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PATHOGENESIS

Vitamin D Levels and Markers of Inflammation
and Metabolism in HIV-Infected Individuals

on Suppressive Antiretroviral Therapy

Risa M. Hoffman,1 Jordan E. Lake,1 Holly M. Wilhalme,2

Chi-Hong Tseng,2 and Judith S. Currier1

Abstract

Data on vitamin D insufficiency as a cause of inflammation and metabolic dysfunction in HIV-infected indi-
viduals are conflicting. We examined the relationships between levels of 25-hydroxyvitamin D [25(OH)D] and
biomarkers of inflammation and metabolism in stored blood samples from a prospective trial of vitamin D
repletion. Blood samples from HIV-infected individuals on antiretroviral therapy (ART) with HIV-1 RNA
<200 copies/ml enrolled in a prospective study were analyzed for 25(OH)D levels, a broad panel of cyto-
kines, highly sensitive C-reactive protein, D-dimer, adiponectin, leptin, and insulin. Correlations between
markers and 25(OH)D levels were determined. The Wilcoxon Rank Sum test was used to compare markers
between individuals 25(OH)D insufficient and sufficient at baseline and before and after repletion among
those who were insufficient and repleted to ‡30 ng/ml after 12 weeks. Of 106 subjects with stored plasma
[66 with 25(OH)D <30 ng/ml and 40 ‡ 30 ng/ml], the median age was 50, the CD4 count was 515 cells/mm3,
94% were male, and the median baseline 25(OH)D was 27 ng/ml. Higher 25(OH)D levels were associated
with lower tumor necrosis factor (TNF)-a (r = -0.20, p = 0.04) and higher adiponectin levels (r = 0.30,
p = 0.002). Following successful repletion to 25(OH)D ‡30 ng/ml there were no significant changes in in-
flammatory or metabolic parameters. Our study found associations between low 25(OH)D levels and TNF-a
and adiponectin. Repletion did not result in changes in markers of inflammation or metabolism. These data
support continued study of the relationship between vitamin D, inflammation, and metabolism in treated HIV
infection.

Introduction

Low serum 25-hydroxyvitamin D [25(OH)D] levels
are common in HIV-infected individuals in all geo-

graphic regions, with studies showing rates in the range of
30–92% among patients on antiretroviral therapy (ART).1–3

In healthy, HIV-uninfected adults, vitamin D deficiency
has been associated with increased production of proin-
flammatory cytokines4 and has been linked to morbidity in-
cluding colon, breast, and prostate cancers,5,6 autoimmune
disease,7,8 depression,9 chronic pain, and acute respiratory
infections.10 Vitamin D levels may also have important im-
plications for inflammation in patients with HIV infection.
An emerging body of data in this population suggests asso-
ciations between low vitamin D levels and elevated markers

of inflammation including interleukin-6 (IL-6) and high-
sensitivity C-reactive protein (hs-CRP),11–13 and in a random
sample of 1,985 HIV-infected individuals in Europe, higher
vitamin D levels were independently associated with a lower
risk of mortality and AIDS events after adjusting for ART
use, CD4+ T lymphocyte count, and viral load.14

Vitamin D deficiency has also been associated with meta-
bolic dysregulation, with studies to date focusing largely on
obesity in HIV-uninfected cohorts and the interaction between
25(OH)D levels and adiponectin, a peptide hormone secreted
by adipose tissue. Low levels of adiponectin have been asso-
ciated with high fat mass and obesity-related cardiometabolic
complications. Higher adiponectin and 25(OH)D levels have
been independently associated with a reduced risk for insulin
resistance, atherosclerosis, other cardiometabolic risk factors,
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and cardiovascular disease.15–18 Data on the relationship be-
tween vitamin D levels and metabolic function are emerging
from the HIV literature, but have been largely limited to cross-
sectional studies and studies of heterogeneous populations in
regard to the use of ART and degree of viral suppression.19–22

Because of uncertainty surrounding the association of vi-
tamin D insufficiency with markers of inflammation and
metabolism, we sought to evaluate differences in these pa-
rameters in HIV-infected adults on ART with viral suppres-
sion utilizing a cross-section of individuals with and without
25(OH)D insufficiency and via a prospective cohort study of
changes in markers using those individuals insufficient at
baseline (<30 ng/ml) and assessing markers after repletion to
‡30 ng/ml. We hypothesized that 25(OH)D-insufficient in-
dividuals would have higher levels of inflammation and
markers suggesting metabolic dysregulation, and that vita-
min D repletion to ‡30 ng/ml would result in improvements
in these parameters.

