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Abstract 

We describe a computational model of humans' ability to 

provide a detailed interpretation of a scene’s components. 

Humans can identify in an image meaningful components 

almost everywhere, and identifying these components is an 

essential part of the visual process, and of understanding the 

surrounding scene and its potential meaning to the viewer. 

Detailed interpretation is beyond the scope of current 

models of visual recognition. Our model suggests that this is 

a fundamental limitation, related to the fact that existing 

models rely on feed-forward but limited top-down 

processing. In our model, a first recognition stage leads to 

the initial activation of class candidates, which is 

incomplete and with limited accuracy. This stage then 

triggers the application of class-specific interpretation and 

validation processes, which recover richer and more 

accurate interpretation of the visible scene. We discuss 

implications of the model for visual interpretation by 

humans and by computer vision models. 

 Keywords: Image understanding; visual object 

interpretation; objects and parts recognition; top-down 

processing;  

Goal and introduction  

Computational models of object recognition and 

categorization have made significant advances in recent 

years, demonstrating consistently improving results in 

recognizing thousands of natural object categories in 

complex natural scenes. However, in a number of key areas, 

existing models are far from approaching object recognition 

by the human visual system. A major limitation is the 

inability of current models to provide a detailed 

interpretation of a scene’s components, which is an integral 

part of human recognition.  Models may label for instance 

an image region as containing a horse, while humans 

looking at the image will naturally identify meaningful 

components almost everywhere, e.g. the right eye, the left 

ear, the mouth, mane, the right leg, the knee, the hoof, the 

tail, harness etc.  

Identifying detailed components is an essential part 

of the visual process, leading to the understanding of the 

surrounding scene and its potential meaning to the viewer. 

However, interpretation is a difficult task since it requires 

the detection and localization of many semantic object parts, 

which can amount to dozens or even hundreds in a single 

image (Fig. 1A,B). By 'semantic' we mean components 

corresponding to object parts in the scene, such as 'tail' or 

'tip of the ear', unlike 'curved contour' or 'dark region' 

describing image features. We approach the daunting 

problem of full accurate object interpretation by 

decomposing the full object or scene image into smaller, 

local, regions containing recognizable object components. 

As exemplified in Fig. 1B, in such local regions the task of 

full interpretation is still possible, but more tractable, since 

the number of semantic recognizable components is highly 

reduced. As will be shown, reducing the number of 

components plays a key factor in effective interpretation. At 

the same time, when the interpretation region becomes too 

limited, observers can no longer interpret or even identify its 

content, as illustrated in Fig. 1C. We therefore apply the 

interpretation process to local regions that are small, yet 

interpretable on their own by human observers. 

The model proceeds by identifying within the local 

region a familiar configuration of semantic features learned 

from examples. This configuration is found by identifying 

the participating components, as well as their arrangement, 

which is defined by spatial relations among them. A central 

conclusion from the model is that full interpretation of even 

a local region at a human performance level depends on the 

use of relations that are currently not used by state-of-art, 

feed-forward image recognition models. These relations can 

be relatively complex, relying for example on computing 

local continuity, grouping and containment. We conclude 

from the model that the interpretation process is likely to be 

local and involve top-down processing. We propose a 

general scheme in which the interpretation process is 

applied initially to local and interpretable regions by 

combining bottom-up and top-down extraction of features 

and relations, and can subsequently be integrated and 

expanded to larger regions of interest. 

The remaining of the paper proceeds as follows. In 

the next section we briefly review previous work related to 

image interpretation. Section 3 presents a model for full 

interpretation of local regions, with the goal of achieving 

interpretation at the level of detail obtained by humans in 

these regions. Section 4 describes experimental results to 

evaluate our model, and we conclude in Section 5 by 

discussing possible implications to our understanding of 

visual recognition and its mechanisms, and to the 

development of models and systems with visual capacities 

that are closer to human perceptual capacities.  
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Image interpretation in previous work 

Schemes related to object interpretation have been 

suggested under different names, including object parsing 

(e.g., Kokkinos & Yuille, 2009; Si & Zhu, 2013), or object 

grammar (e.g., Zhu et al., 2009), Fine-Grained recognition 

(e.g., Zhang et. al., 2014), and semantic segmentation (e.g., 

Chen. et al., 2015). Object parsing and object grammar 

models often refer to probabilistic frameworks that 

gradually decompose an object into simpler image 

structures. A recent representative work (Si & Zhu, 2013) 

describes a dictionary of object parts, represented by 

measures for shape, texture, and color. The parts primitives 

are learned in an unsupervised way and are not necessarily 

semantic in the sense described above. The relations 

between them are modeled by basic geometric structure 

indicating global and relative locations of the parts.  

