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Abstract

Existing models of the basal ganglia assume the existence of
separate channels of neuron populations for representing each
available action. This type of localist mapping limits models
to small, discrete action spaces, since additional actions re-
quire additional channels, costing neural resources and impos-
ing new connective tracts. In contrast, evidence suggests that
the basal ganglia plays a role in the selection of both discrete
action units, and continuously-valued action kinematics. In
this work, we model the basal ganglia with distributed action
representations, using high-dimensional vectors. This method
lends itself to representing both discrete and continuous action
spaces. Vectors that represent actions are weighted by a scalar
value (their salience to the current task), and bundled together
to form a single input vector. This paper provides an overview
of the encoding method and network structure, as well as a
demonstration of the model solving an action selection task
using spiking neurons.

Keywords: Action Selection, Basal Ganglia, Computa-
tional Modelling, Vector Symbolic Architecture, Semantic
Pointer

Introduction
The basal ganglia has been established to play a role in action
selection (Mink, 1996; Redgrave et al., 1999; Hikosaka et al.,
2000; Klaus et al., 2019). Numerous computational models
have been developed to explain this function (Gurney et al.,
2001; Humphries et al., 2006; Bogacz & Larsen, 2011), of-
ten adopting localist representations of action spaces. These
representations have been valuable in exploring the basal gan-
glia’s role in selecting discrete units or sequences of actions
(Graybiel, 1998; Jin & Costa, 2015; Gurney et al., 2001;
Humphries et al., 2006). However, recent evidence has sug-
gested that the basal ganglia is also involved in the selection
of continuously valued action kinematics such as speed and
vigor (Barbera et al., 2016; Lederman et al., 2021; Turner
& Desmurget, 2010). Current methods for representing the
action space adopted by existing models are not well-suited
to modelling this function. In this paper, we shift the repre-
sentation in long-standing basal ganglia models from local-
ist to distributed by adopting a Vector Symbolic Architecture
(VSA) approach which can be used to represent continuous
action spaces in the same neural substrate that could process
discrete action spaces. Thus this work is a first-step towards

a single model of the basal ganglia capable of selecting from
both discrete and continuous action spaces.

In general, models of action selection treat the basal gan-
glia as a signal selector. In many existing models (e.g. Gur-
ney et al., 2001; Stewart et al., 2010; Chersi et al., 2013;
Humphries et al., 2006), the basal ganglia receives as input
a set of saliency signals, each specifying the salience of an
available action. The basal ganglia’s task is to accentuate
the largest salience while reducing the rest. Since the out-
put from the basal ganglia is proportional to the represented
saliences, this ‘pushing apart’ of the saliences ensures an ex-
aggerated down-stream disinhibition (and thereby selection)
of the desired action, and the continued suppression of un-
wanted actions. However, such models are lacking biolog-
ical fidelity because they rely on localist representations of
actions, which require increasing (and potentially implausi-
ble) numbers of neurons to represent a complete action space
(Stewart & Eliasmith, 2012). This assumption restricts these
models from generalizing to continuous, open-ended action
spaces.

In this work, we adapt a model of the basal ganglia to use
a novel method for representing action spaces, while preserv-
ing its functional role. Namely, we use distributed vector rep-
resentations of actions that can be applied to continuous or
large dimensional action spaces, without the constraints of
one-hot representations. Our goal is to provide a proof-of-
concept for the use of this representation in the context of a
model of the basal ganglia, and to provide a demonstration
of basal ganglia-like behaviour following only minor adap-
tations to the Stewart et al. (2010) model. In the following
sections we first describe Semantic Pointers (SPs) and then
present the adapted model of the basal ganglia. We present
a preliminary set of simulation results, including a demon-
stration of the network implemented in spiking neurons, and
discuss the results and future directions.

