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Nonlinear Shape Optimization of Flexible Mechanical Metamaterials

Eder Medinaa, Chris H. Rycrofta, Katia Bertoldia

aHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, 02138, Massachusetts, USA

Abstract

Shape optimization is used to design flexible mechanical metamaterials. We employ the higher-order moving-
mesh method to arbitrarily parameterize the geometries and tune their nonlinear mechanical response to our
liking under different loading conditions. Rather than considering periodic unit cells, we focus on finite size
elastomeric sheets with an embedded array of pores subjected to uniaxial tension, compression, and shear and
use the optimization algorithm to tune either their stress–strain response or their effective Poisson’s ratio. We
find that for all considered targets the algorithm converges to aperiodic geometries that are non-intuitive and
comprise domain-like features. As such, our results indicate that aperiodicity may provide new opportunities
for the design of flexible metamaterials.

Keywords: shape optimization, flexible structures, automated programming, optimization
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Flexible mechanical metamaterials are a class of structures with unique geometric features at the
microstructural level designed to lead to uncommon properties governed by their nonlinear behaviors [1].
One prominent class of flexible mechanical metamaterials is that of an array of identical pores embedded
in an elastomeric sheet [2, 3]. Such cellular metamaterials have been shown to be endowed with exotic
properties, such as auxeticity [4], programmability [5, 6], and tunable wave filtering [7]. These functionalities
can be tuned by controlling the exact geometry of the individual pores [8], as well as their arrangement [9].
However, most studies to date have focused on periodic architectures with spatially homogeneous features.
On the other hand, aperiodicity has recently emerged as a powerful platform to realize metamaterials with
enhanced functionality [10, 11, 12]. Since the design space is extremely large in aperiodic metamaterials, it
is not sufficient to use experiments or direct simulations to discover metamaterials with new properties.

The design of flexible aperiodic metamaterials with desired functionality requires efficient optimization
algorithms. While gradient-free algorithms have been successfully used to explore the complex energy
landscape of these nonlinear systems [13], they become inefficient as the number of parameters describing
the structure increases. On the other hand, gradient-based optimization methods have proven successful in
identifying structures with target behavior in the linear regime [14, 15], but their application to the inverse
design of nonlinear flexible metamaterials is still nascent [16, 17, 18]. The success of gradient-based methods
to generate flexible metamaterials with target responses ultimately depends on a well-defined objective, the
existence of “good-enough” nearby local minima (as it is difficult to isolate the objective’s global minimum),
and the ability to generate new designs that do not violate any imposed constraints.

Two classes of gradient-based methods have been widely used to optimize the response of metamaterials:
topology optimization [14] and shape optimization [19]. Topology optimization is a mathematical method
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Figure 1: Mapping from the initial design domain Ω0 to the updated reference configuration Ωk via the invertible geometric
transformations Tk and to the deformed configuration Ωεk via the deformation gradient F.

that optimizes material layout within a given domain, taking into account specific design constraints. The
design variables in topology optimization are continuous fields that specify the presence or absence of
material in the domain. Shape optimization, on the other hand, focuses on finding the optimal shape
or geometry of a domain with a fixed topology, such as a solid object with embedded a predetermined
distribution of holes. In shape optimization, the design variables involve boundary variations rather than the
material layout.

Here, we use shape optimization to identify soft, highly deformable, connected, finite, two-dimensional
structure with specified stress–strain responses or effective Poisson’s ratios. Since topology optimization
often fails to provide connected geometries for non-periodic compliant structures (see Appendix A), by
restricting the space of admissible designs to a fixed topology, we eliminate the possibility of disconnected
domains. We start by describing the basic ingredients needed to solve a shape optimization problem. Then,
we apply the higher-order moving mesh method to design soft cellular structures with target responses under
tension, compression, and shear. We find that all identified solutions are aperiodic, confirming aperiodicity
as a promising platform for the design of cellular metamaterials capable of supporting a wide range of
mechanical responses in the nonlinear regime.

2. Governing equations

The ability to withstand large deformations and revert to the undeformed state in a perfectly elastic
manner is key to the design of flexible mechanical metamaterials. As a result, we consider an arbitrary
domain Ω of elastomeric material. The behavior of such an elastic material can be readily described by
introducing a strain energy functional ψ that depends solely on the local material deformation described by
the displacement field u = (ux, uy)T . Here, we capture the material response using a nearly incompressible
neo-Hookean model with strain energy density function

ψ(F) =
µ

2

(
tr(FTF) − 3

)
− µ ln det(F) +

λ

2
ln det(F)2, (1)

where F = ∇u + I is the deformation gradient, µ is the shear modulus, and λ is the first Lamé coefficient.
The neo-Hookean model is a widely used constitutive model that well describes the mechanical behavior of
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the elastomeric materials typically used to realize flexible mechanical metamaterials [4]. We note that our
approach is not restricted to neo-Hookean, and could be applied to a broad class of hyperelastic consistutive
models.