Materials and Methods

Center for Clinical AIDS Research and Education
(CARE) vitamin D cohort

The CARE Vitamin D cohort was a prospective study
developed to assess the effectiveness of standard vitamin D
repletion among HIV-infected patients on stable ART with
HIV-1 RNA <200 copies/ml. The cohort enrolled participants
‡18 years of age from the University of California, Los
Angeles (UCLA) CARE clinic in Los Angeles, California.
Vitamin D-sufficient participants (‡30 ng/ml) had a single
study visit that included biological specimen collection for
storage and medical record review. Vitamin D-insufficient
participants had a visit at baseline and underwent repletion
with open-label, oral vitamin D3 50,000 IU twice weekly for
5 weeks, then 2,000 IU daily to complete 12 weeks, and
completed follow-up visits at 12 and 24 weeks, with bio-
logical specimen collection and medical record review at
each visit. All individuals enrolled in the study provided
written informed consent and the study was approved by the
UCLA Institutional Review Board. Detailed study schedules
and evaluations and results of vitamin D repletion have been
described in a previously published study.23

Study population and definitions for this analysis

The study population for the cross-sectional analysis in-
cluded HIV-infected individuals enrolled in the CARE vita-
min D cohort who were on ART with documented HIV-1
RNA <200 copies/ml within 6 months of enrollment, were
not using vitamin D supplementation >400 IU daily at
screening (the amount in a standard multivitamin), and had at
least 3 ml of stored plasma available at the baseline visit. The
study population for the prospective aim included individuals
from the cross-sectional study who were 25(OH)D insuffi-
cient at baseline, achieved a vitamin D level ‡30 ng/ml after
12 weeks of vitamin D, and had at least 3 ml of stored plasma
from both the baseline and 12 weeks study visits.

For the study, the primary exposure of interest was vitamin
D status defined as insufficient [25(OH)D <30 ng/ml] or
sufficient [25(OH)D ‡30 ng/ml]. The primary outcomes of
interest were biomarkers of inflammation [IL-2, IL-4, IL-6,
IL-8, IL-10, IL-12, IL-1b, tumor necrosis factor (TNF)-a,

interferon (IFN)-c, and hs-CRP], coagulation (D-dimer), and
metabolism (glucose, insulin, adiponectin, and leptin).

Determination of 25(OH)D levels and inflammation,
coagulation, and metabolism biomarkers

Serum 25(OH)D was measured via DiaSorin Liaison direct
competitive chemiluminescence immunoassay at the UCLA
Clinical Laboratories. This assay has a lower limit of detec-
tion of 4 ng/ml and within- and between-assay coefficients of
variation of <7.7% and <12.6%, respectively (DiaSorin,
Stillwater, MN). Cytokine analyses (IL-2, IL-4, IL-6, IL-8,
IL-10, IL-12, IL-1b, TNF-a, and IFN-c) were performed at
UCLA using a Luminex platform high sensitivity multiplex
assay (R&D systems Inc., Minneapolis, MN) on samples
stored at -70�C. The lower limit of detection for each cytokine
was determined by extrapolation from the lowest standard
concentration using Bio-Plex Software (Bio-Rad, Hercules,
CA). Zero was imputed when the lowest standard was indis-
tinguishable from background. Samples for hs-CRP and
D-dimer were transported from UCLA to Quest Diagnos-
tics (Chantilly, VA). Testing for hs-CRP was performed
with nephelometry24 and D-dimer with STA-R analyzer/
immunoturbidometric method.25 Metabolic markers were also
performed by Quest, as follows: insulin (immunoassay),26

adiponectin (ELISA),27 and leptin (radioimmunoassay).28

The Homeostasis Model Assessment of Insulin Resistance
(HOMA-IR) was determined using a standard calculator.29

