70b)

ẋ(t) = f
(
x(t),u(t)

)
, ∀t ∈ [t0, t f ], (70c)

x(t0) = x(t), (70d)[
P−P(t)
P(t)−P

]
≤ 02, ∀t ∈ [t0, t f ], (70e)

T (t)−T ≤ 0, ∀t ∈ [t0, t f ], (70f)

where, P(·) is the piecewise-constant applied power, and,
as a reminder to the reader, (70c) represents the nonlinear
state-space model describing the plasma (11). We assume
the piecewise-constant applied power P(·) has a shrinking
length, starting with 50 discrete steps. The optimal input
trajectory is obtained by solving this OCP (70), and the
first input is applied to the true system, as defined by the
following control law,

κ(x) = P?(0;x(t)). (71)

We assume that the solution to the OCP is only recomputed
after the duration of the application of this first optimal input.
We assume the ideal case of no measurement noise and no
input disturbance, which may otherwise require the use of
a smoothing filter to return precise output measurements at
each computation of the MPC.

REFERENCES

[1] L. Minati, C. Migliaresi, L. Lunelli, G. Viero, M. Dalla Serra, and
G. Speranza, “Plasma assisted surface treatments of biomaterials,”
Biophys. Chem., vol. 229, pp. 151–164, 2017.

[2] J. Friedrich, “Mechanisms of plasma polymerization–reviewed from a
chemical point of view,” Plasma Processes and Polym., vol. 8, no. 9,
pp. 783–802, 2011.

[3] S.-j. Lee, D. Yan, X. Zhou, H. Cui, T. Esworthy, S. Y. Hann, M. Keidar,
and L. G. Zhang, “Integrating cold atmospheric plasma with 3D
printed bioactive nanocomposite scaffold for cartilage regeneration,”
Mater. Sci. Eng., C, vol. 111, p. 110844, 2020.

[4] E. Stoffels, A. Flikweert, W. Stoffels, and G. Kroesen, “Plasma needle:
a non-destructive atmospheric plasma source for fine surface treatment
of (bio) materials,” Plasma Sources Sci. Technol., vol. 11, no. 4, p.
383, 2002.

[5] R. B. Gadri, J. R. Roth, T. C. Montie, K. Kelly-Wintenberg, P. P.-
Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya,
Z. Chen et al., “Sterilization and plasma processing of room temper-
ature surfaces with a one atmosphere uniform glow discharge plasma
(OAUGDP),” Surf. Coat. Technol., vol. 131, no. 1-3, pp. 528–541,
2000.

[6] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks,
and G. S. Selwyn, “Etching materials with an atmospheric-pressure
plasma jet,” Plasma Sources Sci. Technol., vol. 7, no. 3, pp. 282–285,
1998.

[7] M. Laroussi, M. Kong, G. Morfill, and W. Stolz, Plasma Medicine.
New York: Cambridge University Press, 2012.

[8] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F.
Hicks, “The atmospheric-pressure plasma jet: a review and comparison
to other plasma sources,” IEEE Trans. Plasma Sci., vol. 26, no. 6, pp.
1685–1694, 1998.

[9] J. Park, I. Henins, H. Herrmann, G. Selwyn, J. Jeong, R. Hicks,
D. Shim, and C. Chang, “An atmospheric pressure plasma source,”
Appl. Phys. Lett., vol. 76, no. 3, pp. 288–290, 2000.

[10] X. Lu, M. Laroussi, and V. Puech, “On atmospheric-pressure non-
equilibrium plasma jets and plasma bullets,” Plasma Sources Sci.
Technol., vol. 21, no. 3, p. 034005, 2012.

[11] M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and
P. J. Hoopes, “Basic principles of thermal dosimetry and thermal
thresholds for tissue damage from hyperthermia,” Int J. Hyperthermia,
vol. 19, no. 3, pp. 267–294, 2003.

[12] G. Fridman, A. D. Brooks, M. Balasubramanian, A. Fridman, A. Gut-
sol, V. N. Vasilets, H. Ayan, and G. Friedman, “Comparison of direct
and indirect effects of non-thermal atmospheric-pressure plasma on
bacteria,” Plasma Processes Polym., vol. 4, no. 4, pp. 370–375, 2007.

[13] J. L. Roti Roti, “Cellular responses to hyperthermia (40-46 degrees
C): cell killing and molecular events,” Int J. Hyperthermia, vol. 24,
no. 1, pp. 3–15, 2008.

[14] D. Staack, B. Farouk, A. Gutsol, and A. Fridman, “Stabilization of
the ionization overheating thermal instability in atmospheric pressure
microplasmas,” J. Appl. Phys., vol. 106, no. 1, p. 013303, 2009.

[15] J. J. Liu and M. G. Kong, “Sub-60◦C atmospheric helium-water
plasma jets: modes, electron heating and downstream reaction chem-
istry,” J. Phys. D: Appl. Phys., vol. 44, no. 34, p. 345203, 2011.

