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Abstract

Machine Learning Methods for Stochastic Differential Games and those with Delay:

Applications and Modeling in Epidemiology and Finance

by

Robert Andrew Balkin

Stochastic differential games and those with delay play a crucial role in modeling

complex, real-world phenomena. The ability to find Nash equilibria in these games

enhances the predictive capabilities of scientists and professionals across various fields

and informs optimal decision-making processes. These problems can be computationally

demanding to solve, especially in the case of delayed dynamics and interaction among a

large number of agents.

This dissertation begins with an overview of stochastic differential games and ex-

isting machine learning methodologies designed to find their Nash equilibria. We then

extend these existing methodologies to the challenging case of stochastic delay differential

games with a new algorithm for finding their closed-loop Nash equilibria. To evaluate

the effectiveness of our proposed algorithm, we test it on problems with known solutions.

In particular, we introduce new financial models based on competing portfolio managers

taking into consideration delayed tax-effects. We derive analytical Nash equilibrium solu-

tions for these newly introduced stochastic delay differential games, serving as additional

benchmarks to assess the performance of our proposed machine learning approach.

Finally, building on the existing machine learning methodologies for stochastic differ-

ential games, we introduce a new modified algorithm that we use to solve the Nash equi-

librium problem for a game-theoretic, stochastic SEIR (Susceptible-Exposed-Infectious-

Recovered) model applied to the COVID-19 pandemic. Solving this proposed model
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demonstrates the effects of differing policies on the spread of disease over different re-

gions and how these policies affect each other, illustrating the practical effectiveness of

the proposed numerical approach.
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Chapter 1

Introduction

The work presented in this chapter, which was prepared for this dissertation, includes

material previously published [43] and material submitted for publication [3].

This dissertation explores machine learning methodologies for solving the Nash equi-

librium problem for stochastic differential games (SDGs) and stochastic delay differential

games (SDDGs). We begin by introducing the idea behind both SDGs and SDDGs, dis-

cussing the importance and difficulty of these problems, and introduce the SDG mathe-

matically. Chapter 2 reviews existing methodologies for finding the Nash equilibrium of

an SDG with deep learning techniques known as deep fictitious play (DFP). The DFP

methodology will be the basis of our work which involves extending this methodology to

new cases and applying it to solve problems.

As our first main contribution, we introduce a new algorithm for finding closed-loop

Nash equilibria of SDDGs by extending existing DFP methods using memory-dependent

neural network architectures such as the recurrent neural network (RNN) and in particu-

lar, the long short-term memory (LSTM) network. In Chapter 3, we introduce this novel

DFP extension for the case of SDDGs, and we demonstrate the algorithm’s successful

performance by testing it on SDDGs with known closed-form Nash equilibrium solutions

used as benchmarks.
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Chapter 4 focuses on introducing newly considered SDDGs from the field of finance

and deriving their analytical closed-loop Nash equilibrium solutions. These problems

first appear in Chapter 3 and represent a portion of the benchmark problems used to

validate the numerical algorithm for SDDGs. The analytical solutions derived for these

newly considered problems represent new contributions in the field of financial modeling.

Using DFP for SDGs, one can solve problems corresponding to relevant real-world

phenomena that would otherwise be intractable. In Chapter 5, we introduce a game-

theoretic epidemiological model to analyze and predict pandemic decision-making with

the focus on building a model for COVID-19 dynamics. We extend the DFP methodology

for SDGs presented in Chapter 2 with a modified DFP algorithm used to find the Nash

equilibrium solution of this COVID-19 model.

1.1 Motivation

Differential games, initiated by Isaacs [27] as an offspring of game theory and optimal

control, provide modeling and analysis of conflict in the context of a dynamical system.

Differential games model the interaction among all participants (or players) who select

their controls to optimize their objectives. The controls of each player affect the sys-

tem dynamics, which are modeled by a system of differential equations. SDGs extend

differential games by considering stochastic dynamics.

SDDGs further extend the notion of SDG by considering general delayed features in

the stochastic dynamics. SDDGs and their single-player counterparts, stochastic control

problems with delay, encompass various models applicable to economics, advertising,

and finance. For instance, in determining a firm’s optimal advertising policy, Gozzi and

Marinelli [17] consider a model which incorporates the delayed impact of advertising

expenditures on the firm’s goodwill. Similarly, in finance, optimal investment and con-

sumption decisions could also take into account delayed market features as is done by

2



Pang and Hussain [35].

Of fundamental importance to the game is the concept of Nash equilibrium, which

is a collection of all players’ choices, ensuring that no player has the incentive to devi-

ate unilaterally. The critical problem of finding Nash equilibria for SDGs and SDDGs

allows one to model behavior throughout many disciplines, including management sci-

ence, economics, social science, biology, military science, and finance. However, a major

bottleneck comes from the notorious intractability of N -player games, and the direct

computation of Nash equilibria is extremely time-consuming and memory demanding.

The primary reason for these difficulties lies in the inherent high dimensionality of the

problem.

However, deep learning methodologies are natural choices for solving problems with

high dimensionality. In a series of recent works [26, 20, 22], the DFP theory and al-

gorithms were developed for SDGs with a large number of heterogeneous players. The

DFP framework embeds the fictitious play idea, introduced by Brown [9, 8], into designed

architectures of deep neural networks to produce accurate and parallelizable algorithms

with convergence analysis, and resolve the intractability issue (curse of dimensionality)

caused by the complex modeling and underlying high-dimensional space in SDG. These

materials are reviewed in Chapter 2.

SDGs already face the curse of dimensionality when the number of players N is large.

Adding to this inherent complexity, SDDGs introduce a possibly infinite-dimensional

component, as the drift and volatility of the associated stochastic delay differential equa-

tion (SDDE) depend on the entire path.

To formalize this, we note that one can employ the approach of dynamic program-

ming to characterize the value functions associated with the closed-loop Nash equilibrium

through a system of Hamilton-Jacobi-Bellman (HJB) equations, enabling the determina-

tion of Nash equilibrium controls. However, the resulting HJB equations in the delayed

case involve derivatives with respect to variables in an infinite-dimensional Hilbert space
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as detailed in Section 2.6.8 in the book by Fabbri, Gozzi, and Swiech [15]. Numerically

solving this HJB system would require an additional high-dimensional approximation to

handle the infinite dimensionality arising from the delay.

However, deep learning approaches have been used to solve problems in similar in-

stances. For example, Fouque and Zhang [16] parametrize the optimal control with neural

networks to solve a mean field control problem arising from an inter-bank lending model

with delayed repayments, and Han and Hu [21] solve the stochastic control problems

with delay using neural networks. While the DFP framework originally applied to SDGs,

we propose in Chapter 3 a new machine learning-based numerical methodology involving

recurrent neural networks, and in particular, the long short-term memory architecture,

that extends DFP to SDDGs.

Leveraging the DFP methodology, we can solve real-world problems that would be

otherwise intractable from typical approaches. For instance, in Chapter 5 we extend

the DFP methodology to solve a new stochastic, game-theoretic epidemiological model

applied to COVID-19 dynamics among various interacting regions with separate central

planners. This modeling is one example of a broader theme we believe DFP method-

ologies can address. Specifically, we believe the DFP methodologies, both existing and

those we introduce in this work, can enable scientists, professionals, and other practi-

tioners to approximate the behavior of agents in complex models with fast and efficient

algorithms, allowing for insight into prediction and decision-making capabilities in oth-

erwise intractable cases of model complexity.

1.2 Nash Equilibrium Problem for Stochastic Differen-

tial Games

We present a brief review of the mathematical set-up for stochastic differential games

(SDGs). For a detailed viewpoint of SDGs, we refer to Volume I, Chapter 2 of the book
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on mean field games by Carmona and Delarue [10].

Formally, we describe a general SDG by first considering a complete probability space

(Ω,F ,P) on which we have a controlled SDE system:

dXα
t = b(t,Xα

t ,αt) dt+ σ(t,Xα
t ,αt)dWt, t ∈ [0, T ],

Xα
0 = x0 ∈ Rn,

(1.1)

where Xα is the state process which takes values in Rn, and α = (α1, · · · , αN) is the

collection of all players’ controls. Here, αit is the strategy or decision of player i at time t

and takes values in the control space Ai ⊂ Rmi . The drift b and volatility σ are functions

that map into Rn and Rn×k, respectively, and W is a k-dimensional, standard Brownian

motion with filtration given by (Ft)t∈[0,T ].

We remark that there is a special case in which one can write the state process as

X = (X1, · · · , XN), where X i is affected only through the control αi. In this instance,

X i is the private state of player i. In our case, we generically assume Xα
t (ω) ∈ Rn and

could represent a combination of both private states as well as public states – those that

are shared and influenced collectively.

As important as the dynamics (1.1) are in dictating the game, so are the requirements

of the control α. On one hand, we must specify what information the control variables

are “allowed” to know based on what the underlying model represents. For instance,

we enforce that αt only depends on past information up to and including time t, which

represents the fact that future noises are unknowable to the controllers. However, we

must specify the precise nature of this past “information” that is used in determining a

given player’s control. There are two main frameworks: the closed-loop and open-loop

controls. Informally, the closed-loop case corresponds to players having information on

the history of the state process Xα, while the open-loop case corresponds to players only

knowing the past information of the noise process W . Formally, closed-loop controls

are progressively measurable processes with respect to the filtration generated by the
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state process (Xα
t ), while open-loop controls satisfy this condition with respect to the

filtration generated by the noises themselves (Wt).

Formally, we understand the set of allowable controls by defining the so-called admis-

sible set for each player’s control. For example, we define the admissible set of open-loop

controls Ai
op−loop for player i to be

Ai
op−loop =

{
Ft−prog. meas. βi : [0, T ]× Ω→ Ai ⊂ Rmi

∣∣∣∣ ∫ T

0

E[|βit|2] dt <∞
}
, (1.2)

where we are using the abbreviation “prog. meas.” to refer to the property of being

progressively measurable. Here, we recall that (Ft)t∈[0,T ] is the filtration generated by

the Brownian motion W , and thus open-loop controls represent decisions at time t based

on observing the noise process up to and including time t.

Denoting FX
t to be the filtration generated by Xα

t , we define the admissible set of

closed-loop controls Ai
cl−loop for player i to be

Ai
cl−loop =

{
FX
t −prog. meas. βi : [0, T ]× Ω→ Ai ⊂ Rmi

∣∣∣∣ ∫ T

0

E[|βit|2] dt <∞
}
, (1.3)

and thus we see that closed-loop controls represent decisions at time t based on observing

the entire past history of the state-process Xα up to and including time t.

The definition of the appropriate admissible set of controls is not just to distinguish

the informational dependency of the allowed controls. In fact, in both set definitions (1.2)

and (1.3), there is a requirement for the controls of each player to be square integrable, i.e.∫ T
0
E[|βit|2] dt <∞, which is important for the well-posedness of the problem. Secondly,

an important constraint on the choice of controls is enforced through the fact that player

i’s control takes values in Ai ⊂ Rmi . The generality of Ai allows one to represent context

dependent constraints on the output of controls for various problems. For example, a

control representing the rate of fuel-consumption at time t may not be allowed to be

negative. In essence, the choice of admissible sets relates to both well-posedness concerns

of the underlying problem as well as model interpretation of the game itself by defining
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the relevant output space of controls as well as their informational dependencies.

Lastly, we emphasize an important special case of closed-loop controls: the so-called

“closed-loop feedback form” or “Markovian” controls. A Markovian control is one which

represents a decision at time t made only based on the information of the current time t

and the current state Xα
t . In this case, we will slightly abuse notation and write player

i’s control at time t by αit = αi(t,Xα
t ). Formally, the admissible set for player i in the

case of Markovian controls will be:

Ai
MC =

{
Borel meas. βi : [0, T ]× Rn → Ai ⊂ Rmi

∣∣∣∣ ∫ T

0

E[|βi(t,Xα
t )|2] dt <∞

}
. (1.4)

The choice of admissible set of controls is context dependent, and we will in general

write Ai for the admissible set for player i, whether this relates to potentially set definition

(1.2), (1.3), or (1.4). We denote the product space of admissible controls by A = ⊗Ni=1Ai

along with the control space for all players by A = ⊗Ni=1Ai.

Having defined the dynamics of the game as well as outlined the common admissible

sets for choices of controls, we now describe what actually makes the problem a game.

The game dynamics are understood by the fact that costs (or rewards) are incurred

by each of the players based on 1) their choices of controls and 2) the realized state

dynamics Xα associated to the choices of controls. Formally, we define the running and

terminal costs for player i as f i and gi, respectively. Here, f i : [0, T ]×Rn ×A → R and

gi : Rn → R are deterministic measurable functions. From these functions, we define the

expected cost J i for player i to be

J i[α] = E
[∫ T

0

f i(t,Xα
t ,αt)dt+ gi(Xα

T )

]
. (1.5)

The idea is that each player selects their control αi so as to minimize their expected

cost (1.5) given the game dynamics (1.1). Player i’s control influences the other players’

expected costs which in turn influences their decisions and thus player i’s expected cost

and choice of control. Simply put, the cost functions are coupled with each player’s
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choice of controls, and thus the idea that each player minimizes their own expected cost

requires a specific notion of solution. In the context of non-cooperative games, this notion

of solution is encapsulated by the Nash equilibrium.

The problem we consider is to find the Nash equilibrium in A for the SDG described

in (1.1) and (1.5). The Nash equilibrium is a set of controls whereupon each player has

optimally chosen their own control given the choices of controls for the other players.

In other words, a Nash equilibrium is an N -tuple consisting of each player’s strategy

(i.e. choice of controls) such that no player has an incentive to unilaterally deviate

their strategy. To be precise, we understand the Nash equilibrium through the following

definition.

Definition 1.1. We say that α∗ = (α∗1, · · · , α∗N) ∈ A is a Nash equilibrium if

J i[α∗] ≤ J i[α∗1, · · · , α∗i−1, βi, α∗i+1, · · · , α∗N ], ∀i ∈ {1, · · · , N}, ∀βi ∈ Ai. (1.6)

In conclusion, the full problem of finding the Nash equilibrium for an SDG can be

understood through the following key components. First, the admissible set of all players’

controls A is determined by potentially (1.2), (1.3), or (1.4), which defines an appropriate

space of controls based on problem interpretation and well-posedness concerns. Most

notably, the choice of A reflects the set of information the players are allowed to access

in determining their decisions at a given time. Next, Eqs. (1.1) and (1.5) define a map

from the choices of controls for each player α ∈ A to the cost experienced by a given

player J i. The condition (1.6) expresses how each player rationally chooses their strategy

based on their own cost, given the choices of the other players, leading to equilibrium.
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Chapter 2

Machine Learning for Stochastic

Differential Games

The work presented in this chapter, which was prepared for this dissertation, includes

material previously published [43] and material submitted for publication [3].

2.1 Deep Fictitious Play for Approximating Nash Equi-

librium

As mentioned in Section 1.1, the problem of finding Nash equilibria for a SDG is incredibly

challenging computationally especially when the number of players N is large. In this

chapter, we review the methodology in [26, 20], which establishes a set of numerical

techniques known as deep fictitious play (DFP) for solving SDGs with a large number of

heterogeneous players.

DFP is a broad technique whereby Nash equilibrium controls are approximated iter-

atively via deep learning techniques in a manner akin to Brown’s fictitious play [9, 8].

The primary reason for using deep learning is the high dimensionality in the problem

being solved in each iterative step of fictitious play when one has a stochastic differential

9



game.

In general, we consider a game defined by a map from choices of controls α ∈ A into

costs J [α]. The idea of fictitious play is to fix all but one player’s control, which leads

to the decoupled optimization problems

inf
βi∈Ai

J i[α1, · · · , αi−1, βi, αi+1, · · · , αN ], (2.1)

and then iterate over the solutions to these optimization problems.

Assuming a unique minimum occurs at βi,∗, one uses βi,∗ to inform αi in future

iterations of the optimization (2.1). Doing this for each player i ∈ {1, · · · , N} constitutes

one stage of this modified fictitious play. In the case of Brown’s fictitious play, αj in the

optimization problem (2.1) would be given by the empirical average of player j’s control

taken over the previous rounds of play. However, for DFP methodologies, one will usually

take αj to be the exact control from the previous round of play for memory efficiency

reasons (see [20, Remarks 3.1 and 3.2] for more information).

In this approach, we choose Nstages to be the number of stages of fictitious play. Player

i at stage m selects her best response given that all other players are using their strategies

from the previous round. This leads to the theoretical Algorithm 1 below.

Algorithm 1 Modified Fictitious Play
1: Initialize each αi,0 ∈ Ai.
2: for m in 1 to Nstages do
3: for i in 1 to N do
4: αi,m = argminβi∈Ai J i[α1,m−1, · · · , αi−1,m−1, βi, αi+1,m−1, · · · , αN,m−1]
5: end for
6: end for

In Algorithm 1, αi,m is the control for player i at stage m, and we are assuming

that the minimizer exists and is unique. If it is not unique, we could choose a particular

minimizer. The idea of Algorithm 1 is that the Nash equilibria are characterized precisely

by the fixed points of this iteration. However, the convergence of the method outlined

by Algorithm 1 is done on a case-by-case basis. For example, in [26] it is shown that
10



Algorithm 1 converges for a Linear-Quadratic stochastic differential game.

Next, Algorithm 1 is purely theoretical as it assumes the solution to the optimization

problem (2.1). In reality, (2.1) may be difficult to directly solve due to high dimensionality

and may be best approached by deep learning techniques. There are several methods

we may take to solve (2.1) via deep learning and any of these would be considered deep

fictitious play. One approach to solve the optimization problem (2.1) is based on the

so-called direct parametrization discussed by Han and E in [19]. This approach was

originally introduced for stochastic control problems but can be extended into the game

setting via the iteration in Algorithm 1 as demonstrated in [26]. This is discussed in

Section 2.2 of this chapter.

The DFP methodology introduced in [20] seeks to solve the Hamilton-Jacobi-Bellman

(HJB) equation given by the decoupled optimal control problem defined by the optimiza-

tion problem (2.1). The HJB solution can be framed in terms of a system of backward

SDEs (BSDEs) which can be solved via the Deep BSDE method introduced by E, Han,

and Jentzen [13, 23]. This method will be covered in Section 2.3 and adapted to solve the

COVID-19 model problem in Chapter 5. Alternatively, the solution of the HJB equa-

tion could be approximated with the Deep Galerkin method introduced by Sirignano

and Spiliopoulos [41]. This would also be considered deep fictitious play as it solves the

optimization problem posed by the fictitious-play like Algorithm 1 through deep learning.

2.2 Deep Fictitious Play via Direct Parametrization

Method

Deep fictitious play with the direct parametrization method involves approaching the op-

timization problems in Algorithm 1 directly with neural network parametrized controls.

Specifically, we take the control βi represented in Algorithm 1 to be a neural network

in some appropriate class, and the optimization is done with stochastic gradient descent
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based methods using the cost function J i as the loss. In order to make this computa-

tionally tractable, we will have to approximate the expected cost J i numerically. This is

done by first discretizing the SDE (1.1) according to the Euler-Maruyama method:

X̂k+1 = X̂k + b(tk, X̂k, α̂k)∆tk + σ(tk, X̂k, α̂k)∆Wk, k = 0, . . . , NT − 1, (2.2)

where ∆Wk = Wtk+1
−Wtk from the original Brownian motion W in Eq. (1.1). The value

for α̂k = (α̂1
k, · · · , α̂Nk ) will be determined as the output of N separate neural networks;

each player’s control is parametrized by their own neural network. We consider the

stochastic differential game defined by Eqs. (1.1) and (1.5) in the case of Markovian

controls, i.e. Ai = Ai
MC from the set definition (1.4). In this case of Markovian controls,

we can parametrize the decision at time tk by:

α̂ik = ϕiNN(tk, X̂k;ϑi),

where ϑi are the parameters of player i’s corresponding neural network.