Methods
Semantic Pointers
The semantic pointer hypothesis (Eliasmith, 2013, p78) states
that higher-level cognitive functions depend on semantic
pointers - high dimensional neural representations that carry
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some semantic information, and that can be composed into
higher-level representations that can be manipulated to per-
form cognition. SPs are provided by a VSA – a family of
operations on high-dimensional vectors, and a mapping from
symbols to the high-dimensional representation (Blouw et al.,
2016; Voelker et al., 2021). These operations include a bind-
ing method for combining vectors to form new vectors that
represent the conjunction of the bound vectors. Here, we
use Plate’s HRR Plate (1992, 1995), in which binding is de-
fined as circular convolution ⊛. Binding can be used to con-
struct role-filler pair vectors, or other structured representa-
tions. For example, we can encode position k (like an index
to a list) by creating an index vector A and binding it to itself
k times:

Ak = A⊛A⊛ ...⊛A (1)

In traditional VSAs, k could be any integer value. Circu-
lar convolution, however, has a natural extension to real-
valued k, which we call Spatial Semantic Pointers (SSPs)
Komer et al. (2019). As a result, SSPs can be used to encode
continuous-valued variables. A second operation, bundling,
achieved via vector addition, is used to combine vectors into
sets. It creates a new vector which maintains some similar-
ity with its constituent parts. These vectors, or SPs can, in
turn, be represented in a distributed manner by the collective
activity of populations of neurons, where the input current to
each neuron is a linear function of the value to be encoded
(Stewart, 2012; Eliasmith & Anderson, 2003).

An important characteristic of these high-dimensional rep-
resentations is their pseudo-orthogonality – the similarity, as
measured by the vector dot product, between two different
randomly generated vectors is small and, on average, equal to
zero. Pseudo-orthogonality lets us represent and manipulate
multiple SPs in one vector. We use this feature to store the
saliences of different actions in one neural population, which
permits us to consider a variable number of actions and their
corresponding saliences without changing the dimensionality
of the vector itself. Hence, a neural network could be used to
represent an indeterminate number of salience values, with-
out any change to the network. Thus, we offer a biologically
plausible model of the basal ganglia that can represent a flexi-
ble number of action saliences in a distributed manner within
a substrate of (potentially spiking) neurons, without imposing
unbounded demands on neural resources.

The purpose of this exploratory work was to establish a
viable method for encoding actions for the basal ganglia,
that could be extended to encoding continuous-valued actions
in future work. The input to our network consists of a d-
dimensional vector that encodes all of the input actions and
their saliences. We first create a d-dimensional SP, Aai , for
each action, ai, and scale it by its salience value, si. Thus
the direction of these vectors corresponds to the action, and
the magnitude to the salience. The scaled action SPs, siAai ,
are then bundled together using vector addition in order to
produce a single d dimensional vector B,

B = s1Aa1 + s2Aa2 + ...+ snAan .
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Figure 1: Schematic of the basal ganglia model

The benefit of this encoding is that the network does not need
to be restructured to accommodate more actions. The size of
the input bundle is determined only by the dimensionality of
the SP representation, which is independent of the number of
actions being encoded. Although, it should be noted that the
total number of actions that can be represented is not inde-
pendent of the dimensionality of the vector (see Plate, 2003,
Appendix B). Additionally, this representation can be readily
extended to encoding continuous-value variables

Model of basal ganglia
The model developed for this exploration was an adapta-
tion of that presented by Stewart et al. (2010), which was a
spiking-neuron version of Gurney et al.’s (2001) non-spiking
basal ganglia model. The model presented by Stewart et al.
(2010) used groups of Leaky Integrate-and-Fire (LIF) neu-
rons to approximate the non-spiking Rectified Linear Unit
(ReLU) neurons of the original. The input for both of these
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two original networks is a vector containing the scalar action
saliences. The salience of each action was represented by a
separate action channel within the network. In the current
network, however, the collection of salience values is repre-
sented by a weighted sum of SP vectors, stored in the bundle
B. Thus, instead of separate localist channels of neurons for
each action, there is a single continuous representation.