Statistical analysis

Sociodemographic characteristics, CD4+ T lymphocyte
counts, ART regimens, and non-AIDS comorbidities were
abstracted from medical records, summarized for the overall
cohort, and compared by vitamin D status at baseline (in-
sufficient versus sufficient). The Wilcoxon Rank Sum test
was used to compare continuous variables and the Chi-square
or Fisher’s exact test was used to compare categorical vari-
ables. To determine whether the subgroup of participants
with plasma samples was representative of the overall CARE
vitamin D cohort we compared sociodemographic and clin-
ical characteristics of those with and without stored plasma.
We compared biomarkers of inflammation and metabolism
using Wilcoxon Rank Sum tests in two ways: first between
those who were 25(OH)D insufficient and sufficient at
baseline (cross-sectional aim) and second before and after
repletion among those who were insufficient at baseline and
repleted to ‡30 ng/ml after 12 weeks (prospective aim). Fi-
nally, in the cross-sectional aim, Spearman’s correlation was
used to evaluate the association between markers of inflam-
mation and metabolism and 25(OH)D levels among all par-
ticipants. In the prospective aim, we evaluated correlations
between changes in vitamin D levels and changes in marker
levels from baseline to 12 weeks.

All statistical analyses were conducted using SAS 9.2 (SAS
Institute, Cary, NC). A two-sided p-value <0.05 was consid-
ered statistically significant. Due to the exploratory nature of
the analysis, corrections for multiple statistical tests were not
performed. Based on prior studies of vitamin D and inflam-
mation in HIV-infected cohorts,30,31 our sample size provided
at least 80% power to detect baseline differences between
25(OH)D-insufficient and 25(OH)D-sufficient individuals of
0.54 and 0.58 in effect size for IL-6 and TNF-a, respectively.
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Results

Size and characteristics of the study population

Of 122 individuals screened and enrolled in the CARE
Vitamin D cohort, 106 had stored samples and were included
in the analysis. Comparisons of those with and without stored
plasma samples are shown in Table 1. Those excluded due
to lack of stored plasma had significantly lower median
25(OH)D levels (15 ng/ml versus 27 ng/ml, p < 0.01) and
were more likely to be of nonwhite race (69% versus 36%,
p = 0.01). Of the 106 individuals included in the inflammation
cohort, 40 were 25(OH)D sufficient and 66 insufficient at
baseline and all had samples available for inclusion in
the analysis. Of those insufficient at baseline, all achieved
25(OH)D levels ‡30 ng/ml at 12 weeks, and all but one had
stored samples available for inclusion in the analysis. Figure 1
illustrates the number of participants with samples available
from the inflammation cohort for both the cross-sectional and
prospective aims.

The median age of the inflammation cohort was 50 years
(IQR 44,56), the median CD4+ T lymphocyte count was 515
cells/mm3 (IQR 390, 638), 6% of the cohort were female, and
36% were nonwhite race. The most common ART regimens
included nonnucleoside reverse transcriptase inhibitors (56%),
protease inhibitors (35%), and integrase inhibitors (17%).
Eighty-one percent of individuals were on a tenofovir-
containing nucleoside analogue regimen with the remainder
on abacavir. Ten percent of the overall cohort were current
smokers, 42% were hypertensive, and 4.7% had positive
hepatitis C antibody (Table 1). At baseline, the median
25(OH)D level among the participants with insufficiency was
21.0 ng/ml (IQR 16.0, 27.0) and median level among the
participants without insufficiency was 36.0 ng/ml (IQR 33.0,
41.5). There were no significant differences between the
25(OH)D-sufficient and 25(OH)D-insufficient groups in re-
gard to age, gender, race, median CD4 T lymphocyte count,

ART regimen, and comorbidities (smoking, hypertension,
hepatitis C). Approximately 3% of the cohort had diabetes
(N = 3) and all were in the 25(OH)D-insufficient group.

Cross-sectional and prospective cohort comparisons
of inflammation, coagulation, and metabolic markers

Median biomarker levels are presented in Table 2 for the
comparison of those sufficient versus insufficient individuals
at baseline. Low levels were seen for hs-CRP (median
1.1 mg/liter, reference range of <1.0 mg/liter low cardiovas-
cular risk, 1.0–3.0 mg/liter average cardiovascular risk, and
>3–10 mg/liter high cardiovascular risk32) and D-dimer
(median 0.2 l/ml, reference range <0.5 l/ml). Median levels
were undetectable for several cytokines including IL-2, IL-4,
IL-12, and IL-1b. No significant differences in median bio-
marker levels were detected at baseline for 25(OH)D-
insufficient versus 25(OH)D-sufficient individuals. There
was a trend toward significance for adiponectin (8.0 lg/ml in
sufficients and 6.5 lg/ml among insufficients, p = 0.06) that
strengthened when the analysis was limited only to individ-
uals with 25(OH)D <20 ng/ml (N = 26, p = 0.005), with no
significant differences in other markers of metabolism in-
cluding glucose, insulin, leptin, and HOMA-IR. In the anal-
ysis of correlations between baseline 25(OH)D levels and
biomarkers, higher 25(OH)D levels were associated with
lower TNF-a (r = -0.20, p = 0.04) and higher adiponectin
levels (r = 0.30, p = 0.002) (Fig. 2). None of these results
significantly changed when participants with diabetes were
excluded from the analysis.