Having defined the discrete approximation to the SDE, the numerical approximation

of the expected cost for player i is given by

Ĵ i[α̂] =
1

Nbatch

Nbatch∑
ℓ=1

[
NT∑
k=1

f i(tk, X̂k(ωℓ), α̂k)∆t+ gi(X̂NT
(ωℓ))

]
, (2.3)

which is computed by taking Nbatch samples of the discrete Brownian paths given by

{(∆Wk(ωℓ))
NT−1
k=0 : ωℓ ∈ Ω}Nbatch

ℓ=1 , producing the realized trajectories (X̂k(ωℓ)) through

the discrete dynamics (2.2).

In essence, each player i will select their desired neural network parameters ϑi, de-

termining their choice of control. With these simulated dynamics, one can compute the

empirical costs for each player (Ĵ i)Ni=1. This defines a map from “controls” given by the

choices of parameters (ϑi)
N
i=1 to the empirical costs (Ĵ i)Ni=1. The neural network param-

eters are then adjusted in a manner akin to fictitious play . This leads us to Algorithm

2 below.
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Algorithm 2 A Deep Fictitious Play Algorithm via Direct Parametrization
1: Initialize each ϑ1,0, · · · , ϑN,0 which are the respective parameters of the N different

NNs at stage 0.
2: Select Nstages of deep fictitious play based on the computational budget.
3: for m in 0 to Nstages do
4: for i in 1 to N do
5: Compute Nbatch trajectories X̂ of the numerical SDE (2.2) under the given

controls (α̂j,m)j, where the control for each player j is given by α̂j,m = ϕjNN(·;ϑj,m).
6: Compute the numerical cost Ĵ i from Eq. (2.3).
7: Compute via automatic differentiation ∇ϑi,m Ĵ

i .
8: Do a gradient descent step or similar (e.g. Adam) on ϑi,m with learning rate
lr, i.e.

ϑi,m+1 = ϑi,m − lr∇ϑi,m Ĵ
i.

9: end for
10: end for

As before, we consider Nstages of iteration, where ϕjNN(·, ϑj,m) parametrizes the control

for player j at stage m as selected by the neural network parameters ϑj,m. As motivated

by Algorithm 1, we would then like to compute the optimal ϑj,m holding the other neural

network parameters, (ϑj′,m)j′ ̸=j, fixed. In practice, we do a gradient descent step or a

sequence of gradient descent steps to approximate this behavior. Of course, to do this,

we will have to compute the ϑi,m-gradient of Ĵ i. This is possible numerically through

automatic differentiation [7]. Instead of standard gradient descent, one may choose to use

the Adam optimization, which adaptively chooses the learning rate based on the mean

and variance of the gradients involved in the computation of the loss. The advantages

to choosing the Adam optimization over traditional stochastic gradient descent is due to

it having improved convergence properties in many cases [28]. This gives us the deep

fictitious play algorithm shown above in Algorithm 2.

To better approximate the argument minimizer in Algorithm 1, several gradient steps

might be needed. However, this would require a new computation of Ĵ i and its gradient

with respect to the updated neural network parameters after each gradient descent step,

leading to increased costs.1 Instead, in Algorithm 2, we move on immediately to the next
1One possibility would be to incorporate having additional gradient descent steps for a single

player before moving onto the next when one is at later stages of play. The idea is that at
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player’s optimization after a single gradient descent step of the current player. For this

reason, Algorithm 2 is not meant to be a perfect numerical analogue of Algorithm 1, but

is instead merely based on it. Importantly, Algorithm 2 still reflects the property that

Nash equilibria are fixed points of the iteration from an intuitive point of view.2

2.3 Deep Fictitious Play via Hamilton-Jacobi-Bellman

System and Associated BSDE

We consider the SDG defined by Eqs. (1.1) and (1.5) in the case of Markovian controls,

i.e. Ai = Ai
MC from the set definition (1.4). That is, we can understand the control(s)

for each player i as a function of the current time and state αit = αit(t,Xt). We also

assume that the control does not enter into the volatility, i.e. σ in Eq. (1.1) has the form

σ = σ(t,Xt). We define the value function of player i by

V i(t,x) = inf
αi∈Ai

E
[∫ T

t

f i(s,Xs,α(s,Xs)) ds+ gi(XT )|Xt = x

]
.

By dynamic programming, V solves the following Hamilton-Jacobi-Bellman (HJB) sys-

tem 
∂tV

i + inf
αi∈Ai

H i(t,x,α(t,x),∇xV
i) +

1

2
Tr(σ(t,x)THessxV iσ(t,x)) = 0,

V i(T,x) = g(x), i ∈ {1, · · · , N},
(2.4)

the beginning stages, since the approximate controls (α̂i,m)i are not yet close to the Nash
equilibrium, it is not as important to fully optimize a single player given the choices of others
since the other players are not yet close enough to the Nash equilibrium. However, at later
stages, as the Nash equilibrium is approached, it may be beneficial to more fully optimize α̂i,m

given the choices of the other players.
2Of course it is exceedingly unlikely that controls of the form (ϕiNN (·, ·;ϑi,∗))i happen to

be a Nash equilibrium. However, if it so happens to be the case that (ϕiNN (·, ·;ϑi,∗))i is a
Nash equilibrium for Ĵ , and assuming sufficient smoothness of Ĵ , then for each i it holds that
∇ϑi,∗ Ĵ i[(ϕ

j
NN (·, ·;ϑj,∗))j ] = 0, and therefore (ϑi,∗)Ni=1 is a fixed point of the iteration.
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where Tr is the trace of a matrix, and H i is the Hamiltonian defined by

H i(t,x,α,p) = b(t,x,α) · p+ f i(t,x,α). (2.5)

Finding the optimal policies for N players is therefore equivalent to solving N -coupled

n-dimensional nonlinear equations (2.4). The recently proposed DFP algorithm in [20]

has shown excellent numerical performance in solving these high-dimensional, coupled

HJB equations with convergence analysis in [22]. In this work, each individual problem

is solved by the deep BSDE method [13, 23]. The algorithm starts with some initial

guess α0. At the (m + 1)th stage, given the optimal policies αm at the previous stage,

the algorithm solves the following PDEs
∂tV

i,m+1 + inf
αi∈Ai

H i(t,x, (αi,α−i,m)(t,x),∇xV
i,m+1)

+
1

2
Tr(σ(t,x)THessxV i,m+1σ(t,x)) = 0,

V i,m+1(T,x) = gi(x), i ∈ {1, · · · , N},

(2.6)

and obtains the (m+ 1)th stage’s optimal strategy by:

(αi,m+1)(t,x) = argmin
αi∈Ai

H i(t,x, (αi,α−i,m)(t,x),∇xV
i,m+1(t,x)). (2.7)

Here, α−i,m stands for all others’ optimal policies besides player i from the mth stage and

are considered to be fixed functions when solving the PDE at the current stage. In the

sequel, to simplify notations, we omit the stage label m in the superscript when there is

no risk of confusion. To solve Eq. (2.6) at each stage, it is first rewritten as

∂tV
i +

1

2
Tr(σ(t,x)THessxV iσ(t,x)) + µi(t,x;α−i) · ∇xV

i (2.8)

+ ζ i(t,x, σ(t,x)T∇xV
i;α−i) = 0,

for some functions µi and ζ i such that

inf
αi∈Ai

H i(t,x, (αi,α−i,m)(t,x),∇xV
i) = µi(t,x;α−i) · ∇xV

i+ ζ i(t,x, σ(t,x)T∇xV
i;α−i).
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The solution to Eq. (2.6) can then found by solving the equivalent BSDE (X i
t , Y

i
t ,Z

i
t) ∈

Rn × R× Rk:
X i

t = x0 +

∫ t

0

µi(s,X i
s;α

−i(s,X i
s)) ds+

∫ t

0

σ(s,X i
s) dWs,

Y i
t = gi(X i

T ) +

∫ T

t

ζ i(s,X i
s,Z

i
s;α

−i(s,X i
s)) ds−

∫ T

t

(Zi
s)

T dWs,

(2.9)

(2.10)

in the sense of [36, 14, 37],

Y i
t = V i(t,X i

t) and Zi
t = σ(t,X i

t)
T∇xV

i(t,X i
t).

The high-dimensional BSDE (2.9)–(2.10) is tackled by the deep BSDE method proposed

in [13, 23]. This is approached by simulating both SDEs forward with a guess for the Y i
0

value and the Zi process. Numerically, this is done by discretizing (2.9)–(2.10). With

a neural network estimating the value for Y i
0 as a function of x0 and neural network

estimating the discretized Zi process, one can simulate (2.10) forward in time, where

the loss function for these networks is given by E [|Y i
T − gi(X i

T )|2] with respect to the

discretized processes.

Specifically, this is done as follows. One takes a partition π of size NT on the time

interval [0, T ], 0 = t0 < t1 < .... < tNT
= T . We use the superscript π to denote the

discretized processes corresponding to Eqs. (2.9)–(2.10). To ease notation, we replace the

subscript tk by k. One aims to solve the minimization problem over the class of neural

networks in hypothesis spaces N i′
0 , {N i

k}:

inf
ψ0∈N i′

0 ,{ϕk∈N i
k}

NT−1

k=0

E
[
|Y i,π
T − g

i(X i,π
T )|2

]
s.t. X i,π

0 = x0, Y i,π
0 = ψ0

(
X i,π

0

)
, Zi,π

k = ϕk
(
X i,π

k

)
,

X i,π
k+1 = X i,π

k + µi
(
tk,X

i,π
k ;α−i,π

k (X i,π
k )
)
∆tk + σ

(
tk,X

i,π
k

)
∆Wk,

Y i,π
k+1 = Y i,π

k − ζ
i
(
tk,X

i,π
k ,Zi,π

k ;αi,π
k (X i,π

k )
)
∆tk +

(
Zi,π
k

)T
∆Wk,

(2.11)
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where ∆tk = tk+1 − tk, ∆Wk = Wtk+1
− Wtk . Approximating the solution to the

BSDE (2.9)–(2.10), one has approximated Y i
t = V i(t,Xt) and Zi

t = σ(t,X i
t)

T∇xV
i(t,X i

t).

With approximation of these quantities, one can compute player i’s control at the next

stage m+ 1, αi,m+1, according to Eq. (2.7). This allows one to proceed with the idea of

Algorithm 1, where the interior optimization problem for player i at stage m is approxi-

mated from the optimization problem (2.11) using stochastic gradient descent.
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Chapter 3

Machine Learning for Stochastic Delay

Differential Games and Financial

Modeling

The work described in this chapter, which was prepared for this dissertation, contains

material that has already been submitted for publication [3].

We now focus on the problem of finding the closed-loop Nash equilibrium for stochastic

delay differential games (SDDGs). As mentioned in Section 1.1, SDDGs are challenging to

approximate numerically due to their inherent dimensionality arising from the number of

players as well as the delayed dynamics which effectively cause these problems to become

infinite dimensional.

To address the challenge of the dimensionality of SDDGs, we propose a deep learning-

based method that effectively handles the delay. Inspired by the approach presented in

[21], which utilizes recurrent neural networks (RNNs) to solve stochastic control prob-

lems with delay, we introduce an algorithm for finding the Nash equilibrium of SDDGs.

Specifically, we parametrize players’ controls using RNNs and approximate their objective

functions by sampling the game dynamics under these RNN-based controls. The param-

18



eters of the RNNs are then optimized using the concept of deep fictitious play (DFP),

as introduced in [26, 20] and discussed in Chapter 2. The utilization of neural network-

based control functions enables us to reformulate the problem in a finite-dimensional

setting. Now, the optimization for a given player revolves around selecting the neural

network parameters. Moreover, employing RNNs, in particular, allows us to effectively

capture the influence of delay in players’ controls, as RNNs have the capability to learn

the appropriate memory dependencies present in the true Nash equilibrium controls.

We then validate the proposed deep learning algorithm numerically on a set of prob-

lems with known closed-form solutions. This includes a new class of problems that we

formally introduce and solve in Chapter 4. We summarize our results for these new

problems in Sections 3.3.1 and 3.3.2. We also consider the model introduced and solved

in [11] to study the systemic risk in bank lending. By considering both new and existing

problems, we assess the accuracy of our proposed method using their closed-form solu-

tions as benchmarks. Our numerical experiments confirm the success of our algorithm in

approximating the true Nash equilibrium for all the problems considered.

The outline of this chapter is as follows. In Section 3.1, we introduce the mathemat-

ical problem of finding the Nash equilibria for a SDDG. In Section 3.2, we propose a

numerical algorithm for approximating SDDGs. In Section 3.3, we formulate and pro-

vide analytical solutions for the closed-loop Nash equilibrium of the SDDGs we later

solve numerically using our proposed algorithm. Specifically, we devote Sections 3.3.1

and 3.3.2 to present the newly considered SDDGs and their solutions. Since this chapter

is dedicated to presenting and displaying the results of our numerical methodology for

SDDGs, we postpone the derivation, interpretation, and proofs of Nash equilibrium so-

lutions of these newly considered SDDGs to Chapter 4. In Section 3.4, we demonstrate

the numerical results of our algorithm compared to the known solutions of the considered

problems.
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3.1 Nash Equilibrium Problem for Stochastic Delay

Differential Games

We now consider the problem of finding closed-loop Nash equilibria for SDDGs. We

define the problem mathematically following the similar setup in [21] for stochastic control

problems with delay. Because of the additional formality required by SDDGs, we state

the problem in detail for this case even though it is similar to the SDG presented in

Section 1.2.

The general problem we consider begins with an SDDE system, where the delay can

be potentially present in both the state variables as well as the controls. Formally, on a

complete probability space (Ω,F ,P), we have the N -player stochastic delay differential

game driven by the dynamics

dXα
t = b(t,Xα

[t−τ,t],α[t−τ,t]) dt+ σ(t,Xα
[t−τ,t],α[t−τ,t])dWt, t ∈ [0, T ],

Xα
t = ζ(t), t ∈ [−τ, 0],

αt = ϕ(t), t ∈ [−τ, 0).

(3.1)

Similarly to the SDG dynamics (1.1), we have the state process, Xα, takes values in Rn,

and α = (α1, · · · , αN) is the collection of all players’ controls, where αit takes values in

the control space Ai ⊂ Rmi . We use the notation Xα
[t−τ,t] to represent the paths of the

stochastic process Xα along the interval [t−τ, t], and similar notation for α[t−τ,t]. We call

τ > 0 (deterministic) the “length of the delay” or simply the “delay” as Eq. (3.1) shows

that the increment of the state process at time t depends on the entire history of the

state and control processes as far back as τ units in the past. The drift, b, and volatility,

σ, are functionals that map into Rn and Rn×k respectively, and W is a k-dimensional,

standard Brownian motion.

Formally, we define Xα
[t−τ,t] to be a map from [−τ, 0] to the space of square integrable

random variables L2(Ω) given by Xα
[t−τ,t](s) := Xα

s+τ+t. In particular, we seek solutions
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Xα to Eq. (3.1) such that for each t ∈ [0, T ], we have that Xα
[t−τ,t] ∈ L2(Ω;C([−τ, 0];Rn)).

Here, the space L2(Ω;C([−τ, 0];Rn)) is defined as the normed space of C([−τ, 0];Rn)

valued random variables with the norm given by

||Z||L2(Ω;C([−τ,0];Rn)) =

(
E

[
sup

s∈[−τ,0]
|Zs(ω)|2

]) 1
2

.

The stochastic path α[t−τ,t] is defined analogously by α[t−τ,t](s) := αs+τ+t, where the

stochastic processes (αt)t∈[0,T ] belongs to an admissible set A defined later by the set

definition (3.2).

For a fixed choice of controls α, one can consider the existence and uniqueness of the

SDDE (3.1). For this SDDE, requiring b and σ to be Lipschitz in the second argument

to ensures the existence and uniqueness of a strong solution. To be precise, this Lipschitz

condition is

||b(t,x1,α[t−τ,t])− b(t,x2,α[t−τ,t])||L2(Ω) ≤ L||x1 − x2||L2(Ω;C([−τ,0];Rn)),

||σ(t,x1,α[t−τ,t])− σ(t,x2,α[t−τ,t])||L2(Ω) ≤ L||x1 − x2||L2(Ω;C([−τ,0];Rn)),

for some L > 0 and for all t ∈ [0, T ], x1,x2 ∈ L2(Ω;C([−τ, 0];Rn)). For more details of

the existence and uniqueness theory for SDDEs, we refer to the work by Mohammed [34].

We require that each control, αi, is in the class of closed-loop controls which will

be similar to admissible set of controls defined for the SDG case in set definition (1.3),

but with some differences due to the delay that will require us to restate the definition

for the case of SDDGs. Intuitively, the closed-loop controls are those that take the form

αit = ϕi(t,Xα
[−τ,t]), and therefore represent a decision at time t based on observation of the

state process up to and including this time. The set of closed-loop controls is a natural

choice for SDDGs as the dynamics themselves are memory dependent. Intuitively, the

increment at time t depends on past information, and thus a reasonably informed decision

at time t should incorporate the available past information as well.

Formally, closed-loop controls are progressively measurable processes with respect
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to the filtration generated by the state process Xα
t . Denoting FX

t to be the filtration

generated by Xα
[−τ,t], we define the admissible set of closed-loop controls Ai for player i

to be

Ai =
{
FX
t −prog. meas. βi : [−τ, T ]× Ω→ Ai ⊂ Rmi

∣∣∣∣ ∫ T

−τ
E[|βit|2] dt <∞

}
, (3.2)

where we are using the abbreviation “prog. meas.” to refer to the property of being

progressively measurable. Again, we denote the product space of admissible controls by

A = ⊗Ni=1Ai along with the control space for all players by A = ⊗Ni=1Ai.

The running and terminal costs for player i are f i and gi, respectively. Here, f i :

[0, T ]×L2(Ω, C([−τ, 0];Rn))×L2(Ω, C([−τ, 0];A))→ R and gi : L2(Ω, C([−τ, 0];Rn))→

R are deterministic measurable functionals. From these functionals, we define the ex-

pected cost J i for player i to be

J i[α] = E
[∫ T

0

f i(t,Xα
[t−τ,t],α[t−τ,t])dt+ gi(Xα

[T−τ,T ])

]
. (3.3)

The problem we consider is to find the Nash equilibrium, Definition (1.1), in the

admissible set A defined from Eq. (3.2) for the SDDG described by the dynamics (3.1)

and expected cost for each player (3.3). Since A by definition contains the admissible,

closed-loop controls, we call a Nash equilibrium α∗ ∈ A a closed-loop Nash equilibrium.

3.2 The Deep Learning Algorithm for Games with De-

lay

In Chapter 2, we presented two methods to approximate Markovian Nash equilibria for

SDGs with machine learning algorithms that fall under the category of deep fictitious

play (DFP).

We are now interested in the closed-loop Nash equilibrium problem for SDDGs. In the

case of a SDDG, the associated HJB equations discussed in Chapter 2 would be infinite-
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dimensional due to the delay [15]. Therefore, modifying a DFP approach which involves

approximating the HJB equations (for example, approaches similar to that introduced in

Section 2.3) would greatly add to the dimensionality. Because of this, we propose a DFP

algorithm for SDDGs based on extending the direct parametrization method outlined in

Section 2.2.

We recall that the key steps to DFP with the direct parametrization method presented

in Section 2.2 are 1) approximating the dynamics and expected cost functionals with

discrete dynamics and empirical cost estimates 2) parametrizing the controls as functions

in a class of suitable neural networks 3) iteratively updating the parameters of the neural

network control functions in a method akin to fictitious play.

We propose to parametrize each player’s controls with RNNs (and in particular

LSTMs) so as to capture past information and respect the closed-loop structure of the

problem. The approximation of dynamics and expected cost functionals are similar to

the method outlined in Section 2.2, but with some modifications due to the dynamics

incorporating delayed information.