Apart from some modifications to accommodate the new
vector representation, the rest of the network remains mostly
the same as in Stewart et al. (2010) and Gurney et al. (2001)
(see Figure 1). The striatum receives input from the cortex
consisting of the SP bundle of salience-weighted action vec-
tors. These inputs are also subject to dopaminergic modula-
tion via the parameters λg and λe. The striatum consists of
two populations corresponding to the D1 and D2 neurons.
The D1 population sends inhibitory projections to the Globus
Pallidus Internus (GPi) thus forming the direct pathway. The
D2 population, as part of the indirect pathway, projects to the
Globus Pallidus Externus (GPe). The GPe in turn inhibits
the GPi and also sends inhibitory signals to the Subthalamic
Nucleus (STN). The STN makes up the hyperdirect pathway,
receiving inputs directly from cortex and sending excitatory
signals out to the GPi and GPe. As shown in Figure 1, the
connection weights are the same as those used in Stewart et
al. (2010) and Gurney et al. (2001) except for the connection
weights for signals coming out of the STN (w+) and GPi (wo).
Additionally, the ReLU computation, present at each stage in
the original model, was removed from the GPi in the new
network because it interfered with the network’s output, pre-
venting it from successfully selecting the appropriate action.
Here we provide a description of the new connection weights
developed for connecting the STN to the GPe and GPi.

The STN-GPe loop of the basal ganglia plays a valuable
role in balancing the direct and indirect pathways by sup-
porting voluntary movements whilst suppressing unwanted
actions (Mink, 1996; Nambu et al., 2002). In the model devel-
oped by Stewart et al. (2010) (hereafter, the 2010 model), the
role of the STN-pallidial connections was to exaggerate the
differences between the highest-value salience and its com-
petitors. The new connection weights were developed to per-
form a similar function but acting on the bundled represen-
tation rather than individual salience channels. To sharpen
the relative saliences of the SPs contained in the bundle, we
constructed a matrix that has the effect of applying a Lapla-
cian operator(Chung, 1997, §1.2) to the elements of the bun-
dle. This exploits the pseudo-orthogonality of the SP repre-
sentations to operate entirely in the high-dimensional vector
space. Laplacian operators, when used in image processing,
accentuate local maxima or minima in an image by comput-
ing the difference between the central element of an image
kernel and its neighbours in a connected neighbourhood. In
our approach, the elements of our bundle are represented by
vectors on the unit hypersphere, which we can consider, ab-
stractly, as all being neighbours. Thus, the weights from the

STN to GPe and GPi are defined

w+ = ATL A, (2)

where A holds the action SP vectors in its rows,

A =

—Aa1—
...

—Aan—


and

L = 0.02


n−1 −1 · · · −1
−1 n−1 · · · −1

...
...

. . .
...

−1 −1 · · · n−1

 .

The above values are for a symmetrized Laplacian for actions
that form a fully-connected graph of dimensionality n. In our
experiments, we use n = 20 actions. We acknowledge that
this is equivalent to assuming that the STN uses a localist rep-
resentation of the action space. In future work we intend to
find alternative solutions in order to move away from this as-
sumption. However, we argue that relying on this assumption
is acceptable for the current purposes of providing a proof-
of-concept for the method of representing actions using SPs.
Particularly because, in our model, we are not arguing against
the existence of discrete action spaces but instead for the ex-
istence of both discrete and continuous spaces existing in the
same neural substrate. The Laplacian matrix was produced
using SciPy’s (Virtanen et al., 2020) laplacian function.

Consider what happens when we multiply w+ by the
saliency bundle, B, forming the product w+B. When we ap-
ply the first matrix, A, the output is (approximately) a vector
of the saliences, s = [s1, . . . ,sn]

T . Then when we multiply by
the Laplacian matrix, we get s′ =L s, which is a vector whose
ith element is the application of the Laplacian operator cen-
tred on the ith saliency. This result is the sharpened saliency
values, s′i = 0.02

(
(n−1)si −∑ j ̸=i s j

)
+η, where η is noise

due to cross-talk between the SP representations. The noise
η can be controlled by increasing the dimensionality of the
SP representation. When we then multiply AT s′, we produce
a new vector that is equivalent to ∑i s′iAai . This is a new bun-
dle where the SPs that represent the actions are scaled by the
sharpened saliences, but the arithmetic is performed entirely
in the high-dimensional vector space.

The result is effectively a clean-up memory with a lateral
inhibition between the stored actions, similar to the lateral
inhibition implemented by Levy & Gayler (2009). Levy &
Gayler (2009) avoid the need to extract the coefficients (k
there, s here) by adopting the Multiply, Add, Permute (MAP)
VSA (Gayler, 2004) and exploiting the permutation and self-
cancellation properties. MAP, as well as many other VSAs,
however, does not allow for fractional binding which is neces-
sary for producing vector embeddings of continuous-valued
variables. Thus, whilst this method is flawed in relying on
a localist approach to perform lateral inhibition, it is ideally
suited to representing continuous action spaces. Future work
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will focus on developing models of basal ganglia function that
do not rely on such localist methods.

