
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Connections Between Randomness Extractors, Pseudorandom Generators, and Optimal
Derandomization

Permalink
https://escholarship.org/uc/item/6049n195

Author
Lin, Dustin

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6049n195
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Connections Between Randomness Extractors, Pseudorandom Generators, and Optimal
Derandomization

A Thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Dustin Lin

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Daniele Micciancio
Professor Ramamohan Paturi

2023

Copyright

Dustin Lin, 2023

All rights reserved.

The Thesis of Dustin Lin is approved, and it is acceptable in quality and form for

publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . v

Acknowledgements . vi

Abstract of the Thesis . vii

Chapter 1 Statistical and Computational Randomness . 1
1.0.1 Notation . 2

1.1 Randomness in computation: complexity classes . 3
1.2 Statistical and Computational Randomness . 5
1.3 Randomness from hard functions . 10

1.3.1 Randomness as next-bit-unpredictability . 10
1.4 Hardness amplification . 15

1.4.1 Nisan Wigderson Generator . 16
1.4.2 From worst-case hardness to average-case hardness 19

Chapter 2 Derandomization and relations between PRGs and Extractors 24
2.1 Getting to BPP= P . 24

2.1.1 Limits of the hybrid argument . 25
2.2 Parameters of PRGs and Extractors . 27

2.2.1 Constructive example of an Extractor from a PRG 28
2.3 Hardness amplification without the XOR lemma . 31

Chapter 3 Beating the Hybrid Argument . 35
3.1 Extracting from a Pseudoentropic Source . 36

3.1.1 Additional Hardness Assumptions of [DMOZ22] 37
3.1.2 Multiple notions of Pseudoentropy . 38
3.1.3 Pseudoentropy from Hardness . 40
3.1.4 Extracting from a pseudoentropic source . 43

Chapter 4 Lower Bounds on Derandomization . 46
4.1 Limits to Black Box Constructions . 46

4.1.1 Measuring queries - “Useful” PRG Constructions 49
4.1.2 Applications of Shaltiel and Viola’s Theorem 35 . 52

Bibliography . 55

iv

LIST OF FIGURES

Figure 1.1. A pictorial representation of the “nearly disjoint” inputs to the hard function.
Each output bit may share some bounded number of it’s bits with the seed.
Note the indices in each set Si need not be contiguous. 17

Figure 1.2. Using an error correcting code to encoding the truth table of a function. By
properties of the code, being able to compute f approximately should still
yield an algorithm computing f exactly . 20

Figure 2.1. Given a string k drawn from a distribution D, and a random seed x, treat k
as the truth table of a “hard” function to generator G f 27

v

ACKNOWLEDGEMENTS

I would first like to acknowledge Russell Impagliazzo for all of his help and guidance.

From first agreeing to be my mentor for an independent study project while I was still an

undergrad, to being the chair of my thesis committee during my masters program, Russell has

always been generous with his time. His enthusiasm for both complexity theory as well as

mentorship is unwavering, and he has been a huge inspiration for me to continue to learn more

about the field and pursue academia.

In addition I would like to thank Ramamohan Patrui and Daniele Micciancio for being

part of my thesis committee, Nadia Heninger and Gerald Soosai Raj for giving me the opportunity

to work with them during my time at UCSD, and all the wonderful teachers I had who have

helped develop my interest in theoretical computer science.

Lastly I would like to give a big shout-out to all the other students in the UCSD theory

group, and my roommates and friends for making my graduate studies more enjoyable. And

of course, my parents, David and Jenny, and sister Iris, for their longstanding and continuing

support in allowing me to pursue my academic interests.

vi

ABSTRACT OF THE THESIS

Connections Between Randomness Extractors, Pseudorandom Generators, and Optimal
Derandomization

by

Dustin Lin

Master of Science in Computer Science

University of California San Diego, 2023

Professor Russell Impagliazzo, Chair

This thesis will be a survey aimed to be an overview of some connections between

randomness extractors and pseudorandom generators in complexity theory. Particularly there

will be a focus on how such connections are leveraged in achieving faster derandomization and

“beating the hybrid argument”. We will cover both some classic results and examples, as well as

some more recent ones.

vii

Chapter 1

Statistical and Computational Random-
ness

The use of randomness in computation has been integral in algorithm design, and has

led to the creation of simple yet effective algorithms that are common in everyday use (eg:

testing if a number is prime, sorting, finding the minimum cut of a graph). In computational

complexity theory we look at different resources computers can use, and their power in solving

problems. Formally defined computational complexity classes around Turing machines and other

computational models with access to random bits have existed for decades, and people have

attempted to compare and contrast these classes to others. However, it is not clear the power

of randomness, and where certain randomized complexity classes stand against others. Is it

the case that allowing computers access to random coin tosses strictly increases the number

of computational problems it can solve? If so, by how much? Looking from a finer lens, do

randomized polynomial time algorithms always have a deterministic/derandomized counterpart?

While specific derandomized algorithms exist (eg: the deterministic AKS algorithm

testing if a number is prime [AKS04]), does this statement hold for every randomized algorithm?

The area of pseudorandomness attempts to look at ways to efficiently generate bits that “look

random” using little to no true randomness. Beyond the perhaps philosophical question of if true

randomness exists in our universe, generating pseudorandom bits would lead to derandomized

algorithms by simply substituting their random bits with pseudorandom ones. The intuition is

1

that if the computational model has a difficult time distinguishing between pseudorandom and

truly random bits, then the accuracy of the randomized algorithm should not be affected by much.

This is known as “derandomizing” an algorithm.

In this work we will first go over some notation and facts that may be unknown to some

readers, then in the first half of Chapter 1 review definitions related to complexity classes and

pseudorandomness. Basic knowledge (such as that acquired from an undergraduate theory of

computation or algorithms course) is assumed. In the later half we will cover some classic results

about pseudorandom generators and randomness extractors, and show some common proof

techniques used. In chapter 2 we will start looking at the question of “optimal” derandomization

and how randomness extractors and pseudorandom generators are actually closely related.

Finally in chapters 3 and 4 we will go over some recent results relating to just how fast we can

derandomize algorithms.

1.0.1 Notation

We represent the set of numbers {1, . . . ,n} as [n], and often use capital numbers to

represent their lowercase numbers raised to the power of 2 (eg: N = 2n). All logarithms are base

2 unless specified. We consider (unless specified) Un to be the uniform distribution over n bits.

We call the support of a random variable X , supp(X) to be the set of all values X can take with

non-zero probability. For a circuit C or boolean function f , we define supp(C) and supp(f) to

be the set of all inputs for which the circuit/function accepts respectively (where accept means

circuit/function returns 1 and reject 0). We consider poly(n) to be an arbitrary polynomial with

variable(s) n.

We denote the complexity class DT IME(t(n)) to represent all languages that are deter-

ministically decidable by a Turing machine in time t(n). For example P= ∪cDT IME(nc) for

all constants c ≥ 1. Below we will state some common inequalities and definitions as a brief

refresher:

Theorem 1 Chernoff Bound: Let X1, . . . ,Xt be independent random variables taking values in

2

the interval [0,1], and X = (∑i Xi)/t and µ = E[X]. Then the probability that X deviates from its

mean exponentially decays in the number of variables:

Pr[|X−µ| ≥ ε]≤ 2−tε2/4

Theorem 2 Union Bound: Let E1,E2, . . . ,En be a collection of events (may or may not be

independent), the probability that at least one such event occurs is bounded by the sums of their

probabilities:

Pr[∪n
i=1Ei]≤

n

∑
i=1

Pr[Ei]

Definition 3 Let X be the random variable drawn from some distribution D. We say the Shannon

entropy of distribution D is:

∑
x∈supp(X)

Pr[X = x] log
1

Pr[X = x]

1.1 Randomness in computation: complexity classes

Randomness can be thought of as an additional resources available to computers. As a

quick refresher, we include the definition of BPP (bounded-error probabilistic polynomial time)

and probabilistic Turing machines. A probabilistic Turing machine is a Turing machine that has

access to a black-box providing it with unbiased and independent random bits. The machine can

use this box to “toss a coin” and get it’s result in one time step.

One can also think about probabilistic Turing machines as having 2 transition functions

which, at each step of computation, run with probability 1/2 each. If the reader is familiar with

nondeterministic Turing machines, we are essentially describing the transition function in the

same way. One key difference is that while in nondeterminism we only require that one branch

of computation accepts, for probabilistic Turing machines we want some “majority” to accept.

Additionally, another often useful view of randomized computation is a regular Turing

3

machine with two input tapes. Besides the tape containing the input string, the Turing machine is

also given an infinite one-way read-only tape filled with random 1’s and 0’s generated uniformly

at random. At any stage in the Turing machine’s computation, it can choose to move the tape-

head above the random tape and read in random bits. This view of probabilistic Turing machines

is useful because it allows us to “decouple the randomness” from the machine [AB09, Vad12].

This complexity class BPP aims to capture “efficent” randomized computation.

Definition 4 BPP is a class of languages L for which there exists a probabilistic polynomial-time

algorithm A such that:

• x ∈ L→ Pr[A(x) accepts]≥ 2/3

• x /∈ L→ Pr[A(x) accepts]≤ 1/3

The fact that the probability of false positive and false negatives is bounded significantly

(a constant) away from 1/2 allows us to perform error-reduction by running the randomized

algorithm multiple times on the same input, and simply taking the majority answer. One can

show that the error exponentially decreases towards 0 with a polynomial amount of repetition

via a Chernoff bound [AB09, Vad12].

Another model of computation tied closely with pseudorandomness is Boolean circuits.

For an n-length input, a Boolean circuit is a directed acyclic graph with n sources (which

corresponds to the n input bits) and one sink (which we can think of as the output). Between the

source and sink we have vertices representing “gates” labeled the logical operators AND, OR,

NOT. The AND and OR gates each have in-degree 2 (often called fan-in 2) and out-degree 1.

The NOT gates have both in and out degree 1. We measure the size of each circuit as the number

of vertices. Note that circuits are often referred to as a non-uniform model of computation since

each circuit is defined against a specific input length n. Circuit families refer to a collection of

circuits, one for each input length. The complexity class of circuits that we will most often refer

to is the class P/poly(). P/poly() represents the class of languages which can be decided by

4

polynomial sized circuit families. The size of each individual circuit should be polynomial with

respect to it’s input length.

Definition 5 P/poly is a class of languages L that are decidable by polynomial-sized circuit

families.

It turns out that circuit families are essentially equivalent to “Turing machines with

advice”. In the nonuniform Turing machine model we allow, for each input length, an advice

bitstring polynomial in length with respect to the input. It turns out every nonuniform Turing

machine running in time t(n) can be simulated by a sequence of boolean circuits of size Õ(t(n))

(where Õ is simply big-O that ignores logarithmic factors). Likewise every sequence of boolean

circuits of size s(n) can be simulated by a nonuniform Turing machine running in time Õ(s(n))

[AB09, Vad12]. In this paper we will often refer to “nonuniform Turing machines”, “circuits”,

and “Turing machines with advice” interchangeably.

This alternative concept of “hard wiring” advice will be useful in particular. A good

example is Aldeman’s theorem that BPP⊂ P/poly. He reasons that with for a language in BPP

you can, through error reduction, obtain an algorithm with error rate exponentially small. This

then implies that there exists a random string that, on every input, outputs the correct answer.

By encoding this random string as advice, we get a circuit/TM with advice deciding the same

language [AB09, Adl78].

1.2 Statistical and Computational Randomness

The type of randomness that most people initially think of is the statistical definition.

How close is a distribution to the uniform distribution? This measure is formally defined as the

statistical distance.

Definition 6 For random variables X and Y taking values in some domain D, their statistical

distance ∆(X ,Y) = maxT⊂D|Pr[X ∈ T]−Pr[Y ∈ T]|. Additionally, X and Y are “ε-close” if

∆(X ,Y)≤ ε .

5

The motivation for randomness extractors is to run randomized algorithms without access

to “perfect” randomness. What if there are no true random sources, but only biased weak ones?