3.2.1 Discretized Stochastic Delay Differential Game

We now consider the discrete analogue of the stochastic delay differential game defined

by Eqs. (3.1)–(3.3). We represent the SDDE (3.1) numerically by its associated Eu-

ler Maruyama scheme, and the expected cost (3.3) is estimated with an empirical cost

computed by the Monte Carlo method. This is similar to Section 2.2, but modified for

delayed dynamics.

The discrete analogue of the SDDE (3.1) is obtained using the Euler-Maruyama

method, taking into account the delay. This is a natural choice for approximating SDDEs,

and its convergence properties have been well-established in certain cases, for instance,

Mao [32] addresses the case of a single pointwise delay. The discretization of the delay

needs to be done on a case-by-case basis, and we will describe it later.
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For step size ∆t > 0, we consider the partition of [−τ, T ] given by {tk = k∆t : −Nτ ≤

k ≤ NT , k ∈ Z}, where Nτ = τ
∆t

and NT = T
∆t

are integers without loss of generality1.

Then, we define the discrete approximation (X̂k)k through the Euler-Maruyama scheme

X̂k+1 = X̂k + b̂(tk, X̂k−Nτ , · · · , X̂k, α̂k−Nτ , · · · , α̂k)∆t

+ σ̂(tk, X̂k−Nτ , · · · , X̂k, α̂k−Nτ , · · · , α̂k)∆Wk, k = 0, . . . , NT − 1,

X̂k = ζ(tk), k = −Nτ , . . . , 0,

α̂k = ϕ(tk), k = −Nτ , . . . ,−1,

(3.4)

where ∆Wk = Wtk+1
−Wtk from the original Brownian motion W in Eq. (3.1). The

value for α̂k = (α̂1
k, · · · , α̂Nk ) will be determined as the output of N separate RNNs; each

player’s control is parametrized by their own RNN.

We have also approximated the functionals b and σ occurring in the SDDE (3.1) with

discrete counterparts b̂ and σ̂. While the functionals b, σ are generic, there will be natural

choices for their discrete counterparts in some of the common cases that we consider. For

example, the problems occurring in Sections 3.3.1 and 3.3.2 contain a delay variable given

by an integral over the past history of the state process. This can be approximated by

a numerical quadrature along the partition or through discretization of a separate ODE

that produces this integral. The problem introduced in Section 3.3.3 contains a delay

variable in the form of pointwise evaluation of the control at a time t − τ . This case is

easily dealt with because the delay evaluation occurs on the partition as we have that τ

and T are both divisible by ∆t.

Having defined the discrete approximation to the SDDE, the numerical approximation

of the expected cost for player i is given by

Ĵ i[α̂] =
1

Nbatch

Nbatch∑
ℓ=1

[
NT∑
k=1

f i(tk, X̂k(ωℓ), α̂k)∆t+ gi(X̂NT
(ωℓ))

]
, (3.5)

1If the divisibility is not met, one may perturb ∆t, τ and/or T in order to ensure divisibility
of Nτ = τ

∆t , NT = T
∆t . Generality is still respected as the perturbations of each can be taken to

be arbitrarily small.
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which is computed by taking Nbatch samples of the discrete Brownian paths given by

{(∆Wk(ωℓ))
NT−1
k=0 : ωℓ ∈ Ω}Nbatch

ℓ=1 , producing the realized trajectories (X̂k(ωℓ)) through

the discrete dynamics (3.4).

3.2.2 Recurrent Neural Network Parametrized Controls

In the mathematical problem we introduced for SDDGs in Section 3.1, each player’s

control lives in the admissible set Ai defined by Eq. (3.2), containing suitable FXt -

progressively measurable strategies, i.e, closed-loop controls. To capture this closed-loop

aspect, we will require that α̂k = (α̂1
k, · · · , α̂Nk ) be given as outputs of functions of the

past history of the state space, (X̂k′)k′≤k. In particular, each player’s strategy will be

given through the outputs of an RNN of a fixed architecture.

The concept of RNN was first introduced by Rumelhart, Hinton, and Williams [39], a

work that demonstrates the implementation of the backpropagation algorithm of a neu-

ral network that includes hidden units. In our case, the RNN structure naturally allows

the control for player i to encapsulate the past history of the state process. We denote

the RNN characterizing the actions of player i by ϕRNN(·;ϑi), where ϑi represents the

parameters of the RNN for player i. Specifically, player i’s control at time tk for the dis-

cretized problem is given as a function of the input sequence (t−Nτ , X̂−Nτ ), · · · , (tk, X̂k),

or

α̂ik = ϕRNN

(
(t−Nτ , X̂−Nτ ), · · · , (tk, X̂k);ϑi

)
. (3.6)

The map ϕRNN in Eq. (3.6) inputs a sequence of arbitrary length by defining it through

a recurrence relation. Specifically, the recurrence is on a map we call the RNN cell, or

ϕRNNcell. The recurrence occurs through a secondary output of the RNN cell called the

hidden state, which we label as hi for player i. In our case, the recurrence starts with

an initial value for hi−Nτ
by some specific choice hinit. Then, we define the recurrence
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relation
yik, h

i
k = ϕRNNcell(tk, X̂k, h

i
k−1;ϑi), k = −Nτ + 1, · · · , NT ,

α̂ik = yik, k = 0, · · · , NT − 1,

hi−Nτ
= hinit.

(3.7)

The time-k map of this recurrence relation defines a map
(
(t−Nτ , X̂−Nτ ), · · · , (tk, X̂k)

)
7→ yik = α̂ik, which is precisely the map we call ϕRNN in Eq. (3.6). We remark that the

hidden states hik will correspond to each player i as they are dependent on the parameters

ϑi.

The key observation is that taking the control to be given by the RNN defined by

Eqs. (3.6)–(3.7) provides us with a reasonable space to approximate the closed-loop con-

trols in the set definition (3.2). For one, we see that α̂ik, the discrete control output at time

tk, now depends on the past trajectory of X̂ up to and including time tk, which encapsu-

lates the closed-loop property. This also addresses the impact of the delay as the control

at time tk has memory of past events. At the same time, the dimension of the search

space of the control for each player i is reduced to the finite dimension dim(ϑi) < ∞,

which allows for tractability of approximating the Nash equilibrium problem through

DFP.

In essence, each player i will select their desired neural network parameters ϑi, deter-

mining their choice of control. With each player’s control chosen, the recurrence relations

given by both Eq. (3.4), (3.7) are then iterated together, which produces simulated dy-

namics for X̂. With these simulated dynamics, one can compute the empirical costs for

each player (Ĵ i)Ni=1. This defines a map from “controls” given by the choices of parameters

(ϑi)
N
i=1 to the empirical costs (Ĵ i)Ni=1, which will allow us to proceed in Section 3.2.4 with

a deep fictitious play algorithm for approximating the Nash equilibrium.
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3.2.3 The Long Short-Term Memory Recurrent Network

RNNs span a vast variety of architectures and the controls defined by Eqs. (3.6)–(3.7)

are quite broad. We now focus on the precise architecture we use in our numerical

experiments featured in Section 3.4. Motivated by the implementation in [21], we choose

to use the specific RNN architecture given by the so-called long short-term memory

(LSTM) network.

The LSTM was first introduced by Hochreiter and Schmidhuber [25] and was built to

effectively handle the vanishing gradient problem. The LSTM will have two variables that

both play the role of the hidden state of an RNN demonstrated in Eq. (3.7). Confusingly,

one is called the hidden state h and the other is the cell state c, although we will see they

are both defined recurrently and therefore act as hidden states with respect to the generic

RNN architecture we have defined by Eq. (3.7). The map ϕLSTM maps an input vector

(x0, · · · , xk) of arbitrary length to an output, hidden, and cell state through a recursive

dependence on its previous outputs of the previous input (x0, · · · , xk−1). The recurrence

is given through a function called the LSTM cell, which we will denote ϕLSTMcell. In

particular ϕLSTMcell directly maps the inputs (xk, ck−1, hk−1) to the outputs ck, hk, yk

according to

ik = σ(Wixk + Uihk−1 + bi),

fk = σ(Wfxk + Ufhk−1 + bf ),

ok = σ(Woxk + Uohk−1 + bo),

ck = fk ⊙ ck−1 + ik ⊙ tanh(Wcxk + Uchk−1 + bc),

hk = ok ⊙ tanh(ck),

yk = Wyhk + by.

(3.8)

The individual mappings within the LSTM cell to ik, fk, and ok are known as the input,

forget, and output gate respectively. Denoting the input dimension, dim(xk), to beNinput,

and denoting the hidden dimension Nhidden for the size of each ik, fk, · · · , hk, we see that
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each matrix Wi,Wf , · · · ,Wc is of size Nhidden ×Ninput and the bias vectors bi, bf , · · · , bc

are of size Nhidden. The final output is yk ∈ RNoutput , so Wy is in RNoutput×Nhidden and by

is in RNoutput . For player j, the LSTM cell map, ϕLSTMcell(·;ϑj), is determined by the

choice of parameters ϑj = (W j
i , · · · ,W j

y , U
j
i , · · · , U j

c , b
j
i , · · · , bjy), representing the weight

matrices and bias vectors in Eq. (3.8) specifically for player j.

With the cell-map, ϕLSTMcell, specified by Eq. (3.8), the choice of controls in Eq. (3.4)

is determined by taking player j’s control at time tk to be

α̂jk = ϕLSTM

(
(−τ, X̂−Nτ ), · · · , (tk, X̂k);ϑj

)
,

where this mapping ϕLSTM(·;ϑj) is given by the forward iteration of the recurrence

relation

xk = (tk, X̂k), k = −Nτ , · · · , NT ,

yjk, c
j
k, h

j
k = ϕLSTMcell(xk, h

j
k−1, c

j
k−1;ϑj), k = −Nτ + 1, · · · , NT − 1,

α̂jk = yjk, k = 0, · · · , NT − 1.

(3.9)

In the cases where the dimension of the state process is equal to the number of players

(i.e., n = N), we will choose hj−Nτ
= cj−Nτ

= (X̂j
0 , 0, · · · , 0) ∈ RNhidden to start the forward

iteration, following the implementation in [21]. Note that xk = (tk, X̂k) is a vector in

R1+n, as X̂k is a vector in Rn for each k. This means that while the input dimension

is fixed Ninput = 1 + n, one is free to choose the size of the hidden dimension, Nhidden,

depending on the user’s desired size of the network.

3.2.4 Implementation Details and Full Algorithm

For computational efficiency, we may not be inputting a single sample of (tk, X̂k) into

the LSTM as indicated by Eq. (3.9), but rather a so-called “batch” which contains Nbatch

paths of X̂ determined by respective Nbatch samples of Brownian paths.

Precisely, we can augment the operations in the Euler-Maruyama method (3.4) so
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that it iterates over a batch (X̂k(ωℓ))
Nbatch
ℓ=1 which is represented as a matrix in Rn×Nbatch .

This is done by generating Nbatch samples of the Brownian increments (∆W k(ωℓ))
Nbatch
ℓ=1 .

The drift b̂ and volatility σ̂ are extended to act pointwise across the batch dimension.

The control given by the neural network must also be able to provide the respective

outputs for each sample of X̂ along the batch dimension by acting pointwise across the

batch dimension. Note that a generic linear layer x 7→ Wx + b extends to the mapping

(x1, · · · , xNbatch
) 7→ W (x1, · · · , xNbatch

)+(b, · · · , b), with the property that xi 7→ Wxi+ b.

Because of this, we see that the map ϕLSTMcell in Eq. (3.8) naturally acts pointwise along

the batch dimension. To have the LSTM defined by Eqs. (3.8)–(3.9) extended to act

pointwise on the batch, we will take the input vector xk to be

xk = (tk, X̂k(ωℓ))
Nbatch
ℓ=1 ∈ R(1+n)×Nbatch .

We notice that this will imply that hjk, c
j
k in Eq. (3.9) must also be tensorized along this

batch dimension and we will have ck, hk ∈ RNhidden×Nbatch . For the operations in Eq. (3.8)

to act on a batch, we will have to resize the bias vectors bi, · · · , bc ∈ RNhidden to be of

size RNhidden×Nbatch by repeating their original values across the batch dimension. The

matrices Wi, · · · ,Wc will remain the same size of RNhidden×(1+n).

The end result is the ability to work with the map from the choice of controls

(ϕ1
LSTM(·, ϑ1), · · · , ϕ1

LSTM(·, ϑN)) to the cost function Ĵ i in Eq. (3.5) in a tensorized

form. From a computational perspective, we avoid looping over each sampled trajec-

tory to compute the numerical cost function (3.5). This tensorization is especially useful

when working with automatic differentiation supported libraries such as PyTorch or Ten-

sorFlow, as these tensorized operations can be easily and automatically parallelized [38,

1].

The final algorithm that uses DFP for the closed-loop Nash equilibrium problem for

SDDGs is shown in Algorithm 3 below.
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Algorithm 3 A Deep Fictitious Play Algorithm via Direct Parametrization for SDDG
1: Initialize each ϑ1,0, · · · , ϑN,0 which are the respective parameters of the N different

LSTMs at stage 0.
2: Select Nstages of deep fictitious play based on the computational budget.
3: for m in 0 to Nstages do
4: for i in 1 to N do
5: Compute Nbatch trajectories X̂ of the numerical SDDE (3.4) under the given

controls (α̂j,m)j, where the controls α̂j,m = ϕLSTM(·;ϑj,m) are defined by Eqs. (3.8)–
(3.9) for each player j.

6: Compute the numerical cost Ĵ i from Eq. (3.5).
7: Compute via automatic differentiation ∇ϑi,m Ĵ

i .
8: Do a gradient descent step or similar (e.g. Adam) on ϑi,m with learning rate
lr, i.e. ϑi,m+1 = ϑi,m − lr∇ϑi,m Ĵ

i.
9: end for

10: end for

3.3 Three Games with Delay

In this section, we present three SDDGs– two of which are newly consider problems which

we will fully motivate and solve later in Chapter 4 and one of which is solved in [11]. In

Section 3.3.1 and 3.3.2, we present and summarize the results for these two new model

problems inspired by [35, 4, 29, 30].

For clarity, we shall present the mathematical formulations and highlight analytical

results below and defer modeling motivations and intuitions for these new problems to

Section 4.1 and the proofs of their solutions to Section 4.2. In Section 3.3.3, we briefly

review a stochastic delay differential game arising from inter-bank lending, as discussed

in [11], and summarize the results therein. All three problems will serve as benchmarks

for the numerical methodology we introduced in Section 3.2.

3.3.1 Competition between Portfolio Managers with Delayed Tax

Effects

We consider a portfolio game between N managers where everyone’s award depends

on both their absolute and relative performance, subject to delayed tax effects. Such
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a problem is inspired by the model problems introduced in [35] and [30], and the full

intuition and derivations are elaborated in Section 4.1.

Let X i
t ∈ R be the wealth at time t of an investor i. Her wealth process is influenced

by πit ∈ R, the fraction of wealth she chooses at time t to allocate into a risky asset, while

the remaining is left in a money market account accruing at a risk-free rate r ∈ R. At

time t, the investor pays taxes at a rate of µ2 on her exponentially averaged past wealth

Y i
t . Precisely, the dynamics for the wealth of each player i ∈ {1, · · · , N} are given by

dX i
t =

[
(µ1 − r)πitX i

t + rX i
t − µ2Y

i
t

]
dt+ σπitX

i
t dWt, t ∈ (0, T ],

Y i
t =

∫ t

−∞
λe−λ(t−s)X i

s ds, t ∈ (0, T ],

X i
t = ζ i(t), t ∈ (−∞, 0].

(3.10)

Here, W is a 1-D Brownian motion, and the initial wealth ζ i is positive and bounded for

t ∈ (−∞, 0]. The parameter µ1 ∈ R is the mean return of the stock with µ1 > r, and

σ > 0 is its volatility from the Black-Scholes model. The parameter λ > 0 is the arrival

rate of tax billings which will be explained in Section 4.1.1. We note that in this case,

the length of the delay is τ = ∞ as seen through the dependency on Y i
t in Eq. (3.10)

which itself depends on the entire path X i
(−∞,t].

We consider two cases for the reward for player i. The first case is based on the

constant absolute risk aversion (CARA) utility and is given by

J i[π] = E
[
Ui
(
Zi
disc,T − θiZdisc,T

)]
, (3.11)

where 0 < θi < 1, and

Zdisc,T =
1

N

N∑
i=1

Zi
disc,T , Ui(z) = − exp

(
− 1

δi
z

)
,
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with δi > 0 and Zi
disc defined by

Zi
t = X i

t + aY i
t , where a =

−(r + λ) +
√

(r + λ)2 − 4λµ2

2λ
,

Zi
disc,t = e−(r+λa)tZi

t .

(3.12)

The second case is the based on the constant relative risk aversion (CRRA) utility and

given by

J i[π] = E
[
Ui

(
Zi
disc,TZ

−θi
disc,T

)]
, (3.13)

where 0 < θi < 1 and

Zdisc,T =

(
N∏
i=1

Zi
disc,T

)1/N

, Ui(z) =


1

1− 1
δi

z
1− 1

δi , δi ̸= 1,

log(z), δi = 1,

(3.14)

with δi > 0 and Zi
disc defined by Eq. (3.12).

From the definition above, we notice that (r+λ)2−4λµ2 > 0 must be required, which

essentially means that the tax effect cannot be too large. We further require r + λ > 0,

resulting in a < 0. We also remark that r + λa can be ascribed the meaning of a “tax-

adjusted risk-free rate” and Zi
t can be ascribed the “tax-adjusted wealth”. The utilities in

Eq. (3.11) and Eq. (3.13) have meaningful interpretations, as discussed in Sections 4.1.2

and 4.1.4, respectively.

Lastly, for the CRRA case, the admissible set for πi is extended with additional

requirements, i.e., we will take πi ∈ Ai:

Ai =
{
FX
t −prog. meas. πi : [0, T ]× Ω→ R

∣∣∣ ∃K > 0 : |πitX i
t | ≤ K|Zi

t |
}
, (3.15)

where FX
t is the filtration generated by (X1

(−∞,t], · · · , XN
(−∞,t]). With πi ∈ Ai and taking

ζ i(t) chosen such that Zi
t = X i

t + aY i
t > 0 for all t ≤ 0, we can show for all i, Zi

disc,t > 0

a.s., and therefore the utility given by Eqs. (3.13)–(3.14) is well defined. This is shown

in Section 4.2.2.

The solution to the CARA case is summarized in the following proposition.
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Proposition 3.1. Consider the stochastic delay differential game defined by the dynamics

(3.10) with reward for each player i ∈ {1, · · · , N} given by J i = J i[π] as defined through

Eq. (3.11)–(3.12). Then, there is a closed-loop Nash equilibrium π∗ given by the controls

πi,∗t X
i,∗
t =

µ1 − r
σ2

(
δi +

θiδ̄

1− θ̄

)
1

e−(r+λa)t
,

where δ̄ =
1

N

N∑
i=1

δi, θ̄ =
1

N

N∑
i=1

θi, and X i,∗
t satisfies the dynamics in (3.10) associated

with πi,∗. More precisely, the Nash equilibrium strategy at time t is to invest a determin-

istic dollar amount into the risky asset, independent of the current wealth level.

Proof. See Section 4.2.1.

This proposition characterizes the resulting Nash equilibrium for the CARA case. For

the CRRA case, we have the following result.

Proposition 3.2. Consider the stochastic differential game with delay defined by the

dynamics (3.10), the reward J i = J i[π] for each player i ∈ {1, · · · , N} defined through

Eq. (3.12)–(3.14), and the admissible space ⊗Ni=1Ai given by Eq (3.15). Then, there is a

closed-loop Nash equilibrium π∗ given by the controls

πi,∗t =
µ1 − r
σ2

(
δi −

θi(δi − 1)δ̄

1 + θ(δ − 1)

)
X i
t + aY i

t

X i
t

,

where δ̄ =
1

N

N∑
i=1

δi and θ(δ − 1) =
1

N

N∑
i=1

θi(δi − 1).