Among those with vitamin D insufficiency who achieved
levels ‡30 ng/ml after 12 weeks (N = 65), the median change
in 25(OH)D was 23.5 ng/ml (IQR 16.0, 31.0). There were
no significant postrepletion changes in cytokines, including
TNF-a, and no change in hs-CRP, D-dimer, or metabolic pa-
rameters (adiponectin, leptin, HOMA-IR, glucose, insulin).

Table 1. Baseline Characteristics of the Parent CARE Vitamin D Cohort (N = 122) and Comparisons

of Those Included (N = 106) Versus Excluded (N = 16) in the inflammation Cohort

CARE vitamin D
cohort

Excluded from
inflammation cohort

due to lack of plasma
Included in

inflammation cohort
N = 122 N = 16 N = 106 p-value

Median age (years) (IQR) 49 (42, 55) 46 (37, 52) 50 (44, 56) 0.10
Median CD4 count (cells/mm3) (IQR) 520 (391, 662) 597 (450, 689) 515 (390, 638) 0.30
Gender

Male % (N) 95 (116) 100 (16) 94 (100)
Female % (N) 5 (6) 0 (0) 6 (6) 0.99

Nonwhite race % (N) 40 (49) 69 (11) 36 (38) 0.01
Median body mass index (kg/m2), IQR 26 (25, 29) 27 (25, 29) 26 (25, 30) 0.60
Regimen

NNRTI % (N) 57 (70) 69 (11) 56 (59) 0.32
PI % (N) 34 (41) 25 (4) 35 (37) 0.43
Integrase % (N) 16 (20) 13 (2) 17 (18) 0.99

Median 25(OH)D level (ng/ml) (IQR) 26 (17, 33) 15 (9, 19) 27 (20, 34) <0.01
Current smoker % (N) 12 (15) 25 (4) 10 (11) 0.11
Diabetes mellitus % (N) 3 (4) 6 (1) 3 (3) 0.43
Hypertension % (N) 42 (51) 44 (7) 42 (44) 0.87
Hepatitis C coinfectiona % (N) 4 (5) 0 (0) 4.7 (5) 0.99

aDefined by positive hepatitis C antibody.
NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor; 25(OH)D, 25-hydroxyvitamin D.
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There were no significant correlations between change in
25(OH)D levels and change in any of the inflammatory or
metabolic markers.

Discussion

Vitamin D insufficiency and inflammation in chronic
HIV infection

We found an inverse correlation between TNF-a and
25(OH)D levels at baseline but no change in TNF-a levels with
repletion. A relationship between vitamin D levels and TNF-a
has been demonstrated in vitro, with binding of the vitamin D
receptor resulting in downregulation of several cytokines, in-
cluding TNF-a.33 The association with 25(OH)D and TNF-a
has not been reported from other studies of HIV-infected co-
horts; however, in a randomized study of HIV-uninfected
adults with congestive heart failure, TNF-a was stable over
9 months in the vitamin D repletion group but increased by

12% in the placebo group ( p = 0.017) suggesting a protective
benefit in the inflammatory milieu of heart failure.34 While
at least one cross-sectional study has shown no association
between low 25(OH)D levels and systemic inflammation,22

several other cross-sectional studies have shown associations
with IL-6 and hs-CRP11–13 as well as with soluble TNF re-
ceptor 1 (sTNFR1),35 soluble TNF receptor 2 (sTNFR2),
and resistin.13 These studies have included adults both on
and off ART and most did not require virologic suppression
for study inclusion, making direct comparisons with our co-
hort difficult.

