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Abstract

New Results for Online and Offline Stochastic Optimization and Decision-Making

by

Heyuan Liu

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Assistant Professor Paul Grigas, Chair

This dissertation presents several contributions at the interface of methods for convex opti-
mization problems and decision-making problems in both online and offline settings.

The first part of the dissertation focuses on new optimization methods for computing an
approximate solution path for parameterized optimization problems. We develop and analyze
several different second-order algorithms for computing a near-optimal solution path of a
convex parametric optimization problem with smooth Hessian. Our algorithms are inspired
by a differential equation perspective on the parametric solution path and do not rely on
the specific structure of the objective function. We present computational guarantees that
bound the oracle complexity to achieve a near-optimal solution path under different sets
of smoothness assumptions. Under the assumptions, the results are an improvement over
the best-known results of the grid search methods. We also develop second-order conjugate
gradient variants which avoid exact computation of Hessian and solving linear equations.
We present computation results that demonstrate the effectiveness of our methods over
the grid search methods on both real and synthetic datasets. On large-scale problems, we
demonstrate significant speedups of the second-order conjugate variants as compared to the
standard versions of our methods.

The second part of the dissertation focuses on the statistical properties of the recently intro-
duced surrogate “SPO+” loss function in the “Smart Predict-then-Optimize (SPO)” frame-
work. We greatly expand upon the consistency results for the surrogate loss in previous
literature. We develop risk bounds and uniform calibration results for the surrogate loss
relative to the original loss, which provide a quantitative way to transfer the excess surro-
gate risk to excess true risk. By combining our risk bounds with generalization bounds, we
show that the empirical minimizer of the surrogate loss achieves low excess true risk with
high probability. We first demonstrate these results in the case when the feasible region of
the underlying optimization problem is a polyhedron, and then we show that the results
can be strengthened substantially when the feasible region is a level set of a strongly convex
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function. We perform experiments to empirically demonstrate the strength of the SPO+
surrogate, as compared to standard ℓ1 and squared ℓ2 prediction error losses, on portfolio
allocation and cost-sensitive multi-class classification problems.

The third part of the dissertation focuses on the online contextual decision-making problem
with resource constraints. We propose an algorithm that mixes a prediction step based
on the SPO method with a dual update step based on mirror descent. We prove regret
bounds and demonstrate that the overall convergence rate of our method depends on the
O(T−1/2) convergence of online mirror descent as well as risk bounds of the surrogate loss
function used to learn the prediction model. Our algorithm and regret bounds apply to
a general convex feasible region for the resource constraints, including both hard and soft
resource constraint cases, and they apply to a wide class of prediction models in contrast to
the traditional settings of linear contextual models or finite policy spaces. We also conduct
numerical experiments to empirically demonstrate the strength of our proposed SPO-type
methods, as compared to traditional prediction-error-only methods, on multi-dimensional
knapsack and longest path instances.
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Chapter 1

Introduction

The recent two decades witnessed the substantial developments of both optimization and
learning methods thanks to the advance in computing power and data storage. In the op-
erations research community, it is crucial to fully leverage modern techniques and massive
amount of data to develop predictive models, design efficient algorithms, and finally, make
good decisions, especially when the decision-making problems are associated with uncer-
tainty. This dissertation presents new algorithms and theoretical guarantees for different
stochastic optimization and decision-making problems, in both online and offline settings.

In Chapter 2, the main focus is the parametric optimization problem, where the objective
function depends on one parameter. In many applications of interest, it is necessary to solve
not just a single optimization problem but an entire collection of related problems as a
function of the parameter. There are several strong motivations to design algorithms for the
parametric problems, including but not limited to: (i) the need to solve problems arising in
application areas like regularized regression with cross-validation, and (ii) the need to address
multi-objective optimization, for instance, finding the Pareto frontier of a two-objective
optimization problem. An important set of problems in practice and a popular line of research
involves computing the solution path of regularized machine learning problems, including the
LASSO and the SVM problem. In these works, algorithms are designed to compute the exact
piecewise linear solution paths. In contrast, we consider general convex objective functions
and design efficient algorithms to compute the approximate solution paths. We provide a
novel perspective to analyze the solution path by deriving an ordinary differential equation
whose solution is the exact solution path. This understanding enables us to design more
efficient algorithms which are adaptive to the smoothness of objective functions, and present
computational guarantees respectively. We modify the standard update schemes in numerical
ordinary differential equations and develop non-asymptotic complexity bounds. We then
incorporate linear interpolation, which was often missing either in practical algorithms or
in the lower bounds complexity analysis, to generate nearly-optimal solutions for the entire
parameter interval of interest. Our complexity analysis measures the number of operations,
such as Hessian evaluations, rather than the number of sub-problems that are required to
be solved, such as individual optimization problems and numerical differential equations
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as has been studied in recent works. In large-scale problems, to avoid computing Hessian
and/or solving linear systems, which are required in the aforementioned exact algorithms,
we consider second-order conjugate gradient type methods. By leveraging the theoretical
analysis in the presence of inexact directions, we provide the computational guarantees of
the new variants, which have the same order of the desired accuracy as the results for the
exact algorithms.

In Chapter 3, the main focus is the offline contextual decision-making problems, where
one first predicts the unknown parameters in a decision-making problem and then plugs in
the prediction before solving the problem. This framework has a wide variety of applications,
including navigation problems, wherein the actual travelling time on each edge is unavailable
when the routes need to be recommended, and portfolio allocation problems, wherein the
expected return is unavailable. Most practical methods utilize the contextual information,
for example, time of day, weather information, and, financial and business news headlines, to
infer the actual parameter and reduce the uncertainty. Ultimately, the goal is to produce a
high-quality prediction model that leads to a good decision when implemented. A natural loss
function in this setting is defined by measuring the decision error induced by the predicted
parameters, which was named the Smart Predict-then-Optimize (SPO) loss by [29]. The
authors also introduced the surrogate SPO+ loss due to the non-convexity and non-continuity
of the original SPO loss and provide the Fisher consistency under mild conditions. We extend
the analysis by considering the excess risk bounds of the surrogate SPO+ loss function,
which answer the following question: to what tolerance δ should the excess surrogate risk
be reduced to in order to ensure that the excess SPO risk is at most ϵ? By making use of
uniform calibration, we developed risk bounds in the two cases depending on the structure
of the feasible region of the optimization problem: (i) the case of a bounded polyhedron,
and (ii) the case of a level set of a smooth and strongly convex function. As a consequence
of our analysis, we can leverage generalization guarantees for the SPO+ loss to obtain the
first sample complexity bounds, with respect to the SPO risk, for the SPO+ surrogate under
the two cases we consider. We also provide a faster convergence rate when the distribution
satisfies some certain low near-degeneracy conditions.

In Chapter 4, the problem of interest is the online contextual decision-making problems.
The final goal of the decision-maker is to maximize the summation of the reward and the util-
ity from resource consumption, while satisfying the resource constraints. We develop a new
framework for integrating decision-focused learning methods, using predict-then-optimize
losses, into the online decision-making task. The main difference from the previous chapter
is that there is a trade-off between immediate rewards and rewards received at a later time,
where the trade-off exists since each decision that is made consumes some of a limited amount
of resources. To address the resource consumption, we apply the technique of introducing
dual variables and using primal-dual methods. In the decision step, we need to predict the
reward and consumption to solve a linear optimization problem with a known feasible region
to make a decision. Due to the linear structure of the underlying optimization problem in
our meta-procedure, we can apply the aforementioned SPO loss function and its surrogate
losses. As such, at each time period, we update a set of dual variables using the method of
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online mirror descent and then we update the prediction model by minimizing a surrogate
of the SPO loss on a dataset constructed by combining past observations with the current
dual variables. A critical part of our contribution involves bridging convergence theory for
primal-dual online methods with learning theory in the predict-then-optimize setting. In
particular, we prove regret bounds for our overall algorithm that combine the O(T−1/2) con-
vergence of online mirror descent with the convergence of the learning process, the rate of
which depends on which surrogate loss function is used. Our algorithm and analysis are
no longer limited to the previously studied linear context or finite policy assumptions, and
more complex machine learning models, such as random forests and neural networks, may be
used. Our bounds hold in both hard and soft resource constraint cases, and we extend prior
results using standard upper bound consumption constraints on each resource to arbitrary
convex consumption constraints.
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Chapter 2

New Methods for Solution Path
Optimization via Differential
Equations

2.1 Introduction

In many applications of interest, it is necessary to solve not just a single optimization problem
but an entire collection of related problems. In these settings, some or all of the objects
involved in defining the objective function or constraints of an optimization problem depend
on one or more parameters, and we would like to solve the problem as a function of these
parameters. Generally, a parametric optimization problem can be written as:

P (λ) : min
x∈S(λ)

F (x, λ), (2.1)

where λ belongs to the set of interest Λ ⊆ Rm, and the feasible sets satisfy S(λ) ⊆ Rp. There
are many problems of interest that are formulated as parametric optimization problems of the
form (2.1). Subsequently, as indicated by [38], there are several strong motivations to design
algorithms for (2.1), including but not limited to: (i) the need to solve problems arising in
application areas like regularized regression with cross-validation (see, e.g., [69]) and model
predictive control (see, e.g., [33]), (ii) as a building block for developing globally convergent
algorithms by the approach of path-following as is done in interior-point methods (see, e.g.,
[65]), and (iii) the need to address multi-objective optimization, for instance, finding the
Pareto frontier of a two-objective optimization problem. Depending upon the assumptions
made, the goal may be to find global/local optimal solutions or Karush–Kuhn–Tucker (KKT)
points of problem P (λ) for λ ∈ Λ.

In the rest of the paper, we will focus on a more specific problem, in which we assume:
(i) the dependence on λ is linear, that is, F (x, λ) can be written as f(x)+λ ·Ω(x), (ii) both
f(·) and Ω(·) are convex functions with certain properties, and (iii) the feasible set S(λ) is
the entire vector space Rp for all λ ∈ Λ. That is, we focus on the parametric optimization
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problem:
P (λ) : F ∗

λ := min
x∈Rp
{Fλ(x) := f(x) + λ · Ω(x)} , (2.2)

where f(·) : Rp → R and Ω(·) : Rp → R are twice-differentiable functions such that f(·) is a
µ-strongly convex for some µ ≥ 0 and Ω(·) is σ-strongly convex for some σ > 0, both with
respect to the ℓ2-norm (denoted by ∥·∥ herein). For any λ > 0, let

x(λ) := arg min
x∈Rp

Fλ(x) (2.3)

denote the unique optimal solution of P (λ) defined in (2.2). We are interested in the
problem of (approximately) computing the set of optimal solutions {x(λ) : λ ∈ Λ} where
Λ = [λmin, λmax] is the set of interest for some 0 < λmin < λmax, and we also refer to this
set of solutions as the (exact) solution path. An important set of problems in practice and a
popular line of research involves computing the solution path of regularized machine learn-
ing problems, including the LASSO as in [27, 69] and the SVM problem as in [39]. In
these works, algorithms are designed to compute the exact piecewise linear solution paths.
Also, in the context of interior-point method for constrained convex optimization (see, for
instance, [65] and [74]), f(·) represents the objective function and Ω(·) represents the barrier
function induced by the constraints of origin problem. Note that this application requires a
slightly more general version of problem (2.2) where Ω(·) : Rp → R ∪ {+∞}. The interior-
point method starts with the problem P (λ) with a moderately large λ0 and terminates when
λk < δ for some small enough positive threshold δ. Recently, there has been growing interest
in developing algorithms for computing an approximate solution path of a generic problem
like (2.3). [75] consider applying exact Newton steps on pre-specified grids, and [63] consider
adaptive methods to discretize the interval [λmin, λmax], for example. These grid search type
methods, which discretize the interval [λmin, λmax] and subsequently solve a sequence of in-
dividual optimization problems take a very black-box approach. A natural question is: can
we “open the black-box” by developing a methodology that better exploits the structure of
the solution path? We answer this question positively by introducing a differential equation
perspective to analyze the solution path, which enables us to better reveal and exploit the
underlying structure of the solution path. This deeper understanding enable us to build
more efficient algorithms and present improved computational guarantees.

In particular, we derive an ordinary differential equation with an initial condition whose
solution is the exact solution path of (2.2). The dynamics of the ODE that we derive re-
semble, but are distinct from, the dynamics of a path-wise version of Newton’s method.
Based on the ODE, we propose efficient algorithms to generate approximate solution paths
x̂(λ) : λ ∈ [λmin, λmax] → Rp and we provide the corresponding complexity analysis.
The metric we consider is the ℓ2-norm of the gradient of the regularized problem, namely
∥∇Fλ(x̂(λ))∥2, and we use the largest norm along the approximate path supλ∈Λ ∥∇Fλ(x̂(λ))∥2
to represent the accuracy of an approximate path x̂(λ) (as formally defined in Defini-
tion 2.3.1). To analyze the computational cost of our proposed algorithms, we consider the
oracle complexity – either in terms of full Hessian or Hessian-vector product/gradient evalu-
ations – to obtain an ϵ-accurate solution path. Note that considering the oracle complexity is
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is contrast to other works that consider the number of individual optimization problems that
need to be solved (see, for example, [35, 63]), as well as the number of ordinary differential
equations that need to be solved (see, for example, [90]).

2.1.1 Contributions

The first set of contributions of this paper concern the perspective of the solution path of
(2.2) from an ordinary differential equation point of view. We derive an ordinary differential
equation with an initial condition whose solution is the solution path of (2.2), based on the
first-order optimality conditions of (2.2). With this observation, we propose a novel and
efficient way to approximate the entire solution path. Our derivation does not rely on the
special structure of the optimization problem, like existing results in the solution path of
LASSO or SVM problems, and holds for general objective functions.

The second set of contributions of this paper concern the design of efficient algorithms and
the corresponding oracle complexity analysis. Classical error analysis of numerical ordinary
differential equation methods in [34, 78] provide only asymptotic results, and the global error
has an exponential dependency on the Lipschitz constant and the length of the time period.
In contrast, we design new update schemes to compute an approximate solution path and
develop non-asymptotic complexity bounds. In particular, we apply a semi-implicit Euler
method on the ordinary differential equation in order to compute the approximate optimal
solutions under a finite set of penalty coefficients. Then, we incorporate linear interpolation,
which was usually missing either in practice or in the lower bound complexity analysis, to
generate nearly-optimal solutions under other penalty coefficients within the range of pa-
rameter values of interest. The two-step algorithm guarantees an ϵ-accurate solution path
within at most O(1

ϵ
) gradient and Hessian evaluations as well as linear equation system

solves. When the objective function has higher-order smoothness properties, we modify the
traditional trapezoid method in numerical differential equations and design a new update
scheme, which guarantees an ϵ-path within at most O( 1√

ϵ
) Hessian evaluations. It is impor-

tant to emphasize that the complexity results in this paper are in terms of the number of
operations (for example, Hessian evaluations), rather than the number of sub-problems that
need to be solved (for example, solving a single numerical ODE, or individual optimization
problems) as has been studied in prior work [35, 90]. We also provide a detailed computa-
tional evaluation of our algorithms and existing methods, including several experiments on
synthetic data, the breast cancer dataset [26], and the leukemia dataset [37].

The third set of contributions of the paper concern second-order conjugate gradient type
methods and computational guarantees in the presence of inexact gradient and Hessian
oracles as well as approximate linear equation solvers. When the dimension of the problem
is high, computing the Hessian and/or solving linear systems becomes a computational
bottleneck. To avoid this, one would like an algorithm that only requires approximate
directions at each iteration. We first consider the case when (absolute) numerical error
incurred in the calculation of a new direction dk is bounded by some δk > 0. We show
that our algorithms are robust to numerical error in the sense that the additional errors of
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inexact directions does not accumulate and does not depend on the condition number. We
extend the complexity analysis to the case when the numerical error δk has a uniform upper
bound αϵ for α ∈ (0, 1) and show that the Euler method maintains O(1

ϵ
) complexity, and the

trapezoid method maintains O( 1√
ϵ
) complexity when there is higher-order smoothness. We

then propose variations of the algorithms mentioned before that only require gradient and
Hessian-vector product oracles, rather than gradient and Hessian oracle as well as a linear
system solver. We also leverage the previous analysis in the case of inexact directions in
order to provide computational complexity results for the second-order conjugate gradient
type algorithms, which have the same order of ϵ as the results for the aforementioned exact
methods. Our results demonstrate that our algorithms are more robust and the second-order
conjugate gradient variations require less computational cost compared to existing methods.

2.1.2 Related Literature

We now discuss previous works related to our algorithm and analysis from three distinct
aspects.

Other Path Methods and Comparison of Results As previous mentioned, for the
LASSO and SVM problems, the exact solution path is piecewise linear and can be com-
puted by the path following methods such as the least angle regression (LARS) algorithm
proposed by [27, 39, 69]. Additional problems whose solution paths are piecewise linear are
considered by [76], and [55] showed that the number of breakpoints in the solution path can
be exponential in the number of data points. Generalized linear regression problems with
ℓ1 regularization are considered in [86, 91] via LARS based methods. Another line of works
focuses on computing approximate solution paths for specific problems, including the elastic
net in [32], the SVM problem in [12, 35], matrix completion with nuclear norm regulariza-
tion in [61], and other structural convex problems in [36, 53]. For problems with non-convex
but coordinate decomposable regularization functions, a coordinate descent based algorithm
was proposed by [60, 84]. Closest to our problem set up, [75] considered a general problem
when f(·) and Ω(·) have third-order derivatives and provided an algorithm which applied
exact Newton steps on equally spaced grids starting from the optimal solution of the non-
regularized problem. The lower bound complexity analysis when the approximate solution
path is limited to piecewise constant function is considered by [35, 63].

Related global complexity analysis of second-order methods Newton-like methods
are an important class of algorithms in optimization. Some notable lines of work include
interior-point methods [65, 74] and applications in regression problems [46] as well as the
Levenberg-Marquardt Method [62]. In practice, one often incorporates techniques to ensure
global convergence, such as line searches [73] and trust-region techniques [23]. The global
complexity analysis of Newton and higher-order methods with regularization has also re-
ceived much recent interest, such as the work of [64, 66, 72] and the references therein. In
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our paper, we make similar types of assumptions as in the global complexity analysis of
regularized second and higher-order methods and we also prove global complexity results for
the class of second-order algorithms considered herein.

Related work on differential equations and optimization methods Early works, in-
cluding the work of [7, 8], analyzed inertial dynamical systems driven by gradient and Newton
flow with application to optimization problems. Newton-like dynamic systems of monotone
inclusions with connections to Levenberg-Marquardt and regularized Newton methosd were
also analyzed by [1, 10, 21]. Due to the recent popularity of the accelerated gradient de-
scent method in the machine learning and optimization communities, the limiting dynamics
of different optimization methods and their discretization have thus received much-renewed
interest in recent years; see [11, 77, 81, 85, 87] and the references therein.

2.1.3 Organization

This chapter is organized as follows. In Section 2.2, we derive the ordinary differential equa-
tion with an initial condition whose solution is the exact solution path (2.3) and provide
the existence and the uniqueness of the solution of the differential equation. In Section 2.3,
we leverage the ODE to develop a numerical algorithm to compute the approximate solu-
tion path of (2.2), and we derive the corresponding complexity analysis in Theorem 2.3.1.
In Section 2.4, we propose a multi-stage method which is beneficial when the functions
f(·) and Ω(·) have higher-order smoothness, and we also provide its complexity analysis in
Theorem 2.4.1. In Section 2.5, we discuss the cases with the presence of inexact oracles,
and as a direct application we propose the second-order conjugate gradient variants of the
aforementioned algorithms, which avoid exact Hessian evaluations and exact solutions of
linear systems. Section 2.6 contains a detailed computational experiments of the proposed
algorithms and grid search methods on both real and synthetic datasets.

2.1.4 Notation

For a positive integer n, let [n] := {1, . . . , n}. For a vector-valued function y(t) : R → Rp

which can be written as y(t) = (y1(t), . . . , yp(t)), we say y(·) is differentiable if yi(·) is differ-
entiable for all i = 1, . . . , p and let dy

dt
be the derivative of y(t), namely dy

dt
= (dy1

dt
, . . . , dyp

dt
).

Let 1p and 1p×p denote the p-dimensional all-ones vector and the p × p all-ones matrix re-
spectively. Throughout the paper, we fix the norm ∥ · ∥ on Rp to be the ℓ2-norm, which
is defined by ∥x∥ := ∥x∥2 =

√
xTx. Also, in a slight abuse of notation, we use ∥ · ∥ to

represent the operator norm, i.e., the induced ℓ2-norm ∥ · ∥2 on Rn×p, which is defined by
∥A∥ := ∥A∥2,2 = max∥x∥2≤1 ∥Ax∥2.
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2.2 Ordinary Differential Equation Characterization

of Solution Path

Let us describe a differential equations perspective on the solution path that will prove fruitful
in developing efficient computational methods. First we introduce a re-parameterization in
terms of an auxiliary variable t ≥ 0 (thought of as “time”), whereby for a given T > 0 we
introduce functions λ(·) : [0, T ] → [λmin, λmax] and ξ(·) : [λmin, λmax] → R such that ξ(·) is
Lipschitz, λ(·) is differentiable on (0, T ), and it holds that dλ

dt
= ξ(λ(t)) for all t ∈ (0, T ).

In a slight abuse of notation, we define the path with respect to t as x(t) := x(λ(t)). Now
notice that, for any t ∈ [0, T ], the first-order optimality condition for problem P (λ(t)) states
that ∇f(x(t)) + λ(t)∇Ω(x(t)) = 0. By differentiating both sides of the previous equation
with respect to t, it holds that

∇2f(x(t)) · dx
dt

+∇Ω(x(t)) · dλ
dt

+ λ(t)∇2Ω(x(t)) · dx
dt

= 0.

Rearranging the above and again using dλ
dt

= ξ(λ(t)) yields

dx

dt
= −

(
∇2f(x(t)) + λ(t)∇2Ω(x(t))

)−1
ξ(λ(t))∇Ω(x(t)).

Then, apply the fact that ∇f(x(t)) + λ(t)∇Ω(x(t)) = 0 yields

dx

dt
=
(
∇2f(x(t)) + λ(t)∇2Ω(x(t))

)−1 ξ(λ(t))

λ(t)
∇f(x(t)).

Thus, we arrive at the following autonomous system

dλ

dt
= ξ(λ),

dx

dt
= v(x, λ) :=

(
∇2f(x) + λ∇2Ω(x)

)−1 ξ(λ)

λ
∇f(x), (2.4)

for t ∈ [0, T ].
By considering specific choices of ξ(·) and Ω(·), the system (2.4) generalizes some previ-

ously studied methodologies in parameteric optimization. First, consider the scenario with
an equally-spaced discretization of the interval [0, T ], namely tk = k · h for some fixed step-
size h > 0. Thus, the sequence λk := λ(tk) is approximately given by λk+1 ≈ λk + h · ξ(λk).
Intuitively, the choice of ξ(·) controls the dynamic of λ(·) and generalizes some previously
considered sequences {λk} for problem (2.2). For example, by letting ξ(λ) ≡ 1 we recover the
arithmetic sequence in [75] and by letting ξ(λ) ≡ −λ we recover the geometric sequence in
[63]. In addition, consider the special case when Ω(x) = 1

2
∥x∥2. Then the dynamic for x(t)

in (2.4) is similar to the limiting dynamic for proximal Newton method (also known as the
Levenberg-Marquardt regularization procedure [57] for convex optimization problems). The
property of a similar dynamic of monotone inclusion is analyzed in [9, 10], which includes
finding zero of the gradient of a convex function.
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Before developing and presenting algorithms designed for computing the approximate
solution path based on (2.4), we first verify that the system (2.4) has a unique trajectory.
The proposition below states conditions on f(·) and Ω(·) such that v(·, ·) defined in (2.4) is
continuous in λ ∈ [λmin, λmax] and is uniformly Lv-Lipschitz continuous with respect to x,
namely,

∥v(x1, λ)− v(x2, λ)∥ ≤ Lv∥x1 − x2∥, ∀λ ∈ [λmin, λmax], x1, x2 ∈ Rp.

This uniform Lipschitz property ensures that the above system has a unique trajectory,
which therefore coincides with the solution path defined in (2.3).

Proposition 2.2.1 (Theorem 5.3.1 of [34]). If ξ(λ) is Lipschitz continuous on [λmin, λmax],
v(x, λ) is both continuous in λ ∈ [λmin, λmax] and with respect to x satisfies a uniform Lips-
chitz condition

∥v(x1, λ)− v(x2, λ)∥2 ≤ Lv∥x1 − x2∥2, ∀λ ∈ [λmin, λmax], x1, x2 ∈ Rp,

then (2.4) has a unique solution (λ(t), x(t)) for t ∈ [0, T ]. Moreover, when ∇2f(·), ∇2Ω(·),
∇f(·), f(·) are L-Lipschitz continuous, f(·) is µ-strongly convex, Ω(·) is σ-strongly convex,

and | ξ(λ)
λ
| ≤ C for all λ ∈ [λmin, λmax], it holds that v(·, ·) defined in (2.4) is Lv-Lipschitz

continuous with

Lv =
LC

µ+ λminσ
+
L2C(1 + λmax)

(µ+ λminσ)2
.

2.3 Discretization and Complexity Analysis

In this section, we present algorithms for computing an approximate solution path based on
discretizations of (2.4), along with the corresponding complexity analysis. The primary error
metric that we consider is the 2-norm of the gradient across the entire interval [λmin, λmax]
as formally presented in Definition 2.3.1.

Definition 2.3.1. An approximate solution path x̂(·) : [λmin, λmax] → Rp to the parametric
optimization problem (2.2) has accuracy ϵ ≥ 0 if ∥∇Fλ(x̂(λ))∥ ≤ ϵ for all λ ∈ [λmin, λmax].

Notice that the strong convexity of the objective function Fλ(·) for all λ > 0 immediately
implies that an ϵ-accurate solution path x̂(·) also has the optimality gap guarantee, which is

Fλ(x̂(λ))− F ∗
λ ≤

ϵ2

2(µ+ λσ)
≤ ϵ2

2(µ+ λminσ)
,

for all λ ∈ [λmin, λmax]. Algorithm 2.1 below presents a two-step “meta-algorithm” for com-
puting an approximate solution path x̂(·). Inspired by numerical methods to solve ordinary
differential equations, we first design several schemes to iteratively update (xk, λk) by exploit-
ing the dynamics in (2.4). We use the function ψ(·, ·) : Rp × [λmin, λmax]→ Rp × [λmin, λmax]
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Algorithm 2.1: Meta-algorithm for computing an approximate solution path x̂(·)
input : initial point x0 ∈ Rp, total number of iterations K ≥ 1, update rule ψ(·, ·),

and interpolation method I(·)
1 Initialize regularization parameter λ0 ← λmax;
2 for k = 0, . . . , K − 1 do
3 Update (xk+1, λk+1)← ψ(xk, λk);

output: x̂(·)← I
(
{(xk, λk)}Kk=1

)

to denote a generic update rule in the meta-algorithm below, and we consider several dif-
ferent specific examples herein. Then we apply an interpolation method I(·) to resolve the
previously computed sequence of points into an approximate path x̂(·) over [λmin, λmax].

We develop oracle complexity results for different update schemes and interpolation meth-
ods in terms of the number of gradient computations, Hessian computations, and linear sys-
tems solved required to compute an ϵ-accurate approximate path. In this section, we will
stick to a simple version of Algorithm 2.1 based on applying se mi-implicit Euler’s method
and linear interpolation to specify the update rule ψ(·, ·) and interpolation method I(·). In
particular, the implicit Euler’s discretization of (2.4) is

λk+1 = λk + h · ξ(λk), xk+1 = xk + h · v(xk, λk+1), (2.5)

and the linear interpolation Ilinear(·) : {(xk, λk)}Kk=0 → x̂(·) is defined by x̂(λ) := αxk + (1−
α)xk+1 with α = λ−λk+1

λk−λk+1
for all λ ∈ [λk+1, λk] and k ∈ {0, . . . , K − 1}.

The algorithm with the exponential decaying parameter sequence Recall the up-
date rule (2.5), we can see that the function ξ(·) (or equivalently, λ(·)) is still to be deter-
mined. In practical cases, the value of λ usually exponentially decreases from λmax to λmin.
This choice of penalty scale parameters {λk} arises in the solution path for linear models, see
[32], and the interior-point method, see [74]. Although our analysis holds for a broad class of
λ(·), we first present the version with an exponential decaying parameter sequence, namely
λ(t) = e−tλ(0). This specific version of Algorithm 2.1 is formally described in Algorithm 2.2.

Before going further into detailed analysis, we first state the computational guarantee of
Algorithm 2.2. In our complexity analysis, we make the following smoothness assumptions
on f(·) and Ω(·).

Assumption 2.3.1. In addition to µ-strong convexity of f(·) and σ-strong convexity of Ω(·),
these functions have L-Lipschitz gradients and Hessians, where L > 0 is an upper bound on
the four relevant Lipschitz constants. In addition, we assume that f ∗ := minx f(x) > −∞,
and that G > 0 is an upper bound on the norm of the gradients of f(·) and Ω(·) on the level
set {x ∈ Rp : f(x) ≤ f(x0)}.
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Algorithm 2.2: Euler method for computing an approximate solution path x̂(·)
input : initial point x0 ∈ Rp, total number of iterations K ≥ 1

1 Initialize regularization parameter λ0 ← λmax, set step-size h← 1− ( λmin

λmax
)

1
K ;

2 for k = 0, . . . , K − 1 do
3 Update λk+1 ← (1− h)λk;
4 Update xk+1 ← xk − h (∇2f(xk) + λk+1∇2Ω(xk))

−1∇f(xk);

output: x̂(·)← Ilinear
(
{(xk, λk)}Kk=1

)
according to linear interpolation

Theorem 2.3.1 is our main result concerning the complexity of Algorithm 2.2 and demon-
strates that in terms of the accuracy parameter ϵ, Algorithm 2.2 requires O(1/ϵ) iterations
to compute an ϵ-accurate solution path.

Theorem 2.3.1. Suppose that Assumption 2.3.1 holds, let ϵ > 0 be the desired accuracy,
and suppose that the initial point x0 satisfies ∥∇Fλmax(x0)∥ ≤ ϵ

4
. Let T := log(λmax/λmin),

let τ = max{ 1+λmin

µ+λminσ
, 1+λmax

µ+λmaxσ
}, and let

KE :=

⌈
max

{
2T,

√
LGτT√

3
,
4(f(x0)− f ∗)τLT

ϵ
,
2
√
L(τG+ 1)T√

ϵ

}⌉
. (2.6)

If the total number of iterations K satisfies K ≥ KE, then Algorithm 2.2 returns an ϵ-
accurate solution path.

Remark 2.3.1. Grid search type methods for computing approximate solution paths are
proposed in [35, 63], and we will follow the analysis in the latter one, which considers more
general cases. In order to guarantee the function value gap h(x) − h∗ ≤ ϵ′, it will require

the number of grid points K =
√
τGT√
ϵ′

. For L-smooth function h(·), h(x) − h∗ ≤ ϵ2

2L
implies

∥h(x)∥ ≤ ϵ, which is the goal in our paper. Therefore, we need to set ϵ′ = ϵ2

2L
, and hence we

have the number of grid points is K =
√
τLGT
ϵ

when the desired accuracy of the inner problem

is set to ϵc =
ϵ′

2
. Using the exact Newton’s method and the last grid point as a warm-start to

solve the inner problem, [45] implies that the inner complexity is (τL)2 log 2, and therefore,

the total complexity is (τL)5/2GT log 2
ϵ

.

From the results in Theorem 2.3.1 and Remark 2.3.1, we can see that both our results
and the grid search method have the complexity of order O(1

ϵ
). In most practical cases,

f(x0) − f ∗ is smaller than (τL)3/2G log 2, which implies the constant in (2.6) is better. In
the later part of this paper, we will propose algorithms utilizing the smoothness of f(·) and
Ω(·) and achieve better complexity results.
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2.3.1 Semi-Implicit Euler Update Scheme

Herein we provide the computational guarantee of the semi-implicit Euler update scheme
defined in (2.5), wherein the main object we concern is the accuracy at each grid point. Let
rk := ∥∇Fλk

(xk)∥ denote the accuracy at (xk, λk). We consider a broad family of ξ(·) in the
following analysis, although in Algorithm 2.2 and the corresponding complexity analysis in
Theorem 2.3.1, we only consider the special scenario that λ(t) = e−tλ(0). We first present the
computation guarantees of Taylor expansion approximations given the Lipschitz continuity
of Hessian in Lemma 2.3.1.

Lemma 2.3.1 (Lemma 1 in [66]). Suppose ϕ(·) : S → R has L-Lipschitz Hessian for some
convex set S ⊆ Rd, then the following inequalities hold for all x, y ∈ S:

(i) ∥∇ϕ(y)−∇ϕ(x)−∇2ϕ(x)(y − x)∥ ≤ 1
2
L ∥y − x∥2.

(ii)
∥∥ϕ(y)− ϕ(x)−∇ϕ(x)T (y − x)− 1

2
(y − x)T∇2ϕ(x)(y − x)

∥∥ ≤ 1
6
L ∥y − x∥3.

Based on the results in Lemma 2.3.1, we provide the local analysis of rk, that is, how the
norm of the gradient at each grid point accumulates. Lemma 2.3.2 provides an upper bound
on ∥rk+1∥ based on ∥rk∥, which represents the accuracy at the previous iteration.