Proof. See Section 4.2.2.

3.3.2 Consumption and Portfolio Allocation Game with Delayed

Tax Effects

In addition to the delay effects in investment strategies as analyzed in Section 3.3.1, here

we also consider players’ consumption strategies which contribute to their relative utility

in the reward. Such a problem without delay was studied in [29].
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As before, πit represents the fraction of player i’s wealth allocated to the risky asset

at time t. The second control process, cit, is person i’s rate of consumption at time t

as a fraction of her wealth. In addition to the usual admissibility conditions given by

Eq. (3.2), we require that cit ≥ 0 for all t ∈ (0, T ]. In this case, the wealth dynamics for

player i ∈ {1, · · · , N} are given by

dX i
t =

[
(µ1 − r)πitX i

t + rX i
t − µ2Y

i
t − citX i

t

]
dt+ σπitX

i
t dWt, t ∈ (0, T ],

X i
t = ζ i(t), t ∈ (−∞, 0],

(3.16)

where Y i
t =

∫ t
−∞ λe−λ(t−s)X i

s ds is the exponentially decayed moving average of past

wealth. The parameters are taken as µ1, r, λ, σ ∈ R: λ, σ > 0, µ1 > r, and µ2 > 0. The

results will stay the same if one has µ2 ∈ R, but only µ2 > 0 corresponds to taxes. We

further require that (r+λ)2− 4λµ2 > 0 and r+λ > 0, as we did in Section 3.3.1. Again,

the length of delay is τ =∞ as Y i
t in Eq. (3.16) depends on the entire path X i

(−∞,t].

With the dynamics fully described, we now define the reward function for player i to

be given by

J i[π, c] = E
[∫ T

0

U i(Ci
disc,tCdisc,t

−θi
) dt+ ϵiUi

(
Zi
disc,TZdisc,T

−θi
)]

, (3.17)

where 0 < θi < 1, ϵi > 0, and

Zi
t = X i

t + aY i
t , a =

−(r + λ) +
√

(r + λ)2 − 4λµ2

2λ
,

Ci
disc,t = e−(r+λa)tcitX

i
t , Cdisc,t =

(
N∏
i=1

Ci
disc,t

)1/N

,

Zi
disc,t = e−(r+λa)tZi

t , Zdisc,t =

(
N∏
i=1

Zi
disc,t

)1/N

,

and the utility function is the constant relative risk aversion (CRRA) utility given by

Ui(z) =


1

1− 1
δi

z
1− 1

δi , δi ̸= 1,

log(z), δi = 1,

(3.18)
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with δi > 0.

In this case, we can again interpret r+λa as the “tax-adjusted risk-free rate” and Zi
t as

“tax-adjusted wealth”, and the interpretation of the expected utility (3.17) is discussed in

Section 4.1.5. This example mainly contrasts with that in Section 3.3.1 in that each player

now has two controls. This changes the mathematical structure and poses additional

numerical challenges.

Lastly, to ensure the utility in Eqs. (3.17)–(3.18) is well defined, we require that the

controls for player i, (πi, ci), live in the admissible set Ai:

Ai =
{
FX
t −prog. meas. (πi, ci) : [0, T ]× Ω→ R× R+

∣∣∣
∃K > 0 : |πitX i

t |, |citX i
t | ≤ K|Zi

t |
}
,

(3.19)

where FX
t is the filtration generated by (X1

(−∞,t], · · · , XN
(−∞,t]). With (πi, ci) ∈ Ai and

taking the initial path ζ i chosen such that Zi
t = X i

t + aY i
t > 0 for all t ≤ 0, we can show

for all i, Ci
disc,t, Z

i
disc,t > 0 a.s. (see details in Section 4.2.3).

The characterization of the closed-loop Nash equilibrium is given by the following

proposition.

Proposition 3.3. Consider the stochastic differential game with delay defined by the

dynamics (3.16), the reward J i = J i[π, c] for each player i ∈ {1, · · · , N} defined through

Eqs. (3.17)–(3.18), and the admissible space ⊗Ni=1Ai defined by Eq (3.19). Then, there is

a closed-loop Nash equilibrium (π∗, c∗) given by the controls

πi,∗t =
µ1 − r
σ2

(
δi −

θi(δi − 1)δ̄

1 + θ(δ − 1)

)
X i
t + aY i

t

X i
t

,

ci,∗t =


(
β−1
i + (γ−1

i − β−1
i )e−βi(T−t

)−1 Xi
t+aY

i
t

Xi
t

, δi ̸= 1,(
T − t− γ−1

i

)−1 Xi
t+aY

i
t

Xi
t

, δi = 1,

where δ̄ =
1

N

N∑
i=1

δi, θ(δ − 1) =
1

N

N∑
i=1

θi(δi − 1) and the parameters βi and γi are given
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by

βi =
1

2
(1− δi)

(
µ1 − r
σ

)2
(
1− θiδ̄

1 + θ(δ − 1)

)(
δi −

θiδ̄

1 + θ(δ − 1)
(δi − 1)

)
,

γi = ϵ−δii

( N∏
k=1

ϵδkk

)1/N
θi(δi−1)/(1+θ(δ−1))

.

Proof. See Section 4.2.3.

3.3.3 Inter-Bank Lending Model for Systemic Risk

The last problem we present comes from the study of systemic risk within inter-bank

lending. The particular model we follow is a stochastic delay differential game introduced

and studied by Carmona, Fouque, Mousavi, and Sun [11]. In this model, each bank

lends/borrows monetary reserves to/from a central bank with their controls being their

pace of lending/borrowing. The model includes loan repayments after a fixed time τ > 0,

which leads to the delayed component in the SDDE. The log-monetary reserves of bank

i, X i
t , change in a differential manner with respect to this lending/borrowing dynamics

along with some noise. Mathematically, X i
t satisfies the SDDE:

dX i
t = (αit − αit−τ )dt+ σdW i

t , t ∈ [0, T ],

αit = 0 ∈ R, t ∈ [−τ, 0],

X i
0 = ξi ∈ R.

(3.20)

The cost function for bank i is given by

J i[α] = E
[∫ T

0

(
1

2
(αit)

2 − qαit(X̄t −X i
t) +

ϵ

2
(X̄t −X i

t)
2

)
dt+

c

2
(X̄T −X i

T )
2

]
. (3.21)

The control αit ∈ R is their corresponding pace of borrowing (αit > 0) or lending (αit < 0)

at time t. Although the level of volatility, σ > 0, is the same for each bank, we have that

{W i}Ni=1 are independent 1-D Brownian motions meaning that each bank experiences

their own idiosyncratic noise, and X̄t =
1
N

∑N
i=1X

i
t .
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A bank’s choice of action is dictated by its incentive mechanisms illustrated through

Eq. (3.21). The main incentive of bank i can be simply stated as a desire to borrow when

they deem their reserves to be “too low” and lend when deemed “too high”. In particular,

bank i will arithmetically compare their level of log-monetary reserves to the mean log-

monetary reserves of all banks, X̄, with a preference for bank i to have X i
t ≈ X̄t. This

is exemplified by the terms qαit(X̄t −X i
t),

ϵ
2
(X̄t −X i

t)
2, and c

2
(X̄T −X i

T )
2 in Eq. (3.21).

The parameters q ≥ 0, ϵ > 0 and c ≥ 0 respectively represent the degrees to which a

bank desires 1) to borrow when there are too little monetary reserves 2) to maintain

near average capitalization of log-monetary reserves at all times, and 3) to have near

average capitalization at the final time. These incentives to have near average levels

of log-monetary reserves are balanced by the bank’s inclination, all else equal, to avoid

lending or borrowing as represented by the quadratic penalty 1
2
(αit)

2 in Eq. (3.21).

The closed-loop Nash equilibrium for the stochastic delay differential game (3.20)–

(3.21) is derived and proven in [11]. The result is restated in the proposition below for

convenience.

Proposition 3.4 ([11, Proposition 6.1]). Consider the stochastic differential game with

delay defined by the dynamics (3.20) and with the reward for each player i ∈ {1, · · · , N}

given by J i = J i[α] as defined through Eq. (3.21). Then, there exists a closed-loop Nash

equilibrium α∗ given by the control for each player i ∈ {1, · · · , N} by

αi,∗t = 2
(
1−N−1

) [(
E1(t, 0) + E0(t) +

q

2(1−N−1)

)
(X̄t −X i

t)

+

∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t))(α∗

s − αi,∗s ) ds

]
,

where α∗ =
1

N

N∑
i=1

αi,∗, and where E0, · · · , E2 are given by the following PDE system in
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the region (t, s, r) ∈ [0, T ]× [−τ, 0]× [−τ, 0]:

E ′
0(t) +

ϵ

2
= 2

(
1−N−2

)
(E1(t, 0) + E0(t))

2 + 2q (E1(t, 0) + E0(t)) +
q2

2
,

∂tE1(t, s)− ∂sE1(t, s) =

2
(
1−N−2

)(
E1(t, 0) + E0(t) +

q

2 (1−N−2)

)
(E2(t, s, 0) + E1(t, s)) ,

∂tE2(t, s, r)− ∂sE2(t, s, r)− ∂rE2(t, s, r) =

2
(
1−N−2

)
(E2(t, s, 0) + E1(t, s)) (E2(t, r, 0) + E1(t, r)) ,

with boundary conditions given by

E0(T ) =
c

2
, E1(T, s) = 0, E2(T, s, r) = 0, E2(t, s, r) = E2(t, r, s),

E1(t,−τ) = −E0(t), E2(t, s,−τ) = −E1(t, s).

This Nash equilibrium is derived in [11] by first formulating the delayed problem as a

stochastic differential game in an infinite-dimensional Hilbert space, and then character-

izing the Nash equilibrium through Hamilton-Jacobi-Bellman equations over a Hilbert

space of functions. A thorough discussion of this technique as well as the theory of

infinite-dimensional stochastic control problems can be found in [15].

3.4 Numerical Results

In Section 3.3, we have presented three SDDGs with analytical formulas of their closed-

loop Nash equilibrium. In each case, we now numerically approximate the closed-loop

Nash equilibrium for N = 10 players via our proposed numerical method, Algorithm 3

in Section 3.2.

We introduce below in Section 3.4.1 the precise details of our numerical experiments

that serve as a reference point for the construction of the plots shown in Sections 3.4.2–

3.4.4, the parameter values used for each of these problems, and an important implemen-

tation detail for the problems with infinite delay. In Sections 3.4.2–3.4.4 we present and
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interpret the numerical results for each of the considered problems.

3.4.1 Numerical Results Methodology

Costs/Rewards over Training

For typical machine learning problems, one usually has a training curve– a plot of the loss

function over the course of training, which serves as an initial gauge of the effectiveness of

training. While the loss function for each player can be seen through the player’s empirical

cost (3.5), the controls are meant to approximate a Nash equilibrium; the trajectory of

each player’s loss function over the course of training is not an appropriate measure of the

effectiveness of training in this case. The impact of training can be better seen through

the relative error of these costs under the LSTM controls to that corresponding to the

true Nash equilibrium controls.

Therefore, for every 20 rounds of deep fictitious play (DFP) within Algorithm 3, we

compute the 2-norm relative error:

Relative 2-Norm Error =
||Ĵ [ϕLSTM ]− Ĵ [α∗]||2

||Ĵ [α∗]||2
, (3.22)

where Ĵ [ϕLSTM ] and Ĵ [α∗] respectively are the vectors containing the empirical cost for

each player under the LSTM controls (ϕ1
LSTM , · · · , ϕNLSTM) defined in Eqs. (3.8)–(3.9) and

the true Nash equilibrium controls (α∗1, · · · , α∗N) of the mathematical problem defined

by Eqs. (3.1),(3.3). We then plot this relative 2-norm error as it evolves over the course

of training for each of the problems we consider throughout Sections 3.4.2–3.4.4.

Comparison of State and Control Trajectories

After training, we have the collection (ϕLSTM(·;ϑi))Ni=1 of LSTM control functions for

each player. We demonstrate the ability of these surrogate functions to approximate the

true Nash equilibrium controls by comparing the trajectories of both control and state
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processes under both the LSTM and true Nash equilibrium controls for a given sample

of Brownian motion.

This is done by selecting a single realization of the discrete Brownian motion’s path,

(∆Wk(ω)
NT−1
k=0 , and with this given noise simulate the discretized dynamics (3.4) once

under the Nash equilibrium controls and again under the LSTM controls. We then

compare the dynamics given the two different choices of controls. The plots of these

dynamics are shown for each problem occurring throughout Sections 3.4.2–3.4.4. Each

player is distinguished with a given color, while solid and dashed lines correspond to the

dynamics under LSTM controls and Nash equilibrium controls respectively. Lastly, while

we have performed the training for 10 players to demonstrate the methodologies’ ability

to handle larger games, we will only plot 5 out of 10 players’ trajectories for the sake of

visual clarity.

Model Parameters

The model parameters chosen for the numerical experimentation of each problem are

shown below. We express a dependency on i for parameters specific to player i, e.g.

δi =
3
10

+ 4
9
(i − 1) in Table 3.1 is player i’s risk tolerance parameter. Here, we are still

using the indexation i ∈ {1, · · · , N = 10}.

Table 3.1: Parameters for CARA case of competition between portfolio managers with
delayed tax effects.

N T µ1 σ r λ µ2 δi θi X i
(−∞,0] = xi0

10 10.0 0.08 0.2 0.04 2.0 0.01 3
10

+ 4
9
(i− 1) 3

10
+ 4

9
(i− 1) 2 + 1

10
(i− 1)

Table 3.2: Parameters for CRRA case of competition between portfolio managers with
delayed tax effects.

N T µ1 σ r λ µ2 δi θi X i
(−∞,0] = xi0

10 1.0 0.08 0.2 0.04 1.0 0.2 3
10

+ 4
9
(i− 1) 3

10
+ 4

9
(i− 1) 1 + 1

20
(i− 1)

Note that in Tables 3.1–3.3, we write X i
(−∞,0] = xi0, indicating the initial path for each

player is taken to be constant. Table 3.3 is split in two parts for page size considerations.
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Table 3.3: Parameters for consumption and portfolio allocation game with delayed tax
effects.

N T µ1 σ r λ µ2 ϵi
10 2.0 0.08 0.2 0.04 1.0 0.01 50.0

δi θi X i
(−∞,0] = xi0

3
10

+ 4
9
(i− 1) 3

10
+ 4

9
(i− 1) 1 + 1

20
(i− 1)

Table 3.4: Parameters for inter-bank lending model.

N T σ q ϵ c τ X i
0 = ξi

10 1.0 .05 1.0 2.0 0.25 0.25 1 + 0.1 · 1.15i−1

Approaching the Infinite Delay Cases

We remark on an approximation used in the infinite delay cases appearing in the problems

in Sections 3.3.1 and 3.3.2 whose numerical results we display in 3.4.2 and 3.4.3. In both

cases, the delay is contained through the variable Y i
t =

∫ t
−∞ λe−λ(t−s)X i

s ds.

While one option is to truncate the delay resulting in a truncated integral for which a

standard numerical integration approach can be applied, this is not necessary. The reason

is that in each of these problems, one can show Y i
t satisfies the ODE relation dY i

t =

λ(X i
t − Y i

t ) dt, allowing us to approximate Yt through the forward Euler discretization.

Moreover, when the initial path X i
(−∞,0] is constant, we can easily see that Y i

0 = X i
0,

which greatly simplifies the discrete SDDE iteration by altogether avoiding integration,

and therefore the truncation of τ = ∞ is no longer important for Yt. However, we still

must impose some finite truncation to the delay τ in order for the forward iteration of the

LSTM as described in Eq. (3.9) to be initialized at some finite −Nτ . For the numerical

results shown in both Sections 3.4.2 and 3.4.3, we have used τ = 1.0 as the truncation

for the infinite delay.
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3.4.2 Results for Competition between Portfolio Managers with

Delayed Tax Effects

CARA Case

We consider now the problem of competition between portfolio managers with delay tax

effects, Eq. (3.10), in the CARA case where the rewards are given by Eqs. (3.11)–(3.12).

In our numerical experiment, we select the parameter values as shown in Table 3.1.

For this problem, we lower the learning rate throughout training by taking it to be

10−2 for the first 500 rounds of DFP, 10−3 for the next 500, and 10−4 for the remaining 700

rounds. The impact of this training on the approximation of the true Nash equilibrium

rewards is shown in Figure 3.1 as explained in Section 3.4.1.

Figure 3.1: The relative 2-norm error (3.22) over the course of training between
(Ĵ1, · · · , ĴN) under the LSTM controls and the true Nash equilibrium controls for the
CARA case. We take Nbatch = 215 in the computation of (Ĵ1, · · · , ĴN) according to
Eq. (3.5). The length of training is measured in terms of rounds of DFP.

The decreasing relative 2-norm error that plateaus at a level near 10−3 indicates a success-

ful training of the controls. On one hand, this demonstrates that the rewards simulated

under the LSTM controls are close to the true Nash equilibrium rewards. However, we

are also interested to see how the trajectories themselves compare under both LSTM and

true Nash equilibrium controls. Following the methodology in Section 3.4.1, we compare

the trajectories under the LSTM controls to their true Nash equilibrium counterparts,

and the resulting plots are shown in Figure 3.2.
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Figure 3.2: Left: A sample path of the wealth processes for players 1, 3, 5, 7, and 9 (each
player corresponds to a unique color) under the true Nash equilibrium controls (dashed)
and the trained LSTM control (solid). Right: True Nash equilibrium controls (dashed)
vs LSTM controls (solid). Controls represent the fraction of total wealth allocated to the
risky asset at time t for a given player.

We see that the state process trajectories are nearly identical under both true and LSTM

controls respectively. At the same time, the LSTM controls themselves are not only

approximating the absolute level of control, but adapting to noises within the state

process as illustrated by the LSTM controls matching the shape of the Nash equilibrium

controls.

CRRA Case

We now consider the problem of competition between portfolio managers with delayed

tax effects, Eq. (3.10), in the CRRA case where the rewards are given by Eqs. (3.13)–

(3.14). In our numerical experiments, we select the parameters for this problem as shown

in Table 3.2. For this problem, we lower the learning rate throughout training by taking

it to be 10−2 for the first 500 rounds of DFP, 10−3 for the next 500, and 10−4 for the

remaining 500 rounds. The approximation of the empirical rewards under the LSTM

controls to that under the true Nash equilibrium controls (see Section 3.4.1 for details)

is examined by Figure 3.3 below.
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Figure 3.3: The relative 2-norm error (3.22) over the course of training between
(Ĵ1, · · · , ĴN) under the LSTM controls and the true Nash equilibrium controls for the
CRRA case. We take Nbatch = 215 in the computation of (Ĵ1, · · · , ĴN) according to
Eq. (3.5). The length of training is measured in terms of rounds of DFP.

The relative 2-norm error decreasing throughout training and plateauing at levels near

10−5 indicates that the training is successful and the rewards experienced under the LSTM

controls are approximating the rewards experienced under the true Nash equilibrium

controls. Figure 3.4 below allows us to compare the paths induced by these trained

controls to their true Nash equilibrium counterparts.

Figure 3.4: Left: A sample path of the wealth processes for players 1, 3, 5, 7, and 9 (each
player corresponds to a unique color) under the true Nash equilibrium controls (dashed)
and the trained LSTM control (solid). Right: True Nash equilibrium controls (dashed)
vs LSTM controls (solid). Controls represent the fraction of total wealth allocated to the
risky asset at time t for a given player.

As indicated by Figure 3.4, we see that the numerical methodology results in LSTM

controls that accurately depict the true Nash equilibrium dynamics of the problem in
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question. The corresponding wealth processes under the true and LSTM controls are

nearly identical, while the paths of the LSTM controls themselves are coinciding well

with their true counterparts.