Or even if there are true random sources, what if they are hard to sample from? Randomness

extractors aim to extract the randomness out of weak sources, and produce output that is close

to uniform. We define extracting randomness from distributions/random variables where we

know a lower bound on their min-entropy [Vad12]. We say a random variable sampling from a

distribution is a k-source if it has min entropy at least k.

Definition 7 A random variable X is a k-source if H∞(X)≥ k, i.e. if Pr[X = x]≤ 2−k

An example of k-sources (which it turns out to generalize to any k-source) are flat k-

sources: a uniform distribution on a subset S⊂ {0,1}n with |S|= 2k [Vad12]. Note for the case

where n = k we have Un: the uniform distribution over n bits. We define a seeded randomness

extractor as the following:

Definition 8 A randomness extractor: Ext : {0,1}n×{0,1}d →{0,1}m is a (k,ε)-extractor if

for every k-source X on {0,1}n, Ext(X ,Ud) is ε-close to Um

A natural question to ask is the motivation for a randomness extractor to require a truly

random seed of length d. It turns out having a k-source of length n be the only input to the

extractor (and thus having it be deterministic) would imply that there exists an (n−1)-source

X such that the first bit of every output is the same (by simply looking at a flat (n−1)-source

of 2n−1 elements). This implies a distribution far from uniform, since the first bit is constant!

However, even with a random seed essentially being required for our randomness extractor, as

long as it is sufficiently short it is possible for us to enumerate over all possible 2d seeds and run

the randomized algorithm on each one. Then by simply taking a majority vote of the outputs we

can derandomize the algorithm [AB09].

We now show that, ignoring computational efficiency, extractors with short seeds ex-

ist. Namely with seed logarithmic in the input length. The below theorem is proved via the

6

probabilistic method: by reasoning that some mathematical object has a non-zero probability of

occurring. In this case, we will show that picking a random function to be our extractor turns out

to be a good strategy.

Theorem 9 (from [AB09]) For every k,n ∈ N and ε > 0, there exists a (k,ε)-extractor Ext :

{0,1}n×{0,1}d →{0,1}k with d = logn+2log1/ε +O(1).

Proof: We will focus on looking at flat sources without loss of generality. For an (n,k)-flat

source X , let our extractor be a random function Ext : {0,1}n×{0,1}d→{0,1}k. For a function

f : {0,1}k → {0,1}, the expectation of evaluating f with inputs from our random function

extractor E[f (Ext(X ,ud))] involves evaluating f on all 2k ·2d inputs.

Since these evaluations are independent, by a Chernoff bound the probability that this

expectation deviates from the average E[f (Uk)] by more than ε is exponentially small (ie:

< 2−2k+dε2/4). By our choice of d we can simplify the bound to < 22n(2k). And finally we know

the number of flat distribution is at most (2n)2k
, and the number of functions from k bits to 1 bit

is 22k
. By a union bound, this probability that a random function extractor deviates from the

true expectation is (2n)2k ·22k
/22n(2k) < 1 , implying that there exists a randomness extractor Ext

working for every (n.k)-flat source and function f : {0,1}k→{0,1}. □

The probabilistic method is very useful for showing the existence of objects with desirable

properties, but it is non-constructive in the sense that the proof gives no insight on what such

an object would look like and how to go about constructing it. However, very good explicit

extractor constructions have been presented with seed lengths close to optimal [AB09, Vad12].

Turning our attention over to computational indistinguishability, the difference from the

statistical definition is instead of trying to fool every statistical test, only look at fooling specific

models of computation.

Definition 10 Computational indistinguishability (from [Vad12])

Random variables X and Y taking values in {0,1}m are (t,ε) indistinguishable if for

7

every nonuniform algorithm T running in time at most t:

|Pr[T (X) = 1]−Pr[T (Y) = 1]| ≤ ε

The left hand side of the inequality is often referred to as the advantage of a “test” T . We

can now define formally a pseudorandom generator.

Definition 11 A deterministic function G : {0,1}d→{0,1}m is a (t,ε) pseudorandom generator

(PRG) if:

• d < m

• G(Ud) and Um are (t,ε) indistinguishable.

The goal with these definitions is to guarantee that the pseudorandom outputs are as

good as truly random bits against all “advarsaries” running in time at most t. This provides us

with another way of derandomizing algorithm (in comparison to using randomness extractors).

Simply loop through all 2d seeds of the PRG and take a majority answer of the randomized

algorithm with its randomness substituted by the PRG. Interesting to note that while we define the

indistinguishability with respect to non-uniform algorithms, for the purposes of derandomization

we want the generator to be itself computable uniformly and deterministically. The following

theorem highlights the general strategy of using PRGs to derandomize BPP [Vad12].

Theorem 12 Suppose that for every polynomial m there exists an (m,1/8)-PRG G : {0,1}d(m)→

{0,1}m (where the seed d is some function dependent on the output length m) computable in

time t(m). then BPP⊂ ∪cDT IME(2d(nc) · (nc + t(nc)).

Proof: We let A be a BPP algorithm that takes in an input x and random string r. From section

1.1 we know that A can be simulated by a family of Boolean circuits of polynomial size (size at

most nc for every input x of length n to A). Without loss of generality assume that on input x, r is

8

of length at most nc (if |r|> |nc| then the machine can’t possibly read the entire random string in

time). What we wish to do is replace these random bits with pseudorandom ones, and show that

A will still be correct “with high probability”. The proof of theorem 12 essentially boils down to

proving this subclaim: for every x of length n, A(x,G(Ud(nc))) errors with probability smaller

than 1/2.

Proof of subclaim: Suppose towards a contradiction that there exists an input x where

A(x,G(Ud(nc))) errors with probability at least 1/2. Then we can define a boolean circuit

T (·) = A(x, ·) of size at most nc that distinguishes Unc from G(Ud(nc)). T will take in as input

either a truly random or pseudorandom string, and use it to run A on input x with the randomness

provided as input.

We can reason the advantage of T . From our assumption A(x,G(Ud(nc)) errors with

probability at least 1/2, and since A is a BPP algorithm it errors with probability at most 1/3

over uniform randomness. The advantage of T is thus 1/2−1/3 > 1/8. This contradicts our

assumption that our generator G has ε = 1/8. □

Note that T fixes the particular input x as advice, a reason why we define PRGs to be

hard against nonuniform tests. This short proof also showcases the usefulness of reductions and

proof by contradiction for proving indistinguishability. With the subclaim being true the runtime

of theorem 12 comes from running A and G over all 2d(nc) seeds to the generator and taking a

majority answer [Vad12]. For derandomization, since we are running a randomized algorithm

2d(nc) times, we can actually afford to have the PRG run in time poly(m,2d(m)), exponential in

the seed length. Next, just like with theorem 9, we can show via the probabilistic method that

good PRGs exist.

Theorem 13 (from [Vad12]) For all m ∈ N and ε > 0, there exists a (m,ε) pseudorandom

generator G : {0,1}d →{0,1}m with seed length d = O(logm)+2log1/ε .

Proof: We pick a function G : {0,1}d →{0,1}m at random, and fix a time m algorithm T . The

probability that T distinguishes G(Ud) from Um with advantage ε is at most 2−Ω(2dε2) by a

9

Chernoff bound. We can union bound over all nonuniform algorithms running in time m by

counting the number of circuits of size m, which there are 2poly(m) (where the poly(m) comes

from counting the different gates).

We wish for the union bound probability to be less than 1.

2poly(m)

2Ω(2dε2)
< 1

For this to hold we want d = O(logm)+2log1/ε . □

1.3 Randomness from hard functions

Based on theorem 12, the shorter the seed length, the faster we are able to derandomize

a particular algorithm. Looking broadly at BPP, we can reason which deterministic time

complexity class it will lie based on the seed length d.

• d = nε gets you BPP⊂ SUBEXP = O(2nε

)∀ε > 0

• d = poly(logn) gets you BPP⊂ P̃ = O(2logc n)

• d = O(logn) gets you BPP= P

Note that one can’t hope to get a generator with seed length exactly logn, since each

function has hardness 2n trivially. However, unlike the extractor case, we need to be careful in

considering the computational randomness that is being output from our PRG. As defined in

section 1.2, we have to ensure that our PRG is indistinguishable against nonuniform algorithms

running in time at most t.

1.3.1 Randomness as next-bit-unpredictability

The most elementary hard function takes in a string, and outputs 1 “hard” bit. It is useful

for some of the future analysis below to establish that indistinguishability is preserved under

multiple samples. This extends naturally to taking multiple “hard” bits from a hard function and

10

showing that that bitstring is also pseudorandom. The theorem and proof below utilize what is

often referred to as the “hybrid argument” or “hybrid distributions”.

Theorem 14 (from [Vad12]) If random variables X and Y are (t,ε) indistinguishable, then

for every k ∈ N, Xk and Y k are (t,kε) indistinguishable, where Xk and Y k represent taking

independent copies and concatenating them together.

Proof: The proof will be of the contrapositive: if there is an efficient distinguisher T for Xk and

Y k with advantage greater than kε , then there is a efficient distinguisher T ′ for X and Y with

advantage greater than ε (where T ′ uses T as a subroutine).

We assume a nonuniform time T running in time t such that:

|Pr[(T (Xk) = 1]−Pr[T (Y k) = 1]|> kε

Define hybrid distributions Hi = Xk−iY i for i = 0, . . . ,k, with H0 = Xk and Hk =Y k. The

inequality from our assumption above can then be rewritten as the following telescoping sum

(writing out the sun explicitly you can notice that all but the first and last term cancel). We can

also drop the absolute value in the advantage without loss of generality since we can simply

negate the output of our nonuniform algorithm/circuit T .

k

∑
i=1

Pr[T (Hi−1) = 1]−Pr[T (Hi) = 1]> kε

Since the sum is over k terms, this implies that there must be some i such that the

advantage is > k implying (for that specific i): Pr[T (Hi−1) = 1]−Pr[T (Hi) = 1] > ε Writing

these hybrid distributions back out in terms of X and Y we get:

Pr[T (Xk−iXY i−1) = 1]−Pr[T (Xk−iYY i−1) = 1]> ε

Now we can focus on the individual random variables X and Y . By the averaging

argument/averaging principle, which states that any event A which depends on two independent

11

random variables B, C, then there exists a fixed b in the support of B such that Pr[A(b,C)] ≥

Pr[A(B,C)], there exists fixed xi, . . . ,xk−i and yk−i+2, . . . ,yk such that the above inequality still

holds. In other words:

Pr[T (x1, . . . ,xk−i,X ,yk−i+2, . . . ,yk) = 1]

−Pr[T ((x1, . . . ,xk−i,Y,yk−i+2, . . . ,yk) = 1]> ε

Now we have an inequality with just random variables X and Y ! Define our distin-

guisher for X and Y as T ′(z) = T (x1, . . . ,xk−i,z,yk−i+2, . . . ,yk) with the specific index i and

bits x1, . . . ,xk−i,yk−i+2, . . . ,yk hardwired as advice. Thus we get a nonuniform algorithm T ′

running in time t that distinguishes between X and Y with advantage greater than ε . This is

a contradiction to the indistinguishability of X and Y , implying that Xk and Y k must be (t,kε)

indistinguishable. □

Note a small technicality here that this reduction wouldn’t work for cases where k ≥ t,

since then the advice length would exceed the time it takes to read all of it.

With multiple pseudorandom bits, it is sometimes helpful to reformulate the notion of

pseudorandomness to that of “next-bit unpredictability”: given a prefix of the output, it should be

hard to guess the next bit of the string much better than simply random guessing. More formally,

we say a random variable X taking values from {0,1}m is (t,ε) next-bit unpredictable if for

every nonuniform probabilistic algorithm P running in time t and for each index i ∈ [m], the

probability that given the first i−1 indices, Pr[P(X1X2 · · ·Xi−1) = Xi]≤ 1/2+ ε . The following

theorem relates this next bit unpredictability property to pseudorandomness.