Lemma 2.3.2. Suppose Assumption 2.3.1 holds, discretization (2.5) has the following guar-
antee for all k ≥ 0:

rk+1 ≤
λk+1

λk
· rk + h2 · L(1 + λk+1)

2
∥v(xk, λk+1)∥2 .

Proof. It holds that

rk+1 = ∥∇f(xk+1) + λk+1∇Ω(xk+1)∥
≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥
+
∥∥λk+1

(
∇Ω(xk+1)−∇Ω(xk)−∇2Ω(xk)(xk+1 − xk)

)∥∥
+
∥∥λk+1

(
∇Ω(xk) +∇2Ω(xk)(xk+1 − xk)

)
+∇f(xk) +∇2f(xk)(xk+1 − xk)

∥∥
≤ L

2
∥xk+1 − xk∥2 +

λk+1L

2
∥xk+1 − xk∥2 +

λk+1

λk
∥∇f(xk) + λk∇Ω(xk)∥

=
λk+1

λk
· rk + h2 · L(1 + λk+1)

2
∥v(xk, λk+1)∥2 ,

where the first inequality is true because of the triangle inequality, and in the second in-
equality, for the first two terms, we apply Item i in Lemma 2.3.1, and for the third terms,
they are equal to each other.

Lemma 2.3.2 provides the first technical result of semi-implicit Euler’s update scheme.
When Assumption 2.3.1 holds (2.5) has the computation guarantee

rj+1

λj+1
≤ rj

λj
+O(h2). After
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telescoping the inequalities for j = 0, 1, . . . , k − 1 for k ≤ K = T/h we have rk ∼ O(h).
Hence, one would expect a uniform O(h) bound on all accuracy rk at points xk for all
k = 0, . . . , K. We formalize the idea in the following lemma.

Lemma 2.3.3. Suppose Assumption 2.3.1 holds, λk+1 ≥ λmin, ξ(λj) < 0 for all j ≤ k, and
step-size h satisfies the following condition for all 0 ≤ j < k:

h ≤ min

{
λj

−2ξ(λj)
,

√
3λj(µ+ λj+1σ)2

−ξ(λj)LG

}
. (2.7)

Then the sequence {(xk, λk)}Kk=0 generated by update scheme (2.5) satisfies f(xk+1) ≤ f(xk),
and the corresponding accuracy {rk}Kj=0 has the following guarantee:

rk
λk
≤ r0
λ0

+ 2hL(f(x0)− f(xk)) · max
j∈[k−1]

{
−(1 + λj+1)ξ(λj)

λjλj+1(µ+ λj+1σ)

}
. (2.8)

Proof. We will use induction to show that f(xj+1) ≤ f(xj), which implies that xk ∈ Sx0 for all
k ∈ {0, . . . , K}. First, suppose xj ∈ Sx0 for some j ∈ {0, . . . , K−1}. Let dj denote v(xj, λj+1)

and it holds that ∥dj∥ ≤ G
µ+λj+1σ

. Since h+ λk

2ξ(λk)
≤ 0 and h2 ≤ 3λj(µ+λj+1σ)

2

−ξ(λj)LG
≤ 3λj(µ+λj+1σ)

−ξ(λk)L∥dk∥
,

it holds that

f(xj+1) ≤ f(xj) + h · ∇f(xj)Tdj + h2 · 1
2
dTj ∇2f(xj)dj + h3 · 1

6
L ∥dj∥3

≤ f(xj) +
h

4
· λj
ξ(λj)

· (µ+ λj+1σ) ∥dj∥2 .

Since ξ(λj) < 0, it holds that f(xj+1) ≤ f(xj) and therefore implies that xj+1 ∈ Sx0 . Then by
induction we conclude that xj ∈ Sx0 for all j ≤ k. Also, combining the result in Lemma 2.3.2,
for all j ≤ k, it holds that

rj+1

λj+1

≤ rj
λj

+ h2 · L(1 + λj+1)

2λj+1

∥dj∥2

≤ rj
λj

+ h · L(1 + λj+1)

2λj+1

· 4(f(xj)− f(xj+1))
λj

−ξ(λj)
· (µ+ λj+1σ)

.

By taking the summation over j from 0 to k, we obtain (2.8).

Lemma 2.3.3 provides the computation guarantees of Algorithm 2.2 with any decreasing
sequence of {λk}. While in the upper bound on the accuracy at point xk, it still involves a
constant related to sequence {λk}. We then consider a family of the sequence {λk} and then
derive a simpler upper bound.
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Proposition 2.3.1. Suppose Assumption 2.3.1 holds, λk+1 ≥ λmin, −λ ≤ ξ(λ) < 0 for all
λ ∈ [λmin, λmax], and step-size h satisfies

h ≤ min

{
1

2
,

√
3

τ 2LG

}
. (2.9)

Then under Assumption 2.3.1, discretization (2.5), it holds that

rk+1 ≤ r0 + 2hτL(f(x0)− f(xk+1)). (2.10)

Proof. Since ξ(λj) ∈ [−λj, 0), we have
λj

−ξ(λj)
≥ 1. Therefore it holds that

λj
−2ξ(λj)

≥ 1

2
and

√
3λj(µ+ λj+1σ)2

−ξ(λj)LG
≥
√

3(µ+ λminσ)2

LG
,

and hence condition (2.9) implies condition (2.7). Also, since 1+λ
µ+λσ

is monotone in [λmin, λmax],

it holds that τ = maxλ∈[λmin,λmax]
1+λ
µ+λσ

. Therefore, we have

max
j∈[k−1]

{
−(1 + λj+1)ξ(λj)

λjλj+1(µ+ λj+1σ)

}
≤ 1 + λk
λk(µ+ λkσ)

≤ τ

λk
.

Apply the above inequality to (2.8) we obtain (2.10).

Proposition 2.3.1 provides a uniform upper bound on accuracy of all near-optimal solu-
tions xk. When ξ(λ)

λ
∈ [−1, 0) for all λ ∈ [λmin, λmax], Algorithm 2.2 generates a solution

sequence {xk} such that ∥∇Fλk
(xk)∥ ∼ O(h) + r0.

2.3.2 Linear Interpolation

In the last section, we provide a general accuracy analysis at all near-optimal solutions xk.
In this section, we analyze the second procedure in Algorithm 2.2, i.e., linear interpolation.
Then the next step is to construct the entire path x̂(λ) : [λmin, λmax] → RP based on these
near-optimal solutions. First we recall the definition of linear interpolation for x(·), λ(·):

λ̂(t) := αλk + (1− α)λk+1, x̂(t) := αxk + (1− α)xk+1, (2.11)

where α := tk+1−t

h
and t ∈ [tk, tk+1] for all k = 0, . . . , K − 1. That is, given an arbitrary λ ∈

[λmin, λmax], we first select t such that λ̂(t) = λ, then we output x̂ := x̂(t) as a near-optimal
solution to problem P (λ). The following lemma provides an upper bound of ∥∇Fλ(x̂(λ))∥
for all λ ∈ [λmin, λmax].

Theorem 2.3.2. Suppose Assumption 2.3.1 holds. Let rmax = max0≤k≤K rk. Then, lin-

ear interpolation x̂(·), λ̂(·) of sequence {(xk, λk)}Kk=0 generated by (2.11) has the following
computational guarantee for all t ∈ [t0, tK ]:∥∥∥∇Fλ̂(t)(x̂(t))

∥∥∥ ≤ rmax +
L

8
· max
k∈[K−1]

{
(1 + λk)∥xk+1 − xk∥2 + 2h|ξ(λk)|∥xk+1 − xk∥

}
.
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Proof. First suppose t ∈ [tk, tk+1]. For simplicity, we define x := x̂(t), λ := λ̂(t), δ1 :=
∇f(xk) + λk∇Ω(xk), δ2 := ∇f(xk+1) + λk+1∇Ω(xk+1). By triangle inequality and Item i in
Lemma 2.3.1, it holds that

∥α∇f(xk) + (1− α)∇f(xk+1)−∇f(x)∥ ≤
α(1− α)L

2
∥xk − xk+1∥2

≤ L

8
∥xk − xk+1∥2 .

Also, by applying similar trick on ∇Ω(·), it holds that Then,

∥λ∇Ω(x)− αλk∇Ω(xk)− (1− α)λk+1∇Ω(xk+1)∥
≤∥λ(α∇Ω(xk) + (1− α)∇Ω(xk+1)−∇Ω(x))∥

+ ∥α(λ− λk)∇Ω(xk) + (1− α)(λ− λk+1)∇Ω(xk+1)∥

≤λL
2
α(1− α) ∥xk+1 − xk∥2 + ∥α(1− α)(λk+1 − λk)(∇Ω(xk+1)−∇Ω(xk))∥

≤λL
8
∥xk+1 − xk∥2 +

h |ξ(λk)|L
4

∥xk+1 − xk∥ .

Combine the above two inequality and apply triangle inequality, we have

∥∇f(x) + λ∇Ω(x)− αδ1 − (1− α)δ2∥

≤L
8
∥xk+1 − xk∥2 +

λL

8
∥xk+1 − xk∥2 +

|ξ(λk)|Lh
4

∥xk+1 − xk∥ .

Theorem 2.3.2 provides the computational guarantee of linear interpolation of the se-
quence {(xk, λk}Kk=0 generated by update scheme (2.5). Observed that ∥xk+1 − xk∥ is of the
order O(h), we have that additional error incurred by linear interpolation is of the order
O(h2). Together with the O(h) accuracy from the update scheme (2.5), we are able to
provide a computational guarantee on the accuracy of the approximate path generated by
Algorithm 2.2. In the following part we will provide a uniform bound on ∥∇Fλ̂(t)(x̂(t))∥ for
a family of λ(t) and discretization.

2.3.3 Computational Guarantee for the Exponential Decaying
Parameter Sequence

Under the λ(t) = λmax ·exp(−t) scenario, we have ξ(λ) = −λ and ξ(·) satisfies the assumption
in Proposition 2.3.1. Therefore, we extend the result in Theorem 2.3.2 and provide an explicit
uniform bound of the path accuracy.

Proposition 2.3.2. Suppose Assumption 2.3.1 holds, and the step-size h satisfies the con-
dition in (2.9). Let x̂(·) : [0, T ]→ Rp and λ̂(·) : [0, T ]→ [λmin, λmax] denote the approximate
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solution path generated by Algorithm 2.2. Let f ∗ denote the minimum value of f(·). Then,
we have the following computational guarantee for all λ ∈ [λmin, λmax]:

∥∇Fλ(x̂(λ))∥ ≤ ∥∇Fλmax(x0)∥+ 2hτL(f(x0)− f ∗) +
h2L

8
· (τG+ 1)2. (2.12)

Proof. First we extend the result in Proposition 2.3.1, and it holds that

rmax ≤ max
k∈[K]

rk ≤ r0 + 2hL(f(x0)− f ∗) · τ.

Also, for the result in Theorem 2.3.2, we further have

L

8
· max
k∈[K−1]

{
(1 + λk)∥xk+1 − xk∥2 + 2h|ξ(λk)|∥xk+1 − xk∥

}
≤h

2L

8
· max
k∈[K−1]

{
(1 + λk)G

2

(µ+ λkσ)2
+

2λkG

µ+ λkσ

}
≤ h2L

8
· (τG+ 1)2.

Combine the above two inequalities and Proposition 2.3.1 and theorem 2.3.2, we obtain
(2.12).

In Algorithm 2.2, the sequence {λk}Kk=0 is given by λk+1 = (1− h)λk, and it implies that
λmin = (1−h)Kλmax. Hence, we have h = 1− ( λmin

λmax
)1/K . Apply the fact to Proposition 2.3.2,

we arrive at the complexity analysis with respect to the number of iteration. We formalize the
complexity analysis in the following proof of Theorem 2.3.1, which appears at the beginning
of this section.

Proof of Theorem 2.3.1. The conditions thatK ≥ max
{
2T,

√
LGτT√

3

}
and h = 1−

(
λmin

λmax

)1/K
≤

T
K

guarantee that step-size h satisfies (2.9). Also K ≥ τLT (f(x0)−f∗)
ϵ

and K ≥ (τG+1)
√
LT√

ϵ
guar-

antees that 2hτL(f(x0)− f ∗) ≤ ϵ
2
and h2L

8
· (τG+ 1)2 ≤ ϵ

4
. Hence Algorithm 2.2 guarantees

a ϵ-accurate solution path.

Recall that in the assumption of Theorem 2.3.1, it requires a good initialization x0 sat-
isfying ∥∇Fλmax(x0)∥ ≤ ϵ

2
. In practical cases, we can either implement a specific convex

optimization algorithm to get an x0 satisfying the initial condition or use the initialization
suggested in the following lemma. Here we suggest one choice of initialization with compu-
tational guarantee when the function Ω(·) is structured, i.e., the minimizer of Ω(·) is easy to
calculate.

Lemma 2.3.4. Suppose Assumption 2.3.1 holds. Let initialization x0 be

x0 := xΩ −
(
∇2f(xΩ) + λmax∇2Ω(xΩ)

)−1∇f(xΩ),

where xΩ := argminx∈Rp Ω(x), then it holds that

∥∇f(x0) + λmax∇Ω(x0)∥ ≤
L(1 + λmax)∥∇f(xΩ)∥2

2(µ+ λmaxσ)2
.
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Proof. Define d = − (∇2f(xΩ) + λmax∇2Ω(xΩ))
−1∇f(xΩ), it holds that

∥∇f(x0) + λmax∇Ω(x0)∥ ≤
∥∥∇f(xΩ) +∇2f(xΩ)d+ λmax

(
∇Ω(xΩ) +∇2Ω(xΩ)d

)∥∥
+

(1 + λmax)L

2
∥d∥2 ≤ L(1 + λmax)∥∇f(xΩ)∥2

2(µ+ λmaxσ)2
,

where the first inequality follows Lemma 2.3.1, and the second inequality holds since∇Ω(xΩ) =
0, (∇2f(xΩ) + λmax∇2Ω(xΩ)) d+∇f(xΩ) = 0, and ∥d∥ ≤ ∥∇f(xΩ)∥

µ+λmaxσ
.

Notice that the value of L and ∥∇f(xΩ)∥ are independent of λmax. Hence, when λmax is
sufficiently large, we have r0 ≤ ϵ

4
. Also, since xΩ is the optimal solution when λ = +∞, the

initialization can be regarded as an updating step of (2.5) from xΩ.

2.4 Multi-Stage Discretization

In the analysis of the previous section, Algorithm 2.2 guarantees an ϵ-accurate solution
path within O(ϵ−1) calls to the gradient, Hessian oracle, and linear equations solver. One
advantage of the main result proposed in Theorem 2.3.1 is that only the smooth Hessian
of f(·) and Ω(·) is required and no assumption of ϵ is required. When f(·) and Ω(·) have
better properties and ϵ is relatively small, one would like an algorithm which utilizes these
properties and requires fewer calls to oracle with respect to the order of ϵ. Motivated by the
multi-stage numerical methods for solving differential equations, we design several update
schemes to achieve higher-order accuracy. Specially, in this section we still consider the
exponentially decaying parameter, that is, λ(t) = e−tλ(0).

2.4.1 Trapezoid Method

In this section, we propose and analyze the trapezoid method, whose formal description is
given in Algorithm 2.3. The trapezoid method is beneficial when the function f(·) and Ω(·)
have Lipschitz continuous third-order derivatives and it achieves a higher-order accuracy
than the implicit Euler method. The accuracy of the output path by Algorithm 2.3 has the
order O(h2) where h is the step-size, or equivalently, O(K−2) where K is the number of
iterations. Moreover, we want to mention that the algorithm does not require the oracle to
higher-order derivatives, but still only requires gradient and Hessian oracle as in the Euler
method.
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Algorithm 2.3: Trapezoid method for solution path

input : Initial point x0 ∈ Rp, total number of iterations K ≥ 1

1 Initialize parameter λ0 ← λmax, set step-size h← 1−
√

2( λmin

λmax
)

1
K − 1;

2 for k = 0, . . . , K − 1 do
3 Update dk,1 ← v(xk, λk);
4 Update dk,2 ← v(xk + h · dk,1, (1− h+ h2)λk);

5 Update xk+1 ← xk + h · dk,1+dk,2
2

;

6 Update λk+1 ← (1− h+ h2

2
)λk;

output: x̂(·)← Ilinear
(
{(xk, λk)}Kk=0

)
according to linear interpolation

We first state the main technical assumption and computational guarantees of Algo-
rithm 2.3.

Assumption 2.4.1. In addition to Assumption 2.3.1, we assume the third-order directional
derivative of f(·) and Ω(·) are L-Lipschitz continuous and σ ≥ 1.

Theorem 2.4.1. Suppose Assumption 2.4.1 holds, let ϵ > 0 be desired accuracy, let µ̃ :=
µ + λminσ, suppose that the initial point x0 satisfies ∥∇Fλmin

(x0)∥ ≤ ϵ
2
≤ µ̃, let T :=

1.1 log(λmax/λmin), and let

Ktr :=

⌈
max

{
10T,

8LT (1 +G)

µ̃
,
6L1/2(1 +G)3/2T

ϵ1/2
,
5τ 2/3L(1 +G)4/3T

ϵ1/3

}⌉
.

If the total number of iterations K satisfies K ≥ Ktr, then Algorithm 2.3 returns an ϵ-
accurate solution path.

The result in Theorem 2.4.1 shows that we improve the total complexity to O( 1√
ϵ
), which

is better the O(1
ϵ
) complexity of the Euler method and the best known results in grid search

method (see Theorem 2.3.1 and remark 2.3.1). Similar as previous complexity analysis of
the semi-implicit Euler method, the analysis of the trapezoid method consists of two part:
We first present the computation guarantee of trapezoid update scheme, which is defined as

(xk+1, λk+1)← T (xk, λk) :=
(
xk + h · dk,1+dk,2

2
, (1− h+ h2

2
)λk

)
, (2.13)

where dk,1 = v(xk, λk), and dk,2 = v(xk + h · dk,1, (1− h+ h2)λk).

Lemma 2.4.1. Suppose Assumption 2.4.1 holds, rk = ∥∇Fλk
(xk)∥ ≤ µ̃, and the next iterate

(xk+1, λk+1) is given by (xk+1, λk+1) = T (xk, λk) defined in (2.13). Then, it holds that (1 +
λk)∥xk − xk+1∥ ≤ 3h(1 +G), and

rk+1 :=
∥∥∇Fλk+1

(xk)
∥∥ ≤ λk+1

λk
· rk + h3 · 3L(1 +G)3 + h4 · 2L3τ 2(1 +G)4. (2.14)
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We leave the proof of Lemma 2.4.1 in the appendix due to its length and complicacy.
In the proof, we mainly work with the directional derivatives and the accuracy of Taylor
expansion in Lemma 2.3.1. The result in Lemma 2.4.1 shows that trapezoid update scheme
in (2.13) guarantees an O(h3) local accumulation. Moreover, we can derive an O(h2) uniform
upper bound on accuracy of all near-optimal solutions {xk}. For all other λ ∈ [λmin, λmax],
we implement linear interpolation to approximate the corresponding near-optimal solution.
We then provide the formal proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Since h− h2

2
≤ 1

K
log(λmax

λmin
), it holds that

h ≤ min

{
0.1,

µ̃

8L(1 +G)
,

ϵ1/2

3L1/2(1 +G)3/2
,

ϵ1/3

3τ 2/3L(1 +G)4/3

}
.

Then we show that rk := ∥∇Fλk
(xk)∥ ≤ ϵ

2
for all k by induction. Suppose rk ≤ ϵ

2
, then by

Lemma 2.4.1, it holds that

rk+1 :=
∥∥∇Fλk+1

(xk)
∥∥ ≤ λk+1

λk
· rk + h3 · 3L(1 +G)3 + h4 · 2L3τ 2(1 +G)4 ≤ ϵ

2
.

Therefore, rk ≤ ϵ
2
for all k ∈ {0, . . . , K}. Suppose λ ∈ [λk+1, λk], and hence x̂(λ) =

αxk + (1− α)xk+1 where α = λ−λk+1

λk−λk+1
. By applying results in Theorem 2.3.2, we have

∥f(x̂(λ)) + λx̂(λ)∥ ≤ ϵ

2
+
L

8
max

k∈[K−1]

{
(1 + λk)∥xk+1 − xk∥2 + 2h|ξ(λk)|∥xk+1 − xk∥

}
≤ ϵ

2
+
L

8
·
(
9h2(1 +G)2 + 6h2(1 +G)

)
≤ ϵ.

2.4.2 Runge-Kutta Method

We describe the Runge-Kutta method for solution path in Algorithm 2.4, where at each
iteration it requires 4 calls to Hessian oracle and linear equation solver. The interpolation
function CubicSpline in the last step in Algorithm 2.4 is the cubic spline interpolation, which
we will discuss later. The update rules of (yk,·, ψk,·) and (xk+1, λk+1) at each iteration come
from the classical Runge-Kutta method. By calculating the Taylor series coefficients of the
Runge-Kutta solution we can obtain the order of any arbitrary Runge-Kutta method. The
classical Runge-Kutta method, as a special case, guarantees an O(h5) local residual and
hence an O(h4) global residual. We omit the proof here and for detailed analysis of the
Runge-Kutta method we refer readers to [22].



CHAPTER 2. NEW METHODS FOR SOLUTION PATH OPTIMIZATION VIA
DIFFERENTIAL EQUATIONS 21

Algorithm 2.4: Runge-Kutta method for solution path

input : Initial point x0 ∈ Rp, total number of iterations K ≥ 1
1 Initialize regularization parameter λ0 ← λmax;
2 for k = 0, . . . , K − 1 do
3 Update (yk,1, ψk,1)← (u(xk, λk),−λk);
4 Update (yk,2, ψk,2)← (u(xk +

h
2
· yk,1, λk + h

2
· ψk,1),−λk − h

2
· ψk,1);

5 Update (yk,3, ψk,3)← (u(xk +
h
2
· yk,2, λk + h

2
· ψk,2),−λk − h

2
· ψk,2);

6 Update (yk,4, ψk,4)← (u(xk + h · yk,3, λk + h · ψk,3),−λk − h · ψk,3);

7 Update xk+1 ← xk +
h
6
· (yk,1 + 2yk,2 + 2yk,3 + yk,4);

8 Update λk+1 ← λk +
h
6
· (ψk,1 + 2ψk,2 + 2ψk,3 + ψk,4);

output: x̂(·)← Icubic
(
{(xk, λk)}Kk=0

)
according to cubic interpolation

In Algorithm 2.2 and Algorithm 2.3, we implement linear interpolation to recover the
entire solution path. Theorem 2.3.2 guarantees an O(h2) residual of linear interpolation.
To increase the accuracy, we implement the cubic spline interpolation, which is a piece-wise
third-order polynomial approximation. Suppose the problem is to find x̂(ti) = xi where
xi = x(ti) for ti = i · h, i = 0, . . . , K. The cubic spline x̂(t) satisfies x̂(t) = pi(t) for
x ∈ [ti−1, ti], where {pi(·)}Ki=1 are K cubic functions satisfying

pi(ti) = xi, pi(ti+1) = xi+1, i = 1, . . . , K,

p′i(ti) = p′i+1(ti), p′′i (ti) = p′′i+1(ti), i = 1, . . . , K − 1,

p′′1(t0) = 0, p′′K(tK) = 0.

One finds there are 4K(= 2K + 2(K − 1) + 2) equations and 4K coefficients to be deter-
mined, which are 4 coefficients in each polynomial. The cubic spline interpolation guarantees
∥x̂(t)− x(t)∥ ≤ O(h4) for all t ∈ [t0, tK ]. For other properties and detailed discussion of cubic
spline interpolation we refer readers to [34].

2.5 Analysis with Inexact Linear Equations Solutions

and Second-Order Conjugate Gradient Variants

In this section, we present the complexity analysis of the aforementioned methods with the
presence of inexact oracle to gradient and Hessian and/or inexact linear equations solutions
as well as variants applying the second-order conjugate gradient (SOCG) type methods. We
first consider the case when gradient and Hessian oracle are inexact and/or linear equations
solver yields approximate solutions.

2.5.1 Analysis with Inexact Oracle and/or Approximate Solver

At each iteration of the Euler, trapezoid, and Runge-Kutta method, one essential sub-
routine is to compute the directions dk,i. For example, in the Euler method, dk is given
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by the formula dk = v(xk, λk) = −(∇2f(xk) + λk+1∇2Ω(xk))
−1∇f(xk). In most large-scale

problems, the computation of the Hessian matrix and solving linear equations exactly could
be the computational bottleneck. Therefore, we consider the case with the presence of
numerical error, which may be induced by inexact gradient and Hessian oracle, or by linear
equations solver. Nevertheless, we tackle the two types of numerical error together. Suppose
an exact solution dk has the form dk = −H−1

k gk, then we define d̂k is a δ-approximate

direction with respect to dk is a vector d̂k satisfying

∥Hkd̂k + gk∥ ≤ δ. (2.15)

In Algorithm 2.5 we propose the implicit Euler method with the presence of approximate
direction of v(·, ·) at each iteration.

Algorithm 2.5: Approximate Euler method for solution path

input : Initial point x0 ∈ Rp, total number of iterations K ≥ 1
1 Initialize regularization parameter λ0 ← λmax;
2 for k = 0, . . . , K − 1 do

3 Update d̂k ← an δ-approximate direction of v(xk, λk);
4 Update λk+1 ← (1− h)λk;
5 Update xk+1 ← xk + h · d̂k+1;

output: x̂(·)← Ilinear
(
{(xk, λk)}Kk=0

)
according to linear interpolation

Compared with the origin update scheme in Algorithm 2.2, the only difference in the
update scheme of Algorithm 2.5 is that an approximate direction d̂k is applied at each
iteration instead of the exact direction v(·, ·). We want to mention that there is no constraint
on how the approximate direction d̂k is generated, and in Section 2.5.2, we provide several
efficient methods to compute the approximate direction and the corresponding complexity
analysis. The following lemma characterizes the local error accumulation of the update
scheme in Algorithm 2.2.

Lemma 2.5.1. Suppose Assumption 2.3.1 holds. Let d̂k denote an approximate solution to
v(xk, λk). Let rk = ∥∇Fλk

(xk)∥, rk+1 = ∥∇Fλk+1
(xk+1)∥, and

δk =
(
∇2f(xk) + λk+1∇2Ω(xk)

)
d̂k +∇f(xk).

Then it holds that

rk+1 ≤
λk+1

λk
· rk +

h2L(1 + λk+1)

2
· ∥d̂k∥2 + h ∥δk∥ . (2.16)

Furthermore, if we set λs+1 = (1 − h)λs and ∥δs∥ ≤ δ for some scalar δ > 0 and all
s = 0, . . . , k, it holds that

rk ≤
λk
λ0
· r0 + 2hτL(f(x0)− f ∗) + δ. (2.17)
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Proof. The proof is similar with the one in Lemma 2.3.2. First we have

λk+1

(
∇Ω(xk) +∇2Ω(xk)(xk+1 − xk)

)
+∇f(xk) +∇2f(xk)(xk+1 − xk)

=
λk+1

λk
(λk∇Ω(xk) +∇f(xk)) + h · δk.

Then apply same technique as in Lemma 2.3.2 we arrive at

rk+1 ≤
λk+1

λk
· rk + h2 · L(1 + λk+1)

2
∥d̂k∥2 + h ∥δk∥ .

Also, applying (2.16) to Proposition 2.3.2 implies the result in (2.17).

The following corollary provides the complexity analysis of Algorithm 2.5.

Corollary 2.5.1. Suppose that Assumption 2.3.1 holds, and suppose that the initial point
x0 satisfies ∥∇Fλmax(x0)∥ ≤ ϵ

4
. Let T := log(λmax/λmin), let µ̃ := µ+ λminσ, let ϵ ∈ (0, µ̃] be

the desired accuracy, and let

KE, approx :=

⌈
max

{
2T,

√
LGτT√

3
,
8(f(x0)− f ∗)τLT

ϵ
,
4
√
L(τ(G+ ϵ) + 1)T√

ϵ

}⌉
.

If the total number of iterations K satisfies K ≥ KE, approx and approximate directions d̂k
are all ϵ

4
-approximate, then Algorithm 2.5 returns an ϵ-accurate solution path.

Proof. Since the step-size h = 1 − ( λmin

λmax
)

1
K ≤ T

K
, combining (2.17), we have rk ≤ 3ϵ

4
, for all

k ∈ {0, . . . , K}. For linear interpolation error, we have

L

8
· max
k∈[K−1]

{
(1 + λk)∥xk+1 − xk∥2 + 2h|ξ(λk)|∥xk+1 − xk∥

}
≤h

2L

2
· max
k∈[K−1]

{
(1 + λk)

(
∥dk∥2 + ∥dk − d̂k∥2

)
+ |ξ(λk)|(∥dk∥+ ∥dk − d̂k∥)

}
≤h

2L

2
· (τ(G+ ϵ) + 1)2 ≤ ϵ

4
.

Applying the above inequality to Theorem 2.3.2 completes the proof.

Now we consider the trapezoid method with the presence of approximate direction and
propose it in Algorithm 2.6.
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Algorithm 2.6: Approximate trapezoid method for solution path

input : Initial point x0 ∈ Rp, total number of iterations K ≥ 1

1 Initialize parameter λ0 ← λmax, set step-size h← 1−
√

2( λmin

λmax
)

1
K − 1;

2 for k = 0, . . . , K − 1 do

3 Update d̂k,1 ← an δ-approximate direction of v(xk, λk);

4 Update d̂k,2 ← an δ-approximate direction of v(xk + hd̂k,1, (1− h+ h2)λk);

5 Update λk+1 ← (1− h+ h2

2
)λk;

6 Update xk+1 ← xk + h · d̂k,1+d̂k,2
2

;

output: x̂(·)← Ilinear
(
{(xk, λk)}Kk=0

)
according to linear interpolation

The update scheme in Algorithm 2.6 is similar as the one in Algorithm 2.3, but we apply
approximate directions at each iteration in lieu of exact computation of v(·, ·). The following
lemma characterize the local error accumulation of the update scheme in Algorithm 2.2.

Lemma 2.5.2. Suppose rk = ∥∇Fλk
(xk)∥ satisfying that rk ≤ µ̃. Let δk,1 and δk,2 denote the

residual of approximate direction d̂k,1 and d̂k,2 and they satisfy the condition ∥δk,1∥ , ∥δk,2∥ ≤
µ̃. Then, it holds that

rk+1 ≤
λk+1

λk
· rk + h3 · 3L(2 +G)3 + h4 · 2L3τ 2(2 +G)4 +

h

2
∥δk,1 − δk,2∥+

h2

2
∥δk,1∥ . (2.18)

Proof. We will follow the idea in Lemmas 2.4.1, A.1.2 and A.1.3. Recall the result in
Lemma A.1.2, since H̃1d1 = −∇f(x1) + δ1, it holds that (1 + λ) ∥d1∥ ≤ 2(G+ 1 + ∥δ1∥ /µ̃).
Also the result in Lemma A.1.3 becomes∥∥∥H̃1(d2 − d1)−∇2f(x1)(x1 − x2)− (H̃1 − H̃2)d2 + δ1 − δ2

∥∥∥ ≤ L

2
∥x1 − x2∥2 ,

where H̃1 = ∇2f(x1) + λ1∇2Ω(x1) and H̃2 = ∇2f(x2) + λ2∇2Ω(x2). Now we modify the
proof of Lemma 2.4.1 to get (2.18). Then the right hand side of (A.4) becomes −hδ1. Also,
the right hand side of (A.5) becomes h

2
(δ1 − δ2) and the right hand side of (A.6) becomes

h2

2
λ∇2Ω(x)d1 +

h2

2
δ1.

Corollary 2.5.2. Suppose Assumption 2.4.1 holds, let µ̃ := µ + λminσ, let ϵ ∈ (0, µ̃] be
the desired accuracy, suppose that the initial point x0 satisfies ∥∇Fλmax(x0)∥ ≤ ϵ

4
, let T :=

1.1 log(λmax/λmin), and let

Ktr :=

⌈
max

{
10T,

8LT (1 +G)

µ̃
,
6L1/2(1 +G)3/2T

ϵ1/2
,
5L(1 +G)4/3T

µ̃2/3ϵ1/3

}⌉
.

If the total number of iterations K satisfies K ≥ Ktr and all approximate direction δk,1, δk,2
are ϵ

2
-approximate, then Algorithm 2.6 returns a ϵ-accurate solution path.
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Corollaries 2.5.1 and 2.5.2 provide the complexity analysis of Euler method and trapezoid
method with the presence of approximate directions. We can see that when the residual
of approximate directions have a uniform upper bound over all iterations, Algorithms 2.5
and 2.6 have the complexity of the same order as Algorithms 2.2 and 2.3, which require exact
directions. Moreover, Corollaries 2.5.1 and 2.5.2 only require ϵ-approximate directions but
no assumptions about how the approximate directions are generated. It provides flexibility
in the choice of an approximate oracle to compute approximate directions.

2.5.2 Second-Order Conjugate Gradient Variants

Following the complexity analysis, we apply the conjugate gradient method to solve the sub-
problem, i.e., to compute a δ-approximate direction of v(·, ·). To measure the efficiency of
second-order conjugate gradient type algorithms, we consider the computational complexity,
i.e., total calls to both gradient and Hessian-vector product oracle.