Simulations
The aim of these simulation experiments was to explore the
network analytically. The operations being performed by
the connection weights between nuclei are all linear trans-
forms and can therefore be understood without simulations.
However, the network inherited nonlinearities from its pre-
decessors in the form of ReLU functions within the nuclei,
applied to the represented values/saliences. In the original
model, these nonlinearities serve to ensure that the output of
the channel with the highest salience = 0, and > 0 for all
other channels, thereby achieving the goal of having a model
whose outputs match the pattern in the GPi where neurons are
inhibited to the point of being ‘turned off’, allowing for disin-
hibition of the thalamus and other downstream nuclei. Given
that the model is now working in a high-dimensional vector
space, it is difficult to interpret the function of these nonlin-
earities, though it is unlikely that they will be able to ensure
this same pattern of activity. We therefore first explored the
utility of the ReLU functions by systematically removing the
ReLU functions from individual and groups of nuclei, and
assessing the effect this had on network performance.

Performance was assessed using two novel performance
metrics. The goal of the network is not only to pick out
the action with the greatest salience as the chosen action, but
to increase the difference between the greatest salience and
all other saliences. One way to measure this is to measure
the difference between the maximum and second maximum
saliences coming in, and then compare this with the differ-
ence between those same saliences as they come out of the
network. We calculate this Margin metric as

Marginin = max(sin)−2nd max(sin)

Marginout = max(sout)−2nd max(sout)

where sin are the saliences going into the network, and sout are
the corresponding salience values output by the network. The
network’s behaviour should result in Marginout being greater
than Marginin. Thus our final performance metric is

Marginout −Marginin .

Higher values of this metric would indicate good performance
in that the network was successfully increasing the difference
between the highest and second highest salience values.

A second metric measured the change in the margin be-
tween the largest and the smallest saliences, using the same
equation as above, replacing 2nd max(s) with min(s). This
analysis did not reveal any insights beyond what can be
gleaned from Table 1. Whilst we do not report those results
here, they are available in our online resources.

Obtaining the saliences coming out of the networks re-
quires different approaches for each network. For the net-
work developed by Stewart et al. (2010) (2010 network), the

GPi contains one channel per action, and the output of each
channel is the salience of the corresponding action. In con-
trast, for the new network, the output has to be decoded from
BGPi, the bundle of weighted action vectors encoded by the
GPi. It is therefore first necessary to decode the scales from
this bundle, which can be done by calculating the dot product
between the bundle BGPi and the action vectors,

s = ABGPi ,

yielding s, the vector of weights for each of the actions.
Hence, wo in Figure 1 is equal to −A.

Utility of ReLU
This set of experiments aimed to explore the utility of the
ReLU activation functions given that the new network is op-
erating on a very different input compared to its predecessors
(Stewart et al., 2010; Gurney et al., 2001). The ReLU activa-
tion functions were systematically removed and reintroduced
into the network’s subpopulations to explore their function
and usefulness. We also performed the same simulations on
the 2010 network and compared the results.

Each network configuration was tested 10 times with 10
random seeds, and the results were averaged. For these ini-
tial explorations we implemented both networks as ‘mathe-
matical models’; signals are represented and transformed per-
fectly, rather than through a neural approximation. The math-
ematical models were tasked with choosing between three ac-
tions whose saliences were chosen from {0.1,0.2,0.3}. The
action with the highest salience changed every second, and
the network was run for 3 seconds. The network was assessed
at the end of each 1 second trial, taking the output produced
in the timestep 10ms before the end of the trial. The results
of this exploration can be seen in Table 1.

Comparing performance across the two networks we see
that the new network was not able to achieve the same level
of performance as the 2010 model. This is arguably unsur-
prising since the network is no longer acting directly on the
salience values as it was in the original case, but instead the
network is operating on a vector bundle. A further difference
is that the Laplacian matrix we adopt differs from the lat-
eral inhibition weights used in the 2010 model. However, it
should be noted that the new network still successfully iden-
tifies the action with the highest salience, and has the desired
effect of exaggerating the difference between the saliences
with the highest value at input and the other saliences. The
goal here is to find the simplest network configuration that
maximises the distance between the largest salience and the
other, competing saliences. Based on the results shown in
Table 1, the network that meets both of these criteria is one
without any ReLU functions at all (see shaded cells).