Theorem 15 (from [Vad12]) For a random variable X taking values in {0,1}m, if X is (t,ε)

pseudorandom, then X is (t−O(1),ε) next-bit unpredictable. Conversely, if X is (t,ε) next bit

unpredictable, then it is (t,m · ε) pseudorandom.

12

Proof: The forward direction (that pseudorandomness implies next-bit unpredictability) goes

by contradiction. Assume towards a contradiction that X is not (t−3,ε) next-bit unpredictable,

and thus there is a predictor P : {0,1}i−1→{0,1} (for fixed i) that succeeds in guessing the ith

bit with probability at least 1/2+ ε . We then construct an algorithm T : {0,1}m→{0,1} that

distinguishes X from Um (using P as a subroutine), contradicting the pseudorandomness of X .

Let T be the function as follows:

T (x1x2 · · ·xm) =

1 if P(x1x2 · · ·xi−1) = xi

0 otherwise

Clearly the advantage of T on X is the same as P on a prefix of X , and T can be

implemented in the same size as P plus an additional 3 gates to test for the equality of bit xi.

The converse direction, that next-bit unpredictability implies pseudorandomness uses a

similar hybrid argument. Assume towards a contradiction that X is not pseudorandom, which

implies there exists a nonuniform algorithm T running in time t such that:

|Pr[T (X) = 1]−Pr[T (Um) = 1]|> ε

Similar to theorem 14, we can drop the absolute values without loss of generality, and

define the hybrid distribution Hi = X1X2 · · ·XiUi+1Ui+2 · · ·Um with Hm = X and H0 =Um. (Here

we will have to deal with the inconvenience that Ui refers to the ith bit of a string as opposed to

the conventional notion that Ui is the uniform distribution on i bits.) We can write the inequality

above as a telescoping sum in the same way:

m

∑
i=1

Pr[T (Hi−1) = 1]−Pr[T (Hi) = 1]> ε

There exists an i such that:

13

Pr[T (Hi−1) = 1]−Pr[T (Hi) = 1]> ε/m

We can reintroduce Xi’s and Ui’s:

Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1]

−Pr[T (X1, . . . ,Xi−1,Ui,Ui+1, . . . ,Um) = 1]> ε/m

Notice that in the second term, we can treat the uniformly random bit Ui as Xi with

probability 1/2, and it’s negation Xi with probability 1/2. This allows us to simplify the expression

as:

1
2
· (Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1]

−Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1])> ε/m
(1.1)

Based on this analysis, we say our next bit predictor P(x1,x2, · · · ,xi−1) will do the

following 3 steps: first choose random bits ui, . . . ,um uniformly at random, then compute

b = T (x1, . . . ,xi−1,ui, · · · ,um), finally output ui if b = 1 else output ui

The intuition is because T is more likely to output 1 when ui = xi based on equation 1.1.

The probability of correctly predicting the next bit is:

Pr[P(X1, . . . ,Xi−1) = Xi]

14

=
1
2
· (Pr[T (X1, . . . ,Xi−1,Ui,Ui+1, . . . ,Um) = 1|Ui = Xi]

+Pr[T (X1, . . . ,Xi−1,Ui,Ui+1, . . . ,Um) = 0|Ui ̸= Xi])

=
1
2
· (Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1]

+1−Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1])

=
1
2
+

1
2
· (Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1]

+1−Pr[T (X1, . . . ,Xi−1,Xi,Ui+1, . . . ,Um) = 1])

>
1
2
+

ε

m

Where the second equality is from rewriting Ui ̸= Xi as Xi, and the last inequality is from

applying equation 1.1. Finally the runtime of P is t +O(m) from producing random bits and

running T . Note that we can always fix random bits as advice (again via the averaging argument)

while preserving the advantage which would bring down the runtime to t. □

1.4 Hardness amplification

As explored in the previous section: the general idea is that to derandomize an algorithm,

it is enough to use the outputs of a sufficiently hard function in lieu of truly random bits. Since

to achieve the goal of derandomizing an algorithm we want to enumerate over all outputs of the

generator we require the hard function to be hard “on average”. This is a stricter requirement

then worst case hardness: often what people first learn about in their algorithms/data structure

courses. The following definition is noted [AB09, Vad12].

Definition 16 For a function f : {0,1}n→{0,1} and parameter δ ∈ [0,1] we say that f is (t,δ)

average case hard for all nonuniform algorithms C running in time t if:

Pr
x∼Un

[C(x) = f (x)]≤ 1−δ

We usually refer to “mildly” average-case hard functions for general δ ∈ [0,1], and

15

“strongly” average-case hard functions for when algorithms can’t do much better than random

guessing the values of the function f . In the later case we would think of setting δ = 1/2− ε for

ε = 1/s Note that worst case hardness is captured above with exponentially small δ > 0, since

we only need at least one input x where C and f differ.

A simple pseudorandom generator from a average case hard function f : {0,1}n→{0,1}

is the following: given a truly random seed r ∈Un, output r ◦ f (r). Note that a distinguisher

can’t distinguish such an output from a random string in Un+1 unless it can predict f , and that

such a simple construction includes its seed in its output and is only feasible when the generator

has more computational resources than the algorithm/distinguisher it is trying to fool (or else the

distinguisher can just compute the function itself). Also see that such a construction requires

the “average case” hardness of f . If f was only worst case hard, then it could be the case that

for many inputs f is easy to compute and a distinguisher would have a greater probability of

breaking the PRG given a uniformly random seed r.

1.4.1 Nisan Wigderson Generator

The above example only extends a truly random string into a pseudorandom string that is

one bit longer. In a landmark paper, Nisan and Wigderson show how you can do much better

(with respect to the output string length) given an average-case hard function. The construction

is commonly referred to today as the “Nisan-Wigderson generator”. The idea of the generator

is similar to the example just covered, except that we want to split up the random seed r into

smaller chucks, and evaluate them separately on the hard function f . To get a PRG output that is

exponentially longer, they allow the split chunks of r to be “slightly dependent” on each other.

They accomplish this by coming up with “designs”: a family of subsets (of a string) such that for

any two subsets their intersection in small.

Definition 17 Designs

A group of m subsets from a universe [d] (ie: S1, . . . ,Sm ⊂ [d]) is a (ℓ,a)-design if:

16

• ∀i, |Si|= ℓ

• ∀i ̸= j, |Si∩S j| ≤ a

Given an (ℓ,a) design from a universe [d] = [1, . . . ,d] of size d, the NW generator

essentially evaluates the hard input function f m times on selected indices of the seed, and

concats the evaluations together. The notation x|Si refers to taking the indices of x defined by Si.

For example x = 1001 and S1 = {1,3} yields x|S1 = 01 (with 1 indexing).

The more formal definition is as follows.

Definition 18 Nisan-Wigderson Generator (NW generator)

Given a function f : {0,1}ℓ→{0,1} and an (ℓ,a) design with subsets S1, . . . ,Sm ⊂ [d],

the generator G : {0,1}d →{0,1}m is defined as:

G(x) = f (x|S1)◦ f (x|S2) · · · f (x|Sm)

Figure 1.1. A pictorial representation of the “nearly disjoint” inputs to the hard function. Each
output bit may share some bounded number of it’s bits with the seed. Note the indices in each
set Si need not be contiguous.

The following proof of correctness highlights some concepts such as the hybrid argument

result, the averaging principle, and the need for nonuniformity [Vad12, AB09].

17

Theorem 19 If f : {0,1}ℓ→{0,1} is (s,1/2−ε/m) average-case hard, then the NW generator

G defined above is a (t,ε) pseudorandom generator, for t = s−m ·a ·2a.

Proof: Assume towards a contradiction that G is not a (t,ε) PRG. This implies there is a

nonuniform distinguisher (and by theorem 15), a next bit predictor P running in time t such that:

Pr[P(f (X |S1) f (X |S2) · · · f (X |Si−1) = f (X |Si)]>
1
2
+

ε

m

For random variable X taking values from Ud and i ∈ [m]. The goal will be to construct

a nonuniform algorithm A that computes f with probability greater than 1/2+ ε/m, which

contradicts the assumed hardness of the function.

For each string X |S j of length ℓ and j ∈ [i−1] we will try to rewrite them in terms of the

indices it shares with X |Si . Let Z1 and Z2 be two independent random variables corresponding

to values of S j in Si and Z2 be the ones in [d]\Si. We can now rewrite as the following, where

each f j is simply a wrapper function that applies the function f to the restriction of X defined by

Z1 and Z2 (ie: constructs X |S j from Z1, and Z2). We can now rewrite the above equation as the

following:

Pr[P(f1(Z1,Z2) f2(Z1,Z2) · fi−1(Z1,Z2) = f (Z1)]>
1
2
+

ε

m

Note that for bit i, we can simply look at Z1 since by definition Z1 = Si. By the averaging

argument (which was also mentioned in section 1.3.1) there exists a fixed z2 in the range of Z2

such that:

Pr[P(f1(Z1,z2) f2(Z1,z2) · fi−1(Z1,z2) = f (Z1)]>
1
2
+

ε

m

Now by the parameters of our (ℓ,a) design we know that for each value z1 of Z1,

computing any f j(z1) only depends on |S j∩Si| ≤ a bits of z1. The rest of the bits can be fixed

by z2. Thus the only bits that are free are the ≤ a bits that each S j shares with Si. Since every

18

function on a bits can be computed by a boolean circuit of size a ·2a naively (which we can give

it’s truth table as advice), we can define A(y) = P(f1(y) · fi−1(y)) that computes the next bit with

probability of error 1− (1/2− ε/m) = 1/2+ ε/2. In time t +m ·a ·2a = s. This contradicts the

hardness of the function f , and therefore it must be the case that G is a (m,ε) generator. □

Finally we will mention constructions of designs. The important point is that we can

manage to get intersections a that are only logarithmic in the number of sets m, and the universe

d only needs to be at most quadratic in the set size ℓ [Vad12]. A proof sketch is to show that

via the probabilistic method that with non-zero probability all sets will have small intersection

size, and via brute force find such sets greedily set by set. Notice that Nisan and Wigderson’s

construction, as well as the analysis, don’t assume anything about the input function other than

its hardness. This has given rise to the so called “black-box” PRG constructions which we will

discuss more in section 4.1.

1.4.2 From worst-case hardness to average-case hardness

The requirement that the input hard function f to the NW generator be “average-case hard”

may seem a bit out of the ordinary. Often times in computer science we measure the performance

of algorithms in the worst-case. A natural question is if there are “hardness amplification”

techniques to amplify “hard” functions to “harder” functions in some metric. Turns out we can

look at error correcting codes to help us achieve this. At a high level, an error correcting code

maps strings into slightly longer strings (often called codewords which may be over a larger

alphabet) such that their “distance” increases. The distance metric that is commonly used is

the hamming distance: given 2 strings x,y, the relative hamming distance dH(x,y) = Pri[xi ̸= yi]

where i represents the indices of the strings.

The original motivation for error correcting codes is this: say Alice and Bob want

to share information across a noisy channel. A message Alice tries to send to Bob could

become corrupted. By first encoding her message using an error correcting code and sending

the codeword, since each codeword is “far” apart from each other hopefully Bob will be able

19

Figure 1.2. Using an error correcting code to encoding the truth table of a function. By properties
of the code, being able to compute f approximately should still yield an algorithm computing f
exactly

to decode the corrupted codeword back to the original message with high probability. More

formally, an encoding function is a bijective mapping between messages and codewords such

that the hamming distance between codewords are large.

To think about how error correcting codes could be related to hardness amplification,

first think about the representation of a function f : {0,1}n→{0,1} as a string of length N = 2n.

Running this “message” through an error correcting code from {0,1}N to {0,1}M we get a

codeword representing a function f̂ : {0,1}logM → {0,1}. Form the properties of an error

correcting code, one should be able to recover f even if some portions of f̂ ’s truth table was

corrupted. In other words, one should be able to compute f exactly if they are able to compute f̂

approximately! Taking the contrapositive, this implies that if f is hard to compute in the worst

case, then f̂ should be hard to compute on average [AB09].