Now we apply the conjugate gradient method as an approximate oracle to compute the
approximate direction d̂k at each iteration. We use the approximate Euler method proposed
in Algorithm 2.5 as an example. At iteration k, Algorithm 2.5 requires an approximate
solution d̂k satisfying ∥Hkd̂k + gk∥2 ≤ δ where Hk := ∇2f(xk) + λk+1∇2Ω(xk) and gk :=
∇f(xk). We apply the conjugate gradient to approximately solve the equation Hkd̂k+gk = 0
and set the initial guess to be the approximate direction d̂k−1 at the last iteration. Herein
we provide the complexity analysis of Euler-CG method and trapezoid-CG method.

Theorem 2.5.1. Suppose Assumption 2.3.1 holds, and suppose that the initial point x0
satisfies ∥∇Fλmax(x0)∥ ≤ ϵ. Let T := log(λmax/λmin), let µ̃ := µ+ λminσ, let ϵ ∈ (0, µ̃] be the
desired accuracy, and let

KE-cg ∼ Õ
(
L3/2T (f(x0)− f ∗)

ϵµ̃3/2

)
.

If the total number of iterations K satisfies K ≥ KE-cg, then Algorithm 2.5 via the conjugate
gradient approximate oracle returns a 5ϵ-accurate solution path.

Also, for the computational guarantee of approximate trapezoid method in Algorithm 2.6
via conjugate gradient approximate oracle we have similar argument.

Theorem 2.5.2. Suppose Assumption 2.4.1 holds, and suppose that the initial point x0
satisfies ∥∇Fλmax(x0)∥ ≤ ϵ. Let T := 1.1 log(λmax/λmin), let µ̃ := µ+ λminσ, let ϵ ∈ (0, µ̃] be
the desired accuracy, and let

Ktr-cg ∼ Õ
(
L(1 +G)3/2T

ϵ1/2µ̃1/2

)
.

If the total number of iterations K satisfies K ≥ Ktr-cg, then Algorithm 2.6 via the conjugate
gradient approximate oracle returns a 2ϵ-accurate solution path.
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Proof of Theorems 2.5.1 and 2.5.2. Here we only need to consider the inner complexity,
i.e., the number of iterations required to compute the approximate direction. For the
Euler-CG algorithm, let {yk,s} denote the sequence generated by the conjugate gradient

method with yk,0 = d̂k−1, let Hk = ∇2f(xk) + λk+1∇2Ω(xk), and let gk = ∇f(xk). Exist-
ing results of the conjugate gradient method guarantees that ∥Hkyk,s + gk∥2 ≤ 2

√
κk(1 −

2√
κk+1

)s ∥Hkyk,0 + gk∥2, where κk is the condition number of Hk and κk ≤ (1+λk)L
µ+λkσ

≤ τL.

Since the initial guess y0 = d̂k−1 which is the approximate direction at last iteration, we have
∥Hk−1d̂k−1 + gk−1∥ ≤ ϵ

4
. Then the initial guess guarantees that

∥Hkd̂k−1 + gk∥2 ≤ ∥Hk−1d̂k−1 + gk−1∥2 + ∥Hkd̂k−1 + gk −Hk−1d̂k−1 − gk−1∥

≤ ϵ

4
+ hL(1 + λk)

(
∥d̂k−1∥2 + ∥d̂k−1∥

)
≤ ϵ

4
+ 2hL(2 +G)2.

Applying h ∼ O( ϵ
(f(x0)−f∗)τL

), the inner complexity Nk has an upper bound

Nk ≤
√
κk + 1

2
log(

2
√
κk∥Hkd̂k−1 + gk∥

ϵ/4
) ∼ Õ(

√
τL).

Therefore, the total computation complexity of Algorithm 2.5 with the conjugate gradient

approximate oracle to compute an ϵ-accurate solution path is Õ(L
3/2τ3/2(f(x0)−f∗)T

ϵ
). For the

trapezoid-CG algorithm, let x′k = xk + hd̂k,1, λ
′
k = (1 − h + h2)λk, Hk,1 := ∇2f(xk) +

λk∇Ω(xk), gk,1 := ∇f(xk), Hk,2 := ∇2f(x′k)+λ
′
k∇Ω(x′k), and gk,2 := ∇f(x′k). At iteration k,

Algorithm 2.6 requires to compute the ϵ
4
directions d̂k,1 and d̂k,2. In the conjugate gradient

sub-routine, we use d̂k−1,1 as the warm-start for solving d̂k,1 and d̂k,1 for solving d̂k,2. Similarly,

we have ∥Hk,1d̂k−1,1+gk,1∥ ≤ ϵ
4
+2hL(2+G)2 and ∥Hk,2d̂k,1+gk,2∥ ≤ ϵ

4
+2hL(2+G)2. Applying

h ∼ O( ϵ1/2

L1/2(2+G)3/2
), the inner complexity Nk,1 and Nk,2 have an upper bound Nk,1, Nk,2 ∼

Õ(
√
τL). Therefore, the total computation complexity of Algorithm 2.6 with the conjugate

gradient approximate oracle to compute an ϵ-accurate solution path is Õ(Lτ
1/2(2+G)3/2T

ϵ1/2
).

Recall the complexity results in Remark 2.3.1, we notice that when we use the Nes-
terov’s accelerated gradient method as the sub-problem solver, the total complexity will be
(τL)3/2GT log 2

ϵ
. We can see the total complexity of Algorithm 2.6 has order O( 1√

ϵ
) and is better

than the best known in grid search method. Again, the complexity of the trapezoid method
is better than the Euler method, since it exploit the higher-order smoothness of the function
f(·) and Ω(·).

2.6 Computational Experiments

In this section we present computational results of numerical experiments wherein we imple-
ment different version of discretization schemes and interpolation methods to compute the
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approximate solution path. As a comparison with out method, we introduce two approach
based on grid search methods proposed in [35, 63]. For sub-problem solver in the grid search
methods, we use warm-started exact Newton method and Nesterov’s accelerated gradient
method to compare with our exact methods and SOCG variants. We focus on the following
8 versions of update schemes, where “CG” stands for conjugate gradient.

• Euler, Euler-CG: Algorithm 2.2, and Algorithm 2.5 using CG as the sub-problem
approximate oracle.

• Trapezoid, Trapezoid-CG: Algorithm 2.3, and Algorithm 2.6 using CG as the sub-
problem approximate oracle.

• Runge-Kutta, Runge Kutta-CG: Algorithm 2.4, and Algorithm 2.4 with approximate
directions and using CG as the sub-problem approximate oracle.

• Grid Search-Newton/AGD: Algorithm use grid search method and the exact New-
ton/Nesterov’s accelerated gradient method as the sub-problem solver.

2.6.1 Logistic Regression

Herein we examine the empirical behavior of each of the previously presented methods on
logistic regression problems using the breast cancer dataset from [26] (32 features and 569
observations) and the leukemia dataset from [37] (7129 features and 72 observations). In
particular, let {(ai, bi)}ni=1 denote a training set of features ai ∈ Rp and labels bi ∈ {−1,+1}
and define the sets of positive and negative examples by S+ := {i ∈ [n] : bi = 1} and S− :=
{i ∈ [n] : bi = −1}. We examine two logistic regression variants: (i) regularized logistic
regression with

f(x) =
1

n

n∑
i=1

log(1 + e−bia
T
i x), Ω(x) =

1

2
∥x∥2 ,

where λmin = 10−4, λmax = 104, and (ii) re-weighted logistic regression with

f(x) =
1

|S+|
∑
i∈S+

log(1 + e−bia
T
i x), Ω(x) =

1

|S−|
∑
i∈S−

log(1 + e−bia
T
i x),

where λmin = 10−1, λmax = 10. The initialization x0 which we apply in each method is the
same and is a very nearly-optimal solution to the problem such that ∥∇Fλmax(x0)∥ ≈ 10−15.
Note that it is hard to compute the exact path accuracy of an approximate solution path x̂(·) :
[λmin, λmax]→ Rp, namely A(x̂) := maxλ∈Λ ∥∇Fλ(x̂(λ))∥, where Λ = [λmin, λmax]. We exam-
ine the approximate path accuracy in lieu of exact computation of path accuracy, namely
we consider Â(x̂) := maxλ∈Λ̂ ∥∇Fλ(x̂(λ))∥ where Λ̂ = {λ0, λ0+λ1

2
, λ1,

λ1+λ2

2
, λ2, . . . , λK}, since

the theoretical largest interpolation error occurs at the midpoint of two breakpoints. In
Figure 2.1, we vary the desired accuracy parameter ϵ and plot the number of Hessian ora-
cle computations required by the Algorithms 2.2 to 2.4, and the grid search method. The
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(a) Regularized logistic regression.
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(b) Re-weighted logistic regression.

Figure 2.1: Exact methods on the breast cancer data with n = 569 observations and p = 30
features.

theoretical number is computed from the complexity analysis, and the practical number of
each method is set according to a “doubling trick”, whereby for each value of K we calculate
the observed accuracy along the path via interpolation and if the observed accuracy is too
large then we double the value of K until it is below ϵ. The numerical results match the
asymptotic order and the intuition, as well as the superior performance of the trapezoid
and Runge-Kutta methods due to the higher-order smoothness of the loss and regulariza-
tion function. In part (a) of Figure 2.1, we notice that the theoretical complexity is higher
than the practical one since it is more conservative. Therefore, we will stick to the “dou-
bling method” in the following experiments and compare the practical performance of each
method.

Figure 2.2 summarizes the performance of the three aforementioned SOCG methods and
the grid search method with Nesterov’s accelerated gradient method. For SOCG methods,
we record the total number of both gradient evaluation and Hessian-vector product, which
is the computation complexity. We implement these methods on the leukemia dataset and
the regularized logistic regression problem. From Figure 2.2, we can see that the numerical
results match our theoretical asymptotic bounds. In part (b), we provide the CPU time to
compute the approximate solution of both SOCG methods and exact second-order methods
(in the more transparent bars). We want to comment that for exact methods we only run
the case when the desired accuracy equals to 10−4, since the grid search method already
takes about 15 hours to finish. The dominance of SOCG methods in these cases illustrates
the benefit and capability of SOCG methods to deal with large-scale problems.
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Figure 2.2: Second-order conjugate gradient methods on regularized logistic regression on
leukemia data with n = 72 observations and p = 7129 features.

2.6.2 Moment Matching Problem

Herein we consider the moment matching problem with entropy regularization. Suppose a
discrete random variable Z has sample space {w1, . . . , wp+1} and probability distribution
{x1, . . . , xp+1}. We want to match the empirical first n-th moments of Z with the entropy
regularization. To formalize the problem, we consider the following constrained optimization
problem:

P (λ) : min
x∈Rp+1

1

2
∥Ax− b∥2 + λ ·

n∑
j=1

x(j) log(x(j))

s.t. 1T
p+1x = 1, x ≥ 0,

where x(j) is the j-th component of x, A ∈ Rn×(p+1) with Ai,j = wi
j, and λ ∈ Λ = [10−2, 102].

The parametric optimization problem P (λ) is a constrained optimization problem, which
does not satisfy our setting. Therefore, we introduce a new variable y to substitute x. Let
y ∈ Rp with y(i) = x(i), for i = 1, . . . , p, and S ′ = {y ∈ Rp : y ≥ 0,1T

p y ≤ 1}, it holds that
x ∈ S is equivalent to y ∈ S ′ and x ∈ int(S) is equivalent to y ∈ int(S ′). We know that
the moment matching problem P (λ) is equivalent to the following parametric optimization
problem:

P ′(λ) : min
y∈Rp

1

2
∥A′y − b′∥2 + λ ·

(
n∑

j=1

y(j) log(y(j)) + (1− 1T
p y) log(1− 1T

p y)

)
s.t. 1T

p y ≤ 1, y ≥ 0,
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(b) SOCG methods.

Figure 2.3: Exact and SOCG methods on moment matching problem with n = 10 and
p = 20, the complexity comparison with different desired accuracy.

where A′ = A1:p −Ap+11
T
p and b′ = b−Ap+1. We examine the empirical behavior of each of

the previously presented methods on (P ′) without constraints, that is, f(y) = 1
2
∥A′y − b′∥2

and Ω(y) =
∑n

j=1 y(j) log(y(j)) + (1− 1T
p y) log(1− 1T

p y). Lemma A.2.1 shows that the exact
path x(λ) for λ ∈ [λmin, λmax] is a subset of the relative interior of S. Also, when the step-size
h is small enough, all grid points {xk} will be in the relative interior of S, and therefore, the
approximate path x̂(λ) for λ ∈ [λmin, λmax] is a subset of the relative interior of S.

Synthetic Data Generation Process We generate the data (x,w) according to the
following generative model. The true distribution vector xtrue is according to the model

xtrue(i) =
exp(z(i))∑p+1

j=1 exp(z(j))
for i = 1, . . . , p + 1, where z(i) ∼ unif(0, 1). The sample vector w are

generated from a independent uniform distribution, i.e., w(i) ∼ unif(0, 1) for i = 1, . . . , p,
and without loss of generality we set w(p+1) = 0.

First, we examine the aforementioned exact and SOCG methods with the different desired
accuracy. Figure 2.3 summarizes our findings with n = 10 and p = 20, and the box plot
with 95% confidence interval of each desired accuracy is across 10 independent trails. Again,
Figure 2.3 demonstrates that the numerical results match the asymptotic order and the
intuition, as well as the superior performance of the trapezoid and Runge-Kutta methods
due to the higher-order smoothness of the loss and regularization function.

Moreover, we examine the aforementioned exact and SOCG methods with the differ-
ent problem dimensions. In the following set of experiments, we set the number of ob-
servations n = 20, the desired accuracy ϵ = 10−5, and vary the problem dimension p ∈
{128, 256, 512, 1024, 2048}. The true distribution xtrue and the sample vector w are synthet-
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Figure 2.4: Exact and SOCG methods on moment matching problem with n = 20 and
ϵ = 10−5, the CPU time comparison with different problem dimension.

ically generated according to the same process as before. Figure 2.4 displays our result for
this experiment. Generally, we observe that the CPU time of computing an ϵ-path increases
as the problem dimension becomes larger. Comparing the CPU time of the exact methods
and the SOCG methods, we notice that the SOCG methods are less sensitive to the sizes
of the problems. Again, the results demonstrate the superiority of the SOCG methods to
tackle large-scale problems.
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Chapter 3

Risk Bounds and Calibration for a
Smart Predict-then-Optimize Method

3.1 Introduction

The predict-then-optimize framework, where one predicts the unknown parameters of an
optimization model and then plugs in the predictions before solving, is prevalent in appli-
cations of machine learning. Some typical examples include predicting future asset returns
in portfolio allocation problems and predicting the travel time on each edge of a network in
navigation problems. In most cases, there are many contextual features available, such as
time of day, weather information, financial and business news headlines, and many others,
that can be leveraged to predict the unknown parameters and reduce uncertainty in the
decision making problem. Ultimately, the goal is to produce a high quality prediction model
that leads to a good decisions when implemented, such as a position that leads to a large
return or a route that induces a small realized travel time. There has been a fair amount
of recent work examining this paradigm and other closely related problems in data-driven
decision making, such as the works of [20, 25, 29, 44, 30, 40, 68, 48], the references therein,
and others.

In this work, we focus on the particular and important case where the optimization
problem of interest has a linear objective with a known convex feasible region and where the
contextual features are related to the coefficients of the linear objective. This case includes
the aforementioned shortest path and portfolio allocation problems. In this context, [29]
developed the Smart Predict-then-Optimize (SPO) loss function, which directly measures
the regret of a prediction against the best decision in hindsight (rather than just prediction
error, such as squared error). After the introduction of the SPO loss, recent work has
studied its statistical properties, including generalization bounds of the SPO loss function
in [28] and generalization and regret convergence rates in [41]. Moreover, since the SPO
loss is not continuous nor convex in general [29], which makes the training of a prediction
model computationally intractable, [29] introduced a novel convex surrogate loss, referred
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to as the SPO+ loss. [29] highlight and prove several advantages of the SPO+ surrogate
loss: (i) it still accounts for the downstream optimization problem when evaluating the
quality of a prediction model (unlike prediction losses such as the squared ℓ2 loss), (ii)
it has a desirable Fisher consistency property with respect to the SPO loss under mild
conditions, and (iii) it often performs better than commonly considered prediction losses
in experimental results. Unfortunately, although a desirable property of any surrogate loss
in this context, Fisher consistency is not directly applicable when one only has available a
finite dataset, which is always the case in practice, because it relies on full knowledge of
the underlying distribution. Motivated thusly, it is desirable to develop risk bounds that
allow one to translate an approximate guarantee on the risk of a surrogate loss function to
a corresponding guarantee on the SPO risk. That is, risk bounds (and the related notion of
calibration functions) answer the question: to what tolerance δ should the surrogate excess
risk be reduced to in order to ensure that the excess SPO risk is at most ϵ? Note that, with
enough data, it is possible in practice to ensure a (high probability) bound on the excess
surrogate risk through generalization and optimization guarantees.

The main goal of this work is to provide risk bounds for the SPO+ surrogate loss function.
Our results, to the best of our knowledge, are the first risk bounds of the SPO+ loss, besides
the analysis of the 1-dimensional scenario in [67]. Our results consider two cases for the
structure of the feasible region of the optimization problem: (i) the case of a bounded
polyhedron, and (ii) the case of a level set of a smooth and strongly convex function. In
the polyhedral case, we prove that the risk bound of the SPO+ surrogate is O(ϵ2), where ϵ
is the desired accuracy for the excess SPO risk. Our results hold under mild distributional
assumptions that extend those considered in [29]. In the strongly convex level set case, we
improve the risk bound of the SPO+ surrogate to O(ϵ) by utilizing novel properties of such
sets that we develop, namely stronger optimality guarantees and continuity properties. As
a consequence of our analysis, we can leverage generalization guarantees for the SPO+ loss
to obtain the first sample complexity bounds, with respect to the SPO risk, for the SPO+
surrogate under the two cases we consider. In Section 3.5, we present computational results
that validate our theoretical findings. In particular we present results on entropy constrained
portfolio allocation problems which, to the best of our knowledge, is the first computational
study of predict-then-optimize problems for a strongly convex feasible region. Our results on
portfolio allocation problems demonstrate the effectiveness of the SPO+ surrogate. We also
present results for cost-sensitive multi-class classification that illustrate the benefits of faster
convergence of the SPO risk in the case of strongly convex sets as compared to polyhedral
ones.

Starting with binary classification, risk bounds and calibration have been previously
studied in other machine learning settings. Pioneer works studying the properties of convex
surrogate loss functions for the 0-1 loss include [89, 17, 58] and [80]. Works including [88, 82]
and [70] have studied the consistency and calibration properties of multi-class classification
problems, which can be considered as a special case of the predict-then-optimize framework
[28]. Most related to the results presented herein is the work of [67], who study the uniform
calibration properties of the squared ℓ2 loss, and the related work of [41], who also develop
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fast sample complexity results for the SPO loss when using a squared ℓ2 surrogate.

3.1.1 Organization

This chapter is organized as follows. In Section 3.2, after formally reviewing the Predict-
then-optimize framework and the SPO and SPO+ loss, we discuss some existing results
and methods for deriving risk bounds via calibration. Section 3.3 contains the generalization
bounds of the SPO+ loss as well as the risk bounds and sample complexity of the polyhedron
case. Section 3.4 contains the risk bounds and sample complexity of the level set case.
Section 3.5 provides the numerical experiments on portfolio allocation instances.

3.1.2 Notation

Let ⊙ represent element-wise multiplication between two vectors. For any positive integer
m, let [m] denote the set {1, . . . ,m}. Let Ip denote the p by p identity matrix for any positive
integer p. For c̄ ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, let N (c̄,Σ) denote the

normal distribution P(c) = e−
1
2 (c−c̄)TΣ−1(c−c̄)√
(2π)d det(Σ)

. We will make use of a generic given norm ∥ · ∥

on w ∈ Rd, as well as its dual norm ∥ · ∥∗ which is defined by ∥c∥∗ = maxw:∥w∥≤1 c
Tw. For a

positive definite matrix A, we define the A-norm by ∥w∥A :=
√
wTAw. Also, we denote the

diameter of the set S ⊆ Rd by DS := supw,w′∈S ∥w − w′∥2.

3.2 Predict-then-Optimize Framework and

Preliminaries

We now formally describe the predict-then-optimize framework, which is widely prevalent in
stochastic decision making problems. We assume that the problem of interest has a linear
objective, but the cost vector of the objective, c ∈ C ⊆ Rd, is not observed when the decision
is made. Instead, we observe a feature vector x ∈ X ⊆ Rp, which provides contextual
information associated with c. Let P denote the underlying joint distribution of the pair
(x, c). Let w denote the decision variable and assume that we have full knowledge of the
feasible region S ⊆ Rd, which is assumed to be non-empty, compact, and convex. When a
feature vector x is provided, the goal of the decision maker is to solve the contextual stochastic
optimization problem:

min
w∈S

Ec∼P(·|x)[c
Tw] = min

w∈S
Ec∼P(·|x)[c]

Tw. (3.1)

As demonstrated by (3.1), for linear optimization problems the predict-then-optimize frame-
work relies on a prediction of the conditional expectation of the cost vector, namely E[c|x] =
Ec∼P(·|x)[c]. Let ĉ denote a prediction of the conditional expectation, then the next step in
the predict-then-optimize setting is to solve the deterministic optimization problem with the
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cost vector ĉ, namely
P (ĉ) : min

w∈S
ĉTw. (3.2)

Depending on the structure of the feasible region S, the optimization problem P (·) can
represent linear programming, conic programming, and even (mixed) integer programming,
for example. In any case, we assume that we can solve P (·) to any desired accuracy via either
a closed-form solution or a solver. Let w∗(·) : Rd → S denote a particular optimization oracle
for problem (3.2), whereby w∗(ĉ) is an optimal solution of P (ĉ). (We assume that the oracle
is deterministic and ties are broken in an arbitrary pre-specified manner.)

In order to obtain a model for predicting cost vectors, namely a cost vector predictor
function g : X → Rd, we may leverage machine learning methods to learn the underlying dis-
tribution P from observed data {(x1, c1), . . . , (xn, cn)}, which are assumed to be independent
samples from P. Most importantly, following (3.1), we would like to learn the conditional
expectation and thus g(x) can be thought of as an estimate of E[c|x]. We follow a standard
recipe for learning a predictor function g where we specify a loss function to measure the
quality of predictions relative to the observed realized cost vectors. In particular, for a loss
function ℓ, the value ℓ(ĉ, c) represents the loss or error incurred when the cost vector predic-
tion is ĉ (i.e., ĉ = g(x)) and the realized cost vector is c. Let Rℓ(g;P) := E(x,c)∼P[ℓ(g(x), c)]
denote the the risk of given loss function ℓ and let R∗

ℓ (P) = infg′ Rℓ(g
′;P) denote the op-

timal ℓ-risk over all measurable functions g′. Also, let R̂n
ℓ (g) := 1

n

∑n
i=1 ℓ(g(xi), ci) denote

the empirical ℓ-risk. Most commonly used loss functions are based on directly measuring
the prediction error, including the (squared) ℓ2 and the ℓ1 losses. However, these losses do
not take the downstream optimization task nor the structure of the feasible region S into
consideration. Motivated thusly, one may consider a loss function that directly measures
the decision error with respect to the optimization problem (3.2). [29] formalize this notion
in our context of linear optimization problems with their introduction of the SPO (Smart
Predict-then-Optimize) loss function, which is defined by

ℓSPO(ĉ, c) := cTw∗(ĉ)− cTw∗(c),

where ĉ ∈ Rd is the predicted cost vector and c ∈ C is the realized cost vector. Due to
the possible non-convexity and possible discontinuities of the SPO loss, [29] also propose a
convex surrogate loss function, the SPO+ loss, which is defined as

ℓSPO+(ĉ, c) := max
w∈S
{(c− 2ĉ)Tw}+ 2ĉTw∗(c)− cTw∗(c).

Importantly, the SPO+ loss still accounts for the downstream optimization problem (3.2)
and the structure of the feasible region S, in contrast to losses that focus only on prediction
error. As discussed by [29], the SPO+ loss can be efficiently optimized via linear/conic
optimization reformulations and with (stochastic) gradient methods for large datasets. [29]
provide theoretical and empirical justification for the use of the SPO+ loss function, in-
cluding a derivation through duality theory, promising experimental results on shortest path
and portfolio optimization instances, and the following theorem which provides the Fisher
consistency of the SPO+ loss.
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Theorem 3.2.1 ([29], Theorem 1). Suppose that the feasible region S has a non-empty
interior. For fixed x ∈ X , suppose that the conditional distribution P(·|x) is continuous on
all of Rd, is centrally symmetric around its mean c̄ := Ec∼P(·|x)[c], and that there is a unique
optimal solution of P (c̄). Then, for all ∆ ∈ Rp it holds that

Ec∼P(·|x) [ℓSPO+(c̄+∆, c)− ℓSPO+(c̄, c)] = Ec∼P(·|x)
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ 0.

Moreover, if ∆ ̸= 0, then Ec∼P(·|x) [ℓSPO+(c̄+∆)− ℓSPO+(c̄)] > 0.

Notice that Theorem 3.2.1 holds for arbitrary x ∈ X , i.e., it employs a nonparametric
analysis as is standard in consistency and calibration results, whereby there are no constraints
on the predicted cost vector associated with x. Under the conditions of Theorem 3.2.1,
given any x ∈ X , we know that the conditional expectation c̄ = Ec∼P(·|x)[c] is the unique
minimizer of the SPO+ risk. Furthermore, since c̄ is also a minimizer of the SPO risk, it
holds that the SPO+ loss function is Fisher consistent with respect to the SPO loss function,
i.e., minimizing the SPO+ risk also minimizes the SPO risk. However, in practice, due to
the fact that we have available only a finite dataset and not complete knowledge of the
distribution P, we cannot directly minimize the true SPO+ risk. Instead, by employing the
use of optimization and generalization guarantees, we are able to approximately minimize
the SPO+ risk. A natural question is then: does a low excess SPO+ risk guarantee a low
excess SPO risk? More formally, we are primarily interested in the following questions: (i)
for any ϵ > 0, does there exist δ(ϵ) > 0 such that RSPO+(g;P)−R∗

SPO+(P) < δ(ϵ) implies that
RSPO(g;P) − R∗

SPO(P) < ϵ?, and (ii) what is the largest such value of δ(ϵ) that guarantees
the above?

3.2.1 Excess Risk Bounds via Calibration

The notions of calibration and calibration functions provide a useful set of tools to answer
the previous questions. We now review basic concepts concerning calibration when using a
generic surrogate loss function ℓ, although we are primarily interested in the aforementioned
SPO+ surrogate. An excess risk bound allows one to transfer the conditional excess ℓ-
risk, E [ℓ(ĉ, c)|x] − infc′ E [ℓ(c′, c)|x], to the conditional excess ℓSPO-risk, E [ℓSPO(ĉ, c)|x] −
infc′ E [ℓSPO(c

′, c)|x]. Calibration, which we now briefly review, is a central tool in developing
excess risk bounds. We adopt the definition of calibration presented by [80] and [67], which
is reviewed in Definition 3.2.1 below.

Definition 3.2.1. For a given surrogate loss function ℓ, we say ℓ is ℓSPO-calibrated with
respect to P if there exists a function δℓ(·) : R+ → R+ such that for all x ∈ X , ĉ ∈ C, and
ϵ > 0, it holds that

E [ℓ(ĉ, c)|x]− inf
c′

E [ℓ(c′, c)|x] < δℓ(ϵ)⇒ E [ℓSPO(ĉ, c)|x]− inf
c′

E [ℓSPO(c
′, c)|x] < ϵ. (3.3)

Additionally, if (3.3) holds for all P ∈ P, where P is a class of distributions on X ×C, then
we say that ℓ is uniformly calibrated with respect to the class of distributions P.
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A direct approach to finding a feasible δℓ(·) function and checking for uniform calibration
is by computing the infimum of the excess surrogate loss subject to a constraint that the
excess SPO loss is at least ϵ. This idea leads to the definition of the calibration function,
which we review in Definition 3.2.2 below.

Definition 3.2.2. For a given surrogate loss function ℓ and true cost vector distribution Pc,
the conditional calibration function δ̂ℓ(·;Pc) is defined, for ϵ > 0, by

δ̂ℓ(ϵ;Pc) := inf
ĉ∈Rd

{
E [ℓ(ĉ, c)]− inf

c′
E [ℓ(c′, c)] : E [ℓSPO(ĉ, c)]− inf

c′
E [ℓSPO(c

′, c)] ≥ ϵ
}
.

Moreover, given a class of joint distributions P, with a slight abuse of notation, the calibration
function δ̂ℓ(·;P) is defined, for ϵ > 0, by

δ̂ℓ(ϵ;P) := inf
x∈X ,P∈P

δ̂ℓ(ϵ;P(·|x)).

If the calibration function δ̂ℓ(·;P) satisfies δ̂ℓ(ϵ;P) > 0 for all ϵ > 0, then the loss function
ℓ is uniformly ℓSPO-calibrated with respect to the class of distributions P . To obtain an
excess risk bound, we let δ∗∗ℓ denote the biconjugate, the largest convex lower semi-continuous
envelope, of δℓ. Jensen’s inequality then readily yields δ∗∗ℓ (RSPO(g,P)−R∗

SPO(P)) ≤ Rℓ(g,P)−
Rℓ(P), which implies that the excess surrogate risk Rℓ(g,P)−Rℓ(P) of a predictor g can be
translated into an upper bound of the excess SPO risk RSPO(g,P)−R∗

SPO(P). For example,
the uniform calibration of the least squares (squared ℓ2) loss, namely ℓLS(ĉ, c) = ∥ĉ−c∥22, was
examined by [67]. They proved that the calibration function is δℓLS

(ϵ) = ϵ2/D2
S, which implies

an upper bound of the excess SPO risk by RSPO(g,P)−R∗
SPO(P) ≤ DS(RLS(g,P)−R∗

LS(P))1/2.
In this paper, we derive the calibration function of the SPO+ loss and thus reveal the
quantitative relationship between the excess SPO risk and the excess surrogate SPO+ risk
under different circumstances.

3.2.2 Rademacher Complexity and Generalization Bounds

Herein we briefly review Rademacher complexity, a widely used concept in deriving gen-
eralization bounds, and how it applies in our analysis. For any loss function ℓ(·, ·) and a
hypothesis class H of cost vector predictor functions, the Rademacher complexity is defined
as

Rn
ℓ (H) := Eσ,{(xi,ci)}ni=1

[
sup
g∈H

1

n

n∑
i=1

σiℓ(g(xi), ci)

]
,

where σi are independent Rademacher random variables and (xi, ci) are independent samples
from the joint distribution P for i = 1, . . . , n. The following theorem provides a classical
generalization bounds based on the Rademacher complexity.
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Theorem 3.2.2 ([18]). LetH be a hypothesis class from X to Rd and let b = supĉ∈H(X ),c∈C ℓ(ĉ, c).
Then, for any δ > 0, with probability at least 1− δ, for all g ∈ H it holds that∣∣∣Rℓ(g;P)− R̂n

ℓ (g)
∣∣∣ ≤ 2Rn

ℓ (H) + b

√
2 log(1/δ)

n
.

Moreover, we define the multivariate Rademacher complexity [59, 20, 28] of H as

Rn(H) = Eσ,x

[
sup
g∈H

1

n

n∑
i=1

σT
i g(xi)

]
,

where σi ∈ {−1,+1}d are Rademacher random vectors for i = 1, . . . , n. In many cases
of hypothesis classes, such as linear functions with bounded Frobenius or element-wise ℓ1
norm, the multivariate Rademacher complexity can be bounded as Rn(H) ≤ C′

√
n
where C ′

is a constant that usually depends on the properties of the data, the hypothesis class, and
mildly on the dimensions d and p. Detailed examples of such bounds have been provided by
[28, 20].

When the loss function ℓ(·, ·) is additionally L-Lipschitz continuous with respect to the
2-norm in the first argument, namely |ℓ(ĉ1, c) − ℓ(ĉ2, c)| ≤ L∥ĉ1 − ĉ2∥2 for all ĉ1, ĉ2, c ∈ Rp,
then by the vector contraction inequality of [59] we haveRn

ℓ (H) ≤
√
2LRn(H). It is also easy

to see that the the SPO+ loss function ℓSPO+(·, c) is 2DS-Lipschitz continuous with respect
to the 2-norm for any c and therefore we can leverage the vector contraction inequality of
[59] in this case. Combined with Theorem 3.2.2, this yields a generalization bound for the
SPO+ loss.

3.3 Risk Bounds and Calibration for Polyhedral Sets

In this section, we consider the case when the feasible region S is a bounded polyhedron and
derive the calibration function of the SPO+ loss function. As is shown in Theorem 3.2.1, the
SPO+ loss is Fisher consistent when the conditional distribution P(·|x) is continuous on all
of Rd and is centrally symmetric about its mean c̄. More formally, the joint distribution P lies
in the distribution class Pcont, symm := {P : P(·|x) is continuous on all of Rd and is centrally
symmetric about its mean, for all x ∈ X}. In Example 3.3.2, we later show that this dis-
tribution class is not restrictive enough to obtain a meaningful calibration function. In-
stead, we consider a more specific distribution class consisting of distributions whose den-
sity functions can be lower bounded by a normal distribution. More formally, for given
parameters M ≥ 1 and α, β,D > 0, define PM,α,β,D := {P ∈ Pcont, symm : for all x ∈
X with c̄ = E[c|x], there exists σ ∈ [0,min{D,M}] satisfying ∥c̄∥2 ≤ βσ and P(c|x) ≥
α · N (c̄, σ2I) for all c ∈ Rd satisfying ∥c∥22 ≤ 2D2}. Also, let PM,α,β ← PM,α,β,∞. Intuitively,
the assumptions on the distribution class PM,α,β,D ensure that we avoid a situation where the
density of the cost vector concentrates around some “badly behaved points.” This intuition
is further highlighted in Example 3.3.2. Theorem 3.3.1 is our main result in the polyhedral
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case and demonstrates that the previously defined distribution class is a sufficient class to
obtain a positive calibration function. Recall that DS denotes the diameter of S and define
a “width constant” associated with S by dS := minv∈Rd:∥v∥2=1

{
maxw∈S v

Tw −minw∈S v
Tw
}
.