[16] A. D. Bonzanini, D. B. Graves, and A. Mesbah, “Learning-based
SMPC for reference tracking under state-dependent uncertainty: An
application to atmospheric pressure plasma jets for plasma medicine,”
IEEE Trans. Control Syst. Technol., 2021.

[17] A. Mesbah and D. B. Graves, “Machine learning for modeling,
diagnostics, and control of non-equilibrium plasmas,” J. Phys. D: Appl.
Phys., vol. 52, no. 30, p. 30LT02, 2019.

[18] O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu,
and I. Levchenko, “Plasma under control: Advanced solutions and
perspectives for plasma flux management in material treatment and
nanosynthesis,” Appl. Phys. Rev., vol. 4, no. 4, p. 041302, 2017.

[19] D. Gidon, D. B. Graves, and A. Mesbah, “Effective dose delivery
in atmospheric pressure plasma jets for plasma medicine: a model
predictive control approach,” Plasma Sources Sci. Technol., vol. 26,
no. 8, p. 085005, 2017.

[20] D. Gidon, B. Curtis, J. A. Paulson, D. B. Graves, and A. Mesbah,
“Model-based feedback control of a kHz-excited atmospheric pressure
plasma jet,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 2, no. 2, pp.
129–137, 2018.

[21] D. Gidon, H. S. Abbas, A. D. Bonzanini, D. B. Graves, J. M. Velni,
and A. Mesbah, “Data-driven lpv model predictive control of a cold
atmospheric plasma jet for biomaterials processing,” Control Eng.
Pract., vol. 109, p. 104725, 2021.

[22] D. Gidon, X. Pei, A. D. Bonzanini, D. B. Graves, and A. Mesbah,
“Machine learning for real-time diagnostics of cold atmospheric
plasma sources,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 5,
pp. 597–605, 2019.

[23] D. Gidon, D. B. Graves, and A. Mesbah, “Spatial thermal dose delivery
in atmospheric pressure plasma jets,” Plasma Sources Sci. Technol.,
vol. 28, no. 2, p. 025006, 2019.

[24] E. Gjika, S. Pal-Ghosh, A. Tang, M. Kirschner, G. Tadvalkar,
J. Canady, M. A. Stepp, and M. Keidar, “Adaptation of operational
parameters of cold atmospheric plasma for in vitro treatment of cancer
cells,” ACS Appl. Mater. Interfaces, vol. 10, no. 11, pp. 9269–9279,
2018.

[25] Y. Lyu, L. Lin, E. Gjika, T. Lee, and M. Keidar, “Mathematical
modeling and control for cancer treatment with cold atmospheric
plasma jet,” J. Phys. D: Appl. Phys., vol. 52, no. 18, p. 185202, 2019.

[26] L. Lin, Z. Hou, X. Yao, Y. Liu, J. R. Sirigiri, T. Lee, and M. Keidar,
“Introducing adaptive cold atmospheric plasma: The perspective of
adaptive cold plasma cancer treatments based on real-time electro-
chemical impedance spectroscopy,” Phys. Plasma, vol. 27, no. 6, p.
063501, 2020.

[27] M. Witman, D. Gidon, D. B. Graves, B. Smit, and A. Mesbah, “Sim-
to-real transfer reinforcement learning for control of thermal effects



of an atmospheric pressure plasma jet,” Plasma Sources Sci. Technol.,
vol. 28, no. 9, p. 095019, 2019.

[28] A. D. Bonzanini, J. A. Paulson, D. B. Graves, and A. Mesbah, “Toward
safe dose delivery in plasma medicine using projected neural network-
based fast approximate NMPC,” in Proc. 21st IFAC World Congress,
Berlin, Germany, 2020, pp. 5353–5359.

[29] A. D. Bonzanini, J. A. Paulson, G. Makrygiorgos, and A. Mesbah,
“Fast approximate learning-based multistage nonlinear model predic-
tive control using Gaussian processes and deep neural networks,”
Comput. Chem. Eng., vol. 145, p. 107174, 2021.

[30] A. D. Bonzanini, K. Shao, A. Stancampiano, D. B. Graves, and
A. Mesbah, “Perspectives on machine learning-assisted plasma
medicine: Towards automated plasma treatment,” IEEE Transactions
on Radiation and Plasma Medical Sciences, 2021.

[31] S. Tong, K. Sun, and S. Sui, “Observer-based adaptive fuzzy decen-
tralized optimal control design for strict-feedback nonlinear large-scale
systems,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp.
569–584, 2018.

[32] Y. Li, K. Sun, and S. Tong, “Adaptive fuzzy robust fault-tolerant
optimal control for nonlinear large-scale systems,” IEEE Transactions
on Fuzzy Systems, vol. 26, no. 5, pp. 2899–2914, 2018.

[33] T. Wang and S. Tong, “Observer-based fuzzy adaptive optimal con-
trol for nonlinear continuous-time saturation interconnected systems,”
Optimal Control Applications and Methods, vol. 39, no. 4, pp. 1273–
1290, 2018.