Through the use of error correcting codes, we can turn a worst-case hard function to an

average case hard function. This type of 1− δ hardness is often referred to as “mildly” hard.

However, we want to do better. Ideally for the NW generator construction we would like to get a

20

function that is “strongly” hard: one where the error rate is 1/2+ ε . In other words, a function

where one can’t do much better than randomly guessing the output. Here we turn to 2 concepts

that are related: XOR lemmas and approximate local list decoding.

At a high level, XOR lemmas state that given a function that is mildly hard with respect

to a complexity class, by taking multiple evaluations where the inputs are sampled from a

distribution, computing the XOR/parity of the outputs should be strongly hard with respect

to a slightly weaker class. The original construction proven by Yao samples inputs uniformly

at random, later Impagliazzo and Wigderson showed that the inputs can be psuedorandomly

generated [AB09, IW97, Yao82].

From the view of approximate local list decoding, the idea is very similar to figure 1.2.

This time the truth table of a function f that we are sending as out ”message” is a mildly hard

function, and out encoded function f̂ should be average case strongly hard. A proof sketch of its

correctness goes by reduction. Suppose that there exists some algorithm C̃ that computes f̂ on

> 1/2+ ε of the inputs. Then there exists a nonuniform algorithm C with oracle access to C̃ that

computes f on > 1−δ positions, a contradiction to the assumed hardness of f [AB09, Vad12].

With this proof sketch, we can note why we are looking at specifically “approximately

local list” decodable codes. Firstly our reduction constructs a C that approximates f on > 1−δ

inputs, just enough to get a contradiction. Therefore we are only approximating the original

function f . Second, our decoder must be “local”. Even though C has access to C̃ as an oracle,

it can’t afford the time to query all inputs to f̂ . This leads to the notion that each output of f

should only depend on “few” outputs of the function f̂ . The final relaxation is the notion of

“list” decoding. Whereas in our original error correcting code picture, Bob wishes to recover

the exact message that Alice tried to send to him, with list decoding Bob may be content with

decoding the corrupted message to a list of potential messages that Alice could have sent (with

the original message guaranteed to be in the list). This relaxation form exact decoding to list

decoding is essential for the reduction to work because we allow for C to be nonuniform. As

inline with psuedorandomness’s connection to nonuniformity, the reduction only guarantees that

21

there exists a nonuniform algorithm C with some advice string a that can approximately compute

f . The problem is from the perspective of codes, the decoder only receives a corrupted codeword

(which is representing a function’s truth table). The decoder does not have any information about

the advice string a, in fact it doesn’t even know what the original function f is (that’s what the

decoder is trying to figure out)! Thus, the decoder can only hope to output a list of candidate

messages (one can also think about it as the decoder trying to guess the advice string).

To connect XOR lemmas to codes, one can also think about the different XOR lemmas as

a linear mapping between f and f̂ that can act as one such encoding scheme. In this section we

have only just scratched the surface of coding theory and it’s connections to pseudorandomness

from the perspective of hardness amplification. The area of coding theory has numerous other

independent interests, so please do not consider what is introduced here to be any representation

of the entire field. Nevertheless the link to pseudorandomness may seem non-intuitive at first,

which is eye-opening to point out.

In this first chapter we have reviewed definitions of complexity classes closely related to

pseudorandomness, as well as the precise notions of statistical and computational indistinguisha-

bility. We explored the concept of derandomizing randomized algorithms, as well as proving via

the probabilistic method that optimal pseudorandom construction exist. A key topic we explored

was that of relating pseudorandomness and next-bit unpredictability, as well as the hardness

amplification and the Nisan-Wigderson pseudorandom generator construction.

Also note so far we have been talking about pseudorandom generators in the context of

derandomization. One can define a pseudorandom generator fit for cryptographic proposes, but

their requirements are more strict. For starters, cryptograpghic pseudorandom generators should

consider all “efficent” distinguishes, not just those running in some specific time t. Cryptographic

generators are also required to be efficiently computable (polynomial time), which is different in

the derandomization lens where we allow the generator to run in time exponential in the seed

length.

With many definitions and initial intuitions out of the way, we can now build off of

22

these ideas to look more closely at some classical results surrounding derandomization, as

well as explore the surprising relationship between pseudorandom generators and randomness

extractors.

23

Chapter 2

Derandomization and relations between
PRGs and Extractors

Since Nisan and Wigderson’s construction of a black-box pseudorandom generator and

hardness amplification techniques introduced by Yao, there has been much progress in trying

to derandomizing BPP [NW88, Yao82]. The connection between randomness and hardness

naturally implies that derandomizing BPP gets you circuit lower bounds that are stronger than

what we currently know [AB09]. Perhaps one of the most well-known results in derandomization

comes from Impagliazzo and Wigderson.

2.1 Getting to BPP= P

One of main contributions in Impagliazzo and Wigderson’s paper is looking more

closely at the XOR lemma first presented by Yao and making improvements to this technique

[IW97, Yao82]. Recall that Yao’s XOR lemma states that given a boolean function f , if a certain

model of nonuniform computation has a significant probability of failure at predicting the output

of f given a random input, then any predictor (of a slightly smaller complexity) can’t predict

much better than a coin toss the parity of k random instances to f .

The main hurdle that the authors point out is that Yao assumed the k inputs to be

independent. This required the hardness amplification (and eventual hard function for the NW

generator) to increase its input size by a polynomial amount, which means the simulation will

24

end up being quasi-polynomial. Impagliazzo and Wigderson showed that it is not necessary

(in the context of derandomizing BPP), for these separate inputs to be completely independent

from each other. In other words rather that picking the inputs uniformly at random, it suffices

for them to be generated pseudorandomly. This improved worst-case to strongly-hard average

case reduction leads them to reduce the input size, and led them to the famous result that if some

function in E (the class of problems decidable in time 2O(n)) has worst-case circuit size 2Ω(n),

then BPP= P [IW97].

2.1.1 Limits of the hybrid argument

The analysis of the NW generator in section 1.4.1 relied on that fact that the generator

was “next-bit unpredictable”. We needed to show that previous evaluations of the hard function

don’t help you that much in trying to predict future ones. As we will show, this tight relationship

between pseudorandomness and next-bit unpredictability pose strict limits on how short of a

seed length we can have.

Take the theoretically optimal seed length of PRGs derived in theorem 13. There we

showed that the seed length d = O(logm)+2log1/ε , where m is the output length of the PRG.

Just like our analysis of PRGs in section 1.3, if we wish to to merely extend the length of the

PRG by a multiple of k to get a output length of km, we would need to show that the PRG

needs to be next-bit unpredictable. For k samples, our PRG then needs to be in fact (m,ε/k)

unpredictable (by theorem 14).

Setting ε ′ = ε/k, we can see a new lower bound on the seed length. In order to create a

next-bit unpredictable (m,ε)-PRG with longer output km, our new optimal seed would be with

respect to ε ′:

25

O(logm)+2log1/ε
′

= O(logm)− log [(ε ′)2]

= O(logm)− log [(ε/k)2]

= O(logm)− (logε
2− logk2)

= O(logm)− logε
2 + logk2

This requires inherently an additional 2 logk in seed length of the generator if we are

to take the “multiple samples” strategy. It also is often the case that we want the output to

be a polynomial amount of bits (take for example the NW generator, or even extending the

naive single bit output generator). This in turn gives us a large polynomial slowdown in the

derandomization enumerating over all the seeds.

This isn’t a big deal for showing that under certain circuit lower bound assumptions

BPP= P, or in general derandomization results that are “efficent” in the polynomial sense. This

does however pose an obstacle to answering the question of how efficiently we can derandomize

algorithms. Taking a closer look at the polynomial slowdown has both practical and theoretical

importance. To avoid this obstacle, we would need new types of PRG constructions that don’t go

from “one-to-many” bits but rather output them “all at once”. This wouldn’t require the proof of

correctness to have to show previous outputs of a hard function give no significant advantage to

predicting the next one. To explore this concept, we revisit randomness extractors (defined back

in section 1.2) and their surprising relationship to computational randomness.

26

2.2 Parameters of PRGs and Extractors

With these objects defined in section 1, we can explore the relationships among black-box

pseudorandom generators and randomness extractors. A key idea is to view the parameters of an

extractor Ext(x,y) where x comes from a k source of n bits (and y from uniform) as a truth table

of a boolean function on logn bits where f (i) = fi. Thus we can treat the input function as the

“hard function” used in a black-box pseudorandom generator construction: Ext(f ,y) = G f (y).

This leads to the following relationship between these two objects:

Figure 2.1. Given a string k drawn from a distribution D, and a random seed x, treat k as the
truth table of a “hard” function to generator G f .

Theorem 20 If G f : {0,1}d →{0,1} is an ε-black box pseudorandom generator against arbi-

trary time adversaries with advice string length k, then Ext(f ,y) is a (k+ log1/ε,2ε)-extractor.

On the flip side, if Ext(f ,y) is a (k,ε)-extractor, then G f is a ε-PRG strong against arbitrary

time adversaries with advice length k+1.

Since we are relating to the statistical indistinguishably of randomness extractors, con-

verting between the 2 objects requires a notion of indistinguishability that is strong against

27

algorithms running in arbitrary time (similar to section 2.2.1).

Some intuition for theorem 20: for any fixed nonuniform distinguisher there are 2a

different advice strings corresponding to 2a different circuits each able to break a unique function.

Therefore we can bound the total number of functions that this distinguisher is capable of

breaking with the length of the advice given to it. With a source of the extractor having min-

entropy k+ log1/ε , the chance that a function (of length k) drawn from the distribution is one

the distinguisher is capable of breaking is:

2a

2a+log1/ε
= ε

Finally, the error bound of 2ε is due to the fact that computational indistinguishability is

defined by looking at the absolute value (refer to section 1.2) of the advantage, which corresponds

to a double sided error bound that is a factor of 2. Likewise, to convert from an (k,ε)-extractor

to a ε-PRG, you would need an advice length of a = k+1 to keep the ε-error rate.

Again this theorem is unfortunately non-constructive. There is nothing about the proof

that actually shows how to convert a construction of a PRG into an extractor or vice-versa.

2.2.1 Constructive example of an Extractor from a PRG

In a seminal paper, Trevisan detailed a connection between pseudorandom generators

and randomness extractors: namely that every PRG can be thought of as an extractor [Tre01]. He

uses the same paradigm of viewing an extractor’s 2 inputs as a function sampled from a k-source

and evaluation point. Trevisan’s lemma, which can be adapted similarly to other explicit PRG

constructions, uses the Impagliazzo-Wigderson construction (which modifies the original NW

construction) in it’s analysis [IW97]. For the purposes of this connection, the IW generator states

that if we have a function f : {0,1}ℓ→{0,1} that cannot be computed by circuits of size 22δℓ,

then IWf will be (2δℓ,ε)-indistinguishable from uniform.

For x∈ {0,1}n where n= 2ℓ we can think of x as a truth table to a function ⟨x⟩ : {0,1}ℓ→

28

{0,1}. Each bit of x can be thought of as the output bit of one if the 2ℓ possible inputs to the

function (the inputs can be in lexicographical order). Trevisan’s lemma states:

Lemma 21 Fix constants ε,δ > 0 and an integer ℓ. Let the function Ext : {0,1}n×{0,1}d →

{0,1}m be defined below for d = O(ℓ) = O(logn) and m = 2α(δ ,ε)ℓ. Then Ext is a (mδnδ logn+

log(1/ε),2ε)-extractor [Tre01].

Ext(x,s) = IW (m)
⟨x⟩ (s)

Here α is a constant parameter of the IW generator 0 < α < δ . The indistinguishability

parameter ε is referenced both by the PRG, as well as the extractor which bootstraps it. The

proof of the lemma involves a counting argument.