Notice that dS > 0 whenever S has a non-empty interior.

Theorem 3.3.1. Suppose the feasible region S is a polyhedron and define ΞS := (1 +
2
√
3DS

dS
)1−d. Then the calibration function of the SPO+ loss satisfies

δ̂ℓSPO+
(ϵ;PM,α,β,D) ≥

αΞSγ(
d−1
2
, D2)

4
√
2πe

3(1+β2)
2 Γ(d−1

2
)
·min

{
ϵ2

DSM
, ϵ

}
for all ϵ > 0. (3.4)

Additionally, when D =∞, we have γ(d−1
2
, D2) = Γ(d−1

2
) and therefore

δ̂ℓSPO+
(ϵ;PM,α,β) ≥

αΞS

4
√
2πe

3(1+β2)
2

·min

{
ϵ2

DSM
, ϵ

}
for all ϵ > 0. (3.5)

Theorem 3.3.1 yields anO(ϵ2) uniform calibration result for the distribution class PM,α,β,D.
The dependence on the constants is also natural as it matches the upper bound given by the
cases with a ℓ1-like unit ball feasible region S and standard multivariate normal distribution
as the conditional probability P(·|x). The following example shows the tightness of the lower
bound in Theorem 3.3.1.

Example 3.3.1. For any given ϵ > 0, we consider the conditional distribution P(c|x) =
N (−ϵ′ · ed, σ2Id) for some constants ϵ′, σ > 0 to be determined. For some a, b > 0, let the
feasible region S be S = conv({w ∈ Rd : ∥w1:(d−1)∥2 = a, wd = 0} ∪ {±b · ed}). Although S is
not polyhedral, it can be considered as a limiting case of a polyhedron and the argument easily
extends, with minor complications, to the case where the sphere is replaced by an (d− 1)-gon
for d sufficiently large. Let ĉ = ϵ′ · ed, we have E [ℓSPO(ĉ, c)|x]−E [ℓSPO(c̄, c)|x] = 2bϵ′. Also,
for the excess conditional SPO+ risk we have

E [ℓSPO+(ĉ, c)|x]− E [ℓSPO+(c̄, c)|x]→
∫
Rd−1

d−1∏
j=1

e−
c2j

2σ2

√
2πσ2

· e
−

a2
∑d−1

j=1
c2j

2b2σ2

√
2πσ2

· ϵ
′2

2
· dc1 . . . dcd−1

=
ϵ′2

2
√
2πσ2

d−1∏
j=1

∫
R

e−
c2j

2σ2 · e−
a2c2j

2b2σ2

√
2πσ2

dcj

=
ϵ′2

2
√
2πσ2

·
(

b2

a2 + b2

)(d−1)/2

,
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when ϵ′ → 0. Therefore, let ϵ′ = ϵ
2b
, we have E [ℓSPO(ĉ, c)|x]− E [ℓSPO(c̄, c)|x] = ϵ and

E [ℓSPO+(ĉ, c)|x]− E [ℓSPO+(c̄, c)|x] =
ϵ2

8
√
2πσ2b2

·
(

b2

a2 + b2

)(d−1)/2

≤ 1

8
√
2π
·
(
DS

dS

)1−d

· ϵ
2

σ
,

for some b large enough, and therefore the lower bound in Theorem 3.3.1 is tight up to a
constant.

Let us now provide some more intuition on the parameters involved in the definition of
the distribution class PM,α,β,D and their roles in Theorem 3.3.1. In the definition of PM,α,β,D,
α is a lower bound on the ratio of the density of the distribution of the cost vector relative
to a “reference” standard normal distribution. When α is larger, the distribution is behaved
more like a normal distribution and it leads to a better lower bound on the calibration
function (3.4) and (3.5) in Theorem 3.3.1. The parameter M is an upper bound on the
standard deviation of the aforementioned reference normal distribution, and the lower bound
(3.4) and (3.5) naturally become worse as M increases. The parameter β measures how
the conditional mean deviates from zero relative to the standard deviation of the reference
normal distribution. If this distance is larger then the predictions are larger on average,
and the bounds in (3.4) and (3.5) become worse. The width constant dS measures the near-
degeneracy of the polyhedron (dS = 0 is degenerate) and the bound becomes meaningless as
dS → 0. When the feasible region S is near-degenerate, i.e., the ratio dS

DS
is close to zero, we

tend to have a weaker lower bound on the calibration function, which is also natural.

Example 3.3.2. Let the feasible region be the ℓ1 ball S = {w ∈ R2 : ∥w∥1 ≤ 1} and consider
the distribution class Pcont, symm. For a fixed scalar ϵ > 0, let c1 = (9ϵ, 0)T and c2 = (−7ϵ, 0)T .
Let the conditional distribution Pσ(c|x) be a mixture of Gaussians defined by Pσ(c|x) :=
1
2
(N (c1, σ

2I)+N (c2, σ
2I)) for any σ > 0, and we have Pσ(c|x) ∈ Pcont, symm. Let the predicted

cost vector be ĉ = (0, ϵ)T , then the excess conditional SPO risk is E[ℓSPO(ĉ, c)−ℓSPO(c̄, c)|x] =
ϵ. Then it holds that the excess conditional SPO+ risk E [ℓSPO+(ĉ, c)− ℓSPO+(c̄, c)|x] → 0
when σ → 0, and hence we have δ̂ℓ(ϵ;Pcont, symm) = 0.

The intuition of Example 3.3.2 is that the existence of a non-zero calibration function
requires the conditional distribution of c given x to be “uniform” on the space Rd, but not
concentrate near certain points. Example 3.3.2 highlights a situation that considers one such
“badly behaved” case where a limiting distribution of a mixture of two Gaussians leads to a
zero calibration function.

Detailed Derivation for Example 3.3.2 Let the feasible region be the ℓ1 ball S = {w ∈
R2 : ∥w∥1 ≤ 1} and consider the distribution class Pcont, symm. Let x ∈ X be fixed, ϵ > 0
be a fixed scalar, c1 = (9ϵ, 0)T and c2 = (−7ϵ, 0)T . Let the conditional distribution be a
mixture of normals defined by Pσ(c|x) := 1

2
(N (c1, σ

2I) + N (c2, σ
2I)) for some σ > 0. The
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condition mean of c is then c̄ = (ϵ, 0)T and the distribution Pσ(c|x) is centrally symmetric
around c̄; therefore Pσ ∈ Pcont, symm. Let ĉ = (0, ϵ)T and ∆ := ĉ − c̄, which yields that the
excess conditional SPO risk is E[ℓSPO(ĉ, c)− ℓSPO(c̄, c)] = c̄T (w∗(ĉ)−w∗(c̄)) = ϵ. Also, for all
c ∈ C, we may assume that w∗(c) ∈ ZS = {±e1,±e2} and hence (c + 2∆)T (w∗(c) − w∗(c +
2∆)) ≤ 2∆T (w∗(c)− w∗(c+ 2∆)) ≤ 4ϵ. Therefore, using E [ℓSPO+(c̄+∆, c)− ℓSPO+(c̄, c)] =
E
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
, it holds that

E [ℓSPO+(c̄+∆, c)− ℓSPO+(c̄, c)] ≤ 4ϵPσ(w
∗(c) ̸= w∗(c+ 2∆))

≤ 4ϵ(1− Pσ({∥c− c1∥2 ≤ ϵ} ∪ {∥c− c2∥2 ≤ ϵ}))→ 0,

when σ → 0, and hence we have δ̂ℓ(ϵ;Pcont, symm) = 0.
By combining Theorem 3.3.1 with a generalization bound for the SPO+ loss, we can

develop a sample complexity bound with respect to the SPO loss. Corollary 3.3.1 below
presents such a result for the SPO+ method with a polyhedral feasible region. The derivation
of Corollary 3.3.1 relies on the notion of multivariate Rademacher complexity as well as the
vector contraction inequality of [59] in the ℓ2-norm. In particular, for a hypothesis class H
of cost vector predictor functions (functions from X to Rd), the multivariate Rademacher
complexity is defined as Rn(H) = Eσ,x

[
supg∈H

1
n

∑n
i=1 σ

T
i g(xi)

]
, where σi ∈ {−1,+1}d are

Rademacher random vectors for i = 1, . . . , n. Please refer to Section 3.2.2 for a detailed
discussion of multivariate Rademacher complexity and the derivation of Corollary 3.3.1.

Corollary 3.3.1. Suppose that the feasible region S is a bounded polyhedron, the optimal
predictor g∗(x) = E[c|x] is in the hypothesis class H, and there exists a constant C ′ such
that Rn(H) ≤ C′

√
n
. Let ĝnSPO+ denote the predictor which minimizes the empirical SPO+

risk R̂n
SPO+(·) over H. Then there exists a constant C such that for any P ∈ PM,α,β and

δ ∈ (0, 1
2
), with probability at least 1− δ, it holds that

RSPO(ĝ
n
SPO+;P)−R∗

SPO(P) ≤
C
√

log(1/δ)

n1/4
.

The proof is provided after Corollary 3.4.1. Notice that the rate in Corollary 3.3.1 is
O(1/n1/4). However, the bound is with respect to the SPO loss which is generally non-
convex and is the first such bound for the SPO+ surrogate. [41] present a similar result for
the squared ℓ2 surrogate with a rate of O(1/

√
n), and an interesting open question concerns

whether the rate can also be improved for the SPO+ surrogate.
In the remaining part of this section, we provide the proof of Theorem 3.3.1 and some

useful lemmas.

Additional Definitions and Notation. Recall that S is polyhedral and let ZS denote the
extreme points of S. We assume, for simplicity, that w∗(c) ∈ ZS for all c ∈ Rd, but our results
can be extended to allow for other possibilities in the case when there are multiple optimal
solutions of P (c). For any i ∈ {1, . . . , d}, we use ei ∈ Rd to represent the unit vector whose
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i-th entry is 1 and others are all zero. Given a vector c′ ∈ Rd−1 and a scalar ξ ∈ R, let (c′, ξ)
denote the vector (c′T , ξ)T ∈ Rd. For fixed c′ and when ξ ranges from negative infinity to
positive infinity, the corresponding optimal solution w∗(c′, ξ) will sequentially take different
values in ZS, and we let Ω(c′) = (w1(c

′), . . . , wk(c′)(c
′)) denote this sequence. Let yi(c

′) denote
the last element of vector wi(c

′) for i = 1, . . . , k(c′). Also, for i = 1, . . . , k(c′)− 1, we define
phase transition location ζi(c

′) ∈ R such that (c′, ζi(c
′))Twi(c

′) = (c′, ζi(c
′))Twi+1(c

′), and
additionally, we define ζ0(c

′) = −∞ and ζk(c′)(c
′) =∞. When there is no confusion, we will

omit c′ and only use k, wi, yi, ζi for simplicity. Based on the above definition, for all ξ ∈
(ζi−1(c

′), ζi(c
′)), it holds that w∗(c′, ξ) = wi(c

′). Also, it holds that y1(c
′) > · · · > yk(c′)(c

′).
Lemma 3.3.1 provides the relationship between excess SPO risk and the optimal solution

of (3.2) with respect to the difference ∆ = ĉ− c̄ between the predicted cost vector ĉ and the
realized cost vector c̄.

Lemma 3.3.1. Let ĉ, c̄ ∈ Rd be given and define ∆ := ĉ − c̄. Let w+ := w∗(∆) and
w− := w∗(−∆), and let y+ and y− denote the last elements of w+ and w−, respectively. If
c̄T (w∗(ĉ) − w∗(c̄)) ≥ ϵ, then it holds that ∆T (w− − w+) ≥ ϵ. Additionally, if ∆ = κ · ed for
some κ > 0, then it holds that (y− − y+)κ ≥ ϵ.

Proof. First we have ĉT (w∗(c̄) − w∗(ĉ)) ≥ 0, and therefore it holds that ∆T (w∗(c̄ + ∆) −
w∗(c̄)) ≥ c̄T (w∗(c̄+∆)−w∗(c̄)) ≥ ϵ. Also, since ∆T (w∗(c̄)−w∗(∆)) ≥ 0 and ∆T (w∗(−∆)−
w∗(c̄ + ∆)) ≥ 0, we have ∆T (w− − w+) ≥ ∆T (w∗(c̄ + ∆) − w∗(c̄)) ≥ ϵ. Moreover, when
∆ = κ · ed for κ > 0, we have ∆Tw− = ∆Tw1 and ∆Tw+ = ∆Twk, and therefore, it holds
that (y− − y+)κ ≥ ϵ.

Lemmas 3.3.2 and 3.3.3 provide two useful inequalities.

Lemma 3.3.2. Suppose that a1, . . . , an, b1, . . . , bn ≥ 0 with
∑n

i=1 ai = α and
∑n

i=1 bi = β for
some α, β > 0. Then for all p ≥ 0, it holds that

n∑
i=1

bi

(
1 +

a2i
b2i

)−p/2

≥ β

(1 + α
β
)p
.

Proof. Let ψi(a, b; p) = bi(1+
a2i
b2i
)−p/2 and ψ(a, b; p) =

∑n
i=1 ψi(a, b; p). For all p ∈ R, we have

d2

dp2
log(ψ(a, b; p)) =

1

4ψ2(a, b; p)

(
n∑

i=1

ψi(a, b; p) ·
n∑

i=1

ψi(a, b; p) log
2

(
1 +

a2i
b2i

)

−

(
n∑

i=1

ψi(a, b; p) log

(
1 +

a2i
b2i

))2
 ≥ 0,

for p ≥ 0. Therefore, for all p ≥ 0 it holds that

logψ(a, b; p) ≥ logψ(a, b; 0) + p · (logψ(a, b; 0)− logψ(a, b;−1)).
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Also, we have ψ(a, b, 0) = β, and ψ(a, b,−1) =
∑n

i=1

√
a2i + b2i ≤

∑n
i=1(ai + bi) = α + β.

Then, for all p ≥ 0, it holds that ψ(a, b; p) ≥ βp+1

(α+β)p
= β

(1+α
β
)p
.

Lemma 3.3.3. Let ĉ′ ∈ Rd−1 be given with ∥ĉ′∥2 = 1, and let {wi(ĉ
′)}ki=1, {yi(ĉ′)}ki=1,

and {ζi(ĉ′)}ki=0 be the corresponding optimal solution sequence and phase transition location
sequence as described in the definition and notation paragraph. Let y− = y1(ĉ

′) and y+ =
yk(ĉ

′). Then it holds that

k−1∑
i=1

(
1 + 3ζ2i

)− d−1
2 (yi − yi+1) ≥ ΞS,ĉ′ · (y− − y+),

where ΞS,ĉ′ = (1 + 2
√
3DS

y−−y+
)1−d.

Proof. Let w′
i be the first (d − 1) element of wi. Suppose ζs−1 ≤ 0 < ζs for some s ∈

{1, . . . , k}, then it holds that ĉ′T (wi − wi+1) = −ζi(yi − yi+1) ≥ 0 for i ∈ {1, . . . , s− 1} and
ĉ′T (wi − wi+1) = −ζi(yi − yi+1) < 0 for i ∈ {s, . . . , k − 1}. Therefore, we know that

k−1∑
i=1

∣∣ĉ′T (wi − wi+1)
∣∣ = ĉ′T (w1 + wk − 2ws) ≤ 2DS.

Also, we have
∑k−1

i=1 (yi − yi+1) = y− − y+ and |ζi| = −
|ĉ′T (ŵ′

i−ŵ′
i+1)|

yi−yi+1
. Therefore, by the result

in Lemma 3.3.2, we have

k−1∑
i=1

(
1 + 3ζ2i

)− d−1
2 (yi − yi+1) ≥

y− − y+
(1 + 2

√
3DS

y−−y+
)d−1

.

Lemma 3.3.4 provide a lower bound of the conditional SPO+ risk condition on the first
(d− 1) element of the realized cost vector.

Lemma 3.3.4. Let c′ ∈ Rd−1 be a fixed vector and ξ̄ ∈ R, σ > 0 be fixed scalars. Let a
random variable ξ satisfying P(ξ) ≥ α ·N (ξ̄, σ2) for all ξ ∈ [−

√
2D2 − ∥c′∥2,

√
2D2 − ∥c′∥2].

Let c = (c′, ξ) ∈ Rd, and sequence {wi(c
′)}ki=0, {ζi(c′)}ki=0 defined as in the additional defi-

nitions and notation paragraph. Let yi denote the last element of vector wi for i = 1, . . . , k.
Let mi =

√
1 + 3∥ζi(c′)∥2/∥c′∥2 for i = 1, . . . , k. Suppose ∆ = κ · ed for some κ > 0, then

for all κ̃ ∈ [0, κ], it holds that

Eξ

[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe−

3(κ̃2+ξ̄2)

2σ2

2
·
k−1∑
i=1

e−
3ζ2i (c′)
2σ2 1{∥c′∥ ≤ D

mi
}

√
2πσ

(yi − yi+1).
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Proof. Let (w1, . . . , wk) = Ω(c′) as defined in the additional definitions and notation para-
graph, and suppose w∗(c) = ws and w∗(c + 2∆) = wt for some s ≤ t. By the definition of
{ξi(c′)}k0, we know that ξ ∈ [ζs−1(c

′), ζs(c
′)] and ξ + 2κ ∈ [ζt−1(c

′), ζt(c
′)]. Therefore, it holds

that

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) = (c+ 2∆)T (ws − wt) =
t−1∑
i=s

(c+ 2∆)T (wi − wi+1)

=
t−1∑
i=s

(c+ 2∆− (c′, ζi(c
′)))T (wi − wi+1) =

t−1∑
i=s

(ξ + 2κ− ζi(c′)) · eTd (wi − wi+1)

=
k−1∑
i=1

1{ξ ∈ [ζi − 2κ, ζi]} · (ξ + 2κ− ζi(c′))(yi − yi+1),

where yi denotes the last element of wi for all i = 1, . . . , k. When ξ follows the normal
distribution N (ξ̄, σ2), it holds that

Eξ [1{ξ ∈ [ζi − 2κ, ζi]} · (ξ + 2κ− ζi(c′))]
≥Eξ [1{ξ ∈ [ζi − 2κ̃, ζi]} · (ξ + 2κ− ζi(c′))]

≥
∫ ζi(c

′)

ζi(c′)−2κ̃

αe−
(ξ−ξ̄)2

2σ2 1{∥c′∥ ≤ D
mi
}

√
2πσ2

· (ξ + 2κ− ζi(c′))dξ,

for all κ̃ ∈ [0, κ]. Therefore, it holds that

Eξ

[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥

k−1∑
i=1

(yi − yi+1)κ̃κ ·
αe−

3(ζi(c
′)2+κ̃2+ξ̄2)

2σ2 1{∥c′∥ ≤ D
mi
}

2
√
2πσ2

=
ακ̃κe−

3(κ̃2+ξ̄2)

2σ2

2
·
k−1∑
i=1

e−
3ζ2i (c′)
2σ2 1{∥c′∥ ≤ D

mi
}

√
2πσ2

(yi − yi+1).

Lemma 3.3.5 provide a lower bound of the conditional SPO+ risk when the distribution
of c = (c′, ϵ) is well behaved.

Lemma 3.3.5. Let c̄′ ∈ Rd−1 be a fixed vector and ξ̄ ∈ R, σ > 0 be fixed scalars. Let c′ ∈ Rd−1

be a random vector satisfying P(c′) ≥ N (c̄′, σ2Id−1) for all ∥c′∥22 ≤ 2D2, and let ξ ∈ R be a
random variable satisfying P(ξ|c′) ≥ α ·N (ξ̄, σ2) for all ξ ∈ [−

√
2D2 − ∥c′∥2,

√
2D2 − ∥c′∥2].

Define ΞS := (1 + 2
√
3DS

dS
)1−d. Suppose ∆ = κ · ed for some κ > 0, then for all κ̃ ∈ [0, κ], it

holds that

Ec′,ξ

[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe−

3κ̃2+3ξ̄2+∥c̄′∥22
2σ2

4
√
2πσ2

·
γ(d−1

2
, D2)

Γ(d−1
2
)
· ΞS(y− − y+).
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Proof. By result in Lemma 3.3.4, it holds that

Ec′,ξ

[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe

− 3(κ̃2+ξ̄2)

2σ2

2
· Ec′

k(c′)−1∑
i=1

e−
3ζ2i (c′)
2σ2 1{∥c′∥ ≤ D

mi
}

√
2πσ2

(yi(c
′)− yi+1(c

′))

 .
For any c′ ∈ Rd−1, let r = ∥c′∥2 and ĉ′ = c′

r
. We know that k(c′) = k(ĉ′), ζi(c

′) = rζi(ĉ
′),

wi(c
′) = wi(ĉ

′), and yi(c
′) = yi(ĉ

′). Then we have

Ec′

k(c′)−1∑
i=1

e−
3ζ2i (c′)
2σ2

√
2πσ2

(yi(c
′)− yi+1(c

′))


=

∫
Sd−2

∫ ∞

0

k(ĉ′)−1∑
i=1

e
− 3r2ζ2i (ĉ′)

2σ2 1{r≤ D
mi

}

√
2πσ2

(yi(ĉ
′)− yi+1(ĉ

′))rd−2Pc′(rĉ
′)drdĉ′,

where Sd−2 = {ĉ′ ∈ Rd−1 : ∥ĉ′∥2 = 1. For fixed ĉ′ ∈ Sd−2 with ĉ′T c̄′ ≥ 0 and i ∈ {1, . . . , k(ĉ′)−
1}, we have

∫ D
mi

0

e−
3r2ζ2i (ĉ′)

2σ2

√
2πσ

rd−2Pc′(rĉ
′)dr =

∫ D
mi

0

e−
3r2ζ2i (ĉ′)

2σ2

√
2πσ2

· e
− ∥rĉ′−c̄′∥22

2σ2

(2πσ2)
d−1
2

· rd−2dr

≥
∫ D

mi

0

e−
3r2ζ2i (ĉ′)

2σ2

√
2πσ2

· e
− r2+∥c̄′∥22

2σ2

(2πσ2)
d−1
2

· rd−2dr

=
e−

∥c̄′∥22
2σ2

√
2πσ2

·
γ(d−1

2
,
D2(1+3ζ2i (ĉ

′))

m2
i

)

2π
d−1
2

· (1 + 3ζ2i (ĉ
′))−

d−1
2

≥ e−
∥c̄′∥22
2σ2

√
2πσ2

·
γ(d−1

2
, D2)

2π
d−1
2

· (1 + 3ζ2i (ĉ
′))−

d−1
2 ,

where γ(·, ·) is the lower incomplete Gamma function. By Lemma 3.3.3, it holds that

k(ĉ′)−1∑
i=1

(1 + 3ζ2i (ĉ
′))−

d−1
2 (yi(ĉ

′)− yi+1(ĉ
′)) ≥ ΞS,ĉ′ · (y− − y+). (3.6)
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Therefore, it holds that

Ec′

k(c′)−1∑
i=1

e−
3ζ2i (c′)
2σ2

√
2πσ2

(yi(c
′)− yi+1(c

′))


≥
∫
Sd−2

1{ĉ′T c̄′ ≥ 0} · e
− ∥c̄′∥22

2σ2

√
2πσ2

·
γ(d−1

2
, D2)

2π
d−1
2

· ΞS,c′(y− − y+)dĉ′

≥ e−
∥c̄′∥22
2σ2

2
√
2πσ2

·
γ(d−1

2
, D2)

Γ(d−1
2
)
· ΞS(y− − y+),

and finally we get

Ec′,ξ

[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe

− 3(κ̃2+ξ̄2)

2σ2

2
· e

− ∥c̄′∥22
2σ2

2
√
2πσ2

·
γ(d−1

2
, D2)

Γ(d−1
2
)
· ΞS(y− − y+)

=
ακ̃κe−

3κ̃2+3ξ̄2+∥c̄′∥22
2σ2

4
√
2πσ2

·
γ(d−1

2
, D2)

Γ(d−1
2
)
· ΞS(y− − y+).

Now we provide the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. Without loss of generality, we assume dS > 0. Otherwise, the
constant ΞS will be zero and (3.4) will be a trivial bound. Let κ = ∥∆∥2 and A ∈ Rd×d be
an orthogonal matrix such that AT∆ = κ · ed for ed = (0, . . . , 0, 1)T . We implement a change
of basis and let the new basis be A = (a1, . . . , ad). With a slight abuse of notation, we keep
the notation the same after the change of basis, for example, now the vector ∆ equals to
κ · ed. Since the excess SPO risk of ĉ = c̄ + ∆ is at least ϵ, we have κ(y− − y+) ≥ ϵ. Let
κ̃ = min{κ, σ}. Then it holds that κ̃ exp(− 3κ̃2

2σ2 ) ≥ min{κ, σ} · exp(−3
2
). By Lemma 3.3.5, we

know that

RSPO(ĉ) = Ec

[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥
κ̃κe−

3κ̃2+3ξ̄2+∥c̄′∥22
2σ2 γ(d−1

2
, D2)

4
√
2πσ2Γ(d−1

2
)

· ΞS(y− − y+),

where c̄′ is the first (d−1) elements of c̄, ξ̄ is the last element of c̄, and 3ξ̄2+∥c̄′∥22 ≤ 3∥c̄∥22 =
3α2σ2. Then we can conclude that

RSPO+(ĉ)−R∗
SPO+ ≥

αΞSγ(
d−1
2
, D2) · ϵ

4
√
2πe

3(1+β2)
2 Γ(d−1

2
)
·min

{κ
σ
, 1
}
.
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Furthermore, since κ
σ
≥ κ

M
≥ ϵ

(y−−y+)M
≥ ϵ

DSM
, we have

RSPO+(ĉ)−R∗
SPO+ ≥

αΞSγ(
d−1
2
, D2)

4
√
2πe

3(1+β2)
2 Γ(d−1

2
)
·min

{
ϵ2

DSM
, ϵ

}
.

3.3.1 Faster Rates with Low Near-Degeneracy Condition

In this section, we develop the fast rates in the SPO+ risk bounds when the feasible region

S is a polyhedron. We improve the sample complexity from O(n− 1
4 ) to O(n− κ+1

2κ+4 ) where
κ ∈ (0,∞) is the low near-degeneracy parameter. The main assumption is equivalent to the
low-noise condition defined in [41], and the assumption on the near-degeneracy defined in
[28], as we will show later.

Let S∠ be the set of all extreme points of the polyhedral feasible set S. For all feature
vector x ∈ X , let g∗(x) := E[c|x] denote the conditional expectation, and let W ∗(x) be the
set of optimal solutions, namely W ∗(x) := argminw∈S∠ g∗(x)Tw. Define

A(x) :=

 min
w∈S∠\W ∗(x)

{
g∗(x)Tw

}
− g∗(x)Tw∗(g∗(x)), S∠ ̸= W ∗(x),

0, S∠ = W ∗(x).

Assumption 3.3.1. There exists some constants κ, γ > 0 such that

P (A(X) ∈ (0, δ)) ≤ γ · δκ, ∀δ > 0. (3.7)

The A(·) measures the sub-optimality of the second-best choice with feature vector x. We
notice that the A(·) is at the same order of the margin defined as the distance to degeneracy.

Lemma 3.3.6. Let x ∈ X and c̄ = E[c|x]. Suppose W ∗(c̄) is a singleton. Let C◦ denote
the set of degenerate cost vectors and vS(c̄) := infc∈C◦ {∥c− c̄∥∗} denote the distance to
degeneracy of c̄. Then it holds that

A(x)

DS

≤ vS(c̄) ≤
A(x)

mS

,

where mS = minw,w′∈S∠,w ̸=w′ ∥w − w′∥.

Therefore, when P(c̄(x) ∈ C◦) = 0, then Assumption 3.3.1 is equivalent to the following
Assumption 3.3.2 on the distance to degeneracy the same κ.

Assumption 3.3.2. There exists some constants κ, γ > 0 such that

P (vS(c̄(x)) ∈ [0, δ)) ≤ γ · δκ, ∀δ > 0. (3.8)
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Given the low-noise condition, we can extend Theorem 3 in [17] for binary classification
problem to the general SPO setting.

Theorem 3.3.2. Suppose Assumption 3.3.1 holds. Let ℓ(·) be a surrogate loss function, and
ψ(·) be its calibration function, then there exists some constant C > 0 such that

C (R(g)−R∗)κ/(κ+1) · ψ

(
(R(g)−R∗)1/(κ+1)

2C

)
≤ Rℓ(g)−R∗

ℓ . (3.9)

In polyhedral feasible region case, an upper bound on the original calibration function
for SPO+ loss is ψ(ϵ) ≥ C ′ · ϵ2. Therefore, by applying the results into Theorem 3.3.2, we
have the following guarantee on the SPO+ risk bounds and sample complexity.

Proposition 3.3.1. Suppose Assumption 3.3.1 holds, it holds that

C ′′ · (R(g)−R∗)(κ+2)/(κ+1) ≤ RSPO+(g)−R∗
SPO+. (3.10)

Also, the sample complexity is R(ĝn)−R∗ ≤ O(n− κ+1
2κ+4 ) when Rn(H) ≤ O(n− 1

2 ).

Now we provide the proofs of Lemma 3.3.6 and Theorem 3.3.2.

Proof of Lemma 3.3.6. Since W ∗(c̄) is a singleton, let w∗ = w∗(c̄). Suppose ĉ ∈ C has
multiple optimality with ĉTw′ = ĉTw′′ ≤ ĉTw∗. By the definition of A(x), it holds that
c̄Tw′ − c̄Tw∗ ≥ A(x). Therefore, we have A(x) ≤ (ĉ − c̄)T (w∗ − w′) ≤ ∥ĉ − c̄∥∗ · ∥w∗ − w′∥
and hence ∥ĉ− c̄∥∗ ≥ A(x)

∥w∗−w′∥ ≥
A(x)
DS

. Taking the infimum over ĉ we arrive at vS(c̄) ≥ A(x)
DS

.

On the other hand, pick w′ = argminw∈S∠\{w∗}
c̄T (w−w∗)
∥w−w∗∥ . Let c̃ = c̄− c̄T (w′−w∗)

∥w′−w∗∥ · u, where
u ∈ Rd satisfies ∥u∥∗ = 1 and uT (w′ −w∗) = ∥w′ −w∗∥. For any w′′ ∈ S∠\{w∗, w′}, it holds
that

c̃Tw′′ − c̃Tw∗ = c̄T (w′′ − w∗)− c̄T (w′ − w∗)

∥w′ − w∗∥
· uT (w′ − w∗)

≥ c̄T (w′′ − w∗)− c̄T (w′ − w∗)

∥w′ − w∗∥
· ∥w′′ − w∗∥ ≥ 0.

Therefore, we have c̃ ∈ C◦ and hence

vS(c̄) ≤ ∥c̃− c̄∥ = min
w∈S∠\{w∗}

c̄T (w − w∗)

∥w − w∗∥
≤ min

w∈S∠\{w∗}

c̄T (w − w∗)

mS

=
vS(c̄)

mS

.

First we extend the Lemma 5 in [17] to the general SPO setting. Let w∗
g(x) = w∗(g(x))

for any x ∈ X and Tg = {x ∈ X : g∗(x)T (w∗
g(x)− w∗

g∗(x)) > 0}.
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Lemma 3.3.7 (Lemma 5 in [17]). Suppose Assumption 3.3.1 holds. For any prediction
function g(·) and feature vector x ∈ X , define w∗

g(x) = w∗(g(x)), and define Tg = {x ∈ X :
g∗(x)T (w∗

g(x)− w∗
g∗(x)) > 0}. Then there exists some constant γ′ > 0, such that

RSPO(g)−R∗
SPO ≥ γ′ · P(X ∈ Tg)(κ+1)/κ.

Proof. For any ϵ > 0, it holds that

RSPO(g)−R∗
SPO =E

[
g∗(X)T (w∗

g(X)− w∗
g∗(X))

]
≥ ϵ · P

(
g∗(X)T (w∗

g(X)− w∗
g∗(X)) ≥ ϵ

)
≥ ϵ ·

(
P(X ∈ Tg)− P

(
g∗(X)T (w∗

g(X)− w∗
g∗(X)) ∈ (0, ϵ)

))
≥ ϵ · (P(X ∈ Tg)− γ · ϵκ) ,

where the last inequality comes from Assumption 3.3.1. By setting ϵ← (P(X ∈ Tg)/γ(1 + κ))1/κ,
we have

RSPO(g)−R∗
SPO ≥ γ′ · P(X ∈ Tg)(κ+1)/κ.

Proof of Theorem 3.3.2. For any prediction function g(·) : X → Rd, let dg(x) := g∗(x)T (w∗
g(x)−

w∗
g∗(x)) denote the optimality gap at feature vector x ∈ X . Then, for any ϵ > 0, it holds

that
EX [dg(X)] = EX [dg(X)1{dg(X) ∈ (0, ϵ)}] + EX [dg(X)1{dg(X) > ϵ}].