Some so called ‘part-based models’ provide another 

version of object interpretation at a coarser level (e.g., 

Deformable Part Model (DPM) (Felzenszwalb et al., 2010; 

Zhang et al., 2014). Such algorithms represent the object 

image by a set of part region primitives (e.g., HoG 

representation (Dalal & Triggs, 2005) or Convolutional 

Networks representation (Girshick et al.,2014)), which are 

learned in an unsupervised manner, and model basic 

geometric relations between them, such as relative location 

and distance. Such part-based models have proved highly 

useful for object recognition, however, the interpretation 

they provide is coarse and less localized compared with the 

current scheme (e.g. 'tail', 'wing' and 'body' for an airplane).  

Several works have attempted to interpret a visual object 

by its contour features. Such schemes suggest a dictionary 

of informative contour fragments for the object, which is 

often learned in an unsupervised manner and often do not 

have a semantic meaning (Opelt et al., 2006; Arandjelovic 

& Zisserman, 2011; Ferrari et al., 2008). A more recent 

work (Hariharan et al., 2011) also suggested building a 

dictionary of semantic contours in a supervised manner, via 

human annotations of object images. The works above 

suggest several techniques to represent contours, and 

interpretation is obtained by matching contour in the image 

to contours in the dictionary, by modeling contour 

properties (e.g., curvature) and simple relations between 

contours, typically relative and global locations. Our 

approach extends such schemes by detecting points, 

contours, and regions of interest, that are semantic in the 

sense that humans can consistently recognize them in an 

image. As a result, we also use a significantly extended set 

of relations between the different types of feature primitives.  

Fine-Grained recognition also aims to perform image 

interpretation by finding attributes and sub-category 

discrimination of the object in scene and its semantic parts. 

A recent example (Vedaldi et al. 2014) focuses on an 

aircraft benchmark. The scheme modeled aircrafts by a few 

semantic parts, e.g., the airplane nose, tail, wing, etc. and 

attributes of the plane or its parts such as ‘does the plane 

have engine on tail?’, or ‘is it a propeller-plane?’, etc.  

Another form of image interpretation comes from work 

on so-called semantic segmentation, which attempts to make 

precise localization of the object surfaces in the scene. For 

example, a recent algorithm (Chen. et al 2015) based on 

features from the top layer of a 16-layers convolutional 

network, can identify the majority of pixels belonging to a 

horse surfaces in the PASCAL benchmark (Everingham et 

al., 2010), but it is far from predicting its precise boundary 

localization and detailed components. Our work differs from 

the approaches above since it aims to provide ‘full’ 

interpretation of the input image, namely, to localize all 

object parts that humans can interpret, and to learn to 

identify local configurations of these semantic features. We 

next turn to describe our interpretation scheme, and 

experiments done for its evaluation. 

Figure 1. (A). A natural image in which humans can identify dozens of semantic features, arrows point to a subset of the identified features. (B). A local 

region and a set of features identified consistently by human observers; the number of semantic recognizable components is highly reduced. (C). When the 
local region becomes too limited, observers can no longer interpret or even identify its content. 
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Interpretation of local regions 

Our goal is to describe the detailed semantic structure of a 

local region. More specifically, given a recognizable and 

interpretable local region in an object image, we aim to 

output the full semantic structure humans can find in this 

region. A natural choice for a formal description of semantic 

structures includes a set of primitive features and a set of 

relations defined over them. The primitive features are 

semantic components of the local region that are 

recognizable by observers (as in Fig. 1B). In a correct 

interpretation, the components are arranged in certain 

configurations, which are naturally defined by relations 

between components. The use of primitive components and 

relations between them is a common approach for modeling 

structured representations in areas of cognition and artificial 

intelligence (Russell & Norvig, 2005(. 