Proof: We want to show for every random variable X of min entropy k ≥ mδnδ logn+ log(1/ε)

and every statistical test T : {0,1}m→{0,1}, the indistinguishability holds.

|Pr[T (Ext(X ,Ud)) = 1]−Pr[T (Um) = 1]| ≤ 2ε

Fixing X and T , define the set of strings x which T succeeds distinguishing on as

B⊂ {0,1}n:

|Pr[T (Ext(X ,Ud)) = 1]−Pr[T (Um) = 1]|> ε

Recall from our PRG definition this implies that there is a circuit (in this case of the IW

generator of size 2δℓ) that uses T as an oracle to compute the original hard function ⟨x⟩. We

can model oracle calls in a circuit by abstracting them as T -gates. Due to the nonuniformity of

circuits, this applies to each x ∈ B. We can try to count |B| by counting the number of circuits

that compute ⟨x⟩ for each x ∈ B. Since any two different functions must be computed by two

different circuits, and for the sake of simply counting circuits we can fix T (with fan-in at most

m). Therefore the total number of elements of B is at most the number of circuits of size S = 2δℓ

with gates (AND, OR, NOT, T) of fan-in at most m. This gives us: |B| ≤ 2mS logS = 2mδnδ logn

29

(since |S|= 2δℓ and n = 2ℓ).

With a bound on B, we can think of having a source X for the extractor with min-entropy

much higher. This means the probability of sampling a random function belonging to B gets

smaller and smaller. Since we defined the source X to have min-entropy k = mδnδ logn+

log(1/ε) in lemma 21, we bound the following when sampling:

Pr[X ∈ B]≤ |B| ·2−k ≤ 2mδnδ logn ·2−(mδnδ logn+log1/ε) = ε

Therefore we can show the indistinguishability of the extractor as for any test T :

|Pr[T ((Ext(X ,Ut) = 1]−Pr[T (Um) = 1]| (2.1)

≤ E
x∈X

[|Pr[T ((EXT (X ,Ut) = 1]−Pr[T (Um) = 1]|] (2.2)

= ∑
x∈B

Pr[X = x] · |Pr[T (Ext(x,Ut) = 1]−Pr[T (Um) = 1]| (2.3)

+ ∑
x/∈B

Pr[X = x] · |Pr[T (Ext(x,Ut) = 1]−Pr[T (Um) = 1]| (2.4)

≤ 2ε (2.5)

Where line 2.3 comes from an application of the triangle inequality to split up the

probability to an expectation over all the elements in the support of X . The conclusion on line

2.5 comes from the proof above that Pr[X ∈ B] = ε in line 2.4 , and that ∀x /∈ B can be thought

of as the set of good strings such that the advantage ≤ ε .

By counting the number of fixed size circuits, Trevisan was able to think of pseudo-

random generators in a classical, statistical way. This argument is dependent on the particular

parameters of the Impagliazzo-Wigderson generator, and this counting argument seems to work

independently on the assumed hardness of the function f being used (up to 2n/2). Since harder

functions yield larger circuits, and the hardness parameter δ is included in the min-entropy of the

30

source, assuming harder functions doesn’t seem to get you better parameters. While we aren’t

particularly interested in fine tuning the performance of the extractor, Trevisan does later in his

work describe alternate constructions that yield better performance [Tre01].

The key insight in sections 2.2 and 2.2.1 is the difference between the adversaries for

pseudorandom generators and randomness extractors. For PRGs the set of possible adversaries

is limited computationally, where as the extractor is tasked with producing a distribution that

look uniform for any function.

2.3 Hardness amplification without the XOR lemma

Another result that leveraged this connection between PRGs and Extractors was interest-

ingly enough a construction of a PRG that composed of a modified NW generator discussed in

section 1.4.1 as well as the extractor just discussed in section 2.2.1. Sudan, Trevisan, and Vadhan

came up with an alternative view of constructing pseudorandom generators not with average case

strongly hard functions (derived from worst case hard functions and using hardness amplification

described in 1.4.2), but with trying to see if just a mildly hard function is enough.

The authors were able to show that simply using a mildly hard function, one is able to

generate bits with the the weaker notion that the output distribution is indistinguishable from

having high Shannon entropy. Through some additional modifications they turn this distribution

into one having high min-entropy, which they in turn are able to use an extractor to obtain a

PRG. A motivation was to try to understand more deeply the intuition that generating the weaker

notion of “pseudoentropy” should be cheaper than pseudorandomness. They credit Håstad et al.

with the original idea of using pseudoentropy as a stepping stone to pseudorandomness via an

extractor [STV99, HILL99].

Given the intuition as to why the NW generator requires a function that is average case

extremely hard, it would make sense that if the hard function were only 1−δ mildly hard then

a distinguisher should only be able to correctly guess a small (but noticeable)δ -fraction of the

31

inputs. This the authors make formal via the hardcore set lemma proven by Impagliazzo [Imp95]:

Theorem 22 (from [STV99, Imp95]) Suppose no circuit of size s can compute a function

P : {0,1}ℓ→ {0,1} on more than a 1− δ fraction of the inputs. Then, for ε > 0, there exist

an ε-hardcore set H ⊂ {0,1}ℓ such that |H| = δ ·2ℓ and no circuit of size s′ = Ω(ε3δ 2s) can

compute P correctly on more than a 1/2+ ε fraction of the inputs in the hardcore set H.

Using this theorem it can be shown that the NW generator with only a (1−δ) average

case hard function P should have δ ·m number of inputs land in H (in expectation if the inputs

are sampled uniformly at random). This corresponds to δ ·m bits of pseudorandomness. A

technicality they point out is since we are considering the output distribution on average to have

δ ·m bits of pseudorandomness. This corresponds to having Shannon entropy (where as the

application of a randomness extractor needs min entropy). To get a distribution having high

min-entropy, they reason that it must be with high-probability that inputs land in the hard set H

for P. We will not go into much detail on how they manage to accomplish this transformation,

but at a high level they modify the NW generator by adding an additional seed that they use to

generate pairwise independent strings which they XOR with the eventual inputs to the function

P (recall the these inputs were originally computed via designs from a random seed, the authors

simply compute the XOR of them with the pairwise independent strings mentioned above)

[STV99].

Thus they are able to compute what they refer to as a pseudoentropy generator:

Definition 23 Pseudoentropy generator (PEG)([STV99]) A generator G : {0,1}d →{0,1}m is

a (k,s,ε) pseudoentropy generator if there is a distribution D on {0,1}m of min-entropy k such

that no circuits of size s can distinguish the output of G from D with advantage greater than ε .

With a pseudoentropy generator construction, they finally prove that using an extractor

yields a computationally pseudorandom distribution:

32

Theorem 24 (from [STV01]) Suppose GPEG : {0,1}d1 →{0,1}m is a (k,s,ε1) pseudoentropy

generator and Ext : {0,1}m×{0,1}d2 → {0,1}n is a (k,ε)-extractor computable by circuits

of size t. then GPRG : {0,1}d1+d2 → {0,1}n defined by GPRG(u,v) = Ext(GPEG(u),v) is a

(s− t,ε1 + ε2) pseudorandom generator.

Proof: This proof goes by contradiction. Let D be the distribution of min-entropy k that cannot

be distinguished from GPEG(Ud1). Suppose towards a contradiction there is a circuit CPRG :

{0,1}n→ {0,1} of size s− t that distinguishes GPRG(Ud1,Ud2) from the uniform distribution

with advantage greater than ε1 + ε2. Similar to the reason why we can drop the absolute values

in section 1.3.1, we can write the advantage of CPRG as:

Pr[CPRG(GPRG(Ud1 ,Ud2)) = 1]−Pr[CPRG(Un) = 1]> ε1 + ε2

Define a “wrapper” circuit C′ : {0,1}m×{0,1}d2 → {0,1} to be the circuit of size s

(since Ext can be computed by circuits of size t and out assumption that Cprg is of size s− t)

C′(x,v) =CPRG(Ext(x,v)). We can then express the advantage of C′ in terms of the advantage

of CPRG:

Pr[C′(GPEG(Ud1),Ud2) = 1]−Pr[C′(D,Ud2) = 1]

= Pr[CPRG(GPRG(Ud1,Ud2)) = 1]−Pr[CPRG(Ext(D,Ud2)) = 1]

≥ Pr[CPRG(GPRG(Ud1,Ud2)) = 1]−Pr[CPRG(Un) = 1]− ε2

> ε1 + ε2− ε2

> ε1

Where the first equality comes from the fact that Ext(D,Ud2) and Un have statistical

distance at most ε2. The second to last inequality comes from the assumption of the advantage

33

of CPRG. Similar to the proofs in section 1.3.1, we can hard wire some string v ∈ {0,1}d2 to get a

circuit C′′(x) =C′(x,v) of size at most s which distinguishes GPEG(Ud1) from D with advantage

greater than ε1. This is a contradiction to the parameters of the generator GPEG. □

Thus their final PRG construction is actually a composition of a PEG and an extractor.

The final seed length is the length of the seed for the PEG combined with the seed length of the

extractor. The goal is for this combined length to be short for the purposes of derandomization.

Note that this construction is only based on average mildly hard functions, and does not rely

on the hardness amplification/XOR lemmas that were previously discussed in section 1.4.2.

Additionally this generator also avoids the hybrid argument, by outputting “imperfect” bits only

having the guarantee that they have high entropy. These results help motivate future work in

beating the hybrid argument and its limitations to the generator’s seed length .

In this chapter we explored the conditional results that BPP= P assuming “plausible”

lower bounds on complexity classes. Additionally we covered some relationships between

pseudorandom generators and randomness extractors, and both constructions of a extractor from

a PRG, as well as the idea of using an extractor to extract pseudorandomness. This latter idea

will be key going forward as we survey a result that tries to achieve optimal derandomization by

“extracting from a pseudoentropic source”.

34

Chapter 3

Beating the Hybrid Argument

From the earlier section, we mentioned the limitations of the hybrid argument, and

explored the result of Sudan, Trevisan, and Vadhan generating pseudoentropy as a stepping

stone to pseudorandomness. This allows them to avoid the next-bit unpredictability requirement

of PRGs, and thus avoid the ‘hardness amplification + hybrid argument”. In this chapter we

will explore the results of a recent paper by Doron, Moshkovitz, Oh, and Zuckerman which

follow the same paradigm of generating pseudorandom bits using a “PEG + Extractor” approach

[DMOZ22]. Their results focuses on using this paradigm to achieve better polynomial slowdowns

for randomization.

They assume quantitatively harder assumptions than what is required by Impagliazzo

and Wigderson: namely that there exists a function f : {0,1}ℓ→{0,1} that can’t be computed

by circuits of size 2(1−o(1))·ℓ but able to be computed uniformly in time 2O(ℓ) (as opposed to

functions not computable by size 2Ω(ℓ) circuits but computable in time 2O(ℓ)). In addition to

qualitative assumptions that require the functions be also hard against these sized circuits with

access to randomness and nondeterminism. Through these additional assumptions, they show

how to construct a PRG surpassing the barrier set by the hybrid argument.

35

3.1 Extracting from a Pseudoentropic Source

Motivated by Sudan, Trevisan, and Vadhan, the authors of the paper “Nearly Optimal

Pseudorandomness from Hardness” looked at how avoiding hardness amplification/XOR lemmas

can get better derandomization results [DMOZ22]. We know from section 2.1 that under

circuit lower bound assumptions P= BPP, and randomized algorithms can be converted into

deterministic ones with a polynomial slowdown. Looking at the general class of polynomial

time more closely, an interesting question is to ask if there are more “optimal” derandomization

techniques. Are there ways to trim the polynomial slowdown to smaller and smaller powers?

One of the barriers standing in the way is the hybrid argument, which as explained in section

1.3.1, is often used to show the hardness of multi-bit output PRGs. The authors in [DMOZ22]

look at derandomizations that incur a nearly quadratic slowdown. To achieve this goal, and in

general to get these types of optimal derandomziation slowdowns, it is important to beat the

hybrid argument.

It was important for the authors to avoid this “one-to-many bits” type of construction,

and instead focus their attention on other paradigms. The pseudoentropy generator + extractor

approach introduced section 2.3 is a paradigm that allows you to avoid the hybrid argument

[STV99]. By no longer requiring uniform looking bits, there no longer needs to be a cumulative

error of 1
t per bit (where t is the number of output bits of the generator). Hence the problem

transforms into generating bits that are allowed to be imperfect, in which a smaller seed length

may suffice.