Equilibrium of the structure is ensured by finding the displacement field u ∈ V that minimizes the total
energy Π(u), where V is the space of kinematically admissible displacement fields. The total energy is
defined as

Π(u) =
∫
Ω

ψ(F)dx −
∫
Ω

b · u dx −
∫
ΓN

t · u dS , (2)

where t is the traction applied on a portion of the boundary ΓN and b represents a body force. This amounts
to solving the variational problem

∂Π(u; v) =
dΠ(u + ϵv)

dϵ

∣∣∣∣
ϵ=0
= 0, ∀v ∈ V (3)

and can be equivalently written as

∂Π(u; v) =
∫
Ω

ψ(∇u)
∂∇u

: ∇vdx −
∫
Ω

b · v dx −
∫
ΓN

t · v dS = 0, ∀v ∈ V (4)

In this study we use the finite element (FE) method to solve Eq. (4) for different loading conditions and
domains Ω and apply shape optimization to identify the domain shape that leads to target mechanical
responses.

3. Shape Optimization

Shape optimization seeks to identify the optimal shape of a domain Ω that minimizes a shape functional
J : Uad → R, whereUad denotes the set of admissible domains. In the context of this study, J evaluates the
mismatch between a desired target structural properties (e.g. target stress–strain curve and target tunable
Poisson’s ratio) and the response of the structure. Generally, the shape optimization problems considered in
this study can be written as

findΩ∗ = arg min
Ω∈Uad

J(u,Ω)

subject to ∂Π(u; v) = 0 on Ω

ci(Ω) ≤ 0 for i = 1, . . . ,Nc

where Ω∗ is the optimal geometry, ∂Π(u, v) is defined in Eq. (3) and ci(Ω) denotes the i-th additional
constraint imposed on the domain. Given the high sensitivity of flexible mechanical metamaterials to small
variations in geometric features [8], we expect shape optimization to be a powerful tool to design a system
with desired properties. However, these problems are difficult to solve since the dependence of J on the
domain is typically non-convex [19] and non-unique.

In this study, we employ a higher-order moving mesh method to optimize the shape of the considered
structures [20]. While other strategies have been proposed such as the level set method [21], phase field
method [22], and reduced mapped parametrizations [17], the higher-order moving-mesh method offers
three main advantages: (i) it enables high boundary resolutions via an arbitrarily refinable conforming
mesh, (ii) it enables the exploration of a large class of shapes beyond polytopes, and (iii) it is inherently
compatible with standard finite element simulation packages [20]. The higher-order moving-mesh method
represents the control space as a set of invertible geometric transformations Tk that can be parameterized by
the same underlying finite element mesh used to represent the solution u. From a mechanics perspective, the
mapping Tk can be thought of as a new intermediate transformation of the initial domain Ω0 to a reference
configuration Ωk (see Fig. 1).

3



4. Numerical Implementation

We simulate the response of flexible mechanical metamaterials under different loading conditions by
solving Eq. (4) using the open-source FE solver firedrake [23]. In all of our analysis, we use plane strain
conditions and discretize the models with quadratic triangular elements unless otherwise specified. We
employ adaptive continuation to improve convergence of the forward problem [24]. Adaptive continuation
splits up the desired interval into smaller domains and will refine the step size if the previous state does not
generate a good-enough starting point for the current iterate. In problems where adaptive continuation is not
sufficient, we instead perform a dynamic step using a backward Euler time discretization to generate a guess
for the current load increment. We also make use of an efficient checkpointing routine. The checkpointing
routine records the load-state pairs of the previous shape iteration and uses that as an initial guess when we
solve our nonlinear equations via Newton’s method. By checkpointing we avoid recomputing the entire
trajectory via adaptive continuation or a dynamic step and reduce the number of forward solves especially in
steps where the shape of the domain does not change significantly.