3.4.3 Results for Consumption and Portfolio Allocation Game

with Delayed Tax Effects

We now consider the consumption and portfolio allocation game with delayed tax effects

given by Eqs. (3.16)–(3.18). For our numerical experiments, we select the value of the

parameters as shown in Table 3.3. In this example, we use 10−2 as the learning rate

for the first 500 rounds of DFP, 10−3 for the subsequent 500 rounds, and 10−4 for the

final 1000 rounds. Following Section 3.4.1, the successive approximation of the Nash

equilibrium rewards over training is illustrated by Figure 3.5.

Figure 3.5: The relative 2-norm error (3.22) over the course of training between
(Ĵ1, · · · , ĴN) under the LSTM controls and the true Nash equilibrium controls. We
take Nbatch = 215 in the computation of (Ĵ1, · · · , ĴN) according to Eq. (3.5). The length
of training is measured in terms of rounds of DFP.

This example showcases the importance of the training schedule. We notice that there is

an initial plateau in the approximation of the true Nash equilibrium empirical rewards

around the level of 10−3 relative 2-norm error. The learning rate first changes after

500 rounds of DFP and the plateau breaks shortly thereafter. The learning rate is

again decreased at round 1000 of DFP, yet another substantial decrease in relative error
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following this change is not seen. The relative 2-norm error reaches a final plateau near

10−5 indicating a successful training.

The success of training is also reflected in the results from comparing the realized

trajectories under both true and LSTM controls in Figure 3.6. In this case, player i has

two controls representing the stock allocation at time t, πit, as well as the consumption

rate at time t, cit. We plot in Figure 3.6 their corresponding unnormalized versions which

are the wealth allocated to the stock and the annualized run rate of wealth consumed

respectively.

Figure 3.6: Left: A sample path of the wealth processes of players 1, 3, 5, 7, and 9 under
the true Nash equilibrium controls (dashed) and the trained LSTM control (solid) of the
corresponding players. Center: Nash equilibrium wealth allocation to stock (dashed) vs
LSTM allocation (solid). Right: Nash equilibrium total consumption rate (dashed) vs
LSTM consumption rate (solid).

We see that the trajectories produced by the trained LSTM controls coincide well with

those produced under the true Nash equilibrium controls. This is especially apparent in

the consumption control, which like the wealth process, contains trajectories that almost

entirely overlap with the true Nash equilibrium dynamics. This example highlights the

ability of the proposed algorithm to succeed in the important case where each player has

multiple controls.

3.4.4 Results for the Inter-Bank Lending Model

Lastly, we present the numerical results for the inter-bank lending model for systemic

risk given by Eqs. (3.20)–(3.21). The parameter choices are summarized in Table 3.4.
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The learning rate iterated throughout the training is chosen to be 10−2 in the first 500

rounds of DFP, 10−3 in the next 500 rounds, 10−4 in the subsequent 500 rounds, and

10−5 in the last 2500 rounds. The relative 2-norm error between empirical rewards over

training, in this case, is shown in Figure 3.7.

Figure 3.7: The relative 2-norm error (3.22) over the course of training between
(Ĵ1, · · · , ĴN) under the LSTM controls and the true Nash equilibrium controls for the
inter-bank lending model. We take Nbatch = 212 in the computation of (Ĵ1, · · · , ĴN)
according to Eq. (3.5). The length of training is measured in terms of rounds of DFP.

The 2-norm relative error steadily decreases illustrating a continual improvement through-

out training. It is important to note that in this case, what we call the “true” Nash

equilibrium controls are actually themselves approximated as the true controls are given

in terms of a PDE system (see Proposition 3.4).2 This additional source of error from the

PDE approximation is likely the cause of the increased smoothness of the curve in Figure

3.7 and the slightly higher levels of relative error compared to previous cases. Despite

this additional source of error, the relative 2-norm error between these two reaches levels

close to 10−3, and the plateau of this error indicates successful training. However, the

comparison of trajectories, Figure 3.8, is the foremost illustration showcasing the success

of the numerical algorithm for this particular example.
2The PDE system is solved numerically with a discretization of 800 equally spaced slices for

t ∈ [0, T ] and 50 slices for both s ∈ [−τ, 0] and r ∈ [−τ, 0]. The PDE is a nonlinear transport
equation and the forward Euler scheme is used to solve the PDE.
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Figure 3.8: Left: A sample path of the log-monetary reserves of banks 1, 3, 5, 7, and 9
under the true Nash equilibrium controls (dashed) and the trained LSTM control (solid).
Right: The corresponding paths (with respect to the left picture) of Nash equilibrium
controls (dashed) and LSTM controls (solid) for each bank. The controls represent the
pace of borrowing/lending for each bank measured as the annualized run rate of borrowing
as a percentage of current monetary reserves.

This is an interesting and unique case in that this problem’s dynamics involved delay with

respect to the controls themselves rather than the state process. Despite this complexity,

we see that the LSTM controls are successful in approximating the true Nash equilibrium

control trajectories by conforming to their shape and absolute levels exceptionally well,

causing their induced state processes to be nearly identical to that of the true Nash

equilibrium.
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Chapter 4

Financial Modeling of Portfolio Games

with Delayed Tax Effects

The work described in this chapter, which was prepared for this dissertation, contains

material that has already been submitted for publication [3].

In this chapter, we elaborate on the newly considered problems featured in Sec-

tions 3.3.1 and 3.3.2, explaining their formulation and the intuition behind the models

in Section 4.1, while the proofs of solution for each of the considered problems is given

in Section 4.2.

4.1 Interpretation and Derivations of the Portfolio

Games with Delayed Tax Effects

4.1.1 Portfolio Optimization with Delayed Taxes Effects

We start with restating the original Merton problem [33]. Consider an investor who

chooses between a stock and a bond. At time t, the fraction of wealth πt is invested in

the stock, and 1 − πt is invested in the bond. In general, we have πt ∈ R, where πt > 1

corresponds to a leveraged stock position, while πt < 0, corresponds to the investor being
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short the stock. The bond is assumed to accrue at a continuously compounded rate of

interest r and the stock evolves according to the Black-Scholes model dSt

St
= µ dt+σ dWt.

Denoting by Xt the investor’s wealth at time t, one then has

dXt = [(µ− r)πtXt + rXt] dt+ σπtXt dWt, t ∈ (0, T ]. (4.1)

The investor aims to choose a strategy π to optimize her expected utility of terminal

wealth

J [π] = E[U(XT )],

subject to the dynamics (4.1). Intuitively, the expected utility quantifies the investor’s

desire for the random outcome XT .

We now consider an additional outflow of wealth due to taxes in Eq. (4.1). We assume

that at the end of the period [t, t + dt], the investor pays the amount µ2Yt dt in taxes,

where Yt =
∫ t
−∞ λe−λ(t−s)Xs ds is the investor’s exponentially averaged past wealth. This

leads to the modified dynamics of the wealth process X given by

dXt = ((µ1 − r)πtXt + rXt − µ2Yt) dt+ σπtXt dWt, t ∈ (0, T ]. (4.2)

This model with µ2 < 0 was introduced and solved in [35] arising from a type of mo-

mentum effect. For our consideration, we take µ2 > 0 and the term µ2Yt dt represents

the fact that the investor is paying the fixed percentage (or tax rate) µ2 > 0 of their

historical wealth. This outflow could represent management fees, trading fees, and/or

taxes. For simplicity, we shall refer to it as “taxes” in the sequel.

Such modeling enables us to capture some realistic features: 1) taxes increase with

and proportional to wealth; 2) there is a delay between when a tax is realized and when it

is paid; 3) this delayed period for taxes varies for a given tax and is itself random. To see

this, let’s assume that the taxes paid over [t, t+dt] occur due to numerous tax bills that

were realized τ units in the past. If we further assume that the time to pay these taxes,

τ , follows an exponential distribution with a rate λ > 0, then one could approximate
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the taxes paid in [t, t + dt] by its mean under the scenario of a high frequency of tax

occurrences with small tax amounts at each occurrence. This gives rise to the flux of

wealth of −µ2

∫ t
−∞ λe−λ(t−s)Xs ds dt = −µ2Yt dt as it appears in Eq. (4.2). In essence,

the tax at time t of µ2Yt dt naturally represents the delayed accrual of taxes due at time

t based on past wealth as a result of a delay in billings.

Since Eq. (4.2) includes an outflow due to taxes, one observes that cash will no longer

grow at the risk-free rate r. Therefore, it is natural to ask if there is a tax-adjusted

risk-free rate that better represents the growth of cash in this model. This is addressed

in Section 4.1.2. Moreover, while Xt represents the wealth of an investor at time t,

the investor is carrying around a hidden tax liability given through their past history of

wealth. We will also argue in Section 4.1.2 that the variable ZT = XT+aYT represents the

tax-adjusted wealth of the investor at time t when a is given by a =
−(r+λ)+

√
(r+λ)2−4λµ2

2λ
.

With this in mind, the problem we consider is that of an investor who seeks to maximize

the quantity

J [π] = E[U(ZT )], (4.3)

which is the expected utility of tax-adjusted terminal wealth.

Lastly, we mention that the stochastic control problem with such delay structure (4.2)

and µ2 < 0 was considered in [35], including notably the form of the utility (4.3) depend-

ing on ZT = XT + aYT , where a =
−(r+λ)+

√
(r+λ)2−4λµ2

2λ
. Therein, µ2 < 0 is interpreted as

a momentum-like effect arising from the market structure. Our work considers µ2 > 0,

leading to a quite different interpretation as discussed above.

4.1.2 Tax-Adjusted Wealth and the Tax-Adjusted Risk-Free Rate

We have discussed the motivation and interpretation of Eqs. (4.2)–(4.3), which comes

from an investor who is paying taxes at time t at a rate µ2 > 0 on her exponential

average of past wealth. In this section, we give further interpretations to the quantities

Zt and r+λa, as the tax-adjusted wealth and the tax-adjusted risk-free rate respectively.

51



We define the tax-adjusted risk-free rate to be the long-term exponential growth rate

of wealth for an all-bond account. Then, tax-adjusted wealth is the process that grows

precisely at the tax-adjust risk-free rate when considering the all-bond investor. In other

words, Xt is no longer the best measurement of an investor’s “true” wealth as it does

not incorporate the hidden tax liabilities which arise due to the past history of Xt, yet

contributes to taxes beyond time t, and the usual risk-free rate r no longer represents

the rate of accrual of a pure bond account due to tax drag.

To see this, we consider the dynamics of an all-bond investor πt ≡ 0:

dXt = rX − µ2Yt dt.

Recall that Yt =
∫ t
−∞ λe−λ(t−s)Xs ds and dYt = λ(Xt − Yt) dt, then one has for arbitrary

a ∈ R

d(Xt + aYt) = (r + λa)Xt dt+ (−µ2 − λa)Yt dt.

Therefore if a satisfies −µ2 − λa = a(r + λa), then we will have

d(Xt + aYt) = (r + λa)(Xt + aYt) dt,

which occurs when a takes values of a± =
−(r+λ)±

√
(r+λ)2−4λµ2

2λ
. Note that a± are distinct

real numbers since (r + λ)2 − 4λµ2 > 0 is assumed.

Denoting Z±
t = Xt + a±Yt, we have two linearly independent representations for X,

which allows us to eliminate Y resulting in an expression of X as a linear combination

of Z+ and Z−. Using that Z±
t = Z±

0 e
(r+λa±)t, we obtain the expression

Xt = c+e
(r+λa+)t + c−e

(r+λa−)t,

where c+ = a−
a−−a+ (X0 + a+Y0) and c− = −a+

a−−a+ (X0 + a−Y0). Since λ > 0 and a+ > a−,

we have that r + λa+ > r + λa−. Because of this, the wealth of the all-bond investor,

52



Xt, has the property

lim
t→∞

e−ktXt =


∞, k < r + λa+,

c+, k = r + λa+,

0, k > r + λa+,

where c+ > 0 holds assuming the initial quantity X0 + a+Y0 > 0 as well as r + λ > 0.

This is guaranteed under either of the realistic assumptions that r ≥ 0 or |r| << λ.

Therefore, the rate r + λa+ is precisely the long-run exponential growth rate of an all-

bond account, meaning cash grows at the rate r+λa+ in the long run. And for this choice

of a, one has Xt + aYt = (X0 + aY0)e
(r+λa)t, consequently, Xt + aYt can be interpreted

as tax-adjusted wealth. Note that, in fact, c(Xt + aYt) for any c ∈ R could represent

the tax-adjusted wealth by our requirement. However, Xt + aYt is the correct choice out

of these by imposing a natural second requirement: the tax-adjusted wealth should be

consistent with the wealth if the investor has no tax liability. Thus c = 1. The notion of

Xt + aYt as the tax-adjusted wealth also makes sense intuitively as in our case of taxes

(µ2 > 0) results in a < 0 under the realistic assumption that r + λ > 0. Hence Xt + aYt

represents an adjustment to total assets Xt taking into account the tax liability given

through Yt.

4.1.3 Competition between Portfolio Managers

We temporarily ignore the delay arising from taxes and review the game extension of

Merton’s original problem which has been considered in [4, 29, 30]. We will briefly

summarize them for convenience as they inspire the form of the new problems we had

considered in Sections 3.3.1–3.3.2. The motivation [4] comes from competing portfolio

managers who are selected by their clients (or awarded bonuses) not only based on the

fund’s absolute performance, but also based on the fund’s performance compared to sim-

ilar funds. To address this possibility, the portfolio manager may have a utility function
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that takes into account both their absolute performance, as well as their performance

relative to their peer group. [4, 29, 30] model this by considering the interaction between

managers occurring through the reward function.

Let X i
t be manager i’s wealth process. Her utility can depend on both her terminal

wealth X i
T as well as her terminal wealth relative to that of her peers X i

T −XT , where

XT = 1
N

∑N
i=1X

i
T is the arithmetic mean. A weighted average (1−θi)X i

T+θi(X
i
T−XT ) =

X i
T − θiXT can serve as the input for the utility function, where θi ∈ (0, 1) measures the

extent that manager i weighs relative versus absolute performance. Specifically, [30]

consider the constant absolute risk aversion (CARA) case, and the reward for player i is

given by

J i = E[Ui(X
i
T − θiXT )], Ui(z) = − exp

(
− 1

δi
z

)
, (4.4)

where δi > 0 is the risk tolerance of manager i. They consider constant relative risk

aversion (CRRA) utilities

Ui(z) =


1

1− 1
δi

z
1− 1

δi , δi > 0, δi ̸= 1,

log(z), δi = 1,

(4.5)

where δi > 0 is the risk tolerance of manager i.

The CRRA case is also considered in [30]. In this case, for tractability, the competing

managers compare relative performance to absolute performance modeled by the ratio
Xi

T

(XT )θi
, where X = (

∏N
i=1X

i)1/N is the geometric average. Then we can say manager i

seeks to maximize her expected utility given by

J i = E[Ui(X
i
T (XT )

−θi)].
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4.1.4 Competition between Portfolio Managers with Delayed Tax

Effects

We have now discussed the extension of the Merton problem to one with delay as well as

one as a game. Now, we seek to combine both aspects together. The wealth dynamics

of manager i, denoted by X i
t , can easily be generalized via Eq. (4.2), and given by

dX i
t =

(
(µ1 − r)πitX i

t + rX i
t − µ2Y

i
t

)
dt+ σπitX

i
t dWt, t ∈ (0, T ], (4.6)

where Y i
t =

∫ t
−∞ λe−λ(t−s)X i

s ds.

As for the reward function, we again consider both the CARA case (4.4) and the

CRRA case (4.5), but replace the terminal wealth with the discounted, tax-adjusted

terminal wealth. To recall the discussion in Section 4.1.1 and 4.1.2, we have identified

the tax-adjusted risk-free rate to be r + λa and the tax-adjusted wealth for player i at

time t to be

Zi
t = X i

t + aY i
t ,

where a =
−(r+λ)+

√
(r+λ)2−4λµ2

2λ
. The discounted, tax-adjusted wealth at time t is then

given by

Zi
disc,t = e−(r+λa)tZi

t ,

which discounts the tax-adjusted wealth back to time 0 under the tax-adjusted risk-free

rate. Therefore, in the CARA utility case, it is natural to consider the reward for player

i by

J i[π] = E
[
Ui
(
Zi
disc,T − θiZdisc,T

)]
,

where Zdisc,T = 1
N

∑N
i=1 Z

i
disc,T . In contrast, for the CRRA utility case with Ui given by

Eq. (4.5), one has

J i[π] = E
[
Ui

(
Zi
disc,TZ

−θi
disc,T

)]
,

where in this case Zdisc,T =
(∏N

i=1 Z
i
disc,T

)1/N
.
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In both cases, we see that the portfolio manager is simply comparing her terminal

tax-adjusted wealth to that of her peers in the manner discussed in Section 4.1.3 in

determining her utility.

4.1.5 Consumption and Portfolio Allocation Game with Delayed

Tax Effects

We further extend the modeling (4.6) by considering consumption. In addition to the

investment strategy πit, the consumption rate cit will also be chosen by investor i. The

consumption rate cit measures investor i’s annual run rate of consumption at time t as a

fraction of her wealth. Precisely, over [t, t + dt] investor i consumes the dollar amount

given by citX
i
t dt. By including this outflow due to consumption, we have the wealth

dynamics for player i given by

dX i
t =

(
(µ1 − r)πitX i

t + rX i
t − µ2Y

i
t − citX i

t

)
dt+ σπitX

i
t dWt, t ∈ (0, T ],

where as before, Y i
t =

∫ t
−∞ λe−λ(t−s)X i

s ds. The quantity Zi
T = X i

T + aY i
T with a =

−(r+λ)+
√

(r+λ)2−4λµ2

2λ
again represents the tax-adjusted wealth of player i.

The expected utility will be a sum of the utility from discounted consumption and the

utility from discounted terminal wealth. The exact form is motivated from [29], which

has the utility of consumption given by U i((citX
i
t)(cX t)

−θi) with cX t = (ΠN
i=1(c

i
tX

i
t))

1/N .

With the additional delayed tax effects in our modeling, we consider an analogous utility

of discounted consumption and an analogous utility of discounted, tax-adjusted terminal

wealth, where the discounting is taken with respect to the tax-adjusted risk-free rate.

The resulting reward function for each player i ∈ {1, · · · , N} is given by

J i[π, c] = E
[ ∫ T

0

U i(Ci
disc,tCdisc,t

−θi
) dt+ ϵiUi

(
Zi
disc,TZdisc,T

−θi
)]
,
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where

Ci
disc,t = e−(r+λa)tcitX

i
t , Cdisc,t =

( N∏
i=1

Ci
disc,t

)1/N
,

Zi
disc,t = e−(r+λa)tZi

t , Zdisc,t =
( N∏
i=1

Zi
disc,t

)1/N
,

and

Ui(z) =


1

1− 1
δi

z
1− 1

δi , δi ̸= 1,

log(z), δi = 1.

Here Zi
disc,t is the tax-adjusted wealth for player i discounted according to the tax-

adjusted risk-free rate. Ci
disc,t is the discounted total consumption over [t, t + dt] for

player i.

In essence, investor i determines her total utility by summing up her utilities of

consumption over intervals of length dt. For example, over the time interval [t, t + dt],

the utility of player i is taken by comparing her own discounted consumption compared

to that of her peers and weighted by the amount dt. In the final stage, the utility is

taken by comparing her discounted terminal wealth to that of her peers and is weighted

ϵi. Thus ϵi represents player i’s preference for wealth as compared to consumption.

4.2 Proofs of Nash Equilibrium Solutions

4.2.1 Proof of Proposition 3.1

For convenience, we restate the dynamics (3.10), which is

dX i
t =

(
(µ1 − r)πitX i

t + rX i
t − µ2Y

i
t

)
dt+ σπitX

i
t dWt, t ∈ (0, T ],

X i
t = ζ i(t), t ∈ (−∞, 0],
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where the delay variable, Y i
t , is defined as Y i

t =
∫ t
−∞ λe−λ(t−s)X i

s ds. Motivated by the

analysis in [35], we note that differentiating Y i
t gives the following differential relation

dY i
t = λ(X i

t − Y i
t ) dt.