The semantic features to be identified by the model, e.g. 

'ear', 'eye', 'neck', were supplied to the model using features 

which were consistently labeled in a prior experiment in 

Mechanical Turk (Crump et al., 2013). The ultimate task is 

then to identify these components in novel images by 

learning the image features and the relevant relations among 

them from examples. Our current model is not fully 

automatic, but relies on a set of spatial relations identified in 

previous works, and on an analysis of so-called 'hard 

negative' examples, described in the next section.   

 

Scheme overview 
Input: a local region to model Our interpretation scheme 

begins by selecting a local recognizable object region, and 

getting from the Mechanical Turk a target set of semantic 

primitives to identify in it (e.g., Fig. 1B, Fig. 2A). The 

Mechanical Turk task required the naming of a certain 

highlighted object part. Consistent naming was examined 

and used to define the target interpretable components. 

 

Generating interpretation examples for learning Next, 

we produced for learning a set of annotated images, in 

which the semantic features are marked manually (with 

automatic refinement). The final goal is to take a new image 

as an input, and mark in it all the detected semantic features 

(e.g., Figs. 2C,4,5). Having a set of positive interpretation 

examples, we next search for negative interpretation 

examples. The negative examples are collected by finding 

non-class images that are as similar as possible to true class 

instances. For this purpose, we trained a detector based on 

Bag of visual Words (Csurka et al., 2004) using the recent 

popular VLAD version (Jégou et al., 2010) with positive 

local region examples, and then applied these detectors to 

random images from known image benchmarks (PASCAL). 

The negative examples we use are non-class examples that 

received high detection scoring, and are therefore more 

confusable or ‘hard’ negatives for the detectors.  

 

Learning relations of correct interpretations  
For each positive and negative example we compute a set of 

relations that exist between the annotated components. The 

relations are taken from a set of possible relations to 

compute (see below how this set is obtained). The relations 

identified in a given image are represented by a vector, 

where each component represents a specific relation. These 

vectors are then fed into a random forest classifier, which 

models the expected relations for correct primitive 

configurations in positive examples. We repeat this learning 

process for several iterations; at each iteration we add 

negative interpretation examples that obtained high scores 

in the previous iteration.  

 

Interpretation of novel image Given a raw novel image 

(e.g., Fig 2B), the scheme automatically searches for 

multiple  combinations of image parts to serve as primitives, 

computes a relation vector for each combination, and by the 

learned classifier produces a score for the candidate 

combination. This search is feasible due to the small number 

of primitives in the local region. It finally returns the highest 

scoring combination as the interpretation of the input image 

(e.g., Fig. 2C).  

 

Primitives 
To capture the recognized internal components fully as 

perceived by humans, our primitives are divided into three 

types, 2-D (regions), 1-D (contours), and 0-D (points). For 

example, a point-type primitive describes the eye in the 

horse head model (Fig. 2A, left panel), and a contour-type 

primitive describes borders such as the sides of the tie in the 

local region describing the man-in-suit model (Fig 2A, mid 

panel). Example sets of primitives for local regions are 

shown in Fig. 2A. 

Figure 2. (A). Local recognizable images in which recognizable 

components are annotated. These components are the model primitives, 

which appear in three types: points, contours, and regions. From a set of 
annotated images, we learn the set of model relations. (B). Given a novel 

image, our target is to localize the set of primitives found in (A). (C). 

The interpretation scheme searches for combinations of primitives in the 
image, and output as interpretation the combination that matches best 

the learned set of relations.  

  

  

  

  

  

    
  

   

  

  

A. Annotations for learning: 

B. Input test images: 

C. Final output: 
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All three types of primitives have natural relations to both 

visual perception and computer vision models. Contour-type 

primitives have been linked to object perception from early 

studies (e.g., Attneave, 1954) and to explicit representation 

in the visual cortex (e.g., Pasupathy & Connor, 1999). 