To identify novel geometries leading to target behaviors we use fireshape, a shape optimization library
built atop firedrake that is based on the higher-order moving-mesh method [25]. Sensitivities and the
update are computed automatically through the fireshape interface. We solve the resulting problem
using the augmented Lagrangian method which facilitates the introduction of additional constraints. The
unconstrained nonlinear optimization problems that are generated by the augmented Lagrangian are solved
using a trust-region algorithm with a quasi-Newton L-BFGS Hessian approximation [26]. We configure the
trust-region solver to have an initial trust radius of 10−3L (where L is the system’s characteristic length scale),
which prevents large initial update steps that can lead to excessive mesh distortions. An explicit barrier is
constructed for problems that fail to converge numerically and for steps that lead to excessive distortion. In
cases where a FE simulation fails to converge or the gradient of the shape transformation is below a threshold
det(∇Tk) < 0.05 (evaluated for each element) we assign a NaN to the objective function and the trust radius.
In this case, the trust radius is decreased by a factor of 0.25L and the optimizer computes a new step from the
previous iterate. The optimization problem is stopped when either a maximum of 50 iterations or a minimum
step size of 10−10L or a minimum gradient tolerance of 10−6 are reached.

5. Results

Our starting point is a structure consisting of an elastomeric square block with edges of length L and an
embedded 9 × 9 square array of circular holes (see Fig. 2-a). The holes have radius r and center-to-center
distance a = L/10, chosen so that the initial porosity is ϕ0 = πr2/a2 = 0.6. Further, the structure has the
two vertical edges flanked by a column of semicircles and the horizontal ones ending with a strip of solid
material of width, a− r. As such, the area of the structure covered by elastomeric material is Aelas = 0.462L2.
The behavior of the elastomeric material is captured by a quasi-incompressible neo-Hookean model with
strain energy density given by Eq. (1), initial shear modulus µ and first Lamé coefficient λ = 24µ, which
results in a Poisson’s ratio of ν = 0.48.

In Figs. 2-b, 2-c and 2-d we report the evolution of the normalized nominal stress as a function of the
applied strain for the structure subjected to uniaxial tension, uniaxial compression and shear, respectively.
To simulate uniaxial loading conditions we apply a normal displacement on the top and bottom boundaries,
un = 0.5L εn , where ε is the applied strain and n denotes the outward unit normal to the edges. During
these simulations we monitor (i) the resulting reaction force in vertical direction at the top boundary per
unit thickness, F2, from which we calculate the nominal stress as S 22 = F2/L, and (ii) the displacement
in horizontal direction in a region of size L/2 centered at the middle of the structure on the left and right
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Figure 2: (a) Our starting point is a structure consisting of an elastomeric square block with edges of length L and an embedded
9×9 square array of circular holes (note that ΓL/R include the entire boundary sections include the curved regions). (b)–(c) Evolution
of the nominal stress (dark green) S 22 (left axis) and structural Poisson’s ratio (light blue) ν̃ (right axis) as a function of the applied
strain ε for (b) uniaxial tension and (c) uniaxial compression. (d) Evolution of the nominal stress S 12 as a function of the applied
strain ε for shear. Insets show deformed configuration at |ε| = 0.1.

boundaries, ΓL
ν and ΓR

ν (see region highlighted in blue in Fig.2-a), from which an effective structural Poisson’s
ratio is then calculated as

ν̃ =
1

Lε

(
1
|ΓL
ν |

∫
ΓL
ν

uxdS −
1
|ΓR
ν |

∫
ΓR
ν

uxdS
)
. (5)

In the shear simulations we apply a tangential displacement on the top and bottom boundaries, u⊥ = 0.5Lεn⊥,
where n⊥ is a unit vector obtained by rotating n by 90◦ in a clockwise direction. We monitor the resulting
reaction force in horizontal direction at the top boundary, F1, from which we calculate the nominal shear
stress as S 12 = F1/L.

The results of Fig. 2-b indicate that under uniaxial tension all pores elongate in the direction of the applied
strain, leading to a nearly-linear stress–strain curve with S 22/µ ≈ 0.94ε and a slowly decreasing effective
Poisson’s ratio ν ≈ 0.27 − 0.45ε. By contrast, when subjected to uniaxial compression the response of the
structure is characterized by two distinct regions (Fig. 2-c): (i) an initial nearly-linear stress–strain response
with stiffness identical to that measured upon uniaxial tension, S 22/µ ≈ 0.99ε, and nearly-constant Poisson’s
ratio, ν ≈ 0.28 and (ii) for strains in excess of εcr = −0.025 a stress plateau and a rapidly decreasing effective
Poisson’s ratio that eventually becomes negative. In the initial linear regime all vertical ligaments separating
the circular holes uniformly compress, but the sudden departure from linearity is caused by their buckling,
which induces the formation of a pattern of mutually orthogonal elliptical holes [2] (see inset in Fig. 2-c).
This pattern of perpendicular elongated holes leads to an effective negative Poisson’s ratio, and substantially
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reduces the overall stiffness of the structure. Finally, for shear we find a nearly-linear stress–strain response
with S 12/µ ≈ 0.06ε (Fig. 2-d).