Multiplying dY i
t by a and adding with dX i

t , we get

d(X i
t + aY i

t ) =
(
(µ1 − r)πitX i

t + (r + λa)X i
t + (−µ2 − λa)Y i

t

)
dt+ σπitX

i
t dWt.

Now, using the parameter value a =
−(r+λ)+

√
(r+λ)2−4λµ2

2λ
, we have that a(r+λa) = −µ2−

λa as one can see a is a root of this quadratic equation. Thus denoting Zi
t = X i

t + aY i
t ,

we get

dZi
t =

(
(µ1 − r)πitX i

t + (r + λa)Zi
t

)
dt+ σπitX

i
t dWt.

Multiplying by the integrating factor e−(r+λa)t and denoting Zi
disc,t = e−(r+λa)tZi

t , we get

dZi
disc,t = (µ1 − r)πite−(r+λa)tX i

t dt+ σπite
−(r+λa)tX i

t dWt.

Now, for each i, define the transformed control π̃i by

π̃it = πitX
i
te

−(r+λa)t. (4.7)

Substituting the transformed controls, we have the following controlled SDE for each

i ∈ {1, · · · , N}

dZi
disc,t = (µ1 − r)π̃it dt+ σπ̃it dWt, t ∈ (0, T ]. (4.8)

Restating the reward function defined in Proposition 3.1, one has that the reward for

each player i ∈ {1, · · · , N} is given by

J i[π̃] = E
[
Ui
(
Zi
disc,T − θiZdisc,T

)]
,

where

Zdisc,T =
1

N

N∑
i=1

Zi
disc,T , Ui(z) = − exp

(
− 1

δi
z

)
. (4.9)
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Therefore, the characterization of controls for the Nash equilibrium can be considered

through Eqs. (4.8)–(4.9). This is precisely the same problem described in [30, Section 2,

Corollary 4], which gives a closed-loop Nash equilibrium given by the controls

π̃i,∗t =
µ1 − r
σ2

(
δi +

θiδ̄

1− θ̄

)
,

for i ∈ {1, · · · , N}, where δ̄ = 1
N

∑N
i=1 δi and θ̄ = 1

N

∑N
i=1 θi. Substituting π̃i,∗t into

Eq. (4.7), we get that there is a closed-loop Nash equilibrium control given by the choices

of each player i by

πi,∗t X
i,∗
t =

µ1 − r
σ2

(
δi +

θiδ̄

1− θ̄

)
1

e−(r+λa)t
,

That is, at time t, the equilibrium strategy is to invest a deterministic dollar amount into

the risky asset, independent of the current wealth level. This proves Proposition 3.1.

4.2.2 Proof of Proposition 3.2

Since the dynamical system is exactly the same as in Section 4.2.1, we know that Zi
t =

X i
t + aY i

t satisfies

dZi
t =

(
(µ1 − r)πitX i

t + (r + λa)Zi
t

)
dt+ σπitX

i
t dWt. (4.10)

We are assuming that the initial path X i
t = ζ i(t) for t ≤ 0 is chosen so that Zi

0 =

X i
0 + aY i

0 > 0.

Next, since πi is admissible, it has the property |πitX i
t | ≤ K|Zi

t | for some K > 0. In

particular, this means that πitX i
t = 0 whenever Zi

t = 0. We will soon show that Zi
t > 0.

Now, for each i, we define the transformed control π̃i by

π̃it =


πit

Xi
t

Zi
t
, Zi

t ̸= 0,

0, Zi
t = 0.

(4.11)

Since |πitX i
t | ≤ K|Zi

t |, we have |π̃it| ≤ K and claim that the dynamics (4.10) can be
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written in terms of π̃it by

dZi
t =

(
(µ1 − r)π̃itZi

t + (r + λa)Zi
t

)
dt+ σπ̃itZ

i
t dWt. (4.12)

Since |π̃it| ≤ K, we have that E
[∫ t

0
(π̃is)

2
ds
]
< ∞ for each t ∈ (0, T ] and therefore, Zi

t

has the unique solution

Zi
t = Zi

0 exp

[
(r + λa)t+

∫ t

0

[(µ1 − r)π̃is −
1

2
σ2(π̃is)

2] ds+

∫ t

0

π̃is dWs

]
,

for all t ∈ [0, T ]. This indicates Zi
t > 0 as we have assumed the initial path X i

(−∞,0]

is such that Zi
0 = X i

0 + aY i
0 > 0. Also, one can show X i

t > 0 for all t ≤ T . First

X i
t = ζ i(t) > 0 for t ≤ 0. Now, by contradiction take t′ > 0 to be the first hitting time

X i
t′ = 0. Since X i

t > 0 for t < t′, we see that Y i
t′ =

∫ t′
−∞ λe−λ(t−s)X i

s ds > 0. Therefore

0 < Zi
t′ = X i

t′ + aY i
t′ = aY i

t′ , which is a contradiction as a < 0 and Y i
t′ > 0. Since Zi

t > 0,

the transformed control from Eq. (4.11) can be written simply as

π̃it = πit
X i
t

Zi
t

, (4.13)

and since X i
t > 0 as well, this transformation is invertible which we will use later.

Now, multiplying Eq. (4.12) by the integrating factor e−(r+λa)t , we can write the

equation for Zi
disc,t = e−(r+λa)tZi

t as

dZi
disc,t = (µ1 − r)π̃itZi

disc,t dt+ σπ̃itZ
i
disc,t dWt, t ∈ (0, T ]. (4.14)

We restate the reward function in Proposition 3.1 for convenience. We have that the

reward for player i is given by

J i = E
[
Ui

(
Zi
disc,TZ

−θi
disc,T

)]
,
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where 0 < θi < 1 for each i, and where

Zdisc,T =

(
N∏
i=1

Zi
disc,T

)1/N

, Ui(z) =


1

1− 1
δi

z
1− 1

δi , δi ̸= 1,

log(z), δi = 1,

(4.15)

with δi > 0. The Nash equilibrium problem defined by Eqs. (4.14)–(4.15) for generic,

progressively measurable controls (π̃i)Ni=1 such that E
[∫ t

0
(π̃is)

2
ds
]
< ∞ falls into the

formulation of [30, Section 3, Corollary 15]. Using the results therein, one has a closed-

loop Nash equilibrium given by the controls

π̃i,∗t =
µ1 − r
σ2

(
δi −

θi(δi − 1)δ̄

1 + θ(δ − 1)

)
,

for i ∈ {1, · · · , N}. Solving for πi,∗t , from Eq. (4.13) we get

πi,∗t =
µ1 − r
σ2

(
δi −

θi(δi − 1)δ̄

1 + θ(δ − 1)

)
X i
t + aY i

t

X i
t

,

which holds as we have shown that X i
t > 0. Lastly, we see that the Nash equilibrium

controls do satisfy the admissibility condition as |πi,∗t X i
t | =

∣∣∣µ1−rσ2

(
δi − θi(δi−1)δ̄

1+θ(δ−1)

)∣∣∣ |Zi
t |.

This completes the proof of Proposition 3.2.

4.2.3 Proof of Proposition 3.3

We now form the solution for the problem defined by Eq. (3.16)–(3.18), proceeding sim-

ilarly to the proof in Section 4.2.2. Restating the dynamics given in Proposition 3.3, we

have for each i ∈ {1, · · · , N},

dX i
t =

(
(µ1 − r)πitX i

t + rX i
t − µ2Y

i
t − citX i

t

)
dt+ σπitX

i
t dWt, t ∈ (0, T ],

X i
t = ζ i(t), t ∈ (−∞, 0],

where the delay variable, Y i
t , is given by Y i

t =
∫ t
−∞ λe−λ(t−s)X i

s ds. As usual, define

Zi
t = X i

t + aY i
t and Zi

disc,t = e−(r+λa)tZi
t , where a =

−(r+λ)+
√

(r+λ)2−4λµ2

2λ
. Following the
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similar computation in the proof in Section 4.2.1, one can show

dZi
t =

(
(r + λa)Zi

t + (µ1 − r)πitX i
t − citX i

t

)
dt+ σπitX

i
t dWt. (4.16)

Now, for each i, define the transformed controls (π̃i, c̃i) by

(π̃it, c̃
i
t) =


(πit

Xi
t

Zi
t
, cit

Xi
t

Zi
t
), Zi

t ̸= 0,

(0, 0), Zi
t = 0.

Then, Eq. (4.16) can be written as

dZi
t =

(
(r + λa)Zi

t + (µ1 − r)π̃itZi
t − c̃itZi

t

)
dt+ σπ̃itZ

i
t dWt. (4.17)

Since |π̃it|, |c̃it| ≤ K, we have that E
[∫ t

0
(π̃is)

2
+ (c̃is)

2
ds
]
<∞ for each t ∈ (0, T ], and Zi

t

has the unique solution

Zi
t = Zi

0 exp

[
(r + λa)t+

∫ t

0

[(µ1 − r)π̃is −
1

2
σ2(π̃is)

2 − c̃is] ds+
∫ t

0

π̃is dWs

]
.

Therefore, Zi
t > 0 and X i

t > 0, following the same argument as in Section 4.2.2, and the

transformed controls become simply

(π̃it, c̃
i
t) = (πit

X i
t

Zi
t

, cit
X i
t

Zi
t

), (4.18)

which can be inverted for a given choice of controls (π̃it, c̃
i
t).

Next, multiplying Eq. (4.17) by the integrating factor e−(r+λa)t, we get

dZi
disc,t =

(
(µ1 − r)π̃itZi

disc,t − c̃itZi
disc,t

)
dt+ σπ̃itZ

i
disc,t dWt, t ∈ (0, T ]. (4.19)

For convenience, we restate the reward defined in Proposition 3.3, which is

J i = E
[ ∫ T

0

U i(Ci
disc,tCdisc,t

−θi
) dt+ ϵiUi

(
Zi
disc,TZdisc,T

−θi
)]
,
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where

Ci
disc,t = e−(r+λa)tcitX

i
t , Cdisc,t =

( N∏
i=1

Ci
disc,t

)1/N
,

Zi
disc,t = e−(r+λa)tZi

t , Zdisc,t =
( N∏
i=1

Zi
disc,t

)1/N
,

and where 0 < θi < 1, ϵi > 0, and

Ui(z) =


1

1− 1
δi

z
1− 1

δi , δi ̸= 1,

log(z), δi = 1,

with δi > 0. In terms of the transformed controls defined by Eq. (4.18), we can write the

reward function for player i as

J i = E
[ ∫ T

0

U i(c̃itZ
i
disc,t(c̃tZdisc,t)

−θi
) dt+ ϵiUi

(
Zi
disc,TZdisc,T

−θi
)]
, (4.20)

where c̃tZdisc,t =
(∏N

i=1 c̃
i
tZ

i
disc,t

)1/N .

The Nash equilibrium problem defined by Eqs. (4.19)–(4.20) is given in [29, Corol-

lary 2.3] for the generic, progressively measurable controls (π̃i, c̃i)Ni=1 that satisfy the

admissibility conditions E
[∫ t

0
(π̃is)

2
+ (c̃is)

2
ds
]
< ∞ and c̃it ≥ 0 for each t ∈ [0, T ].

Specifically, [29, Corollary 2.3] gives that there exists a closed-loop Nash equilibrium

given by the controls

π̃i,∗t =
µ1 − r
σ2

(
δi −

θi(δi − 1)δ̄

1 + θ(δ − 1)

)
,

c̃i,∗t =


(
β−1
i + (γ−1

i − β−1
i )e−βi(T−t

)−1
, δi ̸= 1,(

T − t+ γ−1
i

)−1
, δi = 1,

for i ∈ {1, · · · , N}, where the notations δ̄, θ(δ − 1) correspond to the arithmetic average,
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and the parameters βi and γi are given by

βi =
1

2
(1− δi)

(
µ1 − r
σ

)2
(
1− θiδ̄

1 + θ(δ − 1)

)(
δi −

θiδ̄

1 + θ(δ − 1)
(δi − 1)

)
,

γi = ϵ−δii

( N∏
k=1

ϵδkk

)1/N
θi(δi−1)/(1+θ(δ−1))

.

Substituting back for (πi,∗, ci,∗) through the transformations defined by Eq. (4.18), we

see that (πi,∗, ci,∗) is indeed in Ai and the result from Proposition 3.3 holds.
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Chapter 5

Stochastic Differential Games for

Multi-Region Epidemiological Models

The work described in this chapter, which was prepared for this dissertation, contains

material that has already been published [43, 42].

In a classic, compartmental epidemiological model each individual is assigned a label,

e.g., Susceptible, Exposed, Infectious, Removed, Vaccinated. The labels’ order shows

the flow patterns between the compartments (SIR, SEIR, SIRV models). Other ap-

proaches include network models, which explicitly include the interaction of individuals,

in addition to the modeling of each individual’s dynamics, and agent-based models that

are useful in informing decision making when accurately calibrated. Moreover, the con-

sideration of pharmaceutical and/or non-pharmaceutical intervention policies naturally

couples game theory to epidemiological models by controlling when and how the game

is played in such models. For example, early studies such as Bauch and Earn [5] as well

as Bauch, Galvani, and Earn [6], demonstrate that one can use non-repeated games to

incorporate game theory into modeling at the individual level, where individuals maxi-

mize their gain by weighing the costs and benefits of different strategies. We refer to the

review paper of Chang, Piraveenan, Pattison, and Prokopenko [12] and the references
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therein for more details.

Building from the DFP theory and algorithms for computing Nash equilibria in SDG,

we propose here to strengthen the classical SEIR model by taking into account the

social and health policies issued by multiple region planners. We call this new model a

stochastic multi-region SEIR model because it couples the stochastic differential game

theory with the SEIR model, making it more realistic and powerful. The computational

challenge introduced by the high-dimensionality of the multi-region solution space is

addressed by the enhanced deep fictitious play algorithm shown in Section 5.2.1. To

showcase the performance of the proposed model and algorithm, we apply them to a case

study of the COVID-19 pandemic in three states: New York (NY), New Jersey (NJ),

and Pennsylvania (PA), presenting the optimal lockdown policy corresponding to the

Nash equilibrium of the multi-region SEIR model for this case study. This case study is

analyzed for the “would-be” optimal lockdown policies during the pre-vaccination period

of the COVID-19 pandemic.

5.1 A Multi-Region SEIR Model

We consider an epidemic occurring across N geographical regions, and each planner

controls the loss of her region by implementing some policies. We aim to study how the

region planners’ policies affect each other and determine the equilibrium policies.

Let us start with a modified version of the very-known epidemic SEIR model shown

in Liu, Hethcote, and Levin [31], where each region’s population is assigned to compart-

ments with four labels: Susceptible, Exposed, Infectious, and Removed. Individuals

with different labels denote S: those who are not yet infected; E: who have been in-

fected but are not yet infectious themselves; I: who have been infected and are capable

of spreading the disease to those in the susceptible category, and R: who have been in-

fected and then removed from the disease due to recovery or death. The region planners
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can issue certain policies to mitigate the pandemic, for instance, policies that can help

reduce the transmission rates and death rates. Mathematically, denote by Sit , E
i
t , I

i
t , R

i
t

the proportion of population in the four compartments of region i at time t. We consider

the following stochastic multi-region SEIR model:

dSit = −
N∑
j=1

βijSitI
j
t (1− θℓit)(1− θℓ

j
t) dt− v(hit)Sit dt− σsiSit dW

si
t , (5.1)

dEi
t =

N∑
j=1

βijSitI
j
t (1− θℓit)(1− θℓ

j
t) dt− γEi

t dt+ σsiS
i
t dW

si
t − σeiEi

t dW
ei
t , (5.2)

dI it = (γEi
t − λ(hit)I it) dt+ σeiE

i
t dW

ei
t , (5.3)

dRi
t = λ(hit)I

i
t dt+ v(hit)S

i
t dt, i ∈ N := {1, 2, . . . , N}, (5.4)

where ℓt ≡ (ℓ1t , . . . , ℓ
N
t ) and ht ≡ (h1t , . . . , h

N
t ) are policies chosen by the region planners

at time t. Each planner i seeks to minimize its region’s cost within a period [0, T ]:

J i(ℓ,h) := E
[ ∫ T

0

e−rtP i
[
(Sit + Ei

t + I it)ℓ
i
tw + a(κI itχ+ pI itc)

]
+ e−rtη(hit)

2 dt

]
. (5.5)

We now give detailed description of this model (5.1)–(5.5):

S: βij denotes the average number of contacts per person per time. The transition rate

between Si and Ei due to contacting infectious people in the region j is proportional

to the fraction of those contacts between an infectious and a susceptible individual,

which result in the susceptible one becoming infected, i.e., βSitI
j
t . Although some

regions may not be geographically connected, the transmission between the two is

still possible due to air travels but is less intensive than the transmission within

the region, i.e., βij > 0 and βii ≫ βij for all j ̸= i.

ℓit ∈ [0, 1] denotes the decision of the planner i on the fraction of population being

locked down at time t. We assume that those in lockdown cannot be infected.

However, the policy may only be partially effective as essential activities (food

production and distribution, health, and basic services) have to continue. Here we
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use θ ∈ [0, 1] to measure this effectiveness, and the transition rate under the policy

ℓ thus become βijSitI
j
t (1 − θℓit)(1 − θℓ

j
t). The case θ = 1 means the policy is fully

effective.

hit ∈ [0, 1] denotes the effort the planner i decides to put into the health system,

which we refer as health policy. It will influence the vaccination availability v(·)

and the recovery rate λ(·) of this model.

v(hit) denotes the vaccination availability of region i at time t. Once vaccinated, the

susceptible individuals v(hit)Sit become immune to the disease, and join the removed

category Ri
t. We model it as an increasing function of hit, and if the vaccine has not

been developed yet, we can define v(x) = 0 for x ≤ h.

E: In Eq. (5.2), γ describes the latent period when the person has been infected but

not infectious yet. It is the inverse of the average latent time, and we assume γ to

be identical across all regions. The transition between Ei and I i is proportional to

the fraction of exposed, i.e., γEi
t .

I: λ(·) represents the recovery rate. For the infected individuals, a fraction λ(hi)I i

(including both death and recovery from the infection) joins the removed category

Ri per time unit. The rate is determined by the average duration of infection. We

model the duration (and hence the recovery rate) related to the health policy hit

decided by the region planner i. The more effort put into the region (i.e., expanding

hospital capacity, creating more drive-thru testing sites), the more clinical resources

the region will have and the more resources will be accessible by patients, which

could accelerate the recovery and slow down death. The death rate, denoted by

κ(·), is crucial for computing the cost of the region i; see the next item.

Cost: Each region planner faces four types of cost. One is the economic activity loss due

to the lockdown policy, where w is the productivity rate per individual, and P i

is the population of the region i. The second one is due to the death of infected
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individuals. Here κ is the death rate which we assume for simplicity to be constant,

and χ denotes the cost of each death. The hyperparameter a describes how planners

weigh deaths and infections comparing to other costs. The third one is the inpatient

cost, where p is the hospitalization rate, and c is the cost per inpatient day. The

last term η(hit)
2 is the grants putting into the health system. We choose a quadratic

form to account for diminishing marginal utility (view it from η(hit)
2 to hit). All

costs are discounted by an exponential function e−rt, where r is the risk-free interest

rate, to take into account the time preference. Note that region i’s cost depends on

all regions’ policies (ℓ,h), as {Ij, j ̸= i} appearing in the dynamics of Si. Thus we

write the expected cost of player i as J i(ℓ,h) emphasizing its dependence on the

other players’ controls.