In our cohort, levels of inflammatory biomarkers were lower
compared to other HIV studies of inflammation in which
participants with elevated viral loads were not excluded36–38

but similar to studies in virologically suppressed individ-
uals.39–41 Whether further reductions in already low levels of
inflammation in HIV-infected individuals with suppressed
viral load translate into meaningful clinical benefit remains

FIG. 1. Flow chart illustrating the
number of participants with samples
available from the inflammation co-
hort for both the cross-sectional aim
(comparing individuals sufficient ver-
sus deficient at baseline) and pro-
spective aim (comparing deficient
individuals before and after repletion)

Table 2. Median Baseline Levels (Interquartile Range) for Markers of Inflammation, Coagulation,

and Metabolism in Participants with Sufficient (‡30 ng/ml) Versus Insufficient (<30 ng/ml)

25-Hydroxyvitamin D Levels

25-Hyroxy vitamin D
sufficient (‡30 ng/ml)

25-Hyroxy vitamin D
insufficient (<30 ng/ml)

N = 40 N = 66 p-valuea

IFN-c pg/ml 0.2 (0, 0.4) 0.1 (0, 0.4) 0.72
IL-2 pg/ml 0 (0, 0.4) 0 (0, 0.4) 0.38
IL-4 pg/ml 0 (0, 5.1) 0 (0, 0.1) 0.08
IL-6 pg/ml 1.6 (1.1, 2.4) 1.7 (1.2, 2.4) 0.68
IL-8 pg/ml 13.0 (8.9, 25.0) 14.0 (9.6, 24.0) 0.66
IL-10 pg/ml 0.7 (0.5, 1.1) 0.7 (0.4, 1.1) 0.65
IL-12 pg/ml 0 (0, 0) 0 (0, 0) 0.62
IL-1b pg/ml 0 (0, 0.1) 0 (0, 0) 0.62
TNF-a pg/ml 6.8 (3.5, 8.2) 6.7 (5.0, 9.5) 0.34
hs-CRP mg/liter 1.4 (0.6, 2.7) 1.0 (0.7, 1.7) 0.33
D-dimer l/ml 0.2 (0.2, 0.3) 0.2 (0.2, 0.3) 0.69
Adiponectin lg/ml 8.0 (6.0, 9.0) 6.5 (4.0, 9.0) 0.06
Leptin ng/ml 4.8 (3.2, 9.9) 5.2 (3.2, 9.9) 0.42
Glucose mg/dl 91 (88, 102) 95 (89, 102) 0.20
Insulin lIU/ml 6.0 (2.5, 11.0) 6.0 (4.0, 11.0) 0.24
HOMA-IR 1.3 (0.5, 2.2) 1.5 (0.9, 2.5) 0.24

ap-values determined by the Wilcoxon Rank Sum test.
IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; hs-CRP, high-sensitivity C-reactive protein; HOMA-IR, homeostasis model

assessment of insulin resistance.
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unclear; however, studies have shown associations between
low 25(OH)D levels and important clinical endpoints. In a
random sample of 1,985 individuals in the EuroSIDA cohort,
lower vitamin D levels were independently associated with a
higher risk of mortality and AIDS events after adjusting for
ART use, CD4+ T lymphocyte count, and HIV-1 viral load.14

A nested case-control study of 250 individuals in this co-
hort showed that among individuals with 25(OH)D levels
<10 ng/ml, IL-6 concentrations increased by 4.7% annually
(95% CI 0.2, 9.3, p = 0.04) among cases (those with AIDS,
non-AIDS events, or death) compared to controls who did not
experience these endpoints.42 Notably, the odds of death
decreased by 46.0% (95% CI 2.0, 70.0, p = 0.04) for a 2-fold
increase in the latest 25(OH)D level. This study was composed
of individuals with more advanced HIV infection (baseline
CD4+ T lymphocyte count 289 cells/mm3) with high rates of
prior AIDS-defining illnesses, and was not limited to those
with suppressed viral load. The prognostic value of 25(OH)D
levels may be less powerful among individuals with higher
CD4+ T lymphocyte counts who are suppressed on ART.

While longitudinal cohort data on vitamin D repletion and
inflammation are less abundant, several cohorts have recently
been described. The Chicago Women’s Interagency HIV
Study (WIHS) identified 40 HIV-infected women who were
vitamin D insufficient and evaluated baseline and postreple-
tion levels of hs-CRP, IL-6, and TNF-a.43 They found no
changes after vitamin D repletion. Their cohort was composed
of a mixed population of women in regard to ART, with
approximately half suppressed to <48 copies/ml, limiting
conclusions that can be drawn about residual inflammation in
the setting of viral suppression. A recently completed ran-
domized study of vitamin D on bone health for individuals
initiating ART (AIDS Clinical Trials Group 5280) will provide
data on vitamin D repletion and changes in inflammation over
48 weeks (IL-6, sTNFR1, sTNFR2, and soluble CD14).44