For the first term, we have

EX [dg(X)1{dg(X) ∈ (0, ϵ)}] ≤ ϵ · EX [1{dg(X) ∈ (0, ϵ)}]
≤ ϵ · EX [1{dg(X) > 0}]

≤ ϵ ·
(
RSPO(g)−R∗

SPO

γ′

)κ/(κ+1)

,

where the last inequality comes from Lemma 3.3.7. For the second term, it holds that for
any x : dg(x) ∈ [0, ϵ] we have

dg(x)1{dg(x) > ϵ} = 0 ≤ ϵ

ψ(ϵ)
· ψ(dg(x)),

and for any x : dg(x) > ϵ we have

dg(x)1{dg(x) > ϵ} = dg(x) ≤
ϵ

ψ(ϵ)
· ψ(dg(x)),

where the last inequality holds since ψ(·) is convex and increasing, and ψ(0) = 0. Therefore,
it holds that

EX [dg(X)1{dg(X) > ϵ}] ≤ EX

[
ϵ

ψ(ϵ)
· ψ(dg(X))

]
≤ ϵ

ψ(ϵ)
· (Rℓ(g)−R∗

ℓ ),
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where the second inequality holds since

ψ(dg(x)) = ψ(Ec|x[ℓSPO(g(x), c)− ℓSPO(g∗(x), c)]) ≤ Ec|x[ℓ(g(x), c)− ℓ(g∗(x), c)].

Therefore, we have

RSPO(g)−R∗
SPO = EX [dg(X)] = EX [dg(X)1{dg(X) ∈ (0, ϵ)}] + EX [dg(X)1{dg(X) > ϵ}]

≤ ϵ ·
(
RSPO(g)−R∗

SPO

γ′

)κ/(κ+1)

+
ϵ

ψ(ϵ)
· (Rℓ(g)−R∗

ℓ ).

By choosing ϵ← γ′

2
·
(

RSPO(g)−R∗
SPO

γ′

)1/(κ+1)

, we have

RSPO(g)−R∗
SPO

2
≤

γ′

2
·
(

RSPO(g)−R∗
SPO

γ′

)1/(κ+1)

ψ

(
γ′

2
·
(

RSPO(g)−R∗
SPO

γ′

)1/(κ+1)
) · (Rℓ(g)−R∗

ℓ ),

which leads to

C (R(g)−R∗)κ/(κ+1) · ψ

(
(R(g)−R∗)1/(κ+1)

2C

)
≤ Rℓ(g)−R∗

ℓ .

3.4 Risk Bounds and Calibration for Strongly Convex

Level Sets

In this section, we develop improved risk bounds for the SPO+ loss function under the
assumption that the feasible region is the level set of a strongly convex and smooth function,
formalized in Assumption 3.4.1 below. The assumption allows the domain of the strongly
convex function to be a subset of Rd. In particular, we define the domain set T ⊆ Rd

by T := {w ∈ Rd : hTi w = si ∀i ∈ [m1], tj(w) < 0 ∀j ∈ [m2]}, where hi ∈ Rd and
si ∈ R for i ∈ [m1], and tj(·) : Rd → R are convex functions for j ∈ [m2]. Clearly,
when m1 = m2 = 0, the set T is the entire vector space Rd. Also, let the closure of T
be T̄ = {w ∈ Rd : hTi w = si ∀i ∈ [m1], tj(w) ≤ 0 ∀j ∈ [m2]}, and with a slight abuse of
notation, let the (relative) boundary of T be ∂T := T̄\T . For any function defined on T ,
we consider the (relative) lower limit be limw→∂T = infδ>0 supw∈T :d(w,∂T )≤δ f(w), where the
distance function d(·, ·) is defined as d(w, ∂T ) = minw′∈∂T ∥w − w′∥2.

Assumption 3.4.1. For a given norm ∥·∥, let f : T → R be a µ-strongly convex function on
T for some µ > 0. Assume that the feasible region S is defined by S = {w ∈ T : f(w) ≤ r}
for some constant r satisfying limw→∂T f(w) > r > fmin := minw∈T f(w). Additionally,
assume that f is L-smooth on S for some L ≥ µ.
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The assumption allows for a broad choice of feasible regions, for instance, any bounded
ℓq ball for any q ∈ (1, 2] and the probability simplex with entropy constraint. The latter
example, which can also be thought of as portfolio allocation with an entropy constraint, is
considered in the experiments in Section 3.5.

As in the polyhedral case, the distribution class Pcont, symm is not restrictive enough to
derive a meaningful lower bound on the calibration function of the SPO+ loss. We instead
consider two related classes of rotationally symmetric distributions with bounded conditional
coefficient of variation. These distribution classes are formally defined in Definition 3.4.1
below, and include the multi-variate Gaussian, Laplace, and Cauchy distributions as special
cases.

Definition 3.4.1. Let A be a given positive definite matrix. We define Prot symm,A as the
class of distributions with conditional rotational symmetry in the norm ∥ · ∥A−1, namely

Prot symm,A := {P : ∀x ∈ X , ∃q(·) : [0,∞]→ [0,∞] such that P(c|x) = q(∥c− c̄∥A−1)}.

Let c̄ denote the conditional expectation c̄ = E[c|x]. For constants α ∈ (0, 1] and β > 0,
define

Pβ,A :=
{
P ∈ Prot symm,A : Ec|x[∥c− c̄∥2A−1 ] ≤ β2 · ∥c̄∥2A−1 , ∀x ∈ X

}
,

and
Pα,β,A :=

{
P ∈ Prot symm,A : Pc|x(∥c− c̄∥A−1 ≤ β · ∥c̄∥A−1) ≥ α, ∀x ∈ X

}
.

Under the above assumptions, Theorem 3.4.1 demonstrates that the calibration function
of the SPO+ loss is O(ϵ), significantly strengthening our result in the polyhedral case. The
results hold for the aforementioned case where the domain of f(·) may be a subset of Rd,
which includes the entropy constrained portfolio allocation problem for example. Also, the
results provide lower bounds of the calibration function of two different distribution classes,
which include the multi-variate Gaussian, Laplace, and Cauchy distribution.

Theorem 3.4.1. Suppose that Assumption 3.4.1 holds with respect to the norm ∥·∥A for some

positive definite matrix A. Then, for any ϵ > 0, it holds that δ̂ℓSPO+
(ϵ;Pβ,A) ≥ µ9/2

4(1+β2)L9/2 · ϵ
and δ̂ℓSPO+

(ϵ;Pα,β,A) ≥ αµ9/2

4(1+β2)L9/2 · ϵ.

Let us now provide some more intuition on the parameters involved in the definitions
of the distribution classes Pβ,A and Pα,β,A and their roles in Theorem 3.4.1. In both cases,
the parameter β controls the concentration of the distribution of cost vector around the
conditional mean. The more concentrated the distribution is, the better the bounds in
Theorem 3.4.1 are. In the case of Pα,β,A, the parameter α relates to the probability that the
cost vector is “relatively close” to the conditional mean. When α is larger, the cost vector
is more likely to be close to the conditional mean and the bound will be better.

Our analysis for the calibration function (the proof of Theorem 3.4.1) relies on the follow-
ing two lemmas, which utilize the special structure of the feasible region to strengthen the
“first-order optimality” and provide a “Lipschitz-like” continuity of the optimization oracle



CHAPTER 3. RISK BOUNDS AND CALIBRATION FOR A SMART
PREDICT-THEN-OPTIMIZE METHOD 52

w∗(·). We want to mention that some of the results in the following two lemmas generalize
the results in [28] to the cases where the feasible region S is defined on a subspace of Rd

rather than an open set in Rd. Let H denote the linear subspace defined by the linear combi-
nation of all hj, namely H = span({hj}m2

j=1), and let H⊥ denote its orthogonal complement,

namely H⊥ = {w ∈ Rd : hTj w = 0,∀j ∈ [m2]}. Also, for any c ∈ Rd, let projH⊥(c) denote
its projection onto H⊥. A special instance is when m1 = m2 = 0, and thus H⊥ = Rd. The
first such lemma strengthens the optimality guarantees of (3.2) and provides both upper and
lower bounds of the SPO loss.

Lemma 3.4.1. Suppose Assumption 3.4.1 holds with respect to a generic norm ∥ · ∥. Then,
for any c1, c2 ∈ Rd, it holds that

cT1 (w − w∗(c1)) ≥
µ

2
√

2L(r − fmin)
∥projH⊥(c1)∥∗∥w − w∗(c1)∥2, ∀w ∈ S, (3.11)

and

cT1 (w
∗(c2)− w∗(c1)) ≤

L

2
√

2µ(r − fmin)
∥projH⊥(c1)∥∗∥w∗(c1)− w∗(c2)∥2. (3.12)

The two constants are the same since Theorem 12 in [43] showed that set S is a µ√
2Lr

-
strongly convex set. The following lemma provides upper and lower bounds in the difference
between two optimal decision based on the difference between the two normalized cost vector.

Lemma 3.4.2. Suppose that Assumption 3.4.1 holds with respect to a generic norm ∥ · ∥.
Let c1, c2 ∈ Rd be such that projH⊥(c1), projH⊥(c2) ̸= 0, then it holds that

∥w∗(c1)− w∗(c2)∥ ≥
√

2µ(r − fmin)

L
·
∥∥∥∥ projH⊥(c1)

∥projH⊥(c1)∥∗
− projH⊥(c2)

∥projH⊥(c2)∥∗

∥∥∥∥
∗
,

and

∥w∗(c1)− w∗(c2)∥ ≤
√

2L(r − fmin)

µ
·
∥∥∥∥ projH⊥(c1)

∥projH⊥(c1)∥∗
− projH⊥(c2)

∥projH⊥(c2)∥∗

∥∥∥∥
∗
.

Note that the lower bound of cT1 (w − w∗(c1)) in Lemma 3.4.1 and the upper bound of
∥w∗(c1) − w∗(c2)∥ in Lemma 3.4.2 match bounds developed by [28]. Indeed, although [28]
study the more general case of strongly convex sets, the constants are the same since Theorem
12 of [43] demonstrates that our set S is a µ√

2L(r−fmin)
-strongly convex set. However, the

upper bounds in Lemmas 3.4.1 and 3.4.2 appear to be novel and rely on the special properties
of strongly convex level sets. It is important to emphasize that we generally do not expect
all of the bounds in Lemmas 3.4.1 and 3.4.2 to holds for polyhedral sets. Indeed, for a
polyhedron the optimization oracle w∗(·) is generally discontinuous at cost vectors that have
multiple optimal solutions. The properties in Lemmas 3.4.1 and 3.4.2 drive the proof of
Theorem 3.4.1 and hence lead to the improvement from O(ϵ2) in the polyhedral case to O(ϵ)
in the strongly convex level set case.
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By following similar arguments as in the derivation of Corollaries 3.3.1 and 3.4.1 presents
the sample complexity of the SPO+ method when the feasible region is a strongly convex
level set.

Corollary 3.4.1. Suppose that Assumption 3.4.1 holds with respect to the norm ∥ · ∥A for
some positive definite matrix A. Suppose further that the optimal predictor g∗(x) = E[c|x] is
in the hypothesis class H, and there exists a constant C ′ such that Rn(H) ≤ C′

√
n
. Let ĝnSPO+

denote the predictor which minimizes the empirical SPO+ risk R̂n
SPO+(·) over H. Then there

exists a constant C such that for any P ∈ Pα,β ∪ Pβ and δ ∈ (0, 1
2
), with probability at least

1− δ, it holds that

RSPO(ĝ
n
SPO+;P)−R∗

SPO(P) ≤
C
√
log(1/δ)

n1/2
.

Notice that Corollary 3.4.1 improves the rate of convergence to O(1/
√
n) as compared

to the O(1/n1/4) rate of Corollary 3.3.1. This matches the rate for the squared ℓ2 surrogate
developed by [41] (though their result is in the polyhedral case).

Proof of Corollaries 3.3.1 and 3.4.1. Let b = supĉ∈H(X ),c∈C ℓ(ĉ, c) ≤ 2DS supg∈H,x∈X ∥g(x)∥2.
For any δ > 0, with probability at least 1− δ, for all g ∈ H, it holds that∣∣∣Rℓ(g;P)− R̂n

ℓ (g)
∣∣∣ ≤ 4

√
2DSR

n(H) + b

√
2 log(1/δ)

n
.

Since Rn(H) ≤ C′
√
n
and log(1/δ) ≥ log(2), we know that there exists some universal constant

C1 such that

4
√
2DSR

n(H) + b

√
2 log(1/δ)

n
≤ C1

√
log (1/δ)

n
,

for all δ ∈ (0, 1
2
) and n ≥ 1. Since ĝnSPO+ minimizes the empirical SPO+ risk R̂n

SPO+(·), we
have R̂n

SPO+(ĝ
n
SPO+) ≤ R̂n

SPO+(g
∗
SPO+). and therefore, with probability at least 1− δ, it holds

that

RSPO+(ĝ
n
SPO+)−R∗

SPO+ ≤ 2C1

√
log (1/δ)

n
.

Recall Theorem 3.3.1, the biconjugate of min{ ϵ2

DSM
, ϵ} is ϵ2

DSM
for ϵ ∈ [0, DSM

2
] and ϵ− DSM

4

for ϵ ∈ [DSM
2
,∞]. Then if the assumption in Corollary 3.3.1 holds, with probability at least

1− δ, it holds that

RSPO(ĝ
n
SPO+;P)−R∗

SPO(P) ≤
C2

√
log(1/δ)

n1/4
,

for some universal constant C2. Also, since the calibration function in Theorem 3.4.1 is linear
and thus convex, then if the assumption in Corollary 3.3.1 holds, with probability at least
1− δ, it holds that

RSPO(ĝ
n
SPO+;P)−R∗

SPO(P) ≤
C3

√
log(1/δ)

n1/2
,

for some universal constant C3.
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In the remaining part of this section, we provide the proof of Theorem 3.4.1, Lemma 3.4.1,
and Lemma 3.4.2. Also, for any vector c ∈ Rd, we will use c̃ to represent the projection
projH⊥(c) for simplicity. Likewise, when c = ∇f(w) we shorten this notation even further
to ∇̃f(w).

First we provide some useful properties in the following lemma.

Lemma 3.4.3. If f(·) is µ-strongly convex on S, the for all w ∈ S, it holds that

∥∇̃f(w)∥2∗ ≥
√

2µ(f(w)− fmin).

Proof. First, for all c ∈ Rd and w,w′ ∈ S, it holds that

cT (w − w′)− c̃T (w − w′) = (c− c̃)T (w − w′) =

m2∑
j=1

αjhj(w − w′) = 0.

Since f(·) is µ-strongly convex, it holds that f(w′) ≥ f(x) +∇f(w)T (w′ −w) + µ
2
∥w′ −w∥2

for all w′ ∈ S. Therefore, it holds that

inf
w′∈S

f(w′) ≥ inf
w′∈S

{
f(w) +∇f(w)T (w′ − w) + µ

2
∥w′ − w∥2

}
= inf

w′∈S

{
f(w) + ∇̃f(w)T (w′ − w) + µ

2
∥w′ − w∥2

}
≥ inf

w′∈Rd

{
f(w) + ∇̃f(w)T (w′ − w) + µ

2
∥w′ − w∥2

}
= f(w)− 1

2µ
∥∇̃f(w)∥2∗.

Lemma 3.4.4. If f(·) is L-smooth on S, then for all w ∈ S, it holds that

∥∇̃f(w)∥2∗ ≤
√
2L(f(w)− fmin).

Proof. If ∇̃f(w) = 0, then the statement holds. Otherwise, there exists u ∈ Rd such that
∥u∥ = 1 and ∇̃f(w)Tu = ∥∇̃f(w)∥∗. Let v = ∥∇̃f(w)∥∗u, we have ∥v∥ = ∥∇̃f(w)∥∗ and
∇̃f(w)Tv = ∥∇̃f(w)∥2∗. Let

α = supα′, s.t. f(w − α′ṽ) ≤ r.

Since gi(·) is continuous and gi(w) < 0 for all i ∈ [m1], we have α > 0 and since f(·) is
continuous, we have f(w − αṽ) = r. Since f(·) is L-smooth on S, it holds that

f(w − αṽ) ≤ f(w)− α∇f(w)T ṽ + α2L

2
∥ṽ∥2 = f(w)− α∇̃f(w)T ṽ + α2L

2
∥ṽ∥2

= f(w)− α∇̃f(w)Tv + α2L

2
∥ṽ∥2 ≤ f(w)− α∇̃f(w)Tv + α2L

2
∥v∥2

= f(w)− 2α− α2L

2
∥∇̃f(w)∥2∗.
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Therefore, we have 2α − α2L ≤ 0. Moreover, since α > 0, then it holds that α ≥ 2
L
. Now

we know that w − ṽ
L
∈ S, and

fmin ≤ f

(
w − ṽ

L

)
≤ f(w)− 1

2L
∥∇̃f(w)∥2∗.

Therefore, it holds that ∥∇̃f(w)∥∗ ≤
√
2L(f(w)− fmin).

Now we provide the proofs of Lemma 3.4.1 and Lemma 3.4.2.

Proof of Lemma 3.4.1. Let w1 = w∗(c1) and w2 = w∗(c2). Since f(·) is µ-strongly convex on
S, it holds that

f(w)− f(w1)−∇f(w1)
T (w − w1) ≥

µ

2
∥w − w1∥2.

Since the Slater condition holds, the KKT necessary condition indicates that there exists
scalar u ≥ 0 such that c̃1+u∇̃f(w1) = 0 and u(f(w1)−r) = 0. When c̃1 ̸= 0, we additionally
have f(w1) = r. Therefore, it holds that

cT1 (w − w1) = c̃T1 (w − w1) = u ·
(
−∇̃f(w1)

T (w − w1)
)
= u ·

(
−∇f(w1)

T (w − w1)
)

≥ u ·
(
f(w1)− f(w) +

µ

2
∥w − w1∥2

)
≥ uµ

2
∥w − w1∥2,

where the last inequality holds since f(w1) = r ≥ f(w). Therefore, it holds that

cT1 (w − w1) ≥
µ∥c̃1∥∗∥w − w1∥2

2∥∇̃f(w1)∥∗
. (3.13)

Since f(·) is L-smooth on S, it holds that ∥∇̃f(w1)∥∗ ≤
√
2L(r − fmin), and hence we have

∥c̃1∥∗
∥∇̃f(w1)∥∗

≥ ∥c̃1∥∗√
2L(r − fmin)

.

By applying the above inequality to (3.13), we can conclude that

cT (w − w1) ≥
µ

2
√
2L(r − fmin)

∥c̃1∥∗∥w − w1∥2.

On the other hand, it holds that

cT1 (w2 − w1) = c̃T1 (w2 − w1) = u ·
(
−∇̃f(w1)

T (w2 − w1)
)
= u ·

(
−∇f(w1)

T (w2 − w1)
)

≤ u ·
(
f(w1)− f(w2) +

L

2
∥w2 − w1∥2

)
=
uL

2
∥w − w1∥2,
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where the last inequality holds since f(w1) = r = f(w2). Therefore, it holds that

cT1 (w2 − w1) ≤
L∥c̃1∥∗∥w2 − w1∥2

2∥∇̃f(w1)∥∗
. (3.14)

Since f(·) is µ-strongly convex on S, it holds that ∥∇̃f(w1)∥∗ ≥
√
2µ(r − fmin), and hence

we have
∥c̃1∥∗

∥∇̃f(w1)∥∗
≤ ∥c̃1∥∗√

2µ(r − fmin)
.

By applying the above inequality to (3.14), we can conclude that

cT (w − w1) ≤
L

2
√
2µ(r − fmin)

∥c̃1∥∗∥w2 − w1∥2.

Proof of Lemma 3.4.2. Without loss of generality we assume ∥c̃1∥∗ = ∥c̃2∥∗ = 1. Let w1 =
w∗(c1) and w2 = w∗(c2). By KKT condition there exists u1, u2 > 0 such that∇f(wi) = −uici
and f(wi) = r for i = 1, 2. Also, since f(·) is µ-strongly convex, it holds that

∥∇̃f(wi)∥∗ ≥
√
2µ(f(xi)− fmin) =

√
2µ(r − fmin),

for i = 1, 2. Then, it holds that

∥∇̃f(w1)− ∇̃f(w2)∥∗ ≥ min
u′
1,u

′
2≥
√

2µ(r−fmin)

∥u′1c̃1 − u′2c̃2∥∗ =
√

2µ(r − fmin) · ∥c̃1 − c̃2∥∗.

Moreover, since f(·) is L-smooth, it holds that

∥w1 − w2∥ ≥
1

L
· ∥∇f(w1)−∇f(w2)∥∗ ≥

1

L
· ∥∇̃f(w1)− ∇̃f(w2)∥∗ ≥

√
2µr

L
· ∥c̃1 − c̃2∥∗.

In the rest part of this section, without loss of generality we assume fmin = 0. Also, since
w ∗ (c) = w∗(c̃) and cT (w∗(c′)− w∗(c)) = c̃T (w∗(c′)− w∗(c)) for all c, c′ ∈ Rd, we will ignore
the˜notation and assume all c, c′ ∈ H⊥. In Theorem 3.4.2 we provide a lower bound of an
SPO-like loss.

Theorem 3.4.2. When c ̸= 0 and c+ 2∆ ̸= 0, it holds that

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ2r1/2

21/2L5/2
· ∥c+ 2∆∥∗ ·

∥∥∥∥ c

∥c∥∗
− c+ 2∆

∥c+ 2∆∥∗

∥∥∥∥2
∗
.
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When the norm we consider is A-norm defined by ∥x∥A =
√
xTAx for some positive definite

matrix A, additionally we have

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ2r1/2

21/2L5/2

(
∥c+ 2∆∥A−1 − cTA−1(c+ 2∆)

∥c∥A−1

)
.

Moreover, if P(c = 0) = P(c = −2∆) = 0, it holds that

ℓSPO+(∆) ≥ µ2r1/2

21/2L5/2
· Ec

[
∥c+ 2∆∥A−1 − cTA−1(c+ 2∆)

∥c∥A−1

]
.

Proof of Theorem 3.4.2. Apply c1 = c and c2 = c+ 2∆ to Lemma 3.4.2, we have

∥w∗(c)− w∗(c+ 2∆)∥ ≥
√

2µr ·
∥∥∥∥ c

∥c∥∗
− c+ 2∆

∥c+ 2∆∥∗

∥∥∥∥
∗
.

By applying the above inequality to (3.11) we have

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ

2
√
2Lr
· ∥c+ 2∆∥∗ · ∥w∗(c)− w∗(c+ 2∆)∥2

≥ µ

2
√
2Lr
· ∥c+ 2∆∥∗ ·

(√
2µr

L
·
∥∥∥∥ c

∥c∥∗
− c+ 2∆

∥c+ 2∆∥∗

∥∥∥∥
∗

)2

=
µ2r1/2

21/2L5/2
· ∥c+ 2∆∥∗ ·

∥∥∥∥ c

∥c∥∗
− c+ 2∆

∥c+ 2∆∥∗

∥∥∥∥2
∗
.

When the norm we consider is A-norm, then it holds that

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ2r1/2

21/2L5/2
· ∥c+ 2∆∥2 ·

∥∥∥∥ c

∥c∥A−1

− c+ 2∆

∥c+ 2∆∥A−1

∥∥∥∥2
A−1

=
µ2r1/2

21/2L5/2

(
∥c+ 2∆∥A−1 − cTA−1(c+ 2∆)

∥c∥A−1

)
.

Moreover, if P(c = 0) = P(c = −2∆) = 0, by taking the expectation of c we get

ℓSPO+(∆) ≥ µ2r1/2

21/2L5/2
· Ec

[
∥c+ 2∆∥A−1 − cTA−1(c+ 2∆)

∥c∥A−1

]
.

The following lemma provides a necessary condition on ∆ such that the excess SPO loss
of ĉ = c̄+∆ is at least ϵ.

Lemma 3.4.5. Suppose the excess SPO loss of ĉ = c̄ + ∆ is at least ϵ, that is, c̄T (w∗(c̄ +
∆)− w∗(c̄)) ≥ ϵ. Then it holds that∥∥∥∥ c̄

∥c̄∥∗
− c̄+∆

∥c̄+∆∥∗

∥∥∥∥2
∗
≥ 21/2µ5/2ϵ

L2r1/2∥c̄∥∗
.
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When the norm we consider is A-norm defined by ∥x∥A =
√
xTAx for some positive definite

matrix A, additionally we have

1− c̄TA−1(c̄+∆)

∥c̄∥A−1 · ∥c̄+∆∥A−1

≥ µ5/2

21/2L2r1/2∥c̄∥A−1

· ϵ.

Proof of Lemma 3.4.5. In Lemma 3.4.1 we show that

cT1 (w
∗(c2)− w∗(c1)) ≤

L

2
√
2µr
∥c1∥∗∥w∗(c1)− w∗(c2)∥2.

Let c1 = c̄ and c2 = ĉ, it holds that

∥w∗(c̄)− w∗(c̄+∆)∥2 ≥ 2
√
2µr

L∥c̄∥∗
· c̄T (w∗(c̄+∆)− w∗(c̄)) ≥ 2

√
2µrϵ

L∥c̄∥∗
.

Theorem 3 in [28] shows that for c1, c2 ∈ Rd, it holds that

∥c1 − c2∥∗ ≥
µ√
2Lr
·min{∥c1∥∗, ∥c2∥∗} · ∥w∗(c1)− w∗(c2)∥.

By applying c1 =
c̄

∥c̄∥∗ and c2 =
c̄+∆

∥c̄+∆∥∗ , we have∥∥∥∥ c̄

∥c̄∥∗
− c̄+∆

∥c̄+∆∥∗

∥∥∥∥2 ≥ µ2

2Lr
·
∥∥∥∥w∗

(
c̄

∥c̄∥∗

)
− w∗

(
c̄+∆

∥c̄+∆∥∗

)∥∥∥∥2
=

µ2

2Lr
· ∥w∗(c̄)− w∗(c̄+∆)∥2∗ ≥

21/2µ5/2ϵ

L2r1/2∥c̄∥∗
.

When the norm we consider is 2-norm, it holds that

1− c̄TA−1(c̄+∆)

∥c̄∥A−1 · ∥c̄+∆∥A−1

=
1

2

∥∥∥∥ c̄

∥c̄∥A−1

− c̄+∆

∥c̄+∆∥A−1

∥∥∥∥2
A−1

≥ µ5/2ϵ

21/2L2r1/2∥c̄∥A−1

.

From Theorem 3.4.2 and Lemma 3.4.5, we know that ℓSPO+(c,∆) have a lower bound

C1(µ, L, r) · ℓSPO+(c,∆), where C1(µ, L, r) =
µ2r1/2

21/2L5/2 and

ℓSPO+(c,∆) = ∥c+ 2∆∥A−1 − cTA−1(c+ 2∆)

∥c∥A−1

.

Moreover, the excess SPO risk of ĉ = c̄+∆ is at least ϵ implies that RSPO(∆) ≥ C2(µ, L, r) ·ϵ
where C2(µ, L, r) =

µ5/2

21/2L2r1/2
and

RSPO(∆) = ∥c̄∥A−1 − c̄TA−1(c̄+∆)

∥c̄+∆∥A−1

.
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Let RSPO+(∆) = Ec[ℓSPO+(c,∆)]. We know that the calibration function δ(ϵ) has a lower
bound δ′(ϵ) which defined as

δ′(ϵ) := min
∆

C1(µ, L, r) ·RSPO+(∆)

s.t. RSPO(∆) ≥ C2(µ, L, r) · ϵ.
(3.15)

Here we first provide two properties of random variable c when P ∈ Prot symm.

Proposition 3.4.1. Suppose P ∈ Prot symm. If ∥c̄ + ζ∥A−1 = ∥c̄∥A−1 for some ζ ∈ Rp, it
holds that

Ec [∥c+ ζ∥A−1 ] = Ec [∥c∥A−1 ] .

Proposition 3.4.2. Suppose P ∈ Prot symm. When d ≥ 2, for any constant t ≥ 0, it holds
that

Ec

[
c̄TA−1c

∥c∥A−1

∣∣∣∣ ∥c− c̄∥A−1 = t

]
≥
∥c∥2A−1 min{∥c∥A−1 , t}

t2 + ∥c̄∥A−1t
.

Proof of Proposition 3.4.2. For simplicity we just assume ∥c − c̄∥A−1 = t from now on and
ignore the conditional probability. Let ω = c− c̄. Since p(c) = p(2c̄− c), we have

Ec

[
c̄TA−1c

∥c∥A−1

]
=

1

2
· Ec

[
c̄TA−1c

∥c∥A−1

+
c̄TA−1(2c̄− c)
∥2c̄− c∥A−1

]
=

1

2
· Eω

[
c̄TA−1(c̄+ ω)

∥c̄+ ω∥A−1

+
c̄TA−1(c̄− ω)
∥c̄− ω∥A−1

]
.

By the fact that c̄TA−1c̄(∥c̄−w∥A−1+∥c̄+w∥A−1) ≥ 2∥c̄∥2A−1∥w∥A−1 ≥ c̄TA−1w(∥c̄−w∥A−1−
∥c̄+w∥A−1), it holds that c̄TA−1(c̄+w)∥c̄−w∥A−1 + c̄TA−1(c̄−w)∥c̄−w∥A−1 ≥ 0 and hence

c̄TA−1(c̄+ ω)

∥c̄+ ω∥A−1

+
c̄TA−1(c̄− ω)
∥c̄− ω∥A−1

≥ 0.

Therefore, we further get

Ec

[
c̄TA−1c

∥c∥A−1

]
≥ 1

2
· Eω

[
c̄TA−1(c̄+ ω)

∥c̄+ ω∥A−1

+
c̄TA−1(c̄− ω)
∥c̄− ω∥A−1

∣∣∣∣ c̄Tω ∈ C] · P(c̄Tω ∈ C),
where C = [−∥c̄∥2A−1 , ∥c̄∥2A−1 ]. For any ω such that c̄Tω ∈ C, we have

c̄TA−1(c̄+ ω)

∥c̄+ ω∥A−1

+
c̄TA−1(c̄− ω)
∥c̄− ω∥A−1

≥ c̄TA−1(c̄+ ω)

∥c̄∥A−1 + ∥ω∥A−1

+
c̄TA−1(c̄− ω)
∥c̄∥A−1 + ∥ω∥A−1

=
2c̄TA−1c̄

∥c̄∥A−1 + ∥ω∥A−1

.

Also, when d ≥ 2, we have P(c̄Tω ∈ C) ≥ min{∥c̄∥,t}
t

. Then we can conclude that

Ec

[
c̄TA−1c

∥c∥A−1

]
≥
∥c̄∥2A−1 min{∥c̄∥A−1 , t}

t2 + ∥c̄∥A−1t
.
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By first-order necessary condition we know that ∆ is an optimal solution to (3.15) only
if

∇RSPO+(∆)− α∇RSPO(∆) = 0 (3.16)

for some α ≥ 0. Also, for any fixed ∆, it holds that

∇RSPO+(∆) = Ec

[
A−1(c+ 2∆)

∥c+ 2∆∥A−1

− A−1c

∥c∥A−1

]
,

and

∇RSPO(∆) =
c̄TA−1(c̄+∆) · A−1∆−∆TA−1(c̄+∆) · A−1c̄

∥c̄+∆∥3A−1

.

The following lemma simplifies ∇ℓSPO+(∆).

Lemma 3.4.6. Suppose P ∈ Prot symm. Then there exists a unique function ζ(·) : [0,∞] →
[0,∞] such that for all ∆ ∈ Rd, it holds that

Ec

[
c+∆

∥c+∆∥A−1

]
= ζ(∥c̄+∆∥A−1)(c̄+∆).

Also, α · ζ(α) is a non-decreasing function.

Proof. Let h(∆) denote Ec[
c+∆

∥c+∆∥ ]. First we show that h(∆) has the same direction as

c̄ + ∆. Let ϕ∆(·) denote the affine transform ϕ∆(·) : ξ → 2(c̄+∆)TA−1ξ

∥c̄+∆∥2
A−1

(c̄ + ∆) − ξ. We have

ϕ∆(ϕ∆(ξ)) = ξ and ∥ξ∥A−1 = ∥ϕ∆(ξ)∥A−1 for all ξ ∈ Rd. It leads to p(ξ) = p(ϕ∆(ξ)) and
hence

h(∆) =
1

2
Ec

[
c+∆

∥c+∆∥A−1

+
ϕ∆(c+∆)

∥ϕ∆(c+∆)∥A−1

]
=

1

2
Ec

[
(c+∆) + ϕ∆(c+∆)

∥c+∆∥A−1

]
= Ec

[
(c̄+∆)TA−1(c+∆)

∥c+∆∥A−1 · ∥c̄+∆∥2A−1

]
(c̄+∆).

Now we let

ζ̂(c̄+∆) = Ec

[
(c̄+∆)TA−1(c+∆)

∥c+∆∥A−1 · ∥c̄+∆∥2A−1

]
,

and we want to show that ζ̂(c̄ + ∆) = ζ̂(c̄ + ∆′) if ∥c̄ + ∆∥A−1 = ∥c̄ + ∆′∥A−1 . Since
∥c̄ + ∆∥A−1 = ∥c̄ + ∆′∥A−1 , there exists a matrix R ∈ Rd×d such that A−1/2(c̄ + ∆′) =
RA−1/2(c̄ + ∆) and RRT = RTR = I. Let c′ be a random variable depending on c where
c′ = A1/2RA−1/2(c− c̄) + c̄. It holds that A−1/2(c′ − c̄) = RA−1/2(c− c̄), which implies that
∥c′ − c̄∥A−1 = ∥c− c̄∥A−1 and therefore p(c− c̄) = p(c′ − c̄). Also, we have A−1/2(c′ +∆′) =
RA−1/2(c+∆), which implies that ∥c′ +∆′∥A−1 = ∥c+∆∥A−1 and therefore

(c̄+∆′)TA−1(c′ +∆′)

∥c′ +∆′∥A−1

=
(c̄+∆)TA−1/2RTRA−1/2(c+∆)

∥c+∆∥A−1

=
(c̄+∆)TA−1(c+∆)

∥c+∆∥A−1

.
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Moreover, since det(A1/2RA−1/2) = 1, it holds that

Ec

[
(c̄+∆′)TA−1(c+∆′)

∥c+∆′∥A−1

]
= Ec

[
(c̄+∆′)TA−1(c′ +∆′)

∥c′ +∆′∥A−1

]
= Ec

[
(c̄+∆′)TA−1(c+∆′)

∥c+∆′∥A−1

]
.