Spiking Neurons
The next step was to implement the new network in spik-
ing neurons. Given enough neurons it is possible to create a
neural network that can approximate any function. To estab-
lish how many neurons were required for the spiking network
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Table 1: Difference between the change in the largest and the second largest saliences. Testing effect of removing ReLU from
different parts of the network. Values shown are the mean margin differences calculated across the 10 random seeds. Standard
Deviation for the experiments using the 2010 network was always < 0.001.

Populations with ReLU mean(Marginout −Marginin) (s.d.)

New Network 2010 Network
t < 1s 1s < t < 2s 2s < t < 3s t < 1s 1s < t < 2s 2s < t < 3s

All (Original) 0.083 (0.032) 0.067 (0.009) 0.083 (0.033) 0.188 0.188 0.188
All but StrD1 0.083 (0.032) 0.067 (0.009) 0.083 (0.033) -0.100 -0.100 -0.100
All but StrD2 0.072 (0.027) 0.059 (0.009) 0.072 (0.027) 0.188 0.188 0.188
All but STN 0.083 (0.032) 0.067 (0.009) 0.083 (0.033) 0.042 0.042 0.042
All but GPe 0.109 (0.045) 0.086 (0.013) 0.108 (0.046) 0.188 0.188 0.188
All but GPi N/A N/A N/A 0.188 0.188 0.188
StrD1 0.109 (0.045) 0.086 (0.013) 0.108 (0.046) 0.188 0.188 0.188
StrD2 0.109 (0.045) 0.086 (0.013) 0.108 (0.046) 0.188 0.188 0.188
STN 0.109 (0.045) 0.086 (0.013) 0.108 (0.046) 0.188 0.188 0.188
GPe 0.072 (0.027) 0.059 (0.009) 0.072 (0.027) 0.188 0.188 0.188
GPi N/A N/A N/A 0.188 0.188 0.188
None 0.109 (0.045) 0.086 (0.013) 0.108 (0.046) 0.188 0.188 0.188

to closely approximate the performance of the mathematical
model, the network with no ReLU functions was converted to
a spiking network using Leaky Integrate-and-Fire (LIF) neu-
rons and tested with 10, 20, 50, 100, or 200 neurons per di-
mension of the SP bundle (d = 512), in each subpopulation
of the network. This resulted in a total of 25,600, 51,200,
128,000, 256,000, or 512,000 neurons respectively.

Table 2 presents the performance metrics for these exper-
iments, calculated for both the maximum vs. minimum, and
the maximum vs. second maximum salience. Unsurprisingly,
performance improves with greater numbers of neurons, with
200 neurons per SP dimension giving the best performance
and most closely approximating the performance of the math-
ematical model. The following exploration is of this network,
employing a total of 512,000 spiking LIF neurons.

Spiking Behaviour The network was tasked with selecting
between 3 actions with saliences ∈ [0.1,0.2,0.3]. The action
with the highest salience changed after 1 second of simula-
tion time. The GPi sends tonic inhibition to the thalamus and
therefore must itself be inhibited in order for action selection
to occur (Alexander & Crutcher, 1990; DeLong, 1990). This
pattern, where subsets of neurons are being ‘turned off’ when
different actions are selected, is evident in the spiking data
shown in Figure 2. This pattern was also seen in Stewart et
al. (2010). However, because we adopt a distributed repre-
sentation, the present model does not run into the problem
of having localist ‘grandmother cells’ (Gross, 2002; Quiroga
et al., 2005) that previous models have. In fact, prior work
has shown that, when using this style of representation, it is
possible to remove the neurons which change the most for
different values (i.e. the neurons that ‘turn off’ in Figure 2)
and the output vector can still be accurately recovered due to
the distributed representation (Stewart et al., 2011).