The explicit construction given by Doron, Moshkovitz, Oh, and Zuckerman utilize a

combination of a pseudoentropy generator, and randomness extractor. This composition leaves

the overall seed to be the seed length of the PEG plus the seed length of the randomness

extractor. The relaxed notion of pseudoentropy rather than pseudorandomness allows the authors

to construct a generator that fools size s circuits with seed length (1+α) logs for a constant

α . This result converts any randomized algorithm of input length n running in time t ≥ n to a

36

deterministic one running in time t2+α for a > 0. We will discuss further below their increased

assumptions, and how this enables their construction to achieve this result.

3.1.1 Additional Hardness Assumptions of [DMOZ22]

The strengthened hardness assumption that the authors make is that there is a function

f ∈ E that is hard for circuits of size at least 2(1−α ′)n with access to both nondeterminism

and randomness. They formally define what it means for a circuit to have access to both as

“single-value nondeterministic circuits (SVN circuits)” [DMOZ22]:

Definition 25 Let f : {0,1}n→{0,1}m∪{⊥} be a partial function. a SVN circuit computing f

is a pair of circuits C : {0,1}n×{0,1}w→{0,1}m and Ccheck : {0,1}n×{0,1}w→{0,1} such

that for input string x ∈ {0,1}n and witness string y ∈ {0,1}w the following holds:

• ∀x ∈ {0,1}n, f (x) ̸=⊥ iff ∃y ∈ {0,1}w such that Ccheck(x,y) = 1. This can be called the

witness circuit.

• ∀x ∈ {0,1}n, and y ∈ {0,1}w such that Ccheck(x,y) = 1, it is true that C(x,y) = f (x) This

can be thought of as the computing circuit.

They note that the total size of an SVN circuit is the size of the 2 circuits defined above.

And we can think of a combined circuit combining both C and Ccheck by simply running them

both and returning m+1 output bits. This is in essence a nonuniform analogue of NP∩ coNP

(though note that NPand coNPare defined against total functions, rather than partial functions).

Allowing the checking circuit to use randomness transforms the analogue from NP∩ coNP to

MA∩ coMA (where the class MA stands for Merlin-Arthur, the complexity class similar to NP,

except the verifier gets access to randomness).

Definition 26 Let f : {0,1}n→{0,1}m∪{⊥} be a partial function.

A randomized SVN circuit computing f with probability 1−δ for 0 ≤ δ < 1
2 is a pair

of circuits C : {0,1}n×{0,1}w→{0,1}m and Ccheck : {0,1}n×{0,1}w→{0,1} such that for

37

input string x ∈ {0,1}n, witness string y ∈ {0,1}w, and random string r ∈ {0,1}d the following

holds (note that the random string is only used in the checking phase, and is not shared to the

computing circuit):

• ∀x ∈ {0,1}n, f (x) ̸=⊥ iff ∃y ∈ {0,1}w such that with probability greater than 1−δ the

witness circuit will be correct:

Pr
r∼Ud

[Ccheck(x,y,r) = 1]≥ 1−δ

• ∀x ∈ {0,1}n where f (x) ̸=⊥ and y ∈ {0,1}w, either Prr∼Ud [Ccheck(x,y,r) = 1]≥ 1−δ , or

Prr∼Ud [Ccheck(x,y,r) = 1]≤ δ .

• ∀x ∈ {0,1}n, and y ∈ {0,1}w such that Prr∼Ud [Ccheck(x,y) = 1] ≥ 1− δ , it is true that

C(x,y) = f (x).

These bullets ensure the probability the witness circuit is correct is significantly bounded

from each other (by a constant). Finally, the authors define a DensityApproxη -gate, which they

will use later in their construction to perform extraction of a string with high metric pseudoentropy.

In a nutshell, the gate outputs an additive η-approximation of the fraction of accepting inputs to

a circuit [DMOZ22].

Definition 27 For a fixed error parameter η > 0, a DensityApproxη gate is an oracle gate that

takes as input an encoding of a circuit C and outputs p ∈ {0,1}⌈log 1
η
⌉ , such that |E[C]− p| ≤ η .

These definitions allow us to define functions that are hard against these types of circuit

classes in a similar way.

3.1.2 Multiple notions of Pseudoentropy

In contrast to statistical min-entropy, the authors focus on pseudoentropy: the computa-

tional analogue of statistical entropy. In particular they use the definitions of metric pseudoen-

tropy, and Yao’s pseudoentropy from Barak, Shaltiel, Wigderson, and Yao [BSW03, Yao82].

38

Definition 28 (metric pseudoentropy) Let X be a random variable distributed over {0,1}n, s

be a positive integer, and ε > 0. We say that a random varialbe X has metric pseudoentropy

k, Hmetric
s,ε (X) ≥ k iff for every circuit D : {0,1}n → {0,1} of size s there exists a random

variable Y distributed over {0,1}n such that H∞(Y) ≥ k (Y has min-entropy at least k) and

|E[D(X)]−E[D(Y)]| ≤ ε

Alternatively, we can definite metric pseudoentropy of X as having metric pseudoentropy

at least k against circuits of size s and ε error if it holds that Pr[D(X) = 1] ≤ |Supp(D)|
2k + ε

[BSW03]. Recall Supp(D) is the set of all inputs for which the circuit accepts.

Definition 29 (from [DMOZ22]) Yao pseudoentropy: For some positive integers s,n, ℓ, and

A ⊂ {0,1}n, we say that A ∈ CYao
ℓ,s if there exists a circuit c : {0,1}n → {0,1}ℓ and a circuit

d : {0,1}ℓ→{0,1}n both of size s such that:

A = {x : d(c(x)) = x}

Now let X be a random variable over {0,1}n, and ε > 0. HYao
s,ε ≥ k if for every ℓ < k and

subset A ∈CYao
ℓ,s it holds that Pr[X ∈ A]≤ 2ℓ−k + ε

Yao’s pseudoentropy can be thought of as “compressing” sets, with the circuit c often

called the compressing circuit, and d the decompressing circuit. The authors extend Yao’s

definition to allow the decompressing circuits to be SVN circuits that allow nondeterminism. They

refer to this as NYao-pseudoentropy. Note that in this case the parameters of the decompressing

circuit become d : {0,1}ℓ×{0,1}w′ → {0,1}n computing a partial function fd : {0,1}ℓ →

{0,1}n∪{⊥} such that A = {x : fd(c(x)) = x}.

For those familiar with the more common (and more powerful) Hill-pseudoentropy,

metric-pseudoentropy is simply a weaker form where the distribution Y can be tailored to each

circuit D (the quantifiers are reversed), whereas Hill-type mandates a Y that holds for all circuits

of size s. Note that in the case of k = n, the HILL type definition is the same as the standard

39

definition of pseudorandomness. This is because there is only one such distribution Y over

{0,1}n such that H∞(Y)≥ n (the uniform distribution) [BSW03].

A result that the authors show (based on the proof ideas of the paper by Barak Shaltiel, and

Wigderson) is that Yao’s compression type pseudoentropy implies metric pseudoentropy when

considering hardness against polynomial sized circuits with nondeterminism. The following

theorem is shown with SVN circuits and NYao that is defined above [DMOZ22, BSW03] .

Lemma 30 (from [DMOZ22]) There exists a constant 0 < γ < 1 such that the following holds.

Let X be a random variable distributed over {0,1}n and ε > 0. There exists s0 = Õ(n) such that

for every s≥ s0, HNYao
s,ε implies Hmetric

γ·s,ε ≥ k
2

A reminder that Õ(n) simply hides all the logarithmic factors when looking at the

asymptotic runtime. At a high level, to prove the lemma, the authors consider hashing the support

of X (definition of metric pseudoentropy) using a two-universal family of hash functions. Taking

an efficient implementation of computing two-universal hash functions requires circuits of size

Õ(n). Using a probabilistic argument, it can be shown that there exists some hash function

h∗ within the function family that is one to one with the support of D. To relate it to NYao

pseudoentropy, they let the compression circuit simply compute h∗, while the decompression

circuits maps elements from the hash set back to the support of X . Note that allowing the latter

circuit to be SVN here seems key, as it needs to be able to compute a partial function. The

support of X may be smaller than the input space, so there are inputs with no defined answer.

One can also think about this construction as the SVN circuit nondeterministically guessing h∗

to compute elements from the image of h∗ back to its preimage.

3.1.3 Pseudoentropy from Hardness

One of the authors main results is showing how to construct a metric pseudoentropy

generator from a function f that is hard for SVN circuits [DMOZ22]. Their outline is to show

that if there is a code C that is locally list recoverable, then the symbol at a random coordinate

40

of the code corresponding to the truth table of f has high Yao pseudoentropy (which implies

metric pseudoentropy via lemma 30). Note that in the below definition, k = m would imply it’s a

pseudorandom generator.

Definition 31 (from [DMOZ22]) A function G : {0,1}d→{0,1}m is a (k,s,ε) metric pseudoen-

tropy generator (metric PEG) if

Hmetric
s,ε (G(Ud))≥ k

In section 1.4.2, we discussed briefly error correcting codes and their relationship with

hardness amplification. These codes are in a nutshell a set of “well-separated” strings called

codewords of some alphabet Σ and of length n such that if we flip some bounded number of

positions in the codeword, the original codeword is still the “closest” to the corrupted string. This

allows us to decode the original message. A relaxed notion of retrieving the original codeword is

that of “list” decoding, where one is allowed to output a number of candidate messages given

a corrupted codeword and is only required that the actual original message be among them.

In the “local” list decoding setting perhaps the received corrupted string is too long for us to

read in entirety, so we can only read a bounded number of positions in the string to recover

the original codeword at some position. Here we are operating index-by-index, and allow the

decoding circuits to use randomness in which index of the received string they want to read. In

this work, the authors utilize a “locally list recoverable code”, which is similar to the “locally

list decodable code” discussed in section 1.4.2. In this setting the corrupted string received by

the other party contains, at each index of the corrupted string, a list of possible characters that

the original message can be. The decoder has access to an oracle that, given a coordinate and

index, returns a character from the respective list. The idea of a locally list recoverable code is

the same: use few queries overall try to recover the ith character of the original message.

To get a pseudoentropy generator from a worst-case hard function, they show if a function

f is hard for SVN circuits, and for some locally list recoverable code C, then the symbol at a

random coordinate of the code of the truth table of f has high Yao psuedoentropy. Here we are

41

doing the same thing as in section 1.4.2 where we pretend the “message” we wish to encode is

the truth table of a function. This in turn implies high metric pseudoentropy by lemma 30. Note

that their construction yields a strong PRG, which refers to generators that prepend the random

seed as part of their output.

More formally: say f : {0,1}logn→{0,1} is hard for SVN circuits such that their size

needs to be at least n1−α0 (exponential in the input length of f) for some constant α0 <
1
6 and the

locally list recoverable code C : {0,1}n→ Σm. The metric PEG will take as input an index of the

codeword, and output the corresponding character: G f : [m]→{0,1}log |Σ| It turns out out that

this construction (with the tuning of some parameters) gives a metric PEG. The main idea behind

their proof is to have SVN circuits simulate the oracle that the locally list decodable algorithm

calls.

Here is a sketch of their proof idea: they assume towards a contradiction that the generator

above does not produce high enough NYao pseudoentropy, and use that assumption to construct

a decoder for the locally list recoverable code. This allows one to compute f , which contradicts

its hardness. Formally the assumption is:

HNYao
s′,ε (Z ◦G f (Z))< k′

For some s′, ε , k′ let Z be the random variable uniformly distributed over Um. For the

proof overview we don’t care about the particular parameter values s′, ε and k′. The above

assumption implies that there exists a set A ∈CNYao
k′,s′ , and a compression and decompression SVN

circuit pair c, fd respectively such that for every pair (z,σ) ∈ A the circuits correctly computes

fd(c(z,σ)) = (z,σ). The authors define the subsets S1, . . . ,Sm ⊆ Σ as the following: every Sz

defines the set of pairs (z,σ) for a fixed z in A. In other words: Sz = {σ ∈ Σ : (z,σ) ∈ A}. It

is true that ∑z∈[m] |Sz| ≤ 2k′ , since the compression circuit fd outputs strings of length k′. They

define the following function f ′d : {0,1}k′ → Σ∪{⊥} that computes fd but simply omits z from

the output (only returning a character σ ∈ Σ).