Therefore,

ζ̂(c̄+∆) =
1

∥c̄+∆∥2A−1

· Ec

[
(c̄+∆′)TA−1(c+∆′)

∥c+∆′∥A−1

]
=

1

∥c̄+∆′∥2A−1

· Ec

[
(c̄+∆′)TA−1(c+∆′)

∥c+∆′∥A−1

]
= ζ̂(c̄+∆′).

Therefore, we know that ζ(·) : R→ R is a well-defined function based on the above property
of ζ̂(·). Now we are going to prove that α · ζ(α) is a non-decreasing function. Pick arbitrary
α′
1 > α′

2 > 0, we have ζ(α′
1) = ζ̂(α1 · c̄) and ζ(α′

2) = ζ̂(α2 · c̄), where αi = α′
i/∥c̄∥A−1 for

i = 1, 2. Therefore,

α′
1 · ζ(α′

1) ≥ α′
2 · ζ(α′

2)⇔ α1 · ζ̂(α1 · c̄) ≥ α2 · ζ̂(α2 · c̄)

⇔α1Ec

[
(α1 · c̄)TA−1((c− c̄) + α1 · c̄)
∥(c− c̄) + α1 · c̄∥A−1 · ∥α1 · c̄∥2A−1

]
≥ α2Ec

[
(α2 · c̄)TA−1((c− c̄) + α2 · c̄)
∥(c− c̄) + α2 · c̄∥A−1 · ∥α2 · c̄∥2A−1

]
⇔Ec

[
c̄TA−1((c− c̄) + α1 · c̄)
∥(c− c̄) + α1 · c̄∥A−1

]
≥ Ec

[
c̄TA−1((c− c̄) + α2 · c̄)
∥(c− c̄) + α2 · c̄∥A−1

]
.

It is sufficient to show that

c̄TA−1(ζ + α1 · c̄)
∥ζ + α1 · c̄∥A−1

≥ c̄TA−1(ζ + α2 · c̄)
∥ζ + α2 · c̄∥A−1

, (3.17)

for all ζ ∈ Rd when α1 > α2 > 0. We divide the proof into three cases. When c̄TA−1(ζ +
α1 · c̄) > c̄TA−1(ζ + α2 · c̄) ≥ 0, (3.17) is equivalent to(

c̄TA−1(ζ + α1 · c̄)
)2 · ∥ζ + α2 · c̄∥2A−1 ≥

(
c̄TA−1(ζ + α2 · c̄)

)2 · ∥ζ + α1 · c̄∥2A−1

⇔(α1 − α2)
(
c̄TA−1(ζ + α1 · c̄) + c̄TA−1(ζ + α2 · c̄)

) (
c̄TA−1c̄ · ζTA−1ζ − (c̄TA−1ζ)2

)
≥ 0.

When c̄T (ζ+α1 · c̄) ≥ 0 ≥ c̄T (ζ+α2 · c̄), we know that left hand side of (3.17) is non-negative
and right hand side is non-positive. When 0 > c̄T (ζ + α1 · c̄) ≥ c̄T (ζ + α2 · c̄), (3.17) is
equivalent to(

c̄TA−1(ζ + α1 · c̄)
)2 · ∥ζ + α2 · c̄∥2A−1 ≤

(
c̄TA−1(ζ + α2 · c̄)

)2 · ∥ζ + α1 · c̄∥2A−1

⇔(α1 − α2)
(
c̄TA−1(ζ + α1 · c̄) + c̄TA−1(ζ + α2 · c̄)

) (
c̄TA−1c̄ · ζTA−1ζ − (c̄TA−1ζ)2

)
≤ 0.
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Following the results in Lemma 3.4.6 we have

Ec

[
c

∥c∥A−1

]
= ζ(∥c̄∥A−1)c̄, Ec

[
c+ 2∆

∥c+ 2∆∥A−1

]
= ζ(∥c̄+ 2∆∥A−1)(c̄+ 2∆).

Hence, (3.16) is equivalent to

ζ(∥c̄+ 2∆∥A−1)(c̄+ 2∆)− ζ(∥c̄∥A−1)c̄ = α · c̄
TA−1(c̄+∆) ·∆−∆TA−1(c̄+∆) · c̄

∥c̄+∆∥3A−1

.

Since c̄ and ∆ are linearly independent, (3.16) is further equivalent to

2ζ(∥c̄+ 2∆∥A−1)

c̄TA−1(c̄+∆)
=

α

∥c̄+ 2∆∥3A−1

=
ζ(∥c̄+ 2∆∥A−1)− ζ(∥c̄∥A−1)

−∆TA−1(c̄+∆)
,

which is also equivalent to

(c̄+ 2∆)TA−1(c̄+∆) · ζ(∥c̄+ 2∆∥A−1) = c̄TA−1(c̄+∆) · ζ(∥c̄∥A−1). (3.18)

Lemma 3.4.7. Suppose P ∈ Prot symm and ∆̂ is a solution to (3.16), then it holds that

∥c̄+ 2∆̂∥A−1 = ∥c̄∥A−1 ,

and
(c̄+ 2∆̂)TA−1(c̄+ ∆̂) = c̄TA−1(c̄+ ∆̂).

Proof. Suppose ∥c̄+2∆̂∥A−1 ̸= ∥c̄∥A−1 . Without loss of generality we assume ∥c̄+2∆̂∥A−1 >
∥c̄∥A−1 . Following results in Lemma 3.4.6 we know that

∥c̄+ 2∆∥A−1 · ζ(∥c̄+ 2∆∥A−1) ≥ ∥c̄∥A−1 · ζ(∥c̄∥A−1).

Also, it holds that

∆̂TA−1(c̄+ ∆̂) =
1

4

(
∥c̄+ 2∆̂∥2A−1 − ∥c̄∥2A−1

)
> 0.

Since (c̄+ 2∆̂)TA−1(c̄+ ∆̂) = (c̄+ ∆̂)TA−1(c̄+ ∆̂) + ∆̂TA−1(c̄+ ∆̂) > 0, it holds that

(c̄+ 2∆̂)TA−1(c̄+ ∆̂)

∥c̄+ 2∆̂∥A−1

>
c̄TA−1(c̄+ ∆̂)

∥c̄∥A−1

⇔(c̄+ 2∆̂)TA−1(c̄+ ∆̂) · ∥c̄∥A−1 > c̄TA−1(c̄+ ∆̂) · ∥c̄+ 2∆̂∥A−1

⇐
(
(c̄+ 2∆̂)TA−1(c̄+ ∆̂)

)2
· ∥c̄∥2A−1 >

(
c̄TA−1(c̄+ ∆̂)

)2
· ∥c̄+ 2∆̂∥2A−1

⇔
(
∆̂TA−1(c̄+ ∆̂)

)
·
(
∥c̄+ ∆̂∥2A−1 · ∥∆̂∥2A−1 − (∆̂TA−1(c̄+ ∆̂))2

)
> 0.
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Therefore, we have

(c̄+ 2∆)TA−1(c̄+∆) · ζ(∥c̄+ 2∆∥A−1) > c̄TA−1(c̄+∆) · ζ(∥c̄∥A−1),

which contradicts with (3.18). Therefore, we have ∥c̄ + 2∆̂∥A−1 = ∥c̄∥A−1 and hence (c̄ +
2∆̂)TA−1(c̄+ ∆̂) = c̄TA−1(c̄+ ∆̂).

Based on the above property, we provide a lower bound of calibration function.

Theorem 3.4.3. Suppose Assumption 3.4.1 holds and P ∈ Prot symm, then the calibration
function δ(·) satisfies

δ(ϵ) ≥ Ec

[
min{∥c̄∥A−1 , ∥c− c̄∥A−1}

∥c− c̄∥2A−1 + ∥c̄∥A−1∥c− c̄∥A−1

]
· µ

9/2∥c̄∥A−1

2L9/2
· ϵ,

for all ϵ > 0.

Proof. First we know that δ(ϵ) ≥ δ′(ϵ). Also, Lemma 3.4.7 shows that for optimal ∆, it
holds that ∥c̄∥A−1 = ∥c̄+ 2∆∥A−1 . By the definition of RSPO+, we have

RSPO+(∆) = Ec[ℓSPO+(c,∆)] = Ec

[
∥c+ 2∆∥A−1 − cTA−1(c+ 2∆)

∥c∥A−1

]
= Ec [∥c+ 2∆∥A−1 ]− Ec [∥c∥A−1 ]− Ec

[
2cTA−1∆

∥c∥A−1

]
.

Since ∥c̄ + 2∆∥A−1 = ∥c̄∥A−1 , Proposition 3.4.1 shows that Ec [∥c+ 2∆∥A−1 ] = Ec [∥c∥A−1 ].
Therefore, it holds that

RSPO+(∆) = −Ec

[
2cTA−1∆

∥c∥A−1

]
= −Ec

[
(c+ ϕ0(c))

TA−1∆

∥c∥A−1

]
= Ec

[
c̄TA−1c

∥c̄∥2A−1

· c̄
TA−1∆

∥c∥A−1

]
= Ec

[
c̄TA−1c

∥c∥A−1

]
· −c̄

TA−1∆

∥c̄∥2A−1

= Ec

[
c̄TA−1c

∥c∥A−1

]
· ∆

TA−1∆

∥c̄∥2A−1

,

where the last inequality holds since (c̄ + ∆)TA−1∆ = 0. Based on the result in Proposi-
tion 3.4.2, we have

Ec

[
c̄TA−1c

∥c∥A−1

]
≥ Ec

∥c∥2A−1 min{∥c∥A−1 , ∥c− c̄∥A−1}
∥c− c̄∥2A−1 + ∥c̄∥A−1∥c− c̄∥A−1

.

Also, let ϵ′ = C2(µ, L, r) · ϵ. In the constraint we have

∥c̄∥A−1 − c̄TA−1(c̄+∆)

∥c̄+∆∥A−1

≥ ϵ′,
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and hence ∥c̄∥A−1 − ∥c̄ + ∆∥A−1 ≥ ϵ′. Since ∥c̄∥A−1 ≥ ϵ′, it holds that (∥c̄∥A−1 − ϵ′)2 ≥
∥c̄ + ∆∥2A−1 . This implies that ∆TA−1∆ ≥ 2∥c̄∥A−1ϵ′ − ϵ′2 ≥ ∥c̄∥A−1ϵ′ = ∥c̄∥A−1C2(µ, L, r)ϵ.
Therefore, we conclude that

δ(ϵ) ≥ Ec

[
min{∥c̄∥A−1 , ∥c− c̄∥A−1}

∥c− c̄∥2A−1 + ∥c̄∥A−1∥c− c̄∥A−1

]
· µ

9/2∥c̄∥A−1

2L9/2
· ϵ.

We are now ready to complete the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. From Theorem 3.4.3, we know that

δ(ϵ;x,P) ≥ Ec|x

[
min{∥c̄∥A−1 , ∥c− c̄∥A−1} · ∥c̄∥A−1

∥c− c̄∥2A−1 + ∥c̄∥A−1∥c− c̄∥A−1

]
· µ

9/2ϵ

2L9/2
.

Also, by min{c1,c2}·c1
c22+c1c2

≥ c21
2(c21+c22)

for all c1, c2 ̸= 0, we have

δ(ϵ;x,P) ≥ Ec|x

[
∥c̄∥2A−1

2(∥c̄∥2A−1 + ∥c− c̄∥2A−1)

]
· µ

9/2ϵ

2L9/2
. (3.19)

Moreover, for all P ∈ Pα,β, it holds that

Ec|x

[
∥c̄∥2A−1

∥c̄∥2A−1 + ∥c− c̄∥2A−1

]
≥ Ec|x

[
∥c̄∥2A−1

∥c̄∥2A−1 + ∥c− c̄∥2A−1

∣∣∣∣ ∥c− c̄∥A−1 ≤ β · ∥c̄∥A−1

]
· Pc|x(∥c− c̄∥A−1 ≤ β · ∥c̄∥A−1)

≥ α

1 + β2
,

and for all P ∈ Pβ, it holds that

Ec|x

[
∥c̄∥2A−1

∥c̄∥2A−1 + ∥c− c̄∥2A−1

]
≥

∥c̄∥2A−1

∥c̄∥2A−1 + Ec|x[∥c− c̄∥2A−1 ]
≥ 1

1 + β2
.

By applying the above two inequalities to (3.19) we complete the proof.

3.5 Computational Experiments

In this section, we present computational results of synthetic dataset experiments wherein
we empirically examine the performance of the SPO+ loss function for training prediction
models, using portfolio allocation and cost-sensitive multi-class classification problems as our
problem classes. We focus on two classes of prediction models: (i) linear models, and (ii)
two-layer neural networks with 256 neurons in the hidden layer. We compare the performance
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of the empirical minimizer of the following four different loss function: (i) the previously
described SPO loss function (when applicable), (ii) the previously described SPO+ loss
function, (iii) the least squares (squared ℓ2) loss function ℓ(ĉ, c) = ∥ĉ − c∥22, and (iv) the
absolute (ℓ1) loss function ℓ(ĉ, c) = ∥ĉ− c∥1. For all loss functions, we use the Adam method
of [47] to train the parameters of the prediction models. Note that the loss functions (iii)
and (iv) do not utilize the structure of the feasible region S and can be viewed as purely
learning the relationship between cost and feature vectors.

3.5.1 Entropy Constrained Portfolio Allocation

First, we consider the portfolio allocation [56] problem with entropy constraint, where the
goal is to pick an allocation of assets in order to maximize the expected return while en-
forcing a certain level of diversity through the use of an entropy constraint (see, e.g., [19]).
Alternative formulations of portfolio allocation, including when S is a polyhedron or a poly-
hedron intersected with an ellipsoid, have been empirically studied in previous works (see, for
example [29, 41]). The objective is to minimize cTw where c is the negative of the expected
returns of d different assets, and the feasible region is S = {w ∈ Rd : w ≥ 0,

∑d
i=1wi =

1,
∑d

i=1wi logwi ≤ r} where r is a user-specified threshold of the entropy of portfolio w.
Note that, due to the differentiability properties of of the optimization oracle w∗(·) in this
case (see Lemma 3.5.1 in the Appendix), it is possible to (at least locally) optimize the SPO
loss using a gradient method even though SPO loss is not convex.

In our simulations, the relationship between the true cost vector c and its auxiliary fea-
ture vector x is given by c = ϕdeg(Bx) ⊙ ϵ, where ϕdeg is a polynomial kernel mapping of
degree deg, B is a fixed weight matrix, and ϵ is a multiplicative noise term. The features are
generated from a standard multivariate normal distribution, we consider d = 50 assets, and
further details of the synthetic data generation process are provided in the data generation
processes and technical details paragraph. To account for the differing distributions of the
magnitude of the cost vectors, in order to evaluate the performance of each method we com-
pute a “normalized” SPO loss on the test set. Specifically, let ĝ denote a trained prediction
model and let {x̃i, c̃i}mi=1 denote the test set, then the normalized SPO loss is defined as∑m

i=1 ℓSPO(ĝ(x̃i),c̃i)∑m
i=1 z

∗(c̃i)
, where z∗(c̃) := minw∈S c̃

Tw is the optimal cost in hindsight. We set the size

of the test set to 10000. In all of our experiments, we run 50 independent trials for each
setting of parameters.

Figure 3.1 displays the empirical performance of each method. We observe that with a
linear hypothesis class, for smaller values of the degree parameters, i.e., deg ∈ {1, 2}, all
four methods perform comparably, while the SPO and SPO+ methods dominate in cases
with larger values of the degree parameters. With a neural net hypothesis class, we observe
a similar pattern but, due to the added degree of flexibility, the SPO method dominates
the cases with larger values of degree and SPO+ method is the best among all surrogate
loss functions. The better results of the ℓ1 loss as compared to the squared ℓ2 loss might
be explained by robustness against outliers. Section 3.5.3 also contains results showing the
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Figure 3.1: Normalized test set SPO loss for the SPO, SPO+, least squares, and absolute
loss methods on portfolio allocation instances.

observed convergence of the excess SPO risk, in the case of polynomial degree one, for both
this experiment and the cost-sensitive multi-class classification case.

Data Generation Processes and Technical Details. Let us describe the process used
for generating the synthetic data sets for portfolio allocation instances. In this experiment,
we set the number of assets d = 50 and the dimension of feature vector p = 5. We first
generate a weight matrix B ∈ Rd×p, whereby each entry of B is a Bernoulli random variable
with the probability P(Bij = 1) = 1

2
. We then generate the training data set {(xi, ci)}ni=1

and the test data set {(x̃i, c̃i)}mi=1 independently according to the following procedure.

1. First we generate the feature vector x ∈ Rp from the standard multivariate normal
distribution, namely x ∼ N (0, Ip).

2. Then we generate the true cost vector c ∈ Rd according to cj =

[
1 +

(
1 +

bTj x
√
p

)deg]
ϵj

for j = 1, . . . , d, where bj is the j-th row of matrix B. Here deg is the fixed degree
parameter and ϵj, the multiplicative noise term, is a random variable which indepen-
dently generated from the uniform distribution [1− ϵ̄, 1+ ϵ̄] for a fixed noise half width
ϵ̄ ≥ 0. In particular, ϵ̄ is set to 0 for “no noise” instances and 0.5 for “moderate noise”
instances.
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In Lemma 3.5.1 we show that the optimization oracle w∗(·) is differentiable when the
projection of the predicted cost vector ĉ is not zero for the entropy constrained portfolio
optimization example.

Lemma 3.5.1. Let T = {w ∈ Rd : w > 0,1Tw = 1} denote the interior of the probability
simplex. For any vector c ∈ Rd, let c̃ denote the projection of c onto T . Let f(w) =∑d

i=1−wi log(wi) denote the entropy function. For some scalar r ∈ (fmin, limw→∂T f(w)),
let S = {w ∈ T : f(w) ≤ r}. Let w∗(c) = argminw∈S c

Tw. Then it holds that w∗(c) is
differentiable when c̃ ̸= 0 where c̃ is the projection of c onto the subspace {w ∈ Rd : 1Tw = 0}.

Proof. Let softmax(·) : Rd → Rd denote the softmax function, namely

softmax(c) =

[
exp(c1)∑d
i=1 exp(ci)

, . . . ,
exp(cd)∑d
i=1 exp(ci)

]T
.

Using KKT condition, we know that for any c ∈ Rd such that c̃ ̸= 0, there exists some
scalar u(c) ≥ 0 such that c = −u(c) · ∇f(w∗(c)), and therefore w∗(c) = softmax(−c̃/u(c)).
Since the softmax function is differentiable and c̃ is differentiable with respect to c, we
only need to show that the function u(c) is also differentiable with respect to c. Indeed,
when c̃ ̸= 0, we have f(w∗(c)) = r, which is equivalent to f(softmax(−c̃/u(c))) = r. Let
ϕ(c, u) = f(softmax(−c̃/u)). Since ϕ(c, u) is a decreasing function for u > 0, by inverse

function theorem we have du
dc

= − ∂ϕ/∂c
∂ϕ/∂u

, and hence u(c) is also differentiable with respect to
c.

3.5.2 Cost-Sensitive Multi-Class Classification

Here we consider the cost-sensitive multi-class classification problem. Since this is a multi-
class classification problem, the feasible region is simply the unit simplex S = {w ∈ Rd :
w ≥ 0,

∑d
i=1wi = 1} We consider an alternative model for generating the data, whereby the

relationship between the true cost vector c and its auxiliary feature vector x is as follows:
first we generate a score s = σ(ϕdeg(bTx)⊙ ϵ), where ϕdeg is a degree-deg polynomial kernel,
b is a fixed weight vector, ϵ is a multiplicative noise term, and σ(·) is the logistic function.
Then the true label is given by lab = ⌈10s⌉ ∈ {1, . . . , 10} and the cost vector c is given
by ci = |i− lab| for i = 1, . . . , 10. The features are generated from a standard multivariate
normal distribution, and further details of the synthetic data generation process are provided
in the data generation processes and technical details paragraph. Since the scale of the cost
vectors do not change as we change different parameters, we simply compare the test set SPO
loss for each method. We still set the size of the test set to 10000 and we run 50 independent
trials for each setting of parameters. In addition to the regular SPO+, least squares, and
absolute losses, we consider an alternative surrogate loss constructed by considering the
SPO+ loss using a log barrier (strongly convex) approximation to the unit simplex. That is,
we consider the SPO+ surrogate that arises from the set S̃ := {w ∈ Rd : w ≥ 0,

∑d
i=1wi =
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Figure 3.2: Test set SPO loss for the SPO+ methods with different feasible regions on the
cost-sensitive multi-class classification instances.

1,−
∑d

i=1 logwi ≤ r} for some r > 0. Details about how we chose the value of r are provided
in the data generation processes and technical details paragraph.

Herein we focus on the comparison between the standard SPO+ loss and the “SPO+
w/ Barrier” surrogate loss. (The more complete comparison of all the method akin to
Figure 3.1 is provided in Figure 3.3.) Figure 3.2 shows a detailed comparison between these
alternative SPO+ surrogates as we vary the training set size. Note that the SPO loss is always
measured with respect to the standard unit simplex and not the log barrier approximation.
Interestingly, we observe that the “SPO+ w/ Barrier” surrogate tends to perform better
than the regular SPO+ surrogate when the training set size is small, whereas the regular
SPO+ surrogate gradually performs better as the training set size increases. These results
suggest that adding a barrier constraint to the feasible region has a type of regularization
effect, which may also be explained by our theoretical results. Indeed, adding the barrier
constraint makes the feasible region strongly convex, which improves the rate of convergence
of the SPO risk. On the other hand, this results in an approximation to the actual feasible
region of interest and, eventually for large enough training set sizes, the regularizing benefit
of the barrier constraint is outweighed by the cost of this approximation.

Data Generation Processes and Technical Details. Let us describe the process used
for generating the synthetic data sets for cost-sensitive multi-class classification instances.
In this experiment, we set the number of class d = 10 and the dimension of feature vector
p = 5. We first generate a weight vector b ∈ Rp, whereby each entry of b is a Bernoulli
random variable with the probability P(bj = 1) = 1

2
. We then generate the training data

set {(xi, ci)}ni=1 and the test data set {(x̃i, c̃i)}mi=1 independently according to the following
procedure.

1. First we generate the feature vector x ∈ Rp from the standard multivariate normal
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Figure 3.3: Test set SPO loss for the SPO+, least squares, and absolute loss methods on
cost-sensitive multi-class classification instances.

distribution, namely x ∼ N (0, Ip).

2. Then we generate the score s ∈ (0, 1) according to s = σ
(
(bTx)deg · sign(bTx) · ϵ

)
,

where σ(·) is the logistic function. Here ϵ, the multiplicative noise term, is a random
variable which independently generated from the uniform distribution [1− ϵ̄, 1 + ϵ̄] for
a fixed noise half width ϵ̄ ≥ 0. In particular, ϵ̄ is set to 0 for “no noise” instances and
0.5 for “moderate noise” instances.

3. Finally we generate the true class label lab = ⌈10s⌉ ∈ {1, . . . , 10} and the true cost
vector c = (c1, . . . , c10) is given by cj = |j − lab| for j = 1, . . . , 10.

In the cost-sensitive multi-class classification problem, we consider the SPO+ method
using a log barrier approximation to the unit simplex. For the choice of the threshold r,
according to Assumption 3.4.1 we will need r > fmin and r < limw→∂T f(w). In this log
barrier scenario, we have fmin = d log d and limw→∂T f(w) = ∞. Therefore, we pick the
threshold r = 2d log d. Of course, one may consider a more careful tuning of this hyper-
parameter. Nevertheless, even with our simplistic approach for setting it we observe benefits
of the SPO+ loss that uses a log barrier approximation to the unit simplex.
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Figure 3.4: Normalized test set excess risk for the SPO+ methods on instances with poly-
hedron and level-set feasible regions.

3.5.3 Excess Risk Comparison

In Figure 3.4, we provide the empirical excess risk comparison of the cases with polyhedral
and level-set feasible regions. The case with polyhedral feasible region are the cost-sensitive
multi-class classification instances with simplex feasible region, and the case with level-set
feasible region are the entropy constrained portfolio optimization problems. The main metric
we use in Figure 3.4 is the normalized excess risk, which for each case, is defined as the excess
risk over the averaged excess risk with sample size n = 100. For each type of feasible region,
the excess risk is calculated by the difference between the SPO risk of the predictions given
by the trained model and the true model. Also, we set polynomial degree equals to one with
moderate noises, which means the true model is in the hypothesis class. The main purpose
of this plot is not checking if the order of the calibration matches the theoretical results, as
these are only worst case guarantees, but qualitatively comparing the convergence of excess
risk with different types of feasible regions.
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Chapter 4

Online Contextual Decision-Making
with a Smart Predict-then-Optimize
Method

4.1 Introduction

Decision-making over time in the presence of uncertainty is a common task across many
applications of machine learning. Some typical example problems include online network
revenue management, resource allocation, and advertisement bidding. In these settings,
there is a trade-off between immediate rewards and rewards received at a later time. This
trade-off exists since each decision that is made consumes some of a limited amount of
resources. Often, the decision-maker does not have full knowledge of the relevant parameters
dictating the amount of the rewards and resources consumed at time t, and instead has
available contextual information that is related to these parameters and can be used to
reduce uncertainty in the decision-making process. Indeed, contextual information such as
search history, previous reviews, users characteristics, and many others may be available. For
example, in online advertising we may not precisely know the probability that the user would
click on a given advertisement, but we may build a machine learning model for predicting
this probability based on characteristics of the user and the advertisement.

Recently, there has been a growing interest in the development of machine learning
models in the “predict-then-optimize” (or “decision-focused”, “end-to-end learning”, etc.)
setting, where models are trained in a way that is guided by the objectives of a downstream
optimization task. See, for example, the works of [20, 25, 29, 44, 30, 40, 68, 48], and the
references therein, among others. Prior work in this landscape has primarily been focused
on the standard “static” setting where decision-making over time is not a critical aspect
and there is no consumption of resources. In this work, we develop a new framework for
integrating decision-focused learning methods, using predict-then-optimize losses, into the
online decision-making task. Effectively utilizing the structure of the underlying optimization
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problem in the decision-making task leads to better decisions more quickly and a better
management of the trade-off between immediate and future rewards, which we demonstrate
in our numerical experiments. Specifically, we focus on an online contextual stochastic convex
optimization problem where we would like to maximize the average (equivalently total) linear
reward over time plus a concave utility function that measures the desirability of the average
resource consumption levels so far. Our model also includes a convex feasibility constraint
on the resource consumption vector. At each time period, the decision-maker is given some
contextual features that are associated with the coefficients of the unknown reward objective
and resource consumption matrix. We present a “meta-procedure” for online-decision making
which involves a prediction step as well as a decision step. In the prediction step, a model
is trained for predicting the unknown coefficients based on the history of observed contexts
and corresponding coefficients. In the decision step, we use these predictions to solve a linear
optimization problem with a known feasible region to make a decision.

Due to the linear structure of the underlying optimization problem in our meta-procedure,
we can apply the Smart Predict-then-Optimize (SPO) loss function and its SPO+ convex
surrogate loss function developed by [29]. Importantly, the SPO loss function measures the
regret of a prediction against the best decision in hindsight and is the ideal loss function to
measure the error of the prediction models that we build. Unlike the standard SPO setting,
we need to account for the trade-offs present due to the consumption of resources. To do
so, we apply the customary technique of introducing dual variables and using primal-dual
methods (see, e.g., [4]). As such, at each time period, we update a set of dual variables
using the method of online mirror descent [79] and then we update the prediction model
by minimizing a surrogate of the SPO loss on a dataset constructed by combining past
observations with the current dual variables. A critical part of our contribution involves
bridging convergence theory for primal-dual online methods with learning theory in the
predict-then-optimize setting. In particular, we prove regret bounds for our overall algorithm
that combine the O(T−1/2) convergence of online mirror descent with the convergence of the
learning process, the rate of which depends on which surrogate loss function is used. To
analyze the latter, we leverage risk bounds and related recent statistical results on the SPO
loss and its surrogate loss functions [29, 28, 41, 67, 51]. These results enable us to use a
general hypothesis class for fitting the prediction model. More specifically, we are no longer
limited to the previously studied linear context or finite policy assumptions [2, 14], and more
complex machine learning models, such as random forests and neural networks, may be used.
Our bounds hold in both hard and soft resource constraint cases, and we extend prior results
using standard upper bound consumption constraints on each resource to arbitrary convex
consumption constraints. On the experimental side, we examine the empirical performance
of different loss functions in the prediction step of our algorithm. On multi-dimensional
knapsack and longest path instances, we observe that the methods which perform best are
those that account for both resource consumption via dual variables as well as the structure
of the optimization problem via SPO-like loss functions.

Online contextual learning problems have been previously studied under varying assump-
tions in several different settings. As in our setting, some of these works, including those
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that study online linear/convex programming, consider the case where full information is
provided after a decision is made (see [54, 6, 4, 42, 50, 16, 49, 83, 52], among others).
Other authors have considered bandit and related problems where only partial information
is revealed after the decision is made (see [5, 3, 15, 2, 31, 14, 71], among others).

4.1.1 Notation

Let ⊙ represent element-wise multiplication between two vectors. Let Ip denote the p by p
identity matrix, and let e denote the vector of all ones in the appropriate dimension. We
will make use of a generic given norm ∥ · ∥ on w ∈ Rd, as well as its dual norm ∥ · ∥∗
which is defined by ∥c∥∗ = maxw:∥w∥≤1 c

Tw. With a slight abuse of notation, we also let
∥ · ∥ refer to a (possibly different) generic given norm on v ∈ Rm, where which norm we are
referring to is clear from the dimension of the corresponding vector. For any convex function
f(·) : F → R with its domain F , let f ∗(·) denote its Fenchel conjugate function, namely
f ∗(y) := supx∈F{yTx − f(x)}. We also make use of the big O notation to omit absolute
constants.

4.2 Online Contextual Convex Optimization and

Preliminaries

We now formally describe our online contextual stochastic convex optimization problem,
which is prevalent in online decision-making. We assume there are T rounds of decision-
making. At each round t, we make a decision wt ∈ S ⊆ Rd, and associated with this decision
is a “budget consumption vector” vt ∈ Rm. Specifically, let S ⊆ Rd denote the convex
and compact feasible region of the decision variables and let V ⊆ Rm denote the closed
and convex feasible region of consumption vectors. In addition, there is a “utility function”
u(·) : Rm → R, assumed to be L-Lipschitz and concave with u(0) = 0, that describes the
consumption vector spending preferences of the decision-maker. We assume that we have
full knowledge of S, V , and u(·).

Example 4.2.1. Consider a multi-dimensional knapsack problem where, in each round, the
decision-maker receives d different orders and may accept at most k ≤ d of them. Each
accepted order receives a reward and consumes some of m different resources. The amount
of resources available per round is b ∈ Rm. The selling price vector of any leftover resources
is y ∈ Rm. In this case, the decision space is S = {w ∈ Rd :

∑d
j=1wj ≤ k, 0 ≤ w ≤ e}, the

resource consumption feasible region is V = {v ∈ Rm : v ≤ b}, and the resource consumption
utility function is u(v) = yT (b− v)+.

At time t, a tuple (xt, rt, Vt) is identically and independently drawn from an unknown
distribution P, where rt ∈ Rd denotes the reward vector, Vt ∈ Rd×m denotes the budget
consumption matrix, and xt ∈ Rp denotes the feature vector which contains contextual
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information about rt and Vt. The reward vector and consumption matrix are unknown when
the decision wt ∈ S needs to be made, while the context vector xt is given instead. After
the decision wt is made, the actual values of rt and Vt will be revealed, and we will receive
rTt wt as reward and also incur vt := V T

t wt consumption in the budget. Let ravg and vavg
denote the total averaged reward and consumption values, namely ravg :=

1
T

∑T
t=1 r

T
t wt and

vavg :=
1
T

∑T
t=1 vt. The simultaneous objectives of the decision-maker are: (i) maximize the

reward plus the utility of the budget consumption, i.e., max{ravg + u(vavg)}, and (ii) ensure
that the average consumption remains feasible, i.e., vavg ∈ V .