Image contours are highly informative features that often 

correspond to meaningful object components. It proved 

difficult to learn and extract meaningful contours in 

complex images, and consequently contours turned less 

popular in recent recognition schemes, but in the current 

scheme they are more efficiently handled at the local region 

level. Point-primitive in our model include several types (in 

particular, high curvature points and local intensity extrema 

points), based on their use in both visual perception and 

computer vision (e.g., Attneave, 1954; Lindeberg, 1998; 

Lowe, 2004). Region-type descriptors proved highly 

efficient in computational models for identifying object 

regions under different viewing conditions (e.g., Dalal and 

Triggs, 2005, Felzenszwalb et al., 2010) and proved useful 

in the current model as well. 

 

Relations 
The set of relations used in our model was composed 

from two sources. One source consists of relations coming 

from prior computer and human vision modeling, such as 

proximity of points, contours and regions, or continuity and 

parallelism of contours. The second source includes 

relations inferred from our analysis of ‘hard’ non-class 

examples that were confused as positive by state-of-art 

detectors. More specifically, we have used the following 

iterative procedure:  

1. Identify a ‘hard’ negative example that received 

high recognition score by region part detector based on Bag 

of visual Words, e.g., as in Fig 3A. 

2. Identify a property or relation which exists in the 

positive set but not in the negative example (e.g., Fig 3C). 

It is worth noting that identifying missing property or 

relations in step 2 becomes practical when analyzing small 

local regions, since the amount and complexity of primitives 

and relations is significantly reduced compared to standard 

object image. This learning process is in part manual; in 

human vision, it may come from a combination of 

evolutionary and learned components, see discussion.  The 

relations coming from the second source include cover of a 

point by contour, containment of a contour or point in 

region, a contour that ‘ends-in’ a region, and whether two 

disconnected contours can be ‘bridged’ (i.e., linked by an 

edge in an edge map used by the model) consistent with the 

way they are connected in the positive image (see 

illustration in Fig. 3C). Our final library of relations 

includes unary relations (properties), binary relations, and 

relations among three or more primitives. Relations range 

from simpler interactions such as relative location, to more 

compound interactions such as continuity, containment, and 

bridging mentioned above. 

Experimental evaluation  

To evaluate our model and the library of derived relations, 

we performed experiments to assess the interpretation of 

novel images, by matching assignment of primitives to 

human annotations over multiple examples. To get positive 

examples, we randomly collected full-object images from 

known data sets (Flicker, Google images, ImageNet – 

Russakovsky et al., 2014), and then manually extracted from 

them the local region showing a particular object part for 

interpretation. We used local regions containing a horse 

head, a man in tie and suit, and a ship. These regions and the 

primitives defined for them are shown in Fig. 2. A large-

scale experiment was done to evaluate the horse-head 

model, in which we collected 740 positive local image 

examples, from which we randomly selected 120 for 

training, and the rest used for testing. Negative set included 

25000 images. Our experiments for the man-in-suit and ship 

local regions contained 60 positive examples, and 6000 

negative examples.   

To assess the extent of ‘full’ interpretation the model 

produces for novel images at a fine detail level, we 

manually annotated the semantic components recognized by 

human via Mechanical Turk for each tested positive 

example. We then automatically matched the ground truth 

annotated components to the interpretation output by 

correspondence criteria based on normalized Euclidean 

distance: for point, location distance; for contour, distances 

between ordered sample points; for regions, distance 

between centers.  

Since our model is novel in terms of producing full 

interpretation, it cannot be compared directly in terms of 

completeness and accuracy with existing models. However, 

we made our set of annotations publically available and we 

provide baseline to match its results. Our results show an 

average matching error of 0.2442 normalized Euclidean 

distance over all eight primitive and 620 test images used 

Figure 3. Inferring informative relations between internal components. (A). A ‘hard’ negative example, from Bag-of-Words classifier (B). Positive 
examples. We search for a relation between primitives that exists in the positive but not in the negative instance. An informative relation in this and other 

examples was contour ‘bridging’: the upper-head contour primitive (red), and the lower-head contour primitive (yellow) are linked by an edge through the 
mouth region primitive. 

A. ‘Hard’ non-class example B. Class examples C. Informative relation 

 

 

 

  

 
vs. 

223



for evaluating the horse head model. Example interpretation 

results for three models of Fig. 2 are presented in Fig. 4.A 

and in Fig. 5. Additional comparison measures can be used 

to assess full interpretation, which are left for future 

research. 