42

Their next observation is that fd can act as the oracle for S̄ = (S1, . . . ,Sm) for a locally

list recoverable code, and thus fd can simply replace a circuit’s oracle queries with a circuit

computing fd . This gets an overall decoding circuit for the locally list recoverable code, and

thus a circuit that contradicts the hardness of the original input function f . Showing that the

generator produces high NYao pseudoentropy leads them to a generator for metric pseudoentropy

via lemma 30 (with increased hardness assumptions).

Finally the authors mention how to explicitly construct such a locally list recoverable

code. Since for their application they wish for the alphabet size of the code as well as the list size

to be very large (for higher entropy), they aim to have them both exponential in terms of n while

still keeping the ε agreement term the same. Particularly they want a locally list recoverable

code C : {0,1}n→ Σm such that |Σ|= 2n1−O(α)
, each index is recovered with ≈ nα queries to the

oracle, and gives pseudoentropy for circuits of size n1−O(α). Note that in the setting above a

truth table of length n represents a function on input length logn. Since the seed length of the

generator is logm (dependent on the length of the codewords), they ensure that m = nO(α) which

implies a seed length of O(α) · logn.

3.1.4 Extracting from a pseudoentropic source

Finally with a pseudoentropy generator, we still wish to get a pseudorandom generator

that is useful for derandomizing BPP. To accomplish this the authors apply a randomness

extractor to the output of the metric PEG defined above. The problem is that the output of the

above PEG is measured in metric pseudoentropy, which is quite different from the statistical

min-entropy source that extractors are typically defined for. To resolve this issue, the authors

show that under some additional hardness assumptions it is possible to extract pseudorandom

bits from metric pseudoentropy.

As a warm-up, a quick proof overview as to why Hill pseudoentropy is much nicer to

extract from and the workaround for metric pseudoentropy: recall from section 3.1.2 that a

distribution X has Hill type pseudoentropy if there is another distribution X0 that is compu-

43

tationally indistinguishable from X . If we assume towards a contradiction that Ext(X ,y) (for

random seed y ∈ {0,1}d) is not indistinguishable from uniform then we would be able to use

such a distinguisher (lets call it C) and extractor Ext to distinguish X and X0 by letting such

a distinguisher D(x) =C(Ext(x,y)) by fixing the particular y. (since it should be the case that

Ext(X0,y) should be close to uniform). This would be a contradiction to the Hill pseudoentropy

of X .

Since the quantifiers are reversed for metric pseudoentropy, then the distribution X0

may be different for each distinguisher on X . The framework above would fall apart since we

can’t claim a single extractor, distinguisher construction D(x) =C(Ext(x,y)) to use to get our

contradiction. To resolve this issue they instead try to estimate E[C(Ext(x,Ud))], which would

avoid the dependence on seed y (where y may vary for each different distribution). Here they use

the DensityApproxη -gates defined in section 3.1.2 to help estimate (on input x) E[C(Ext(x,Ud))],

and compare it to E[C(Um)] which will be hard wired into the distinguishing circuit. Since these

expectations will be real number, they will need to truncate it to some error to hard-wire it as

advice to a circuit trying to distinguish the extractor. For this proof to follow through we need

to assume hardness for these specialized DensityApproxη gates, which the authors reduce to

hardness against randomness since one can approximate the expectation by random sampling

inputs (accomplishing the same role as the aforementioned gates).

Note that in the paper [BSW03], the authors have outlined other methods to extract

and convert different forms of pseudoentropy. However [DMOZ22] can’t afford the parameter

loss outlined in their methods. An open question is to improve parameters of pseudoentropy

conversion with the same hardness assumptions. In addition, it should be mentioned that

the authors also needed to be careful about the runtime of the eventual PRG construction,

their eventual construction relies on existing code constructions, and results on algorithms for

encoding/decoding quickly [DMOZ22, vdHS13].

It is interesting that the authors made both qualitative and quantitative hardness assump-

tions in order to achieve their derandomization results. Not only did they need to assume harder

44

circuit lower bounds but also additional hardness assumptions against randomness and nondeter-

minism. Naturally a question to ask is if these extra assumptions are necessary. Is it possible to

get similar results with less assumptions? In the next chapter we will look at other papers that

build off these ideas.

45

Chapter 4

Lower Bounds on Derandomization

In the previous chapter we looked at a way to achieve faster derandomization of algo-

rithms in BPP. It’s methods required both quantitatively harder assumptions than those originally

proposed by Impagliazzo and Wigderson [DMOZ22, IW97]. While the additional assumptions

against nondeterminism and hardness were essential to the authors proofs, a question to ask if

these qualitative assumptions are necessary. Is it possible to simply use the harder circuit lower

bound assumptions to achieve the same results? In the following paper by Shatiel and Viola, they

aim to answer some of these questions by formally defining what it means to have a black-box

pseudorandom generator [SV22]. In a follow up paper, Chen and Tell also provide an alternative

“very fast” derandomization assuming the existence of one-way functions: polynomial time

computable functions that are hard to invert for all polynomial time adversaries.

4.1 Limits to Black Box Constructions

As we have seen before, the original Nisan-Wigderson generator is a “black-box” PRG:

nothing is assumed about the underlying hard function other than its hardness (against nonuniform

models of computation).

In the quest to achieve faster derandomization (by necessarily beating the hybrid argu-

ment), new construction were introduced [DMOZ22, STV99, CT21]. However, questions still

remained after their result as to whether or not their additional assumptions were necessary

46

(such as hardness against nondeterminism, randomness, or the existence of one-way functions).

In a general result, Shaltiel and Viola prove lower bounds on these black-box constructions

of generators in regards to nearly optimal derandomization (which they refer to as “extreme

high-end” PRGs) [SV22]. They formalize what it means to have a “black box proof” for PRG

constructions and hardness amplification, and are able to show that for these general construc-

tions, “it is possible to fix many output bits of the [PRG] construction while fixing few bits of

the hard function” [SV22].

First they differentiate between the “high-end hardness assumption” and the recently

discussed “extreme-high end hardness assumptions”. The former is simply a restatement of the

one made by Impagliazzo and Wigderson, while the latter is necessary (but may not be sufficient)

for the faster derandomization. This “extreme high-end” hardness assumption is simply one of

the assumptions made by Doron, Moshkovitz, Oh, and Zuckerman, as well as Chen and Tell

[DMOZ22, CT21].

Definition 32 The high-end hardness assumption: There exist constants 0 < β < 1 < B, and a

function f : {0,1}ℓ→{0,1} such that:

• f cannot be computed by circuits of size 2β ·ℓ

• the time it takes to compute f is ≤ 2B·ℓ

Definition 33 The extreme high-end hardness assumption: There exists a function f : {0,1}ℓ→

{0,1} such that:

• f cannot be computed by circuits of size 2(1−o(1))ℓ

• the time it takes to compute f is ≤ 2(1+o(1))ℓ

The high-end assumption gives rise to PRGs with seed length r = O(logm) and the time

it takes to run the PRG poly(m). Not caring about the exact values of the constants β ,B as

well as the constant hidden in the big-O notation, we get the result BPP= P. Impagliazzo and

47

Wigderson showed that under this hardness assumption it was possible to construct such a PRG

[IW97]. However if one does start worrying about the constants, and want a seed length r as

close to logm as possible we must rely of functions that satisfy the extreme high-end hardness

assumption. This would yield a seed length r = (1+o(1)) · logm, and thus a better guarantee of

a nearly quadratic slowdown (as opposed to a general polynomial slowdown). As stated before,

the classical methods of converting hardness to randomness reply on the hybrid argument, which

doesn’t follow through in the context of optimal derandomization. It is still an open question as

to whether such a PRG construction exists that is able to convert hardness to randomness at this

nearly optimal rate with simply the extreme high-end hardness assumption.

In Shaltiel and Viola’s work they formally define the black-box proofs and constructions

of PRGs. A black-box proof that converts hard functions into PRGs (and PEGs) consists of 2

steps:

• a “construction map” that takes a ρ-hard function f : {0,1}ℓ → {0,1} and outputs a

candidate ε-PRG Con(f) = Con f : {0,1}r→{0,1}m.

• a “reduction” that shows the correctness of the construction. The reduction is represented

as an oracle function Red(D) that has oracle access to a distinguisher D breaking the

security of Con(f) (ie: distinguishing with advantage > ε). This oracle access, combined

with a piece of nonuniform advice α ∈ {0,1}a (which can depend on f and D) gives a

function C(x) = RedD(x,α) that computes f (x) for uniformly drawn x with probability

≥ ρ . This contradicts the hardness of f .

Similarly they define that a black-box proof converting hard functions into pseudoentropy

generators with parameters ℓ,r,m,a,k,ε,ρ,a (note the only new parameter k) as 2 functions

(Con,Red) transforming a ρ-hard function to a (k,ε)−PEG. Another important parameter the

authors take into account is the number of queries q that RedD(x,α) makes to its oracle when

trying to compute f (x). In a sense, the number of queries that a reduction makes determines

the “hardness-loss” between the original function f an the PRG Con f . Say that f cannot be

48

computed by circuits of size s. For a C(·) = RedD(·,α) to establish correctness, it needs to be

able to compute f (greater than some probability) having size s. Since C has access to advice

and makes q query calls, then the PRG must only have hardness against circuits of size s−a
q ≤

s
q .

We can think of the advice and queries as “adding” to C’s circuit size, with the advice length

being an additive cost to the size and the queries (which can be thought of as a circuit having

size at most s instead of an oracle call) contributing a multiplicative factor for each oracle call. A

PRG with stronger hardness would result in the C having size greater than s which would not

contradict the hardness of f .

4.1.1 Measuring queries - “Useful” PRG Constructions

Since every function on ℓ bits has circuits of size 2ℓ, for the construction/reduction to be

useful the amount of queries q≤ s−a
m ≤

2ℓ−a
m . A result the authors show is that if some reduction

Red makes ≤ 2ℓ queries, then Con must allow “fixing many outputs with small information”.

The authors define Fix j below aiming to measure the amount of “information” about the hard

function f is lost when fixing outputs of the candidate PRG Con f . Below we will use the notation

that a function f takes in a bitstring of length n and outputs a bitstring of length m as fn,m. As

described below, the construction function Con takes in as input a function, and outputs another.

Definition 34 Given Con : fℓ,1→ fr,m, define Fix j(Con) to be the minimal number h such that

there exist j distinct outputs z1, . . . ,z j ∈ {0,1}m such that:

Pr
f←Fℓ,1

[∀i ∈ [j] : ∃yi ∈ {0,1}r s.t. Con f (yi = zi)]≥ 2−h

Where the probability is over the choice of function fℓ,1 from the set of all functions

from ℓ-bits to 1 bit (defined as the set Fℓ,1). This Fix j is with respect to a PRG construction

function Con (which takes in as input a hard function and outputs a PRG function), and fixed

values zi. Intuitively Fix j is trying to measure the probability that, given a random function f , the

constructed PRG will “hit” the outputs zi. The authors refer to the h as the “bits of information

49

lost”. Viewing from the information theoretic perspective, if we let j = 2r (largest j possible),

this implies that we want to fully describe ConF of which there are 22r
possible functions.

The theorem below Shatiel and Viola prove and utilize to show two noteworthy results.

The first is that while extractors can be constructed from using random functions as input to a

PRG (see section 2.2.1), random functions often don’t yield “useful” PRGs (which Red) makes

q≤ 2ℓ queries. The second results is lower bounding the derandomization rate of the “PEG +

Extractor” approach of [DMOZ22] by bounding the seed length of black box pseudoentropy

generators.