4.2.1 Primal-Dual Formulation and Meta-Procedure

Online decision-making problems, including online linear optimization and bandit problems
with constraints, have been well-studied in the machine learning and operations research
communities, wherein a common method to address budget consumption utility and/or
feasibility constraints is with the primal-dual max-min form of the original problem. In our
setting, we will need two sets of dual variables, θ and λ, to address both consumption utility
and feasibility constraints simultaneously. Let dV(·) denote the distance function to the set
V , measured in the given generic norm ∥ · ∥, and let and ζ be the positive budget penalty
parameter. That is, dV(·) is defined by dV(v) := inf ṽ∈V ∥ṽ − v∥. Then, for any values of
ravg and vavg as defined above, we can consider a penalized version of the objective and its
primal-dual reformulation using conjugate functions as follows:

ravg+u(vavg)−ζ ·dV(vavg) = inf
λ∈Λ,θ∈Θ

{ravg− (λTvavg− (−u)∗(λ))−ζ · (θTvavg−d∗V(θ))}, (4.1)

where Λ and Θ are the domains of the conjugate functions (−u)∗(·) and d∗V(·), respectively.
Note that L-Lipschitzness of u(·) and 1-Lipschitzness of dV(·) imply that the domains satisfy
Λ ⊆ {λ ∈ Rm : ∥λ∥∗ ≤ L} and Θ ⊆ {θ ∈ Rm : ∥θ∥∗ ≤ 1}. The main benefit of the
introduction of the dual variables is that the primal-dual objective becomes linear in the
average reward and consumption whenever the dual variables are fixed. Thus, it is viable to
apply an online descent method to the primal-dual min-max problem, which consists of two
steps: (i) making a decision by solving an optimization problem with a linear objective, and
(ii) updating the dual variables via online descent. Algorithm 4.1 below presents a “meta-
procedure” that combines these two steps with a prediction step for predicting the reward
vector and consumption matrix based on the context xt. We will specify the precise methods
for the prediction model and dual variables update later in Section 4.3.

Algorithm 4.1: A “meta-procedure” for online contextual decision-making at
time t

1 Observe feature vector xt;

2 Make predictions (r̂t, V̂t)← gt(xt) for reward and consumption;

3 Make the decision wt ← argmaxw∈S{(r̂t − V̂tλt − ζ · V̂tθt)Tw};
4 Observe realized reward rt and consumption Vt;
5 Update dual variables θt+1, λt+1, and prediction model gt+1(·);
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4.2.2 Benchmark

In the theoretical part of this work, we compare the performance of the proposed online
algorithm against the performance of the optimal static policy, i.e., a policy which knows
the distribution P but only requires to satisfy the resource budget constraints in expectation.
The formal definition of the optimal static policy is given below.

Definition 4.2.1. Consider any static policy π(·) : X → S, and define the expected reward
and resource consumption of π(·) as

rew(π) := E(x,r,V )∼P[r
Tπ(x)], and con(π) := E(x,r,V )∼P[V

Tπ(x)].

Also, define the optimal static reward as the supremum of all feasible static policies, namely

OPT := sup
π
{rew(π) + u(con(π))}, s.t. con(π) ∈ V .

Another benchmark would be the optimal adaptive policy, which knows the distribution
P and also takes the history into account. It turns out that the expected total reward of this
adaptive policy is upper bounded by the one from the static one [2]. As has been considered
in similar settings (see, for example, [24, 13, 2]), we will therefore work with the optimal
static policy benchmark defined above.

4.3 An Online Algorithm using

Predict-then-Optimize and Mirror Descent

In this section, we specify the details for the prediction model and dual variables updates
in Algorithm 4.1. In particular, we first describe the predict-then-optimize methodology
for learning the prediction model and then describe the online mirror descent method for
updating the dual variables.

4.3.1 Prediction Model Updating and the SPO Loss

In order to obtain a model for predicting reward vectors and consumption matrices, namely
a prediction function g : Rp → Rd×Rd×m, we may leverage machine learning methods to learn
the underlying distribution P from previously observed data {(x1, r1, V1), . . . , (xt−1, rt−1, Vt−1)},
which are assumed to be independent samples from P. Notice that the optimization sub-
routine to determine wt in Algorithm 4.1 involves a linear objective function. Ideally, with
full knowledge of the distribution P, one would determine wt by solving the optimization
problem

max
w∈S

Er,V∼P(·|x)
[
(r − V λ− ζ · V θ)Tw

]
= max

w∈S
Er,V∼P(·|x)[r − V λ− ζ · V θ]Tw. (4.2)



CHAPTER 4. ONLINE CONTEXTUAL DECISION-MAKING WITH A SMART
PREDICT-THEN-OPTIMIZE METHOD 76

Due to the linearity of the objective, the above equation implies that it is sufficient to learn
the conditional expectation of the “linear cost vector” c = r − V λ − ζ · V θ. Thus g(x) can
be thought of as providing estimates of E[r|x] and E[V |x], which are then plugged into the
corresponding linear optimization problem with feasible region S. This setting is essentially
a parametric variant of the the predict-then-optimize framework, where the dual variables
ω := (λ, θ) are parameters that specify a linear cost vector that we would like to learn. In the
usual “static” setting without parameters, [29] introduced and studied the SPO loss function,
which characterizes the excess cost, or decision error, incurred when making a suboptimal
decision due to an imprecise objective cost vector prediction. Let us now adapt the SPO loss
to our setting. In the usual case, given a predicted cost vector ĉ and a realized cost vector
c, the SPO loss for a linear optimization problem in maximization format is defined as

ℓSPO(ĉ, c) := cT (w∗(c)− w∗(ĉ)),

where w∗(·) is an optimization oracle for S satisfying w∗(c) ∈ argmaxw∈S
{
cTw

}
. In our

setting, we need to consider a parametric variant of the SPO loss where the dual variables are
parameters affecting the objective cost vectors. In particular, given a prediction µ̂ := (r̂, V̂ ),
realization µ := (r, V ), dual variables ω := (λ, θ), as well as fixed budget penalty parameter
ζ > 0, the SPO loss of the optimization problem (4.2) is defined as

ℓSPO(µ̂, µ;ω) := (r − V λ− ζ · V θ)T (w∗(µ;ω)− w∗(µ̂;ω)),

where w∗(·) denotes the optimization oracle, which is defined as a function satisfying

w∗(µ;ω) ∈ argmax
w∈S

{
(r − V λ− ζ · V θ)Tw

}
, for all µ ∈ Rd × Rd×m and ω ∈ Λ×Θ.

Since the SPO loss function is usually non-convex and even possibly non-continuous,
several surrogate loss functions have been introduced. For example, [29] introduce the SPO+
loss function that accounts for the structure of S when training the prediction model. This
loss function is defined as

ℓSPO+(ĉ, c) := max
w∈S
{(c− 2ĉ)Tw}+ 2ĉTw∗(c)− cTw∗(c).

On the other hand, more standard prediction error loss functions, like the squared ℓ2 loss of
the linear cost vector, may be considered. Let ℓ(·, ·) : Rd × Rd → R be any surrogate loss
function of the standard SPO loss, which takes cost vector inputs, including possibly itself.
Then, just as we defined an extension of the SPO loss to our setting with dual variables, we
can also extend the surrogate loss ℓ by defining

ℓ(µ̂, µ;ω) := ℓ(r̂ − V̂ λ− ζ · V̂ θ, r − V λ− ζ · V θ).

Given a surrogate loss function, we use empirical risk minimization to update the prediction
model gt at each step of our online decision-making method. Specifically, let H refer to a
hypothesis class of predictor functions mapping features x to predictors (r̂, V̂ ) of the reward
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vector and resource consumption matrix. Then, the prediction model used at iteration t is
chosen by

gt ← argmin
g∈H

t−1∑
s=1

ℓ(g(xs), µs;ωt).

It is worthwhile to notice that the dual variables used in the loss function are those of the
current iteration instead of the previous ones. Intuitively, the current set of dual variables
ωt is closer to the optimal dual variables of the offline expected problem and hence it leads
to a better prediction model.

A desirable property of the surrogate loss ℓ is that the empirical risk minimizer for ℓ
has small excess risk with respect to the SPO loss. This property is formalized below in
Assumption 4.3.1, wherein we measure the excess risk by comparing with the ground truth
conditional expectation function of the reward vector and resource consumption matrix,
namely g∗(x) := Eµ∼P(·|x)[µ]. Let us also define the expected risk functions for the two losses
by RSPO(g;ω) := E(x,µ)∼P[ℓSPO(g(x), µ;ω)] and Rℓ(g;ω) := E(x,µ)∼P[ℓ(g(x), µ;ω)].

Assumption 4.3.1. There exist constants κrisk, α > 0 such that, for any integer n > 0 and
uniformly over all dual variables ω ∈ Λ×Θ, the empirical surrogate loss optimal predictor

ĝn := argmin
g∈H

{
n∑

i=1

ℓ(g(xi), µi;ω)

}
,

satisfies the following excess true SPO risk guarantee

E[RSPO(ĝ
n;ω)]−RSPO(g

∗;ω) ≤ κrisk · n−α,

where the expectation is taken with respect to i.i.d. samples {(xi, µi)}ni=1 drawn from P.

In general, the rate of convergence α and the constant κrisk in Assumption 4.3.1 depend
on the properties of the surrogate loss function, the decision feasible region S, the underlying
distribution P, and the complexity of the hypothesis class H. Assumption 4.3.1 is closely
tied to uniform calibration properties of the surrogate loss ℓ with respect to the SPO loss. In
fact, the following remark demonstrates that uniform calibration and an excess risk bound
for ℓ are sufficient conditions for Assumption 4.3.1.

Remark 4.3.1. Suppose that the the surrogate loss function ℓ(·, ·) is uniformly calibrated
with respect to the true SPO loss in the standard setting. Namely, for some constants κ1 and
β, for any distribution P̃ over cost vectors c, we have

Ec∼P̃[ℓ(ĉ, c)− ℓ(E[c], c)] ≤ κ1 · ϵβ ⇒ Ec∼P̃[ℓSPO(ĉ, c)− ℓSPO(E[c], c)] ≤ ϵ,

for all ĉ ∈ Rd and ϵ > 0. Suppose further that the empirical surrogate loss optimal predictor
has an excess risk bound that holds uniformly over all dual variables ω ∈ Λ × Θ, i.e., for
some constants κ2 and γ we have

E[Rℓ(ĝ
n;ω)]−Rℓ(g

∗;ω) ≤ κ2 · n−γ,
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for any n > 0 and where the expectation is taken with respect to i.i.d. samples {(xi, µi)}ni=1

drawn from P. Then, under both of these conditions, it holds that

E[RSPO(ĝ
n;ω)]−RSPO(g

∗;ω) ≤ (κ2/κ1)
1/β · n−γ/β.

We note that the two conditions in Remark 4.3.1 often hold for many choices of surrogate
loss ℓ and hypothesis classes H. Indeed, recent works including [67, 41, 51] have examined
sufficient conditions under which uniform calibration holds for the SPO loss. Some conditions
require an additional restriction on the class of distributions P̃ over cost vectors, but such
restrictions will often be satisfied in practice in our setting. Furthermore, for most common
choices of surrogate losses ℓ, e.g., convex and Lipschitz losses like squared ℓ2 and SPO+,
the required excess risk bound will hold. Indeed, for most common surrogates, due to
the boundedness of the dual variable domains Λ and Θ, boundedness of the Rademacher
complexity of H would be a sufficient condition to ensure that the bound holds uniformly
over the dual variables.

Lemma 4.3.1. Suppose Assumption 4.3.1 holds. For any policy π(·) : X → S and T ≥ 1,
Algorithm 4.2 satisfies

Rg(T ) := E

[
T∑
t=1

(rt − Vtλt − ζ · Vtθt)T (π(xt)− wt)

]
≤ κrisk · O(T 1−α).

Proof. Let w̄t := w∗(g∗(xt);ωt), where recall that g
∗(x) := Eµ∼P(·|x)[µ] is the Bayes estimator

(i.e., the ground truth model). Since Assumption 4.3.1 holds (in particular uniformly over
ω ∈ Λ×Θ), for any t ∈ {1, . . . , T}, we have

E(x1,µ1),...,(xt−1,µt−1)∼Pt−1 [RSPO(gt;ωt)−RSPO(g
∗;ωt)]

=E(x1,µ1),...,(xt−1,µt−1)∼Pt−1

[
E(xt,µt)∼P[(rt − Vt(λt + ζ · θt))T (w̄t − wt) | Ft−1]

]
=E(x1,µ1),...,(xt,µt)∼Pt

[
(rt − Vt(λt + ζ · θt))T (w̄t − wt)

]
≤ κrisk · (t− 1)−α.

Hence, it holds that

E
[
(rt − Vt(λt + ζ · θt))T (w̄t − wt)

]
≤ κrisk · (t− 1)−α (4.3)

where the expectation above is with respect to all randomness of Algorithm 4.2. Also, since
g∗(xt) is the Bayes estimator, for any policy π, it holds that

E(xt,µt)∼P[(rt − Vt(λt + ζ · θt))T (π(xt)− w̄t) | Ft−1] ≤ 0,

and
E[(rt − Vt(λt + ζ · θt))T (π(xt)− w̄t)] ≤ 0.

Therefore, combining (4.3) with the above yields

E(xt,µt)∼P[(rt − Vt(λt + ζ · θt))T (π(xt)− wt)] ≤ κrisk · (t− 1)−α.

Then by taking the summation over t = 1, . . . , T , we have

Rg(T ) ≤ κrisk · O(T 1−α).
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4.3.2 Dual Variable Updates with Online Mirror Descent

In this section, we describe how we use online mirror descent method to update the dual
variables λt+1 and θt+1. Based on the reformulation (4.1), we define convex functions

ξt(λ) := −vTt λ+ (−u)∗(λ) and ϕt(θ) := −vTt θ + d∗V(θ),

where we recall that vt = V T
t wt. Note that the domains of ξt(·) and ϕt(·) are the same as

the domains of the corresponding conjugate functions, i.e., the previously defined sets Λ and
Θ, respectively. Let hΛ(·), hΘ(·) be differentiable and 1-strongly convex (with respect to the
dual norm of the norm on v ∈ Rm) functions on Λ,Θ, respectively, and let BhΛ

(·, ·), BhΘ
(·, ·)

denote their respective Bregman distances. For example, BhΛ
(·) is defined by

BhΛ
(λ1, λ2) := hΛ(λ1)− hΛ(λ2)−∇hΛ(λ2)T (λ1 − λ2).

Then, online mirror descent uses the following update schemes for the dual variables:

λt+1 ← argmin
λ∈Λ
{ηλ∇ξt(λt)Tλ+BhΛ

(λ, λt)}, θt+1 ← argmin
θ∈Θ
{ηθ∇ϕt(θt)

T θ +BhΘ
(θ, θt)},

where ηλ, ηθ > 0 are the “step-size” parameters. Here we abuse notation slightly and let ∇
refer to any subgradient of the functions ξt(·) and ϕt(·). We assume that we can efficiently
calculate such subgradients, i.e., by evaluating the subproblems defining the conjugate func-
tions. We also need to be able to efficiently calculate the solution of the above subproblems,
which depends on the structure of the Bregman distances. For example, recall that the
online mirror descent method is the same as the online projected gradient descent method
when the norm and Bregman distances are Euclidean. The following lemma provides an
upper bound of the regret from the online mirror descent method.

Lemma 4.3.2. [Theorem 2.15 in [79]] Let DΛ, DΘ be upper bounds on the Bregman distances
so that BhΛ

(λ1, λ2) ≤ DΛ and BhΘ
(θ1, θ2) ≤ DΘ for all λ1, λ2 ∈ Λ and θ1, θ2 ∈ Θ. Let GΛ, GΘ

be upper bounds on norms of the subgradients so that ∥∇ξt(λt)∥ ≤ GΛ and ∥∇ϕt(θt)∥ ≤ GΘ

for all t = 1, . . . , T . If we use the constant step-sizes ηλ ← DΛ

GΛ

√
T
and ηθ ← DΘ

GΘ

√
T
, then for

all λ ∈ Λ and all θ ∈ Θ it holds that

Rλ(T ) :=
T∑
t=1

(ξt(λt)− ξt(λ)) ≤ 2GΛ

√
DΛT , Rθ(T ) :=

T∑
t=1

(ϕt(θt)− ϕt(θ)) ≤ 2GΘ

√
DΘT .

Note that, due to the bounds on the norm of dual variables in the domains Λ and Θ,
the Bregman constants usually satisfy that

√
DΛ = O(L) (recall that L is the Lipschitz

constant for u(·)), and
√
DΘ = O(1). Indeed, in the Euclidean case this is guaranteed to

be true. Now we have specified the update rules for both the prediction model and the
dual variables, we can fully state an implmentable version of the meta algorithm presented
previously. This implementable algorithm to solve our online decision-making problem is
presented in Algorithm 4.2.
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Algorithm 4.2: An implementable algorithm for online contextual decision-
making

input : Budget penalty parameter ζ and surrogate loss function ℓ(·, ·; ·).
1 Initialize dual variables θ1, λ1, and prediction model g1(·);
2 for t = 1, . . . , T do
3 Observe feature vector xt;

4 Make predictions (r̂t, V̂t)← gt(xt) for reward and consumption;

5 Make the decision wt ← argmaxw∈S{(r̂t − V̂tλt − ζ · V̂tθt)Tw};
6 Observe realized reward rt and consumption Vt;

7 Update dual variable λt+1 ← argminλ∈Λ
{
ηλ∇ξt(λt)Tλ+BhΛ

(λ, λt)
}
;

8 Update dual variable θt+1 ← argminθ∈Θ
{
ηθ∇ϕt(θt)

T θ +BhΘ
(θ, θt)

}
;

9 Update prediction model gt+1 ← argming∈H{
∑t

s=1 ℓ(g(xs), µs;ωt+1)};

4.4 Regret Bounds and Analysis

In this section, we present the regret analysis of Algorithm 4.2 in two cases: hard and soft
constraints.

4.4.1 Hard Constraints

We assume the starting point of the budget consumption, which we naturally assume to be
the zero vector without loss of generality, is inside the consumption feasible region V . The
hard constraints case is when we add a stopping condition to Algorithm 4.2 that terminates
whenever the current resource consumption vector violates the constraints enforced by V , i.e.,
whenever it leaves the feasible region V . We introduce a stopping time τ that is the first time
before time T that the constraints are violated, i.e., τ := min{t ≤ T : 1

T

∑t
s=1 V

T
s ws ̸∈ V}.

Most previous works with hard resource constraints, for example, [2] and [49], consider the
case of an upper bound budget constraint for each resource, i.e., V = {v : v ≤ b} for some
b ∈ Rm. In such cases, the online algorithm will terminate immediately whenever it violates
any of the resource constraints. In contrast, let BV denote the distance from zero to the
boundary of the generic closed and convex set V . The constant BV will be important in
our analysis as it demonstrates how the structure of V affects the constant in the regret
bound. In fact, BV precisely generalizes constants appearing in previous works considering
only upper bound constraints, for example, [2]. Indeed, when V = {v : v ≤ b} for some
b ∈ Rm with each component positive, then it holds that BV = mini=1,...,m bi > 0. The
following lemma provides an important property of the constant BV .

Lemma 4.4.1. For any v ̸∈ V and κ ∈ [0, 1], there exists θ ∈ Θ such that

κ · d∗V(θ)− θTv ≤ (κ− 1) ·BV .
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Proof. Since v ̸∈ V and V is a closed convex set, by the separating hyperplane theorem, there
exists a vector θ ∈ Rm with ∥θ∥∗ = 1 such that for any v† ∈ V , it holds that θTv† < θTv. Let
ṽ′ ∈ Rm be such that ∥ṽ′∥ = 1 and θT ṽ′ = 1. Since 0 ∈ V and supv†∈V{θTv†} < θTv < +∞,
there exists a constant ι ≥ 0 such that v′ ← ι · ṽ′ ∈ ∂V . Therefore, it holds that d∗V(θ) ≥
θTv′ − dV(v′) = θTv′ = ∥v′∥ ≥ BV .

Now consider an arbitrary ṽ◦ ∈ Rm and, by the definition of the distance function, let
v◦ ∈ V be such that ∥ṽ◦ − v◦∥ = dV(ṽ

◦). Then, it holds that

d∗V(θ) ≥ θTv◦ = θT ṽ◦ + θT (v◦ − ṽ◦) ≥ θT ṽ◦ − ∥v◦ − ṽ◦∥ = θT ṽ◦ − dV(ṽ◦).

Since the above is true for arbitrary ṽ◦, by taking the supremum over the closed set V and
using the fact that supv†∈V{θTv†} < θTv < +∞, we have that d∗V(θ) = θTv◦ for some v◦ ∈ V .
Then it holds that

κ · d∗V(θ)− θTv ≤ κ · d∗V(θ)− θTv◦

= (κ− 1) · d∗V(θ)
≤ (κ− 1) ·BV ,

where the last inequality holds since κ− 1 ≤ 0.

We make the following boundedness assumption on the distribution.

Assumption 4.4.1. Suppose there exists a constant Dv ≥ 1, such that for any w ∈ S, it
holds that ∥V Tw∥ ≤ Dv with probability 1. Let the constant κMD := Dv · (ζ

√
DΘ +

√
DΛ).

In the hard constraints case, let rτavg and vτavg denote the total averaged reward and
consumption with stopping time τ , namely rτavg := 1

τ

∑τ
t=1 r

T
t wt and vτavg := 1

τ

∑τ
t=1 vt.

Below we provide our main theorem in the hard constraint case, which provides the regret
bound of Algorithm 4.2.

Theorem 4.4.1. Suppose that Assumptions 4.3.1 and 4.4.1 hold, and that the budget penalty
parameter ζ satisfies ζ ≥ OPT

BV
. Then Algorithm 4.2 has the following guarantee:

OPT− E[rτavg + u(vτavg)] ≤ κMD · O(T−1/2) + κrisk · O(T−α).

We remark that the constant κMD will usually satisfy κMD = Dv · (ζO(1) + O(L)) for
most choices of Bregman functions. In general, given the required lower bound of ζ in
Theorem 4.4.1, the best value of the constant κMD will beO(Dv ·(OPT

BV

√
DΘ+

√
DΛ)) whenever

we are able to set ζ = O(OPT
BV

). The dependence on the term OPT
BV

in the regret bound is
natural, since, if the budget starting point is very close to the boundary of the feasible set
(or equivalently, in the budget upper bound case, one of the resource budget values is very
close to zero), then Algorithm 4.2 is likely to terminate in the first several iterations leading
to a poor regret bound.
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For convenience in our proofs, let us introduce some new notation. Let Ft−1 denote the
σ-field of information revealed up to the start of iteration t, i.e., the σ field of {(x1, µ1), . . . ,
(xt−1, µt−1)}. Let Rλ(T ) := 2GΛ

√
DΛT and Rθ(T ) := GΘ

√
DΘT denote the upper bounds

of the regret of online mirror descent from Lemma 4.3.2. The following lemma presents the
regret from the suboptimality of the dual variables in the hard constraint case.

Lemma 4.4.2. For any feasible policy π(·) : X → S and T ≥ 1, Algorithm 4.2 satisfies

(A) : E

[
1

T
·

τ∑
t=1

(Vtθt)
T (π(xt)− wt)

]
≤
( τ
T
− 1
)
BV +

Rθ(T )

T
, and

(B) : E

[
1

T
·

τ∑
t=1

(Vtλt)
T (π(xt)− wt)

]
≤ τ

T
· (−u)(con(π))− E[(−u)(vτavg)] +

Rλ(T )

T
.

Proof. Let us first prove inequality (A). Since π is a feasible policy, the Fenchel-Young
inequality yields

E
[
π(xt)

TVtθt − d∗V(θt)|Ft−1

]
= (con(π))T θt − d∗V(θt) ≤ dV(con(π)) = 0. (4.4)

Also, Lemma 4.3.2 guarantees that for any θ ∈ Θ, we have

τ∑
t=1

(ϕt(θt)− ϕt(θ)) ≤ Rθ(T ).

Given the definition of ϕ(·), which is ϕt(θ
′) = −vTt θ′ + d∗V(θ

′), and vt = V T
t wt, the above is

equivalent to
τ∑

t=1

(−wT
t Vtθt + d∗V(θt) + wT

t Vtθ − d∗V(θ)) ≤ Rθ(T ) (4.5)

Therefore, for any θ ∈ Θ, it holds that

E

[
1

T
·

τ∑
t=1

(Vtθt)
T (π(xt)− wt)

]

≤E

[
1

T
·

τ∑
t=1

(
π(xt)

TVtθt − wT
t Vtθ + d∗V(θ)− d∗V(θt)

)]
+
Rθ(T )

T

≤E

[
1

T
·

τ∑
t=1

(
−wT

t Vtθ + d∗V(θ)
)]

+
Rθ(T )

T

=E
[ τ
T
· d∗V(θ)− θTvτavg

]
+
Rθ(T )

T
.

where the first inequality comes from (4.5), and the second inequality comes from (4.4).
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If τ = T , we pick θ ← 0, and it holds that τ
T
· d∗V(θ) = θTvτavg = 0, which implies (A). If

τ < T , it implies vτavg ̸∈ V . Then following the results in Lemma 4.4.1 we know that there
exists θ ∈ Θ such that

τ

T
· d∗V(θ)− θTvτavg ≤

( τ
T
− 1
)
·BV .

Therefore, for both τ = T and τ < T , we have (A).
Let us then prove inequality (B). First, the Fenchel-Young inequality again yields

1

T

τ∑
t=1

E
[
π(xt)

TVtλt − (−u)∗(λt)|Ft−1

]
=

1

T

τ∑
t=1

(
con(π)Tλt − (−u)∗(λt)

)
≤ 1

T

τ∑
t=1

(−u)(con(π)) = τ

T
(−u)(con(π)).

(4.6)

Recall the definition of ϕ(·), which is ϕ(λ) = −wT
t Vtλ + (−u)∗(λ). Then, by following the

results in Lemma 4.3.2, for any λ ∈ Λ, it holds that

τ∑
t=1

(
wT

t Vtλ− (−u)∗(λ)− wT
t Vtλt + (−u)∗(λt)

)
=

τ∑
t=1

(ξt(λt)− ξt(λ)) ≤ Rλ(T ). (4.7)

Let v′ ← T
τ
· vτavg, and pick λ ∈ Λ such that (−u)(v′) = (v′)Tλ − (−u)∗(λ). Then, using

concavity of u(·) and u(0) = 0, it holds that

(−u)(vτavg) = (−u)
( τ
T
· v′ +

(
1− τ

T

)
· 0
)

≤ τ

T
· (−u)(v′) +

(
1− τ

T

)
· (−u)(0)

=
τ

T
· (λTv′ − (−u)∗(λ))

=
1

T
·

τ∑
t=1

(wT
t Vtλ− (−u)∗(λ)).

(4.8)

By adding (4.6), (4.7) and (4.8), we arrive at the inequality (B).

Now we are able to provide the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. By combining the results in Lemma 4.3.1 and Lemma 4.4.2, for any
feasible policy π, it holds that

τ

T
· (rew(π) + u(con(π))) +

(
1− τ

T

)
·BVζ − E

[
1

T

τ∑
t=1

rTt wt + u(vτavg)

]
≤ 1

T
· (Rg(T ) +Rλ(T ) + ζ · Rθ(T )).
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Also, it holds that Rg(T ) ≤ κrisk · O(T 1−α), Rλ(T ) ≤ Dv

√
DΛ · O(T 1/2), and Rθ(T ) ≤

Dv

√
DΘ · O(T 1/2). Therefore, when ζ ≥ OPT

BV
, it holds that

OPT− E[rτavg + u(vτavg)] ≤ κMD · O(T−1/2) + κrisk · O(T−α).

4.4.2 Soft Constraints

In this case, we treat the budget consumption feasibility constraint set V as a soft constraint,
that is, we want to minimize the infeasibility of the consumption instead of terminating the
online algorithm whenever we violate the constraint. This case allows for the possibility that
the starting point of budget consumption is infeasible, for example, when the feasible region
V consists of both lower and upper bound constraints. The following assumption is required
for the regret analysis in this case.

Assumption 4.4.2. Let OPTϵ denote the optimal objective value of the following relaxed
problem:

OPTϵ := sup
π
{rew(π) + u(con(π))}, s.t. dV(con(π)) ≤ ϵ.

We assume there exists a constant ζOPT such that OPTϵ ≤ OPT + ζOPT · ϵ for all ϵ > 0.

The constant ζOPT in Assumption 4.4.2 can be interpreted as a subgradient of the concave
function OPTϵ, which can be demonstrated to exist under standard regularity conditions.
For example, in the following lemma, we demonstrate that Assumption 4.4.2 holds when V
has a non-empty interior.

Lemma 4.4.3. Suppose that OPT is finite and that there exists a policy π◦ such that
con(π◦) ∈ int(V). Then, there exists a constant ζ ′ such that

OPT = sup
π
{rew(π) + u(con(π))− ζ ′ · dV(con(π))}.

Proof. Let u◦ ← con(π◦). Since u◦ ∈ int(V), there exists a constant ϵ > 0 such that for all
u′ satisfying ∥u′ − u◦∥ ≤ ϵ, it holds that u′ ∈ V . Let ∂V denote the boundary of the set V ,
and define V−ϵ ← {v ∈ V : d∂V(v) ≥ ϵ}. Consider

OPT−ϵ = sup
π:con(π)∈V−ϵ

{rew(π) + u(con(π))}.

Since con(π◦) ∈ V−ϵ, we know that OPT−ϵ is real-valued. Pick a policy π† such that
con(π†) ∈ V−ϵ and rew(π†)+u(con(π†)) ≥ OPT−ϵ−ϵ. Let v† ← con(π†). Now for any π ̸∈ V ,
let v ← con(π). Pick ṽ ∈ ∂V such that ∥v− ṽ∥ = dV(v) and let κ = dV(v)/d∂V(v

†) ≤ dV(v)/ϵ.
Let ṽ† ← v† + (v − ṽ)/κ, since ∥ṽ† − v†∥ = d∂V(v

†), it holds that ṽ† ∈ V . Also, let
v′ ← 1

κ+1
· (κ · ũ† + ṽ) ∈ V , and it holds that v′ = 1

κ+1
· (κ · u† + u).
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Now define a new policy π′ by π′(x) := 1
κ+1
· (κ · π†(x)+ π(x)) for any x ∈ X . The policy

π′ is well-defined since S is convex and therefore π′(x) ∈ S for any x ∈ X . Also, the policy π′

is feasible since con(π′) = v′ ∈ V , and therefore, it holds that OPT ≥ rew(π′) + u(con)(π′).
On the other hand, since u(·) is concave, it holds that

rew(π′) + u(con(π′)) ≥ 1

κ+ 1
· (κ · [rew(π†) + u(con(π†))] + [rew(π) + u(con(π))]).

Therefore, it holds that

rew(π) + u(con(π))−OPT ≤ κ · (OPT− (rew(π†) + u(con(π†)))

=
dV(con(π))

d∂V(con(π◦))
· (OPT− (OPT−ϵ − ϵ))

≤ dV(con(π)) ·
(
OPT−OPT−ϵ

ϵ
+ 1

)
.

By setting ζ ′ ← 1 + (OPT−OPT−ϵ)/ϵ, for any π ̸∈ V , it holds that

OPT ≥ rew(π) + u(con(π))− ζ ′ · dV(con(π)),

and we conclude the proof.

Now given the results in Lemma 4.4.3, for any ϵ > 0, it holds that

OPTϵ = sup
π:dV (con(π))≤ϵ

{rew(π) + u(con(π))}

≤ sup
π
{rew(π) + u(con(π))− ζ ′ · [dV(con(π))− ϵ])}

= sup
π
{rew(π) + u(con(π))− ζ ′ · dV(con(π)))}+ ζ ′ · ϵ

≤ OPT + ζ ′ · ϵ,

and therefore we show the existence of ζOPT.
We are now ready to present the main theorem in the soft constraint case, which demon-

strates the convergence rate in terms of both the objective and the distance to feasibility in
resource consumption.

Theorem 4.4.2. Suppose that Assumptions 4.3.1, 4.4.1, and 4.4.2 hold. Then, Algo-
rithm 4.2 has the following guarantee:

OPT− E[ravg + u(vavg)] ≤ κMD · O(T−1/2) + κrisk · O(T−α).

If additionally the budget penalty parameter ζ satisfies ζ ≥ 2(ζOPT +
√
DΛ√
DΘ

+ κrisk

Dv
√
DΘ

), it holds
that

E[dV(vavg)] ≤ Dv

√
DΘ · O(T−1/2) +O(T−α).
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The following lemma presents the regret from the suboptimality of the dual variables in
the soft constraint case.

Lemma 4.4.4. For any feasible policy π(·) : X → S and T ≥ 1, Algorithm 4.2 satisfies

(A) : E

[
1

T
·

T∑
t=1

(Vtλt)
T (π(xt)− wt)

]
≤ (−u)(con(π))− E[(−u)(vavg)] +

Rλ(T )

T
,

(B) : E

[
1

T
·

T∑
t=1

(Vtθt)
T (π(xt)− wt)

]
≤ −E[dV(vavg)] +

Rθ(T )

T
.

Proof. First, there exists λ ∈ Λ such that

(−u)(vavg) = vTavgλ− (−u)∗(λ) = 1

T

T∑
t=1

(
wT

t Vtλ− (−u)∗(λ)
)
. (4.9)

Next, the Fenchel-Young inequality yields

1

T

T∑
t=1

E
[
π(xt)

TVtλt − (−u)∗(λt)|Ft−1

]
=

1

T

T∑
t=1

(
con(π)Tλt − (−u)∗(λt)

)
≤ 1

T

T∑
t=1

(−u)(con(π)) = (−u)(con(π)).

(4.10)

Lemma 4.3.2 guarantees that

T∑
t=1

(ξt(λt)− ξt(λ)) ≤ Rλ(T ).