The choices of epidemiological parameters will be discussed in Section 5.3.2. Next, we

summarize the key assumptions in the above model:

1. The dynamics of an epidemic are much faster than the vital (birth and death)

dynamics. So vital dynamics are omitted in the above model.

2. The planning is of a short horizon and must be adjusted frequently as the epidemic

develops. For simplicity, we assume there is no migration between regions over the

time [0, T ].

3. Individuals once recovered from the disease are immune and free of lockdown policy.

4. The dynamics obeys the conservation law: Sit + Ei
t + I it + Ri

t = P i. This means

that the process Ri is redundant.

5. The dynamics of S, E and I are subjected to random noise, to account for the

noise introduced during data recording, false-positive/negative test results, excep-

tional cases when recovered individuals become susceptible again, minor individual

differences in the latent period, etc.
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6. Individuals who are not under lockdown have the same productivity, no matter their

categories. We assume this for simplicity and remark that this can be improved by

assigning different productivity to individuals with or without symptoms.

The above modeling and objectives can be viewed as a stochastic differential game

between N players1. Here we view the whole problem as a non-cooperative game, as

many regions make decisions individually and indeed even compete for scarce resources

(frontline workers, personal protective equipment, etc.) during the outbreak. Each player

i controls her states (Si, Ei, I i, Ri) through her strategy (ℓi, hi) in order to minimize the

associated cost J i. The optimizers then are interpreted as the optimal lockdown policy

and optimal effort put into the health system.

Since we are considering the problem as a non-cooperative game, we use the notion

of Nash equilibrium to model optimality and the outcome of the model problem. The

Nash equilibrium for this problem can be understood through the Definition 1.1, where

αi = (ℓi, hi) and with the admissible set of controls given by Markovian controls, i.e.

A = ⊗Ni=1Ai
MC, where Ai

MC is given by the set definition (1.4). To be more precise, we

require the controls for each player i to be in the set of Borel measurable functions:

(ℓi, hi) : [0, T ]×R3N → [0, 1]2. In other words, the policies (ℓit, hit) at time t are functions

of the time t and the current values of all players’ state processes (St,Et, It). We omit

the dependence on Rt as it is redundant as a consequence of the conservation law.

5.2 Machine Learning Algorithm and Implementation

The idea is to solve the SDG (5.1)–(5.5) via the DFP methodology in Chapter 2, Section

2.3. First, this involves deriving the Hamilton-Jacobi-Bellman (HJB) equations charac-

terizing the Markovian Nash equilibrium. To simplify the notation, we first rewrite the
1Henceforth, in this Chapter, we shall use planner and player interchangeably.
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dynamics of (St,Et, It) defined in (5.1)–(5.3) into a vector form

Xt ≡ [St,Et, It]
T ≡ [S1

t , · · · , SNt , E1
t , · · · , EN

t , I
1
t , · · · , INt ]T ∈ R3N .

Again, we shall drop the redundant process Rt defined in (5.4). We also combine the

two controls for player i into a single vectorized control so that αi. That is αi = (ℓi, hi)

for each i ∈ N , and α = (α1, · · · , αN). The dynamics of Xt is in the general form:

dXt = b(t,Xt,α(t,Xt) dt+ σ(Xt) dWt,

where b, σ are deterministic functions in R3N and R3N×2N , and {Wt}0≤t≤T is a 2N -

dimensional standard Brownian motion. Each player i aims to minimize the expected

running cost

E
[∫ T

0

f i(t,Xt, α
i(t,Xt)) dt

]
, (5.6)

as there is no terminal cost in this case. We defer the specific definitions of b, σ,W , and

f i to Section 5.3.1 to facilitate the exposition. The value function for player i is given by

V i(t,x) = inf
αi∈Ai

E
[∫ T

t

f i(s,Xs, α
i(s,Xs)) ds|Xt = x

]
.

In this form, we see the problem for finding the Nash Equilibrium could be solved by

the method outlined in Chapter 2, Section 2.3 with the DFP methodology presented in

[20]. However, we will see that for our particular problem which involves a particularly

difficult structure, we can adjust this methodology to greatly reduce its memory costs.

Referring to the equations in Chapter 2, Section 2.3, the algorithm in [20] solves the

BSDE (2.9)–(2.10) by parametrizing Y i
t = V i(t,x) using neural networks (NNs) and then

obtains the approximate optimal policy by plugging the NN outputs into Eq. (2.7). For

memory efficiency, the algorithm only stores the NNs’ parameters at the current and the

one-step previous stages. This strategy works well for games like the linear-quadratic

game, but it would be ineffective if α−i explicitly appears in the minimizer in Eq. (2.7).

In this case, when evaluating others’ strategy α−i at stage m, it does not only need NNs
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at stage m but also at stages m − 1, m − 2, ..., 0. This means one needs to store NNs’

parameters for all the previous stages from 1, . . . ,m, and evaluate the associated output.

To overcome this problem, one considers a modification of the original algorithm called

Enhanced Deep Fictitious Play.

5.2.1 Enhanced Deep Fictitious Play

In order to reduce the computational complexity of evaluating α−i in the situation when

α−i explicitly appears in the minimizer in (2.7), we propose the Enhanced Deep Ficti-

tious Play which parametrizes both V i(t,x) and control αi(t,x) by NNs. This method

represents an adaptation to the DFP method introduced in Section 2.3.

In each stage of the Enhanced Deep Fictitious Play, for each player i, the loss that

the algorithm aims to minimize consists of two parts: (1) the loss related to solving

Eqs. (2.9)–(2.10) and (2) the error of approximating the optimal strategy αi within some

hypothesis spaces. The resulted approximation α̃i will be used in the next stage of

fictitious play:

inf
Y i
0 ,α̃

i,{Zi
t}0≤t≤T

E(
∣∣Y i
T

∣∣2 + ν

∫ T

0

|αi(s,X i
s)− α̃i(s,X i

s)|2 ds)

s.t. X i
t = x0 +

∫ t

0

µi(s,X i
s; α̃

−i(s,X i
s)) ds+

∫ t

0

σ(X i
s) dWs,

Y i
t = Y i

0 −
∫ t

0

ζ i(s,X i
s,Z

i
s; α̃

−i(s,X i
s)) ds+

∫ t

0

(Zi
s)

T dWs,

αi(s,X i
s) = argmin

βi

H i(s,X i
s, (β

i, α̃−i)(s,X i
s),Z

i
s),

2

(5.7)

where α̃−i denotes the collection of approximated optimal controls from the previous

stage except player i, and ν is a hyperparameter denoting the weight between two terms in

the loss function. The hypothesis space for which we search α̃i is characterized by another

NN, in addition to the one to approximate Y0 and {Zi
t}0≤t≤T . Although representing α̃i

with a neural network introduces approximation errors, it allows us to efficiently access

2Here we have assumed that the Hamiltonian H i depends on ∇xV through σT∇xV .
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the proxy of the optimal strategy α−i in the last stage by calling corresponding networks,

instead of storing and calling all the previous strategies α−i,m−1, . . . ,α−i,1 due to the

recursive dependence.

Numerically, we solve a discretized version of (5.7). Given a partition π of size NT

on the time interval [0, T ], 0 = t0 < t1 < .... < tNT
= T , the algorithm reads (to ease the

notation, we replace the subscript tk by k):

inf
ψ0∈N i′

0 ,{ϕk∈N i
k,ξk∈N

i′′
k }

NT−1

k=0

E{|Y i,π
T |

2 + ν
∑
k

|αi,πk − α̃
i,π
k (X i,π

k )|2∆tk} (5.8)

s.t. X i,π
0 = X0, Y i,π

0 = ψ0

(
X i,π

0

)
, Zi,π

k = ϕk
(
X i,π

k

)
, α̃i,πk (X i,π

k ) = ξk(X
i,π
k ),

αi,πk = argmin
βi

H i(tk,X
i,π
k , (βi, α̃−i,π

k )(X i,π
k ),Zi,π

k ), k = 0, . . . , NT − 1

X i,π
k+1 = X i,π

k + µi
(
tk,X

i,π
k ; α̃−i,π

k (X i,π
k )
)
∆tk + σ

(
tk,X

i,π
k

)
∆Wk, (5.9)

Y i,π
k+1 = Y i,π

k − ζ
i
(
tk,X

i,π
k ,Zi,π

k ; α̃i,π
k (X i,π

k )
)
∆tk +

(
Zi,π
k

)T
∆Wk, (5.10)

where ∆tk = tk+1 − tk, ∆Wk = Wtk+1
−Wtk , and N i′

0 , {N i
k}

NT−1
k=0 , {N i′′

k }
NT−1
k=0 are the

hypothesis spaces of NNs for player i. With this algorithm in mind, we iterate according

to the method proposed by Algorithm 1 in Chapter 2 where the interior optimization

problem in Algorithm 1 at stagem for player i is determined by the solution to Eqs. (5.8)–

(5.10) above. This new algorithm is still theoretical as we cannot find the precise neural

network minimizes within the class of neural networks, and hence we will have to ap-

proximate this with a sequence of stochastic gradient descent (SGD) steps. Moreover,

the expectation in (5.8) is further approximated by Monte Carlo samples of (5.9)-(5.10).

This is made clear by the full algorithm for Enhanced Deep Fictitious Play in Algorithm

4 presented later in this section.

The parameters in the hypothesis spaces are determined by stochastic gradient descent

algorithms such that the approximated expectation is minimized, which in turn gives the

optimal deterministic functions (ψ∗
0, ϕ

∗
k, ξ

∗
k). We expect that (ψ∗

0, ϕ
∗
k, ξ

∗
k) will approximate

(V i,∇xV
i, αi) well when this proxy of (5.8) is small. Particularly, {ξ∗k}

NT−1
k=0 serves as
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an efficient tool to evaluate the optimal policy at the current stage for finding Nash

equilibrium. We note that when ν = 0 and α̃ are replaced by α in the above algorithm,

the Enhanced Deep Fictitious Play degenerates to the Deep Fictitious Play proposed in

[20].

Implementation of Enhanced DFP

Here we provide some detail to implement the methodology in Section 5.2.1. First,

we specify the hypothesis spaces for neural networks N i′
0 ,{N i

k}
NT−1
k=0 , {N i′′

k }
NT−1
k=0 , corre-

sponding to V i,∇xV
i, αi (the superscript m is dropped again for simplicity). V i(t, x) is

parametrized directly by a neural network NN(t,x) . Corresponding map σ(X)T∇xV
i(t,X)

that defines Zi
t in the optimization problem (5.7) could be parametrized by σ(x)∇xNN(t,x).

Naturally, σ(x)∇xNN(tk,x) is a hypothesis function in N i
k. Under this parametrization

rule, the hypothesis functions in N i′
0 and {N i

k}
NT−1
k=0 share the same set of parameters.

The policy function αi(t,x) is parametrized by another neural network ÑN(t,x) and then

ÑN(tk,x) plays the role of a hypothesis function inN i′′

k . In other words, {N i′′

k }
NT−1
k=0 share

the same set of neural networks. In a stochastic game of N players, there are 2N neu-

ral networks in total, with N neural networks corresponding to V i(t,x) and N neural

networks corresponding to αi(t,x). At stage m, the N V -networks are trained to ap-

proximate the solution of PDE (2.8) and the N α-networks are trained to approximate

the current optimal policy computed by (2.7) using the optimal strategies in the last

stage. The updated neural networks at stage m would be used at stage m+1 to simulate

paths {X i,π
k }

NT−1
k=0 and optimal strategies by (2.7). In this work, fully connected neural

networks with three hidden layers are used.

Second, at each stage, the 2N neural networks could be decoupled to N pairs of V -

network and α-network based on players. Then, the N pairs of neural networks could

be trained in parallel, which dramatically reduces computational time. As [20] and [40]

pointed out, it is not necessary to solve the individual control problem accurately in each
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stage; the parameters at each stage are updated starting from the optimal parameters in

the last stage without re-initialization. This requires only a moderate number of epochs

for the stochastic gradient descent at each stage.

This leads us to the full implementation of Enhanced Deep Fictitious Play shown in

Algorithm 4 below.

Algorithm 4 Enhanced Deep Fictitious Play for Finding Markovian Nash Equilibrium
Require: N = # of players, NT = # of subintervals on [0, T ], Nstages = # of total stages

in fictitious play, Nbatch = # of sample paths generated for each player at each stage
of fictitious play, NSGD_per_stage = # of SGD steps for each player at each stage,
Nbatch = batch size per SGD update, α0 : the initial policies that are smooth enough

1: Initialize N deep neural networks to represent V i,0 and N deep neural networks to
represent αi,0, i ∈ N

2: for m← 1 to Nstages do
3: for i ∈ N (in parallel) do
4: Generate Nbatch sample paths {X i,π

k }
NT
k=0 according to (5.9) and the realized

approximate optimal policies α̃−i,m−1(tk,X
i,π
k )

5: for e← 1 to NSGD_per_stage do
6: Update the parameters of the ith V -neural network and α-neural network

one step with Nbatch paths using the SGD algorithm (or its variant), based on the
loss function (5.8)

7: end for
8: Obtain the approximate optimal policy α̃i,m represented by the latest policy

neural network
9: end for

10: Collect the approximate optimal policies at stage m: α̃m ← (α̃1,m, . . . , α̃N,m)
11: end for

The exact choice of NN architectures will be detailed in Section 5.4. To determine the

total stages of fictitious play Nstages, we monitor the relative changes of αi and V i, and

stop the process when the relative change from stage to stage is below a threshold. Re-

garding the total number of SGD per stage, as shown in [20, Figure 1], the original DFP is

insensitive to the choice of NSGD_per_stage. We find the enhanced version sharing the same

behavior when applied to our COVID-19 case study of our game-theoretic, epidemiologi-

cal model defined by Eqs. (5.1)–(5.6). We give more details in Section 5.3.3, and further

experiments regarding different choices of Nstages and NSGD_per_stage in Section 5.4.1.
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For problems without analytical solutions, one natural concern is the reliability of

numerical solutions. Theoretically, the quantity (5.8) serves as the indicator of the nu-

merical accuracy. In the original DFP where the second term in (5.8) does not exist,

Theorem 3 in [22] ensures the convergence to the true Nash equilibrium under techni-

cal assumptions when the quantity (5.8) is small enough for each fictitious play stage

and with sufficiently large Nstages and small ∆tk. In practice, the quantity (5.8) is ap-

proximated by its Monte Carlo counterpart, which we define as the loss function of our

algorithms. Therefore, having small training losses during all stages will ensure conver-

gence. Extending Theorem 3 in [22] to the current setting is left for further work.

5.3 Application on COVID-19

Our case study is based on COVID-19 dynamics in the pre-vaccination period. We

focus mainly on the lockdown/travel ban policy between different regions to evaluate

the theoretical optimal lockdown policies that could have been implemented before the

widespread deployment of vaccines. Studying this pre-vaccination period of COVID-19

dynamics, we take v(·) = 0. Also, we focus mainly on the lockdown/travel ban policy

between different regions. Therefore, to simplify the presentation, we omit the health

policy h, and take λ(·) = λ, and η = 0 in the model problem given by Eqs. (5.1)–(5.5).

5.3.1 The Decoupled HJB equations for the COVID-19 Model

Since we are not considering health policy and vaccinations, but only the effects of travel

ban and lockdown, the dynamics of (Snt , En
t , I

n
t ) defined in (5.1)–(5.3) in the vector form

can be written as

dXt = b(t,Xt, ℓ(t,Xt)) dt+ σ(Xt) dWt,

where again we restate Xt ≡ [St,Et, It]
T ≡ [S1

t , · · · , SNt , E1
t , · · · , EN

t , I
1
t , · · · , INt ]T ∈

R3N , and the Markovian controls ℓ are given by ℓ(t,x) = [ℓ1, . . . , ℓN ]T(t,x). In the
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sequel, for a vector x ≡ (s, e, i) ∈ R3N , we shall index them in two ways,

(s1, · · · , sN , e1, · · · , eN , i1, · · · , iN) or (x1, . . . , x3N).

and use them interchangeably.

The former one emphasizes the dependence on each category, while the later notation

is more condensed. Similarly, for partial derivatives, we will have two set of notations

(∂s1 , · · · , ∂sN , ∂e1 , · · · , ∂eN , ∂i1 , · · · , ∂iN ) or (∂x1 , · · · , ∂x3N ).

Notation. Within this section, (Section 5.3.1 only), we will often be indexing over players

using the variable n, temporarily ignoring the previous use of this variable as the dimen-

sion of the state space originally introduced as related to the generic SDG in Eq. (1.1).

We have previously used i to index over the players, but this conflicts with the variable

i, an important independent variable in this section. To summarize, we now use n to

represent the n-th player out of N total, replacing what would have typically been the

index i in previous sections.

In this case, player n has cost functional given by

E
[∫ T

0

fn(t,Xt, ℓ
n(t,Xt)) dt

]
,

and we recall the value function of player n is given by

V n(t,x) = inf
ℓn∈An

E
[∫ T

t

fn(s,Xs, ℓ
n(s,Xs)) ds|Xt = x

]
.

We now specify b, σ,W , and fn for the COVID-19 model problem from the structure of

the dynamics (5.1)–(5.3) with the modifications that h is omitted as a control, v(·) = 0,

λ(·) = λ, and η = 0.

First, we see that b(t,x, ℓ) = [b1, . . . , b3N ]
T(t,x, ℓ) is a deterministic vector-valued
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function given by:

bj(t,x, ℓ) =



−
N∑
k=1

βjksjik(1− θℓj(t,x))(1− θℓk(t,x)), j ∈ N ,

N∑
k=1

βj
′ksj′ik(1− θℓj

′
(t,x))(1− θℓk(t,x))− γej′ , j ∈ N +N,

γej′ − λij′ , j ∈ N + 2N, and j′ = j mod N.

Next, σ(x) = (σj,k(x)) is a matrix-valued deterministic function in R3N×2N with non-zero

entries given below:

σj,j(x) = −σsjsj, σj+N,j(x) = σsjsj,

σj+N,j+N(x) = −σejej, σj+2N,j+N(x) = σejej, j ∈ N .

and {Wt}0≤t≤T is a 2N -dimensional standard Brownian motion:

Wt = [W s1
t , · · · ,W sN

t ,W e1
t , · · · ,W eN

t ]T.

Modifying (5.5), with the absence of health policies and vaccinations, we have that each

region’s running cost fn is

fn(t,x, ℓ) = e−rtP n[(sn + en + in)ℓ
n(t,x)w + a(κinχ+ pinc)].

Recall that we aim to solve (2.6) using the BSDE approach (nonlinear Feynman Kac

relation). To this end, we will rewrite it in the form of (2.8) and identify µ and ζ. The

first step is to identify the minimizer in the Hamiltonian (2.5).

In this case, the Hamiltonian for the HJB corresponding to player n is:

Hn(t,x, (ℓn, ℓ−n,m),∇xV
n,m+1)

= b(t,x, (ℓn, ℓ−n,m)) · ∇xV
n,m+1 + fn(t,x, ℓn)
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=
3N∑
j=1

bj(t,x, (ℓ
n, ℓ−n,m))

∂V n,m+1

∂xj
+ e−rtP n[(sn + en + in)ℓ

n(t,x)w + a(κinχ+ pinc)],

and recall that ℓ−n,m = (ℓ1,m, . . . , ℓn−1,m, ℓn+1,m, . . . , ℓN,m) represents themth stage strate-

gies of all players other than n, which are given functions in this derivation. The first

order condition requires for ℓn:

0 =
N∑
j=1
j ̸=i

(1− θℓj,m)
[
βjnsjin

(
∂V n,m+1

∂ej
− ∂V n,m+1

∂sj

)
+ βnjsnij

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)]

+2(1− θℓn)βnnsnin
(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)
− 1

θ
e−rtP n(sn + en + in)w.