Theorem 35 (from [SV22]) There exists a constant ν such that for every black-box

ρ−hard− function to (k,ε)−PEG proof (Con,Red) with parameters ℓ,r,m,a,k,ε,ρ such that

Red makes at most q≤ 2ℓ queries. If ρ = 1
2 +η ,η ≥ 2−ℓ,k ≥ r,ε ≤ 1−2r−m and a≤ ν ·η2 ·2ℓ,

then for jmax = ν · η2·2ℓ
ℓ . and for every j ≤ jmax:

Fix j(Con)≤ a+ j · (logq+ log
1
η
)

Proof overview: To begin proving the above theorem 35, the authors first define a simple

distinguisher that, given a string of length m in the output set of the PRG, outputs 1 if there exists

a seed that generates that output and a 0 otherwise. Since a reduction Red has oracle access to

both a fixed distinguisher and advice of length a, by an averaging argument there exists a subset

of hard functions A0 ⊂Fℓ,1 and an advice string α ′ of length a such that for all f ∈ A0, the

reduction C f (x) = RedD f (x,α ′) ρ-hard function breaks f (where x ∈ {0,1}ℓ and C and D are

both with respect to some function f ∈ A0). From fixing this reduction function C f , an A0 which

defines these functions f , the advice given to C f , and the distinguisher oracle which C f calls, the

authors compare how a general function C : {0,1}ℓ→ {0,1} trying to also be a distinguisher

hopes to simulate the reduction function.

To compare a function C that does not rely on an oracle D f , the authors consider the case

where all q queries zx
1, . . . ,z

x
q ∈ {0,1}m made by some RedD f on input x are all answered by 0

50

(meaning that all queries are not in the range of the PRG). They define C(x) to match the output

of RedD f (x). For these x’s, this further fixes the oracle calls. From the definition of D f , we know

that the number of queries in {0,1}m in which D f answers 1 is small (only 2r out of 2m). They

define a particular query z ∈ {0,1}m to be t-weak with respect to some set of functions A⊂Fℓ,1

if given a random function from A, Pr
f←A

[D f (z) = 1]≥ 2−t .

The authors then iteratively fix outputs zi for Con that are t = log q
η

-weak. For the j

outputs to fix, they define a set W of size j containing the t-weak outputs z1, . . . ,z j, and A j ⊂ A0

such that for every increment j = 0, . . . , jmax the following is true about A j and Wj, with W0 = /0

1. Pr
f←Fℓ,1

[f ∈ A j]≥ 2−(a+ jt)

2. A j ⊂ A0

3. |Wj|= j

4. for every z ∈Wj and f ∈ A j, D f (z) = 1

To incrementally build these 2 sets, for each step they build Wj and A j by first trying to

find some z /∈Wj−1 that is t-weak w.r.t. A j−1 (and if there doesn’t exist such a z then stop), and

let Wj =Wj−1∪{z}, and A j = { f ∈ A j−1 : D f (z) = 1}. This they prove maintains the following

four invariants above. They further show that this iteration will actually not stop until step jmax,

implying that there are jmax such z that are t-weak against a set of functions A jmax .

The above result allows us to conclude that the invariant holds for all j ≤ jmax. Recall

that we set t = log q
η

, and we get the following:

Pr
f←Fℓ,1

[f ∈ A j]≥ 2−1(a+ j·t) = 2−(a+t·(logq+log 1
η
))

Since we know that the invariant holds for all j ≤ jmax, it implies that for each f ∈ A j

and z ∈Wj, there exists a seed y ∈ {0,1}r such that Con f (y) = z. We can rewrite the above

expression as:

51

Pr
f←Fℓ,1

[∀i ∈ [j] : ∃yi ∈ {0,1}r s.t. Con f (yi) = zi]≥ 2−(a+t·(logq+log 1
η
))

The event being described above is the same as Fix j: with respect to some hard function

f , given j outputs z1, . . . ,z j do there exists seeds y1, . . .y j such that Con f (yi) = zi? Thus a lower

bound on this probability becomes an upper bound on the minimal h defined by Fix j.

To note the parameters of theorem 35, the restriction that k ≥ r and ε ≤ 1− 2r−m is

required to perform the first averaging argument to fix an advice string α ′ and A0. In the proof

that their iterative process continues until the jmax-step that we have glossed over, the constant η

is introduced and can be made sufficiently small such that their proof follows through that their

iterative process doesn’t stop until jmax

4.1.2 Applications of Shaltiel and Viola’s Theorem 35

With theorem 35 we can see why this theorem also applies to PRGs. At a high level,

we have seen before that any PRG is also in a sense a PEG with optimal parameters. With the

theorem also holding for PRGs, then it is with low probability that a randomly chosen chosen

function will be a useful PRG construction where the reduction makes q≤ 2ℓ queries. Whereas

we have already shown (in theorem 9) that a random function with high probability is a good

extractor.

Shaltiel and Viola also use theorem 35 to lower bound the performance of the “PEG +

extractor” approach of used to construct a PRG [DMOZ22]. They show that such an approach

can not yield an extreme high-end PRG from the “extreme high-end hardness assumption” when

the PEG is constructed by a conventional black-box hard-function⇒ PEG approach. Since the

overall seed length of the construction is the seed length of the PEG plus the extractor (for which

the latter we know lower bounds for [SV22]). Not surprisingly, the following theorem they show

follows from theorem 35 stated above:

52

Theorem 36 (from [SV22]) There exists a constant ν > 0 and c > 1 such that for every black-

box ρ-hard-function ⇒ (k,ε)−PEG proof (Con,Red) with parameters ℓ,r,m,a,k,ε,ρ such

that

r < ℓ− logℓ−2 · log
1
η
− c

If ρ = 1
2 +η , η ≥ 2−ℓ, k ≥ r, ε ≤ 1−2r−m, and a≤ ν ·η2 ·2ℓ, then Red must make at

least q > 2ℓ queries.

Notice that the requirements for the parameters in theorem 36 almost match theorem

35, except for the fact that theorem 35 states a result for reductions that make ≤ 2ℓ queries.

Since we know theorem 35 holds, then it must be the case that for black box ρ-hard-function to

(k,ε)−PEG proofs, it is either the case that q > 2ℓ, or the result of theorem 35 is true. Because

of the restrictions on r defined by theorem 36, we have that r < ℓ− logℓ−2 · log 1
η
− c, which

implies that (For constants ν and c):

2r <
2ℓ ·η2

ℓ ·2c < jmax = ν
η2 ·2ℓ

ℓ

This implies that it can’t be the case that such a black-box ρ-hard function to (k,ε)−

PEG proof (Con,Red) can have jmax outputs fixed if it only has at most r outputs. Therefore

a construction of this type must make q > 2ℓ number of queries. Remember that black-box

generator constructions should have a “useful” property that the reduction make less than 2ℓ

queries. Shatiel and Viola can therefore conclude that “useful” black-box PEGs should have

seed length r ≥ ℓ− logℓ−O(1). Combining this lower bound on the seed length of the PEG

with an extractor’s seed length gives us the total seed length. From known bounds on extractor

seed lengths we know that rext ≥ log(mPEG− kPEG)≥ (1−o(1)) · ℓ [Vad12]. This lower bound

comes from the case where we are able to get “maximal” extraction where the output length of

the generator mPEG = 2(1−o(1))·ℓ for some very hard function of ℓ-bits, and the entropy of that

result kPEG = 2(1−o(1))·ℓ as well. Therefore we can lower bound the seed length of the “PEG +

53

extractor” by lower bounding the seed lengths of both the black-box PEG as well as the extractor:

rPRG = rPEG + rEXT ≥ (ℓ− logℓ−O(1))+ log(mPEG− kPEG)

≥ (ℓ−o(1))+(ℓ−o(1)) = 2ℓ−o(1)> (2−o(1)) · logm

The lower bound on the seed length of this approach means that to derandomize an

algorithm we would have to cycle through all seed lengths, of which there are 2(2−o(1))·logm =

m2−o(1)) of them. It shows that even in the extreme high-end assumption, using the approach

of [DMOZ22] still gives a quadratic slowdown. It is worth reminding that Shaltiel and Viola’s

proof only assume circuit hardness, and not against stronger classes of circuits that are allowed

nondeterminism and randomness. This lower bound is only in the case of “traditional” circuit

classes.

We will note another recent result by Chen and Tell that also achieves “optimal” deran-

domization [CT21]. They also make more than just the “extreme” hardness assumption defined

by Shaltiel and Viola, namely the existence of one way functions. One way functions are often

defined to be a function that is uniformly polynomial time computable, which is hard to invert

for any polynomial time adversary. In the context of pseudorandom generators, the existence of

one-way functions naturally implies that there exists a polynomial time computable generator

such that all polynomial time adversaries have small advantage in distinguishing its outputs from

uniform. This is clearly a harder assumption than a function that is hard against a single class of

circuits. Chen and Tell’s result is a “PRG-composition” approach: composing a NW generator

with a generator based on one-way functions. This construction, and Shatiel and Viola’s lower

bound on this model of PRG is a bit out of scope as its focus shifts away from the relationship

between PRGs and extractors. We chose not to cover it in detail and opt to merely mention it

here [SV22, CT21].

54

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of
the 19th Annual Symposium on Foundations of Computer Science, SFCS ’78, page
75–83, USA, 1978. IEEE Computer Society.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. Math.
(2), 160(2):781–793, 2004.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of
entropy. In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors,
Approximation, Randomization, and Combinatorial Optimization.. Algorithms and
Techniques, pages 200–215, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
Eliminating randomness at almost no cost. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, page 283–291, New
York, NY, USA, 2021. Association for Computing Machinery.

[DMOZ22] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal
pseudorandomness from hardness. J. ACM, 69(6), nov 2022.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceed-
ings of the 36th Annual Symposium on Foundations of Computer Science, FOCS
’95, page 538, USA, 1995. IEEE Computer Society.

[IW97] Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits:
Derandomizing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, page 220–229, New York, NY,
USA, 1997. Association for Computing Machinery.

[NW88] Noam Nisan and Avi Wigderson. Hardness vs. randomness. [Proceedings 1988]
29th Annual Symposium on Foundations of Computer Science, pages 2–11, 1988.

55

[STV99] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators with-
out the xor lemma (extended abstract). In Symposium on the Theory of Computing,
1999.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the xor lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[SV22] Ronen Shaltiel and Emanuele Viola. On Hardness Assumptions Needed for ”Ex-
treme High-End” PRGs and Fast Derandomization. In Mark Braverman, editor, 13th
Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215
of Leibniz International Proceedings in Informatics (LIPIcs), pages 116:1–116:17,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879,
jul 2001.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical
Computer Science, 7(1–3):1–336, 2012.

[vdHS13] Joris van der Hoeven and Éric Schost. Multi-point evaluation in higher dimensions.
In Applicable Algebra in Engineering, Communication and Computing, volume 24,
pages 37–52, 2013.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), pages 80–91, 1982.

56

	Thesis Approval Page
	Table of Contents
	List of Figures
	Acknowledgements
	Abstract of the Thesis
	Statistical and Computational Randomness
	Notation
	Randomness in computation: complexity classes
	Statistical and Computational Randomness
	Randomness from hard functions
	Randomness as next-bit-unpredictability

	Hardness amplification
	Nisan Wigderson Generator
	From worst-case hardness to average-case hardness

	Derandomization and relations between PRGs and Extractors
	Getting to BPP= ¶
	Limits of the hybrid argument

	Parameters of PRGs and Extractors
	Constructive example of an Extractor from a PRG

	Hardness amplification without the XOR lemma

	Beating the Hybrid Argument
	Extracting from a Pseudoentropic Source
	Additional Hardness Assumptions of MoshkovitzNearlyOptimal
	Multiple notions of Pseudoentropy
	Pseudoentropy from Hardness
	Extracting from a pseudoentropic source

	Lower Bounds on Derandomization
	Limits to Black Box Constructions
	Measuring queries - ``Useful'' PRG Constructions
	Applications of Shaltiel and Viola's Theorem 35

	Bibliography