Given the definition of ξ(·), which is ξt(λ
′) = −vTt λ′ + (−u)∗(λ′), and vt = V T

t wt, it holds
that

T∑
t=1

(
−wT

t Vtλt + (−u)∗(λt) + wT
t Vtλ− (−u)∗(λ)

)
≤ Rλ(T ). (4.11)

Therefore, by adding (4.9), (4.10), and (4.11), it holds that

E

[
1

T
·

T∑
t=1

(Vtλt)
T (π(xt)− wt)

]

≤E

[
1

T
·

T∑
t=1

[
(Vtλt)

Tπ(xt)− wT
t Vtλ+ (−u)∗(λ)− (−u)∗(λt))

]]
+
Rλ(T )

T

≤ (−u)(con(π))− E[(−u)(vavg)] +
Rλ(T )

T
.
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Applying the same reasoning to the other set of dual variables and using that con(π) ∈ V ,
we have

E

[
1

T
·

T∑
t=1

(Vtθt)
T (π(xt)− wt)

]
≤ dV(con(π))−E[dV(vavg)]+

Rθ(T )

T
= −E[dV(vavg)]+

Rθ(T )

T
.

Now we are able to provide the proof of Theorem 4.4.1.

Proof of Theorem 4.4.2. By combining the results in Lemma 4.3.1 and Lemma 4.4.4, for any
feasible policy π, it holds that

rew(π) + u(con(π))− E

[
1

T

T∑
t=1

rTt wt + u(vavg)

]
≤ 1

T
· (Rg(T ) +Rλ(T ) + ζ · Rθ(T )− ζ · E[dV(vavg)].

Since E[dV(vavg)] ≥ 0, it holds that

OPT− E[ravg + u(vavg)] ≤ κMD · O(T−1/2) + κrisk · O(T−α).

Also, when Assumption 4.4.2 holds, it holds that

E[ravg + u(vavg)]−OPT ≤ ζOPT · E[dV(vavg)],

and therefore, it holds that

(ζ − ζOPT) · E[dV(vavg)] ≤
1

T
· (Rg(T ) +Rλ(T ) + ζ · Rθ(T )).

If additionally ζ satisfies ζ ≥ 2(ζOPT +
√
DΛ√
DΘ

+ κrisk

Dv
√
DΘ

), it holds that

E[dV(vavg)] ≤ Dv

√
DΘ · O(T−1/2) +O(T−α).

To give some intuition of the proofs of Theorem 4.4.1 and Theorem 4.4.2, we remark that
the total regret of the online algorithm can be divided into two parts: (i) the regret from
the learning of the prediction model, and (ii) the regret from the suboptimality of the dual
variables used in each iteration. In the supplementary materials, we present two lemmas to
bound each type of regret. Lemma 4.3.1 bounds the regret due to learning, in particular the
expected accumulative errors of the online decision wt due to imperfect predictions, which
can be bounded in a sublinear fashion based on Assumption 4.3.1. To bound the regret
due to suboptimality of the dual variables, we use the regret bound of online mirror descent
method in Lemma 4.3.2 and properties of the Fenchel conjugate functions, which, with a few
additional steps, yield Lemma 4.4.2 and Lemma 4.4.4. In the hard and soft cases respectively,
these two Lemmas provide guarantees of the decisions wt from Algorithm 4.2 against any
feasible static policy.
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4.4.3 Trade-off between Regret and Computation Cost

In each iteration of Algorithm 4.2, one essential step is to update the prediction model based
on all the previous observations and the current dual variables. Although it may be possible
to perform this update efficiently – for example, one could use a warm-starting procedure
depending on the structure of the hypothesis class – the decision-maker may still not want to
update the prediction model at each iteration, especially if decisions need to be made quickly.
To address this issue, we develop a more computationally efficient version of our algorithm,
which only updates the prediction model at a sublinear rate, and is formally described as
follows.

Definition 4.4.1. For any constant β ≥ 1, the β-efficient version of Algorithm 4.2 is an
algorithm which is same as Algorithm 4.2 but only updates the dual variables and prediction
model at iteration t = ⌊kβ⌋ for all positive integer k.

From the prediction model update frequency of a β-efficient version of Algorithm 4.2, we
notice that a total number of T 1/β prediction model updates is required. We provide the
regret analysis of a β-efficient version of Algorithm 4.2 in Theorem 4.4.3.

Theorem 4.4.3. In the hard constraints case, suppose that the assumptions of Theorem 4.4.1
hold and consider the β-efficient version of Algorithm 4.2 for some constant β ∈ (0, 1]. Then
we have the following guarantee:

OPT− E[rτavg + u(vτavg)] ≤ κMD · O(T−1/2β) + κrisk · O(T−α).

In the soft constraints case, suppose that the assumptions of Theorem 4.4.2 hold and consider
the β-efficient version of Algorithm 4.2 for some constant β ∈ (0, 1]. Then we have the
following guarantees:

OPT− E[ravg + u(vavg)] ≤ κMD · O(T−1/2β) + κrisk · O(T−α),

and if additionally the budget penalty parameter ζ satisfies ζ ≥ 2(ζOPT +
√
DΛ√
DΘ

+ κrisk

Dv
√
DΘ

), it
holds that

E[dV(vavg)] ≤ Dv

√
DΘ · O(T−1/2β) +O(T−α).

Proof. When the updating sequence is t = t1, . . . , tK , the regret from online mirror descent
can be bounded by

T∑
t=1

(ξt(λ)− ξt(λt)) ≤
DΛ

2ηλ
+

K∑
k=1

ηλ
2
G2

λ(tk − tk−1)
2.

Also, it holds that

K∑
k=1

(tk − tk−1)
2 =

K∑
k=1

(βkβ−1)2 =
β2

2β − 1
·K2β−1 =

β2

2β − 1
· T 2−1/β.
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and therefore by setting ηλ ←
√
DΛ

GΛT 1−1/2β , we have

Rλ(T ) =
T∑
t=1

(ξt(λt)− ξt(λ)) ≤ GΛ

√
DΛ · O(T 1−1/2β).

For the same reason we also have

Rθ(T ) =
T∑
t=1

(ϕt(θt)− ϕt(θ)) ≤ GΘ

√
DΘ · O(T 1−1/2β).

Now using the proof in Theorem 4.4.1 and Theorem 4.4.2 again we can get the results in
Theorem 4.4.3.

From the regret analysis, we see that the idea of β-efficient version of our algorithm is
beneficial when the learning of the prediction model has a slower rate, i.e., when α < 1

2
. In

this case, we can set β ← 1/2α, and the β-version of Algorithm 4.2 will have a same regret
order as the original algorithm, while maintaining a sublinear total number of prediction
model updates.

4.5 Computational Experiments

We present computational results of synthetic dataset experiments wherein we empirically
examine the performance of Algorithm 4.2 using different surrogate loss functions for training
prediction models. We focus on two classes of prediction models to represent different levels
of model complexity: (i) linear models, and (ii) two-layer neural networks with 128 neurons
in the hidden layer. We compare the performance of the empirical minimizer of the following
three different loss functions: (i) the previously defined SPO+ loss function, (ii) the least
squares (squared ℓ2) loss function of the linear objective ∥(r̂−V̂ λ−ζ ·V̂ θ)−(r−V λ−ζ ·V θ)∥22,
and (iii) the least squares loss function of predictions ∥r̂ − r∥22 + ∥V̂ − V ∥2F . Note that the
three loss functions utilize different levels of information: the loss function (iii) does not use
the dual variables and can be viewed as purely learning the relationship between reward,
consumption, and feature vectors. The loss function (ii) does not utilize the structure of
the decision feasible region S and can viewed as purely learning the relationship between
the linear objectives and feature vectors. We also compare with the following three methods
as benchmarks: (i) the sample average approximation (SAA) method, where we use the
empirical averages of past observations of rt, Vt as the prediction r̂t, V̂t in Algorithm 4.2, (ii)
the true model, where we use the true (but unknown in practice) conditional expectations
E[rt|xt],E[Vt|xt] as the prediction, and (iii) the hindsight model, where we use the realization
rt, Vt as the prediction. Note that (ii) and (iii) are not implementable in practice, because (ii)
uses the unknown true conditional expectations and (iii) uses the realized values rt, Vt that
are not available at decision-making time. We expect (iii) to perform best and thus we define
the “relative regret” of an online algorithm as 1 − OBJ/OBJ∗ where OBJ := ravg + u(vavg)
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is the observed value of the objective function of the online algorithm and OBJ∗ is the
corresponding value for the hindsight policy.

For all loss functions, we use the Adam method of [47] to train the weight matrices and
bias coefficients in the prediction models, and we update the dual variables and prediction
models every 10 iterations. For each instance, e.g. value of the total time horizon and the
polynomial degree, we run 40 independent trials on one core of Intel Xeon Skylake 6230 @
2.1 GHz.

4.5.1 Multi-Dimensional Knapsack Instances

In this section, we consider multi-dimensional knapsack problem instances, where the goal is
to maximize total reward collected. There is no utility function, the resource consumption
feasible region is V = {v : v ≤ b · e} for constant b > 0 and the online algorithm must
terminates immediately when any of the resource constraints are violated. In our simulations,
the relationship between the true reward vector r, true resource consumption matrix V ,
and its context vector x is given by vec(r, V ) ← ξdeg(Wx) ⊙ ϵ, where vec(·) is the matrix
vectorization function, ξdeg is a polynomial kernel mapping of degree deg, W ∈ Rd(m+1)×p is
a fixed weight matrix, and ϵ ∈ Rd(m+1) is a multiplicative noise term.

The detailed data generation process is as followed. In this experiment, we set the
dimension of the feature vector p = 5, the dimension of decision vector d = 10, and the
dimension of the resource vector m = 3. We first generate the weight matrixW ∈ Rd(m+1)×p,
whereby each entry ofW is a Bernoulli random variable with the probability P(Bjk = 1) = 1

2
.

We then generate the arrivals {(xi, ri, Vi)}pi=1 independently by the following procedure:

1. Generate the feature vector x from a standard multivariate normal distribution, namely
x ∼ N (0, Ip).

2. Generate the vectorization of the reward vector r and the resource consumption matrix
V according to

vec(r, V )j ←

1 +(1 + W T
j x√
p

)deg
 ϵj,

for j = 1, . . . , d(m + 1), where Wj is the j-th row of matrix W . Here deg is the fixed
degree parameter and ϵj, the multiplicative noise term, is a random variable which
independently generated from the uniform distribution [1 − ϵ̄, 1 + ϵ̄] for a fixed noise
half width ϵ̄ ≥ 0. In particular, ϵ̄ is set to 0 for “no noise” instances and 0.5 for
“moderate noise” instances.

We set the polynomial degree to 6 in this experiment, and we run 40 independent trials
for each value of the time horizon length. Figure 4.1 displays the empirical performance
of each method. We observe that when the hypothesis class is linear predictors, i.e., the
ground truth model is not in the hypothesis class, the pure prediction error method has
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Figure 4.1: Relative regret for different loss functions on multi-dimensional knapsack in-
stances.

similar performance as naive SAA, while least squares applied to the linear cost performs
slightly better. When the hypothesis class is a neural net, the pure prediction method does
better. In all cases, the SPO+ loss performs best and closest to the true model. These
results demonstrate that a loss function that properly accounts for the dual variables can
improve performance, but performance is improved twofold by a loss function that accounts
for the dual variables and the underlying structure of the decision feasible region S.

4.5.2 Longest Path Instances

In this section, we consider a longest path problem on a 4×4 directed grid network with edges
pointing north and east, and the goal is to go from the southwest corner to the northeast
corner while maximizing the rewards collected along each edge. In this case, the feasible
region S can be modeled as the convex hull of all possible routes. We assume there is no
learning in the consumption matrix, i.e., the consumption is just the decision itself, namely
Vt = Id, i.e., vt = wt. Also, we would like to not utilize any edge too frequently and model
this idea by setting the resource consumption feasible set as V = {v : v ≤ 0.6 · e}, which is
a soft constraint, and letting the utility function be u(v) =

∑
i vi(1− vi).

The detailed data generation process in the longest path instances is as followed. In
this experiment, we set the dimension of the feature vector p = 5. Also, since the graph
is a 4 × 4 grid, the dimension of both decision and resource consumption vector will be
d = m = 24, which is the number of edges in the graph. Since the resource consumption
matrix is always the identity matrix, we only need to generate the reward vector based on
the feature. Therefore, the weight matrix is W ∈ Rd×p. The remaining part is the same as
the data generation process in the multi-dimensional knapsack instances. We set the total
number of arrivals to 1000 in this experiment. Figure 4.2 displays the empirical performance
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Figure 4.2: Relative regret and infeasibility for different loss functions on shortest path
instances.

of each method. We observe that the SPO+ loss which accounts for both dual variables
and the decision feasible region S dominates all cases, and it is more beneficial when the
polynomial degree is higher.
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[62] Jorge J Moré. “The Levenberg-Marquardt algorithm: implementation and theory”. In:
Numerical analysis. Springer, 1978, pp. 105–116.

[63] Eugene Ndiaye et al. “Safe Grid Search with Optimal Complexity”. In: International
Conference on Machine Learning. 2019, pp. 4771–4780.

[64] Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization.
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Appendix A

Supplement to Chapter 2

A.1 Additional Proofs

A.1.1 Proof of Proposition 2.2.1

For fixed λ ∈ [λmin, λmax], we have ξ(λ)
λ

is a constant and its absolute value is no larger than
C. Let Hi = ∇2f(x1) + λ∇2Ω(x1) and gi = ∇f(xi) for i = 1, 2. Since f(·) is µ-strongly
convex and Ω(·) is σ-strongly convex, it holds that ∥Hi∥ ≥ µ + λminσ for i = 1, 2. Since
f(·) is L-Lipschitz continuous, we have ∥g2∥ ≤ L. Also, let v1 = H−1

1 g1, v2 = H−1
2 g2, and

v′1 = H−1
1 g2. t holds that

∥v1 − v′1∥ = ∥H−1
1 (g1 − g2)∥ ≤

∥∥H−1
1

∥∥ · ∥g1 − g2∥ ≤ 1

µ+ λminσ
· L∥x1 − x2∥.

Also, since ∥H1−H2∥ ≤ ∥∇2f(x1)−∇2f(x2)∥+λ∥∇2Ω(x1)−∇2Ω(x2)∥ ≤ L(1+λmax)∥x1−
x2∥ and ∥H1 − H2∥ = ∥H1(H

−1
1 − H−1

2 )H2∥ ≤ ∥H1∥ · ∥H−1
1 − H−1

2 ∥ · ∥H2∥, it holds that∥∥H−1
1 −H−1

2

∥∥ ≤ L(1+λmax)∥x1−x2∥
(µ+λminσ)2

. Therefore, we have

∥v′1 − v2∥ =
∥∥(H−1

1 −H−1
2

)
g2
∥∥ ≤ ∥∥H−1

1 −H−1
2

∥∥ · ∥g2∥ ≤ L2(1 + λmax) ∥x1 − x2∥
(µ+ λminσ)2

.

To conclude, since v(x1, λ)− v(x2, λ) = ξ(λ)
λ
· (v1 − v2), it holds that

∥v(x1, λ)− v(x2, λ)∥ ≤
(

LC

µ+ λminσ
+
L2C(1 + λmax)

(µ+ λminσ)2

)
· ∥x1 − x2∥ .

A.1.2 Proof of Lemma 2.4.1

In the following residual analysis, we will work with high-order directional derivatives of
f(·) and Ω(·). We now introduce definition of the directional derivatives. For p ≥ 1,
let Dpf(x)[h1, . . . , hp] denote the directional derivative of function f at x along directions
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hi, i = 1, . . . , p. For instance, Df(x)[h] = ∇f(x)Th and D2f(x)[h1, h2] = hT1∇2f(x)h2. Also,
the norm of directional derivatives is defined as

∥Dpf(x)∥ := max
h1,...,hp

{|Dpf(x)[h1, . . . , hp]| : ∥hi∥ ≤ 1} .

For detailed properties of directional derivatives we refer readers to [64]. We start with
computational guarantees of Taylor approximation on functions with Lipschitz continuous
high-order derivatives. The following lemma guarantees the accuracy of Taylor expansion.

Lemma A.1.1 ((1.5) and (1.6) in [64]). Let function ϕ(·) be convex and p-times differen-
tiable. Suppose p-th order derivative of ϕ(·) are Lp Lipschitz continuous. Let Φx,p(·) denote
the Taylor approximation of function ϕ(·) at x:

Φx,p(y) := f(x) +

p∑
i=1

1

i!
Diϕ(x)[y − x]i.

Then we have the following guarantees:

|ϕ(y)− Φx,p(y)| ≤
Lp

(p+ 1)!
∥y − x∥p+1 , ∥∇ϕ(y)−∇Φx,p(y)∥ ≤

Lp

p!
∥y − x∥p .

Condition A.1.1. Suppose step-size h satisfies that h ≤ min
{
0.2, µ̃

8L(1+G)

}
.

For simplicity, we use (x̃, λ̃) to represent (xnext, λnext). We will begin the complexity
analysis of trapezoid method by the following two lemmas which provide proper upper bounds
the norm of direction ∥d1∥ and the difference between d1 and d2.

Lemma A.1.2. Suppose σ ≥ 1, x ∈ Sx0, λ ∈ [λmin, λmax], h > 0 and (x̃, λ̃) = T (x, λ;h). Let
r denote the initial residual ∥∇f(x) + λ∇Ω(x)∥ satisfying that r ≤ µ̃. Then it holds that

(1 + λ) ∥d1∥ ≤ 2(G+ 1). (A.1)

Proof. Let H = ∇2f(x) + λ∇2Ω(x). By definition d1 = −H−1∇f(x). When λ ≥ 1, it holds
that (1 + λ) ∥d1∥ ≤ 1+λ

λ
G ≤ 2. Also when λ ≤ 1, it holds that

(1 + λ) ∥d1∥ ≤ (1 + λ)
(∥∥H−1λ∇Ω(x)

∥∥+ ∥∥H−1(∇f(x) + λ∇Ω(x))
∥∥) ≤ 2(G+ 1).

Lemma A.1.3. Suppose Assumption 2.4.1 and Condition A.1.1 holds. Let (x, λ) ∈ Rn×R+,
and let xi, λi, di, i ∈ {1, 2} are generated by trapezoid update scheme defined in (2.13), we
have

∥H̃1(d2 − d1)−∇2f(x1)(x1 − x2)− (H̃1 − H̃2)d2∥ ≤
L

2
∥x1 − x2∥2 ,

where H̃i = ∇2f(xi) + λi∇2Ω(xi), i ∈ {1, 2}. Furthermore, it holds that

∥d2 − d1∥ ≤ 2hLτ
(
∥d1∥+ ∥d1∥2

)
.
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Proof. Using the definition of d1, d2 we have

H̃1(d2 − d1) = ∇f(x1)−∇f(x2) +
(
I − H̃1H̃

−1
2

)
∇f(x2)

= ∇2f(x1)(x1 − x2) + (H̃1 − H̃2)d2 + (R),
(A.2)

where ∥(R)∥ = ∥∇f(x1)−∇f(x2)−∇2f(x1)(x1 − x2)∥ ≤ h2

2
· L ∥d1∥2. Also, it holds that

∥∇2f(x1)(x1 − x2)∥ = h ∥∇2f(x1)d1∥ ≤ hL ∥d1∥, and that∥∥∥(H̃1 − H̃2)d2

∥∥∥
=
∥∥(∇2f(x1)−∇2f(x2) + λ1(∇2Ω(x1)−∇2Ω(x2)) + (λ1 − λ2)∇2Ω(x2)

)
d2
∥∥

≤ (L ∥x1 − x2∥+ λ1L ∥x1 − x2∥+ |λ1 − λ2|L) ∥d2∥ ≤ h (L(λ+ 1) ∥d1∥+ λL) ∥d2∥ .

Hence, it holds that

µ̃ ∥d2∥ − µ̃ ∥d1∥ ≤ µ̃ ∥d2 − d1∥ ≤ ∥H̃1(d2 − d1)∥

≤h
2

2
· L ∥d1∥2 + hL ∥d1∥+ h (L(λ+ 1) ∥d1∥+ λL) ∥d2∥ .

(A.3)

When h satisfies Condition A.1.1, it holds that h (L(λ+ 1) ∥d1∥+ λL) ≤ µ̃
3
and h2

2
·L ∥d1∥+

hL ≤ µ̃
3
. Apply them to (A.3), it holds that 2

3
µ̃ ∥d2∥ ≤ 4

3
µ̃ ∥d1∥ and it implies that ∥d2∥ ≤

2 ∥d1∥. Apply it to (A.3), it holds that

∥H̃1(d1 − d2)∥ ≤
h2

2
· L ∥d1∥2 + hL ∥d1∥+ h (L(λ0 + 1) ∥d1∥+ λL) ∥d2∥

≤ 2hL(1 + λ)
(
∥d1∥+ ∥d1∥2

)
.

Hence, it holds that

∥d1 − d2∥ ≤ h ·
2L(1 + λ)

(
∥d1∥+ ∥d1∥2

)
µ+ λσ

≤ 2hLτ
(
∥d1∥+ ∥d1∥2

)
.

Based on the results of Lemma A.1.2 and Lemma A.1.3, the following theorem analyze
one-step residual accumulation of the trapezoid update in (2.13).

Proof of Lemma 2.4.1. We will begin the local residual analysis by estimating the difference

between ∇Fλ̃(x̃) and λ̃
λ
· ∇Fλ(x). For simplicity, let x, x̃, λ, λ̃ denote xk, xk+1, λk, λk+1 in

trapezoid update. After rearrangement, we have

R = ∇Fλ̃(x̃)−
λ̃

λ
· ∇Fλ(x) = ∇f(x̃)−∇f(x)︸ ︷︷ ︸

(A)

+ λ̃(∇Ω(x̃)−∇Ω(x))︸ ︷︷ ︸
(B)

+

(
1− λ̃

λ

)
∇f(x)︸ ︷︷ ︸

(C)

.
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We will approach the result in (2.14) by splitting and rearranging terms in (A), (B) and
(C). From Lemma A.1.1, it holds that

∥(RA)∥ := ∥(A)−∇2f(x)(x̃− x)︸ ︷︷ ︸
(A′)

− 1

2
D3f(x)[x̃− x]2︸ ︷︷ ︸

(A3)

∥ ≤ L

6
∥x̃− x∥3 = h3

6
L∥d̃∥3.

From the update (2.13), it holds that (A′) = h∇2f(x)d1︸ ︷︷ ︸
(A1)

+
h

2
∇2f(x)(d2 − d1)︸ ︷︷ ︸

(A2)

. For (B), using

Lemma A.1.1 and based on update (2.13) we have

(B) = λ∇2Ω(x)(x̃− x) + (λ̃− λ)∇2Ω(x)(x̃− x)︸ ︷︷ ︸
(B3)

+ λ̃ · 1
2
D3Ω(x)[x̃− x]2︸ ︷︷ ︸

(B4)

+(RB)

= hλ∇2Ω(x)d1︸ ︷︷ ︸
(B1)

+
h

2
λ∇2Ω(x)(d2 − d1)︸ ︷︷ ︸

(B2)

+(B3) + (B4) + (RB),

where ∥(RB)∥ = λ̃∥∇Ω(x̃)−∇Ω(x)−∇2Ω(x)(x̃−x)− 1
2
D3Ω(x)[x̃−x]2∥ ≤ h3λ̃L

6
∥d̃∥3. Also,

(C) =
(
h− h2

2

)
∇f(x) = h∇f(x)︸ ︷︷ ︸

(C1)

− h
2

2
∇f(x)︸ ︷︷ ︸
(C2)

. By the definition of d1, we have

(A1) + (B1) + (C1) = h∇2f(x)d1 + hλ∇2Ω(x)d1 + h∇f(x) = 0. (A.4)

Using Lemma A.1.3, we have

(A2) + (B2) =
h

2
∇2f(x)(x1 − x2)︸ ︷︷ ︸

(D1)

+
h

2
(∇2f(x1)−∇2f(x2))d2︸ ︷︷ ︸

(D2)

+
h

2
(λ1∇2Ω(x1)− λ2∇2Ω(x2))d2︸ ︷︷ ︸

(D3)

+(RD),

(A.5)

where ∥(RD)∥ ≤ h
2
· L
2
∥x1 − x2∥2 = h3

4
L ∥d1∥2. Furthermore, it holds that

(D1) + (C2) = −h
2

2
∇2f(x)d1 −

h2

2
∇f(x) = h2

2
λ∇2Ω(x)d1︸ ︷︷ ︸

(E1)

, (A.6)

and

(A3) + (D2) =
h2

2
D3f(x)

[
1

2
(d1 + d2)

]2
+
h

2
D3f(x)[x1 − x2, d2] + (R1)

=
h2

2
D3f(x)

[
1

2
(d1 − d2)

]2
︸ ︷︷ ︸

(R2)

+(R1),
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where

∥(R1)∥ =
∥∥∥∥h2 (∇2f(x1)−∇2f(x2)

)
d2 −

h

2
D3f(x)[x1 − x2, d2]

∥∥∥∥
≤ h

2
· L
2
∥x1 − x2∥2 ∥d2∥ =

h3

4
L ∥d1∥2 ∥d2∥ .

We further have (D3) =
h

2
λ2
(
∇2Ω(x1)−∇2Ω(x2)

)
d2︸ ︷︷ ︸

(E2)

+
h

2
(λ1 − λ2)∇2Ω(x1)d2︸ ︷︷ ︸

(E3)

, and

(B4) + (E2) = λ̃ · 1
2
D3Ω(x)[x̃− x]2 + h

2
λ2D

3Ω(x1)[x1 − x2, d2] + (R5)

=
h2

2
(λ̃− λ2)D3Ω(x)

[
d1 + d2

2

]2
︸ ︷︷ ︸

(R3)

+
h2

2
λ2D

3Ω(x1)

[
d1 − d2

2

]2
︸ ︷︷ ︸

(R4)

+(R5),

where

∥(R5)∥ =
∥∥∥∥h2λ2 (∇2Ω(x1)−∇2Ω(x2)

)
d2 −

h

2
λ2D

3Ω(x)[x1 − x2, d2]
∥∥∥∥

≤ h

2
λ2 ·

L

2
∥x1 − x2∥2 ∥d2∥ =

h3

4
λ2L ∥d1∥2 ∥d2∥ ,

and

(B3) + (E1) + (E3) =

(
−h+

h2

2

)
λ∇2Ω(x)h · d1 + d2

2
+
h2

2
λ∇2Ω(x)d1

+
h

2

(
h− h2

)
∇2Ω(x)d2 =

h3

4
λ∇2Ω(x)(d1 − d2)︸ ︷︷ ︸

(R6)

.
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Hence, it holds that

∥(R)∥ ≤∥(RA)∥+ ∥(RB)∥+ ∥(RD)∥+ ∥(R1)∥+ ∥(R2)∥
+ ∥(R3)∥+ ∥(R4)∥+ ∥(R5)∥+ ∥(R6)∥

≤h3 · L
6

∥∥∥∥d1 + d2
2

∥∥∥∥3 + h3 · λ̃L
6

∥∥∥∥d1 + d2
2

∥∥∥∥3 + h3 · L
6
∥d1∥2

+ h3 · L
4
∥d1∥2 ∥d2∥+ h2 · L

8
∥d1 − d2∥2 + h4 · λL

4

∥∥∥∥d1 + d2
2

∥∥∥∥2
+ h2 · λ2L

8
∥d1 − d2∥2 + h3 · λ2L

4
∥d1∥2 ∥d2∥+ h3 · λL

4
∥d1 − d2∥

≤h3 · L
3
∥d1∥3 + h3 · Lλ

3
∥d1∥3 + h3 · L

6
∥d1∥2 + h3 · L

2
∥d1∥3

+ h2 · L
8
∥d1 − d2∥2 + h4 · λL

2
∥d1∥2 + h2 · λL

8
∥d1 − d2∥2

+ h3 · λL
2
∥d1∥3 + h3 · λL

4
∥d1 − d2∥

≤h3L(1 + λ)
(
∥d1∥3 + ∥d1∥2 + ∥d1∥

)
+ h2 · L(1 + λ)

8
∥d1 − d2∥2 .

(A.7)

Apply the result in Lemma A.1.3 into (A.7), we can further get

∥d1 − d2∥2 ≤
(
2hLτ

(
∥d1∥+ ∥d1∥2

))2 ≤ 8h2L2τ 2
(
∥d1∥2 + ∥d1∥4

)
. (A.8)

Also, by applying (A.1) into (A.7) and (A.8), we have

∥(R)∥ ≤ h3 · 3L(1 +G)3 + h4 · 2L3τ 2(1 +G)4.

A.2 Feasibility in Moment Matching Problem

Lemma A.2.1. Let x(·) : [λmin, λmax]→ Rp be the exact solution path of (P ), then it holds
that x(λ) is in the relative interior of S = {x ∈ Rp+1 : x ≥ 0,1T

p+1x = 1} for all λ ∈
[λmin, λmax]. Also, when h ≤ λmin(µ+λmin)

4LG
, the sequence {yk}Kk=0 generated by Algorithms 2.2

and 2.3 on problem (P ′) satisfies yk ∈ int(S ′) for all k = 0, . . . , K, and the corresponding
sequence {xk}Kk=0 satisfies xk is in the relative interior of S for all k = 0, . . . , K. Under
same condition, it holds that x̂(·) generated by (2.11) is a subset of the relative interior of

S for all λ ∈ [λmin, λmax]. Moreover, the condition h ≤ λmin(µ+λmin)
4LG

is automatically satisfied

when ϵ ≤ (f(x0)−f∗)λmin

4G
with the choice of step-size in Theorem 2.3.1.

Proof. Let M =
√
p · ∥ATA∥2 + ∥AT b∥2. For all x ∈ S, it holds that ∥AT (Ax − b)∥2 ≤

∥ATA∥2 ·∥x∥2+∥AT b∥2 ≤M . First, let x denote the optimal solution of P (λ). If x ̸∈ int(S),
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then there exists i ∈ [p] such that xi = 0, or 1T
p x = 1. If 1T

p x = 1, without loss of generality
we assume x1 > 0. Let x′ = x− δ · e1 for some δ > 0. Since Fλ(·) are convex, we have

Fλ(x)− Fλ(x
′) ≥ (x− x′)T∇Fλ(x

′) = δ((aT1 (Ax
′ − b)) + λ(ln(x1 − δ)− ln(1− δ)))

≥ δ(−M + λ(ln(x1 − δ)− ln(1− δ))).

When δ → 0+, we have− ln(1−δ)→ +∞ and therefore Fλ(x)−Fλ(x
′) > 0, which contradicts

with x is the optimal solution of P (λ). Otherwise, if 1T
p x < 1, without loss of generality we

assume x1 = 0. Let x′ = x+ δ · e1 for some δ > 0. Since Fλ(·) are convex, we have

Fλ(x)− Fλ(x
′) ≥ (x− x′)T∇Fλ(x

′) = δ((aT1 (Ax
′ − b)) + λ(ln(δ)− ln(1− 1T

p x− δ)))
≥ δ(−M + λ(ln(δ)− ln(1− 1T

p x− δ))).

When δ → 0+, we have − ln(δ)→ +∞ and therefore Fλ(x)− Fλ(x
′) > 0, which contradicts

with x is the optimal solution of P (λ).
Then, let pair (y, λ) satisfies that y ∈ int(S) and λ ≥ λmin. We want to show that

y − h · v(y, λ) ∈ int(S) when h ≤ λmin(µ+λmin)
4LG

. Let y(i) be the i-th component of y, we have

∇2Ω(y) = diag(y−1
(i) ) + (1− 1T

p y)
−11p×p,

(
∇2Ω(y)

)−1
= diag(y(i))− yyT .

Let z = (ATA + λ∇2Ω(y))−1(AT (Ay − b)) and y′ = y − h · z. Since y ∈ S, we have
∥AT (Ay − b)∥ ≤M1, and therefore,

∥z∥ ≤
∥∥(ATA+ λ∇2Ω(y))−1

∥∥ · ∥AT (Ay − b)∥ ≤ G

µ+ λmin

.

Let w = ∇2Ω(y) · z, and it holds that

∥w∥ = ∥∇2Ω(y) · z∥ = ∥AT (Ay − b)− ATAz∥∞ ≤ ∥AT (Ay − b)∥+ ∥ATA∥ · ∥z∥

≤ G+
LG

µ+ λmin

<
2LG

µ+ λmin

.

Therefore, for all i = 1, . . . , p, it holds that

|z(i)| =
1

λ
· |y(i)(w(i) − yTw)| ≤

y(i)
λ
· (|w(i)|+ |yTw|) ≤

y(i)
λ
· (∥w∥∞ + ∥w∥∞)

< y(i) ·
4LG

λmin(µ+ λmin)
.

Hence, when h ≤ λmin(µ+λmin)
4LG

, we have

y′(i) = y(i) − z(i) = y(i) ·
(
1− h · 4LG

λmin(µ+ λmin)

)
> 0.
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Also, it holds that

|1T
p z| =

∣∣∣∣∣
p∑

i=1

(y(i)(w(i) − yTw)

∣∣∣∣∣ = (1− 1T
p y)|yTw| ≤ (1− 1T

p y) · ∥w∥∞.

and therefore, when h ≤ λmin(µ+λmin)
4LG

, we have

1− 1T
p y

′ = 1− 1T
p y + h · 1T

p z > (1− 1T
p y) ·

(
1− h · 2LG

µ+ λmin

)
> 0.

Then we conclude that y′ ∈ int(S ′). Moreover, since linear interpolation is a convex com-
bination of grid points, the approximate path ŷ(λ) for all λ ∈ [λmin, λmax] is a subset of
int(S ′).
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