To assess the role of complex relations, we compared our 

results to a version that uses the same interpretation scheme 

described above, but with a library containing unary and 

binary relations similar to those used in previous object 

interpretation schemes (as reviewed above),  i.e., based on 

unary descriptions for shape and texture, and binary for 

relative location. In this reduced library we ‘turned off’ 

more complex relations from our analysis such as ‘ends in’ 

or ‘bridging’. We show in Fig. 4A,B ten example pairs of 

the same image with two interpretations, full vs. reduced. 

Images were chosen randomly from our test set such that 

both schemes produced high interpretation score for them. 

Yet, the produced interpretations are perceptually different, 

and interpretation by the full-set scheme is significantly 

more precise. A comparison (not detailed here) shows that 

the fraction of primitives correctly localized by the full set 

scheme is increased by a factor of 1.45 than the reduced set 

version. An illustration of ten randomly selected images is 

shown in Fig. 4A,B.  

Discussion 

Local interpretation: Results of the current study show 

that a detailed and well-localized interpretation can be 

obtained already from a limited image region, which 

contains a small number of elements, by using an 

appropriate set of relations. We suggest from the model and 

our experiments that efficient interpretation can start at the 

level of local regions, which can subsequently be integrated 

to produce more global interpretation of larger regions of 

interest.  

 

Top-scoring non-class detections: of our model can be 

used in the future for two purposes. First, for validation: 

top-ranked false detections by bottom-up classification 

models often have low interpretation score (as in Fig. 4C), 

and therefore will be rejected by the interpretation stage. 

Second, we expect negative examples of high interpretation 

score to be perceptually similar to positive ones. We 

propose therefore to test psychophysically the agreement 

between human errors and errors made by models, with and 

without interpretation.  

 

A universal library of relations: The set of relations 

needed for human-level interpretation is at present 

unknown. In this work we proposed a set starting from a 

collection of relations used in previous modeling as first 

approximation, and continued by adding relation candidates 

from analysis of hard non-class examples. This initial pool 

could be refined in the future by additional examples, 

leading ultimately to a universal set of useful interpretation 

relations. One finding of the current study is that simple 

spatial relations, such as displacements between primitives, 

are insufficient for a reliable interpretation. More complex 

relations, such as the ’bridgeability’ of contours ci ,cj , or a 

contour  ci ending-in  region rj, contribute significantly to 

successful interpretation. In learning to interpret a new 

configuration, the set of candidate relations will be 

examined, and the informative ones for the task will be 

incorporated in the model. 

 

Implications for difficult visual tasks: It will be 

interesting to examine in future studies the role of full 

interpretation in challenging visual tasks, which are beyond 

the scope of current computational theories, because they 

depend on fine localization of object parts and the relations 

between parts, as illustrated in Fig. 6. Full interpretation of 

components at the level produced by the current model is 

likely to prove useful for dealing with the interpretation of 

Figure 5. Examples of interpretation results for the man-in-suit and ship 

models described in Fig. 2. 

C 
Figure 4. (A). Interpretation results for horse-head region for ten 

class examples. Here the scheme uses the full set of relations. (B). 
Interpretation results of the same images in (A), by a scheme using a 

reduced set of relation (see text for details). There are 6 mis-localization 
of primitives in (A) compared to 29 in (B). (C). Top-ranked 

Interpretation results for five non-class examples.  

B 

A 
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complex configurations arising in areas such as actions or 

social interactions between agents.   

 

Top-down processing: Our model suggests that the 

relations required for a detailed interpretation are in part 

considerably more complex than spatial relations used in 

current recognition models. They are also often class-

specific, in the sense that a relation such as 'connected by a 

smooth contour' is applied to a small selected set of 

components in some of the models. This suggests a scheme 

in which complex relations are computed at selected and 

class-specific locations. The recognition and interpretation 

process is naturally divided on this view to two main stages. 

The first is a bottom-up recognition stage, which may be 

similar to current high-performing computer vision models. 

This leads to the activation of objects models, which lacks 

detailed interpretation. Activated models will then trigger 

the application of top-down extraction of additional features 

and the computation of relevant relations to selected 

components, resulting in detailed interpretation as well as 

validation of the initial recognition stage.  
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