The critical point given by the above equation indeed gives a minimizer of the Hamilto-

nian, as long as it is in [0, 1]. Because we can show
(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)
> 0 by comparing

V n,m+1(t,x+ ϵn+N) and V n,m+1(t,x+ ϵn) using their definitions, where ϵj is a 3N -vector

with only one nonzero entry ϵ ≪ 1 at jth position. Intuitively, with all others players’

initial condition the same, if player n starts with a higher exposed proportion en + ϵ, it

will produce more cost, comparing with the same increase proportion still being suscep-

tible sn + ϵ. To summarize, we deduce the optimal policy for player n at stage m+ 1 is

given by:

ℓn,m+1(t,x) =

{
2βnnsnin

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)
− 1

θ
e−rtP n(sn + en + in)w (5.11)

+
∑
j=1
j ̸=n

(1−θℓj,m)
[
βjnsjin

(
∂V n,m+1

∂ej
− ∂V n,m+1

∂sj

)
+ βnjsnij

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)]}

×
{
2θβnnsnin

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)}−1

∧ 1 ∨ 0,
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where we use the conventional notations a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Plugging (5.11) into equation (2.6) and by straightforward computation, one obtains for

the (m+ 1)th stage, µn,m+1(t,x; ℓ−n,m) = [µn,m+1
1 , . . . , µn,m+1

3N ](t,x; ℓ−n,m)T is

µn,m+1
j = −βjnsjin(1− θℓj,m(t,x))−

N∑
k=1
k ̸=n

βjksjik(1− θℓj,m(t,x))(1− θℓk,m(t,x)),

j ∈ N \ n

µn,m+1
n = −βnnsnin −

∑
k=1
k ̸=n

βnksnik(1− θℓk,m(t,x))

µn,m+1
N+j = −µn,m+1

j − γej, µn,m+1
2N+j = γej − λij, j ∈ N .

To write ζn,m+1 as a function of (t,x, z), we first compute

σ(x)T∇xV
n(t,x) =

[
σs1s1

(∂V n

∂e1
− ∂V n

∂s1

)
, · · ·

· · · , σsNsN
(∂V n

∂eN
− ∂V n

∂sN

)
, σe1e1

(∂V n

∂i1
− ∂V n

∂e1

)
, · · · , σeN eN

(∂V n

∂iN
− ∂V n

∂eN

)]T
.

and then ζn,m+1 is given by:

ζn,m+1(t,x, z; ℓ−n,m) =

θ2

σsn
βnnznin[ℓ

n,m+1(t,x)]2 +

{
e−rtP n(sn + en + in)w − 2

θ

σsn
βnnznin−

N∑
j=1
j ̸=n

θ(1− θℓj,m(t,x))(β
nj

σsn
znij +

βjn

σsj
zjin)

}
ℓn,m+1(t,x) + e−rtP na(κinχ+ pinc).

Therefore, we have defined b, σ,µ, and ζ for the COVID-19 model problem in ques-

tion. With these clarified and fully specified for our considered COVID-19 model, one

can implement the enhanced DFP algorithm introduced in Section 5.2.1 to find its Nash

equilibrium given specific choices of parameter values for the model. We now discuss

what parameters are chosen to simulate COVID-19 dynamics in the period between 2020
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and 2021.

5.3.2 Parameter Derivations and Choices

The Inter-Region Transmission Rate Derivation

We first clarify the precise meaning of βij beyond it representing transmission between

the regions. We derive βij in terms of an underlying transmission rate, β, and the travel

between region.

In single-region SEIR models, the transmission rate, β, is the basic reproductive

number divided by the length of time an individual is infectious. In our model, we assume

that there is a region-independent constant β that underlies the rate of infections for each

population. The transmission rates βij between regions are related to the underlying

transmission rate β, and the amount of travel between regions i and j.

To quantify the size of travel between regions, we assume there is a constant fraction

of people from region i that travel to region j, f ij, at any given moment in time. We

note that realistically one may expect f ij to depend on time and also on the epidemic

status of regions i and j. However, for simplicity, we will not consider these scenarios in

our numerical experiments. We assume that f ii ≫ f ij, f ii ≫ f ji, ∀j ̸= i, meaning that

most of the population i resides in region i at any given time, and also that most of the

people in region i at a given time are from i and not travelers from another region. We

will see later that this implies βii ≫ βij ∀j ̸= i.

The transmission rate, β, is the average number of people infected by an infectious

person per day (assuming that the susceptible population is at 100% of the population).

Thus, if a proportion S of the population is susceptible, then βS represents the average

number of people infected per infectious person per day. If there are a total of P people

in a population with a fraction I being infectious, then βS(PI) is the number of newly

infected per day.

Thus, in the context of a single-region SEIR model, the number of newly infected
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(or the influx to the exposed population) that occurs within (t, t + dt) is given by

βS(t)(I(t)P ) dt. Dividing by P , the influx to the scaled exposed population in (t, t+ dt)

is βS(t)I(t) dt.

Now let us consider the multi-region case and temporarily ignore the effect of lock-

down. The term from (5.1)–(5.3) that gives the influx to Ei due to infection from Ij is

βijSi(t)Ij(t) dt. To determine βij, we build this exact influx from core assumptions.

First, we quantify the number of people from region i that are infected by those

from region j. Specifically, the influx in the interval (t, t + dt) to the unscaled exposed

population i due to transmission from population j is given by

∑
ℓ

(βf iℓSi(t))(f jℓIj(t)P j) dt, (5.12)

where f ij is the (assumed constant) fraction of people from i currently in region j at any

moment in time.

Equation (5.12) is obtained by summing the number of infections in population i due

to population j across each region. The summand represents these infections occurring

in region ℓ. This can be seen as the term f iℓSi(t) is the proportion of population i that

are susceptible and within region ℓ. Of this population, there will be βf iℓSi(t) infections

per infectious individual per day. Since the number of infectious from j that are in ℓ

is f jℓIj(t)P j, we have that (βf iℓSi(t))(f jℓIj(t)P j) dt is the number of new infections

in population i due to population j occurring in the region ℓ within the time interval

(t, t+ dt).

Let us assume for now that i ̸= j. Since we assume that 1 > f ii ≫ f ij, the terms

in (5.12) besides the cases where ℓ = i or ℓ = j are negligible. Removing the negligible

terms and dividing by the population P i, we see that the influx to the scaled exposed

population Ei due to transmission from population j over the interval (t, t+ dt) is

P j

P i
β(f iif ji + f ijf jj)Si(t)Ij(t) dt,
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which is exactly the influx represented by the model of βijSi(t)Ij(t) dt. This gives us

βij =


β(f ijf jj + f jif ii)

P j

P i
, if j ̸= i

β(f ii)2, if j = i.

(5.13)

We note that the last equation in 5.13, which defines βii is found similarly by taking

i = j in (5.12) and ignoring all terms other than ℓ = i(= j).

Therefore, to specify βij, we need to provide β and f ij for the regions of concern.

We will conduct a thorough explanation in the choices of parameters, recalling that the

model is for COVID-19 dynamics for the 2020-2021 time period in order to analyze

optimal lockdown policies.

Choices of Model Parameters

The motivation for these parameter choices are based on 2020 estimates which are dis-

cussed fully in [43, Section 4.1]. These choices are used to describe dynamics of COVID-19

for the 180 day period starting on March 15, 2020.

We choose a basic reproductive number R0 = 2.2, and assume that the length of each

individual being infectious is 13 days. More precisely, we assume infectious individuals

either recover or die in 13 days. Under these assumptions, we obtain β = 2.2
13
≈ 0.17.

The infection fatality rate, or IFR, is the fraction of those infected who died from the

infection. We choose the IFR to be 0.65%. We choose the latent period to be 5 days. The

assumptions of an IFR of 0.65% and an infectious period of 13 days determines that the

recovery rate (including both recovery and death due to infection) is λ = 1
13
≈ 0.0769,

and the death rate is κ = (0.65%)
13

= 0.0005. We assume that the parameters for noise-level

σsi , σei , i ∈ N are all 0.0002, and the extent to which one adheres to the social distancing

policy, θ, is either θ = 0.9 or θ = 0.99.

Our model will concern transmission between New York (NY), New Jersey (NJ), and

Pennsylvania (PA), treating them as a closed-system to the outside world. We refer to

83



the state of New York as region 1, New Jersey as region 2, and Pennsylvania as region

3. Their respective populations in 2020 were P 1 = 19.54 million, P 2 = 8.91 million,

and P 3 = 12.81 million. Regarding βij, ∀i, j = 1, 2, 3, we assume that: (a) 90% of any

state’s population is residing in their state at a given time; (b) the remaining population

(travelers) visit the other regions in an equal proportion; and (c) there is no travel outside

of the considered regions, i.e., the NY-NJ-PA is a closed system. The reasoning for (c) is

that, under our model assuming that infection only occurs in the regions considered, (c)

is equivalent to allowing people traveling outside the considered regions, but the travelers

cannot be affected. For simplicity, we assume this is the case. Under these assumptions,

we will have f ii = 90% for i = 1, 2, 3 and f ij = 5% for i ̸= j, and obtain the values of

βij through (5.13).

With the parameters for the SDE model (5.1)-(5.3) discussed, we now address those

specific to defining the cost in Eq. (5.5). We choose for simplicity that r = 0 as the US

Effective Federal Funds rate was around 0.1% for the time period in question, causing

the discounting for a 180 day simulation to be negligible. The parameter w represents

the dollar output per individual per day. To estimate w, we use the 2020 estimate of

GDP per capita per day, yielding the estimate w = 172.6 dollars per person per day.

Following [2] and [18], we use the value of a statistical life, χ, to be 20 times GDP per

capita. This results in χ = 1.95 ·106 dollars per person. According to the CDC summary

of U.S. COVID-19 activity, the hospitalization rate was 228.7 per 100,000 population by

11/14/2020. Thus, we set p = 228.7× 10−5. The cost per inpatient day is c = 73300/13

dollars, estimated according to [24]. The attention hyperparameter a takes various values

in the case study, and will be specified in Section 5.3.3.

5.3.3 NY-NJ-PA COVID-19 Case Study

In this section, we apply our model (5.1)–(5.5) to analyze COVID-19 related policy in

three adjacent states: New York, New Jersey, and Pennsylvania. This case study is
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done over 180 days starting from 03/15/2020, using the Enhanced Deep Fictitious Play

Algorithm 4 and the parameters discussed in Section 5.3.2, where the exact formulas of

µi and ζ i in the equation (2.8) are stated in Section 5.3.1.

Figure 5.1 presents the equilibrium policy issued by the governors of NY, NJ, and PA

when the policy effectiveness is θ = 0.99, i.e., 99% of the population follow the lockdown

order. The hyperparameter is a = 100, i.e., each governor values people’s death 100

times the lockdown cost. In this scenario, the governors take action at an early stage

and soon reach the strictest policy. Once the disease is under control, they may relax

the policy later. The percentage of Susceptible, Exposed, Infectious, and Removed stays

almost constant in the end. As a comparison, Figure 5.2 illustrates how the pandemic

gets out of control if governors show inaction or issue mild lockdown policies.

Figure 5.1: Plots of optimal policies (top-left), Susceptible (top-right), Exposed (bottom-
left) and Infectious (bottom-right) for three states: New York (blue), New Jersey (orange)
and Pennsylvania (green). The shaded areas depict the mean and 95% confidence interval
over 256 sample paths. Choices of parameters are in Section 5.3.2, a = 100 and θ = 0.99.

Experiment 1: dependence on a. We further analyze how the planners’ view on the

death of human beings changes their policies. In reality, economic loss is not the only

factor the planners concern about. It is also important to mitigate the infections and
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Figure 5.2: An illustration that governors’ inaction or mild control leads to disease spread-
ing.

deaths within the budget and available resources. Different views and values from the

planners will lead to different policies. In this experiment, we consider different attitudes

towards the infection, especially death caused by COVID-19. This is reflected by the

attention hyperparameter a. Large a implies that planners care more about human

beings and are willing to spend more effort or endure more economic loss on lockdown

to avoid further infection and death. In comparison, smaller a implies that planners care

less about infection and death and instead pay more attention to minimizing the total

cost.

The numerical results in Figures 5.3 and 5.4 are consistent with intuition. With a large

a (top-left panels of Figures 5.3 and 5.4), meaning the planners give more consideration

to infection and death, they tend to issue a restrict lockdown policy, which helps slow

down the disease spreads and reduce the percentage of infected people. As a becomes

smaller (top-right panels of Figures 5.3 and 5.4), planners weigh more the economic loss

and spend fewer efforts on lockdown.

When the attention a is small enough, some states even give up controlling the disease
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Figure 5.3: Plots of optimal policies with different choice of a for three states: New York
(blue), New Jersey (orange) and Pennsylvania (green), when the lockdown efficiency is
θ = 0.9.

spread due to economic concern (bottom panels of Figures 5.3 and 5.4). As a result,

the pandemic would get out of control by the end of the simulation period. This mild

lockdown policy leads to a natural spread of disease (also shown in Figure 5.2).

Experiment 2: dependence on θ. We next analyze how the residents’ willingness to

comply with the lockdown policy changes the optimal policies and the development of

a pandemic. The larger the θ is, the more likely the residents will follow the lockdown

policy, and the larger the difference the control makes on the pandemic situation. Con-

versely, small θ weakens the effect of the lockdown policy. In the extreme case of θ = 0,

no matter how strict the lockdown policy is, the pandemic will become a natural spread

because the control term in Eq. (5.1) disappears. In short, this willingness to policy

compliance should be an essential factor in decision-making.

To this end, we compare the optimal policy when θ = 0.9 and θ = 0.99 in Figure

5.5. Panels (a-d) show the difference of optimal policies ℓ(t) and the Susceptible S(t)

in the tri-state game under different θ when a = 50. In both situations, the pandemic
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Figure 5.4: Plots of optimal policies with different choice of a for three states: New York
(blue), New Jersey (orange) and Pennsylvania (green), when the lockdown efficiency is
θ = 0.99.

is well-controlled, with the percentage of susceptible people staying stable in the end.

Moreover, in the case of θ = 0.99, people are more willing to comply with the policies.

Consequently, the planners are allowed to use a less strict lockdown policy as shown in

Figure 5.5(b) compared to 5.5(a), which saves the lockdown cost. Figure 5.5 (e-h) shows

an interesting case in the comparison of θ = 0.9 and θ = 0.99. In this scenario, with

the same attention parameter (a = 25), θ = 0.9 leads to a mild lockdown policy, see

Figure 5.5(e), while θ = 0.99 provides a possibility to stop the spread of virus, see Figure

5.5(f). We believe that the decision when θ = 0.9 is a compromise as the lockdown is not

efficient enough to reduce largely the infection and death loss by paying lockdown cost,

and also due to the limited simulation period, i.e., the policies could have been different

if we had the simulation until the disease dies out. We also believe that the early give-up

by NJ drives NY and PA to lift lockdown policies at a later stage, because even NY and

PA issue strict policies, they are still facing severe infections from NJ due to its high

infected percentages and the existence of travel between states whatever the policy is.

88



So their interventions are not worth the candle. Figure 5.5(f)(h) further elucidate the

importance of residents’ support in slowing down the pandemic.

Figure 5.5: Comparison of optimal policies for three states (NY = blue, NJ = orange,
PA = green) and their susceptibles between different policy effectiveness θ and hyperpa-
rameter a.

To summarize, the numerical experiments illustrate that both the balance of economy

and infection/death from the view of plan-makers and the willingness of residents to follow

the lockdown policy play an important role in decision-making. In reality, all three states
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issued stay-at-home orders in March 2020, and attempted to reopen in June 2020. By

comparing real world policies and our simulations of ℓ(x), we may infer α and θ for NY,

NJ, and PA in our model, i.e., θ = 0.99 and a = 25.

5.4 Implementation Details

In the NY-NJ-PA case study, we choose feedforward architectures for both V -networks

and α-networks. Both have three hidden layers with a width of 40 neurons. The ac-

tivation function in each hidden layer is tanh(x). We do not apply activation function

to the output layer of V -networks, and choose sigmoid function ρs(x) = 1
1+e−x for the

α-networks. Other hyperparameters are summarized in the table below.

hyperparameter lr Nstages NSGD_per_stage Nbatch NT ν
value 5e-4 250 100 256 40 1e−3/180

Table 5.1: Hyperparameters in the case study: lr denotes the learning rate in stochastic
gradient descent method, Nstages is the total stages of fictitious play, NSGD_per_stage is the
number of stochastic gradient descent done in each minimization problem (5.8), Nbatch

is batch size in each stochastic gradient descent, NT is the discretization steps on [0, T ],
and ν is the weight of the control part in the loss function (5.8).

5.4.1 Discussion on the Choice of Nstages and NSGD_per_stage

We provide further experiments here on various choices of Nstages and NSGD_per_stage. In

Figure 5.6, we plot both validation loss and log loss against Nstages for three states, which

are produced by evaluating the NNs using unseen data after each fictitious play stage. In

each panel, loss curves associated with different number of SGDs per stage are presented

in different colors (blue = 50, orange = 75, green = 100, red = 125, purple = 150).

The numerical results show that the validation losses for all states decrease as the

number of DFP stages Nstages increases. Moreover, it shows that different NSGD_per_stage

generates loss curves with similar patterns. Smaller NSGD_per_stage is more stable on the
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validation loss of PA. This result is consistent with [20] and [40], which convey that it is

unnecessary to solve the problem extremely accurately in each stage and that a moderate

number of NSGD_per_stage is sufficient. As a result, we choose NSGD_per_stage = 100 in our

case study.

Figure 5.6: Loss curves of each state. Left: validation losses versus rounds Nstages of
the enhanced deep fictitious play; Right: log10 validation loss versus rounds Nstages of
the enhanced deep fictitious play. The loss curves with respect to NSGD_per_stage =
50, 75, 100, 125, 150 are depicted in blue, orange, green, purple and red. A smoothed
moving average with window size 3 is applied in the final plots.
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5.4.2 Stability over Different Experiments

Here we present experiments to investigate the Nash equilibrium of the model with dif-

ferent combinations of parameters. For each combination of parameters, we use the same

hyper-parameters and repeat the experiments several times. We run the algorithm for a

certain computational budget, and then filter out the results with a fluctuating loss near

the stopping and check the converged equilibrium. In the first combination of parameters,

we take θ = 0.99 and a = 100, corresponding to the case that a governor weighs the deaths

much more than the economic loss and tries to avoid it, and the residents have a strong

willingness to follow the governor’s policies. Intuitively, the pandemic is possible to get

well-controlled. Our numerical experiments confirm this intuition: all converging trails

lead to the same Nash equilibrium. A representative plot of X(t) = (S(t), E(t), I(t)) is

shown in Figure 5.7.

Figure 5.7: With the parameter combination θ = 0.99, a = 100, the algorithm identifies
one Nash equilibrium for the NY-NJ-PA case study.

In the second batch of experiments, we take θ = 0.9 and a = 50, corresponding to the

case that a governor pays less attention to the number of deaths, and the residents are

less willing to follow the policies compared to the first batch of experiments. The change

leads to the possibility of multiple Nash equilibrium and the pandemic being out of

control. In this case, with different NNs’ initialization, the algorithm identifies two Nash

equilibria: 75% of the experiments converge to the Nash equilibrium that the pandemic

gets controlled and 25% of the experiments converge to the other Nash equilibrium where

92



the pandemic gets out of control.

Figure 5.8: With the parameter combination θ = 0.9, a = 50, the algorithm identifies two
possible Nash equilibria: an under control one (topic panels, with 75% of the experiments)
and on out-of-control one (bottom panels, with 25% of the experiments).

In conclusion, it is possible to have multiple Nash equilibria depending on the param-

eter chosen in our stochastic multi-region SEIR model. There is usually a single Nash

equilibrium for parameters chosen at extreme values, while for the parameters selected

in the middle range, there could exist multiple Nash equilibria. When multiple equilibria

exist, we conjecture that the possibility to reach a particular one depends on where we

start the fictitious play (the initialization of the NNs’ parameters).
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