[34] Y. Li, K. Sun, and S. Tong, “Observer-based adaptive fuzzy fault-
tolerant optimal control for SISO nonlinear systems,” IEEE Transac-
tions on Cybernetics, vol. 49, no. 2, pp. 649–661, 2019.

[35] Y. Li, T. Yang, and S. Tong, “Adaptive neural networks finite-time
optimal control for a class of nonlinear systems,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 31, no. 11, pp. 4451–
4460, 2020.

[36] Y. Zhang, B. Zhao, and D. Liu, “Deterministic policy gradient adaptive
dynamic programming for model-free optimal control,” Neurocomput-
ing, vol. 387, pp. 40–50, 2020.

[37] T. Zhang, H. Xu, X. Xia, and Y. Yi, “Adaptive neural optimal control of
uncertain nonlinear systems with output constraints,” Neurocomputing,
vol. 406, pp. 182–195, 2020.

[38] X. Yang and H. He, “Self-learning robust optimal control for
continuous-time nonlinear systems with mismatched disturbances,”
Neural Networks, vol. 99, pp. 19–30, 2018.

[39] A. Wang, X. Liao, and T. Dong, “Event-driven optimal control for
uncertain nonlinear systems with external disturbance via adaptive
dynamic programming,” Neurocomputing, vol. 281, pp. 188–195,
2018.

[40] A. Marchetti, B. Chachuat, and D. Bonvin, “Modifier-adaptation
methodology for real-time optimization,” Ind. Eng. Chem. Res.,
vol. 48, no. 13, pp. 6022–6033, 2009.

[41] A. G. Marchetti, T. Faulwasser, and D. Bonvin, “A feasible-side
globally convergent modifier-adaptation scheme,” J. Process Control,
vol. 54, pp. 38–46, 2017.

[42] T. A. Ferreira, H. A. Shukla, T. Faulwasser, C. N. Jones, and
D. Bonvin, “Real-time optimization of uncertain process systems via
modifier adaptation and Gaussian processes,” in Proc. 2018 European
Control Conference (ECC), Limassol, Cyprus, 2018, pp. 465–470.

[43] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control
Systems. New York: Springer-Verlag, 1990.

[44] A. Isidori, Nonlinear Control Systems, 3rd ed. London: Springer-
Verlag, 1995.

[45] H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 2000.

[46] M. A. Henson and D. E. Seborg, “Critique of exact linearization
strategies for process control,” J. Process Control, vol. 1, no. 3, pp.
122–139, 1991.

[47] M. Mboup, C. Join, and M. Fliess, “Numerical differentiation with
annihilators in noisy environment,” Numer. Algor., vol. 50, pp. 439–
467, 2009.

[48] J. Reger and J. Jouffroy, “On algebraic time-derivative estimation and
deadbeat state reconstruction,” in Proc. 48th IEEE Conference on
Decision and Control (CDC), Shanghai, P.R. China, 2009, pp. 1740–
1745.

[49] D. Rodrigues and H. Hjalmarsson, “Stability and performance analysis
of control based on incomplete models,” IFAC-PapersOnLine, vol. 52,
no. 1, pp. 874–879, 2019.

[50] S. A. Sapareto and W. C. Dewey, “Thermal dose determination in
cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 10, no. 6, pp.
787–800, 1984.

[51] R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum
principles for optimal control problems with state constraints,” SIAM
Rev., vol. 37, no. 2, pp. 181–218, 1995.

[52] B. Srinivasan, S. Palanki, and D. Bonvin, “Dynamic optimization of
batch processes: I. Characterization of the nominal solution,” Comput.
Chem. Eng., vol. 27, no. 1, pp. 1–26, 2003.

[53] D. Rodrigues and D. Bonvin, “On reducing the number of decision
variables for dynamic optimization,” Optim. Control Appl. Meth.,
vol. 41, pp. 292–311, 2020.

[54] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based
on parameterization of the switching instants,” IEEE Trans. Autom.
Contr., vol. 49, no. 1, pp. 2–16, 2004.

[55] J. A. Paulson and A. Mesbah, “Nonlinear model predictive control with
explicit backoffs for stochastic systems under arbitrary uncertainty,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 523–534, 2018.

[56] D. Rodrigues and A. Mesbah, “Multivariable control based on incom-
plete models via feedback linearization and continuous-time derivative
estimation,” Int. J. Robust Nonlinear Control, vol. 31, no. 18, pp.
9193–9230, 2021.

[57] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Math. Program., vol. 11, no. 1, pp. 1–36, 2019.

[58] M. Perrier, S. Feyo de Azevedo, E. C. Ferreira, and D. Dochain,
“Tuning of observer-based estimators: theory and application to the on-
line estimation of kinetic parameters,” Control Eng. Practice, vol. 8,
no. 4, pp. 377–388, 2000.

[59] L. B. Freidovich and H. K. Khalil, “Performance recovery of feedback-
linearization-based designs,” IEEE Trans. Autom. Contr., vol. 53,
no. 10, pp. 2324–2334, 2000.

[60] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures,” Anal. Chem., vol. 36, no. 8,
pp. 1627–1639, 1964.