Vitamin D levels, adiponectin, and metabolic disease

We found lower adiponectin levels in participants with
vitamin D insufficiency and a positive correlation between

25(OH)D and adiponectin levels. Cross-sectional data in
HIV-infected populations have shown vitamin D deficiency
to be associated with a decrease in pancreatic b cell function,
reduced insulin sensitivity, and type 2 diabetes mellitus.19–21

A proposed mechanism for vitamin D’s role in improving
insulin sensitivity is through reducing inflammation, direct
effects on peripheral and hepatic glucose uptake,45–47 and
regulation of secretion of insulin by pancreatic b cells.48–50

The precise role by which vitamin D and adiponectin in-
teract along these pathways is unknown; however, the vita-
min D receptor has been identified in adipocytes and it has
been hypothesized that 1,25(OH)D regulates gene expression
of adiponectin.51 We found largely normal glucose, insulin,
and HOMA-IR levels, precluding an analysis of the rela-
tionships of 25(OH)D and adiponectin with insulin resistance
and diabetes. Given prior descriptions of adiponectin as an
antiinflammatory adipokine,52–56 we performed exploratory
analyses on the relationship of adiponectin to selected in-
flammatory biomarkers in our study (data not shown). In
keeping with a hypothesized antiinflammatory role, we ob-
served an inverse relationship between adiponectin and IL-6
levels among the baseline cohort (r = -0.27, p = 0.005). We
did not find an association between adiponectin and TNF-a.

Few studies in HIV-infected populations have explored the
benefits of vitamin D repletion on metabolic parameters. A
study of vitamin D repletion in 20 HIV-infected individuals
from the Netherlands found that despite an increase in
25(OH)D levels and an early signal for a decrease in insulin
sensitivity at 14 weeks, there were no significant changes in
insulin sensitivity after 48 weeks and no sustained benefits on
adipokines, bone mineral density, and triglycerides.57

Studies of vitamin D repletion in HIV-uninfected indi-
viduals have shown metabolic benefits including improved
insulin sensitivity in obese adolescents,58 improved measures
of pancreatic function in type 2 diabetics based on the ho-
meostasis model of assessment of b cell activity,59 and de-
creases in glycosylated hemoglobin and other cardiovascular
risk factors (blood pressure, total cholesterol, and low-
density lipoprotein), also in type 2 diabetics.60 Larger studies
in HIV-infected patients are needed to determine if these

FIG. 2. Left: Scatter plot showing the correlation between adiponectin and 25-hydroxy vitamin D [25(OH)D] levels
(r = 0.30, p = 0.002). Right: Scatter plot showing the correlation between tumor necrosis factor (TNF)-a and 25(OH)D levels
(r = -0.20, p = 0.04).
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benefits can be achieved in the more complicated inflam-
matory and metabolic milieu of treated HIV infection and to
characterize how vitamin D may mediate metabolic risk
through adiponectin, with adjustment for body fat composi-
tion, gender, race, and HIV disease and treatment factors.

Study limitations and weaknesses

The 25(OH)D-insufficient participants in the CARE vita-
min D cohort were followed for 24 weeks; however, sample
availability was not sufficient at this time point for inclusion
in the analysis. Benefits of repletion may take longer than 12
weeks and our study lacks long-term follow-up (24 weeks
and beyond) to answer this question. Our cohort did not
have a high proportion of individuals who had very high
(>50 ng/ml) or very low (<15 ng/ml) vitamin D levels and
therefore we could not perform subanalyses at the extreme
ends of the vitamin D range. The greatest benefits of vitamin
D may be for those who start with very low levels and achieve
a threshold not represented in our study population. Our co-
hort was largely older white men and results may not be
generalizable to other groups. Our study was an exploratory
analysis to gain preliminary data on markers of inflammation
and metabolism and 25(OH)D levels, and therefore we did
not correct for multiple statistical testing.

Conclusions

Consistent with an emerging body of evidence, our study
found associations between 25(OH)D levels and markers of
inflammation (TNF-a) and metabolism (adiponectin). Re-
pletion did not result in improvements of these or other pa-
rameters of inflammation or metabolic function. Future
studies are needed to explore whether targeting higher
25(OH)D levels results in significant changes in biomarkers
and to correlate changes in inflammatory and metabolic
markers with clinical outcomes of interest.
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