A central advantage of the vector representation adopted
here is that the model does not require additional resources
(i.e. neurons or signal channels) to represent more actions.
The current version of the model does require that the A ma-
trix be large enough to accommodate the action space. How-
ever, future work will move away from this localist approach.
To illustrate this we tested the model with a 6-action choice
task. As shown in Figure 3, the network was successfully able
to solve this task. Importantly, no changes were made to our
basal ganglia model to implement this task of selecting from
6 rather than 3 actions - the only change was the number of
actions and saliences used to generate the input vector.

Discussion
In this paper we present a novel approach to modelling the
basal ganglia. The proposed approach builds on work by
Gurney et al. (2001) and Stewart et al. (2010), sharing the
same network structure. However, we adopt a novel dis-
tributed representation of the action space that can extend
the model to representing both discrete and continuous action
spaces, without changing the neural circuitry. Using hyper-
dimensional computing methods we encode each action as
a high-dimensional vector called a Semantic Pointer (SP).
These vectors are then scaled by their associated salience be-
fore being bundled together into a single bundle vector, which
is provided as input to the basal ganglia network. In order to
perform the function of the basal ganglia in a winner-takes-all
fashion, we applied a Laplacian operator to the bundle, with
the effect of accentuating the largest salience and separating
it from its neighbour saliences.

The network was successfully implemented in spiking LIF
neurons and shown to be capable of selecting the highest
salience action in both a 3- and a 6-action choice task. No
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Table 2: Network Performance. Testing effect of different numbers of neurons in a spiking network.

N Neurons mean(Marginout −Marginin) (s.d.)

Max vs. Min Max vs. 2nd Max
t < 1s 1s < t < 2s 2s < t < 3s t < 1s 1s < t < 2s 2s < t < 3s

10 0.091 (0.118) 0.076 (0.087) 0.062 (0.114) 0.052 (0.090) 0.049 (0.084) 0.028 (0.074)
20 0.107 (0.066)) 0.073 (0.057) 0.094 (0.063) 0.087 (0.053) 0.027 (0.053) 0.078 (0.054)
50 0.139 (0.027) 0.130 (0.036) 0.121 (0.033) 0.074 (0.025) 0.073 (0.022) 0.064 (0.025)
100 0.139 (0.025) 0.142 (0.031) 0.147 (0.035) 0.082 (0.033) 0.068 (0.015) 0.086 (0.032)
200 0.151 (0.028) 0.153 (0.033) 0.156 (0.038) 0.088 (0.030) 0.074 (0.015) 0.089 (0.030)
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Figure 2: Top: Plot of the index of the action with the highest
salience (blue line), and the action selected by the network
(orange dots). Bottom: Raster plot of spiking neuron activity
in the GPi during a 3-action choice task.

change to the network was needed to adjust the number of ac-
tions, due to the distributed nature of the representation. Inter-
estingly, it was observed that the spiking behaviour within the
GPi appears to replicate the pattern seen in biology, wherein
subpopulations of neurons are inhibited to the point of being
‘turned off’, allowing the thalamus to excite the cortex, and
for an action to be performed.

These findings are promising in demonstrating a model
of the basal ganglia that uses VSA-represented actions and
saliences. We demonstrate that the model is able to func-
tion as an action selector with only a few modifications to ac-
commodate the new representation. Additionally, the model
was successfully implemented in spiking LIF neurons, and
showed spiking behaviour in the GPi reflective of patterns
seen in biological systems.
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Figure 3: Top: Plot of the index of the action with the highest
salience (blue line), and the action selected by the network
(orange dots). Bottom: Raster plot of spiking neuron activity
in the GPi during a 6-action choice task.

For future work, we plan to leverage more of the advan-
tages of VSAs. VSAs can be applied to encoding continuous
variables through the use of fractional binding (Plate, 1992,
1995; Voelker et al., 2021). Revisiting equation 1; when en-
coding discrete SPs, k is any integer value. However, with
fractional binding, k can be any real-valued number; for in-
stance you could have A1.5. Thus there is a trivial extension
from discrete representations to continuous representations,
meaning we should be able to construct one basal ganglia
model for both discrete and continuous action spaces. In fu-
ture work we intend to explore how this method of represent-
ing continuous variables might my applied to action selection
in continuous action spaces. We will also continue to improve
the fidelity of the model, introducing more biological detail.
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