Because of its rich mechanical behavior the structure presented in Fig. 2 provides a good platform to
identify architectures supporting a wide range of mechanical responses. As such, we choose it as the initial
domain Ω0 and use shape optimization to find domain shapes that lead to target stress–strain responses and
Poisson’s ratio evolutions under uniaxial tension, uniaxial compression and shear. In pursuit of a target
response, we define the shape functional (objective) J as the squared difference between the computed
response f (ε) and target behavior f targ(x) over the considered range of applied strain ε ∈ [0, εmax],

J =
∫ εmax

0

[
f (ε) − f targ(ε)

]2
dε ≈

N∑
i

wi
[
f (εi) − f targ(εi)

]2
, (6)

where the function f stands for either the nominal stress or the effective Poisson’s ratio and the integral
is approximated using a composite Simpson’s quadrature rule with N = 12 equally spaced control points
εi through the quadrature weights wi. Finally, we note that in all our optimization analyses we choose
|εmax| = 0.1, constrain the top an bottom edges to remain horizontal and of length L and keep the total area
of the elastic matrix identical to that of the initial domain (i.e. 0.462L2). When seeking for structures with
target stress–strain response, we allow for changes in shape of the boundaries of all the pores. Differently,
when looking for target Poisson’s ratio evolutions, to facilitate the calculation of the Poisson’s ratio, we do
not allow for changes in shape of the two columns of semicircular holes that flank the structures.

5.1. Designing the response under uniaxial tension

We aim to identify geometries that under uniaxial tension result in a target stress–strain response

S targ
22 (ε)
µ

= Ctarg
1 ε +Ctarg

2 ε2, (7)

where Ctarg
1 denotes the initial stiffness and Ctarg

2 determines the stiffening behavior. Such geometries are
identified by minimizing the shape functional J as defined in Eq. (6) with f (ε) = S 22(ε)/µ and f targ(ε) =
S targ

22 (ε)/µ.
Since flexible mechanical metamaterials subjected to large deformations typically exhibit non-linear

stress–strain behavior, we first aim at identifying architectures characterized by a purely linear response
when uniaxialy stretched. More specifically, in Fig. 3 we report results for Ctarg

2 = 0 and Ctarg
1 =

0.1, 0.2, 0.3, 0.5, 0.8, 1.0. In Fig. 3-a we show the evolution of the objective function J at each instance it was
evaluated, in Fig. 3-b we compare the optimal stress–strain curves to the target ones and in Fig. 3-c we report
the optimal geometries in the undeformed configuration (i.e. at ε = 0) and at ε = 0.1. We find that for all
considered targets the optimization algorithm converges after approximately 100 function evaluations and
that these solutions closely match their corresponding targets. Further, inspection of the identified optimal
geometries reveal that none of them is periodic. As the overall structural stiffness increases, the region of
elongated mutually orthogonal holes monotonically shrinks. Further, when the stiffness of the target response
approaches or surpass that of the initial domain Ω0, the optimization algorithm allocates more material
to the vertical ligaments, effectively creating thick vertical columns that accommodate the imposed axial
deformation and lead to a stiff response.

The geometries identified by the optimization algorithm using the elasticity norm exhibit stress–strain
curves that closely match the target ones, but given the extremely large design space we expect many more
architectures to exist that result in similar mechanical responses. For example, the response of all designs
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Figure 3: Target linear responses under uniaxial tension. (a) Evolution of the objective function J during the shape optimization
iterations for six targets defined by Ctarg

2 = 0 and Ctarg
1 = 0.1 (dark green), 0.2 (teal), 0.3 (light blue), 0.5 (light pink), 0.8 (dark pink)

and 1.0 (brown). (b) Target response (circular markers) and stress–strain curves for the optimal designs (continuous lines). The
black dotted line denote the stress–strain curve of the initial domain Ω0. (c) Numerical snapshots of the optimal geometries in the
undeformed configuration (i.e. at ε = 0) and at ε = 0.1.

Figure 4: Target linear responses under uniaxial tension with H1 norm. (a) Evolution of the objective function J during the shape
optimization iterations for two targets defined by Ctarg

2 = 0 and Ctarg
1 =0.2 (teal), 0.5 (light pink). Note that, when a simulation is

aborted, we assign a NaN to the objective function and do not report a marker in the plot. (b) Target response (circular markers) and
stress–strain curves for the optimal designs (continuous lines). The black dotted line denote the stress–strain curve of the initial
domain Ω0. (c) Numerical snapshots of the converged geometries in the undeformed configuration (i.e. at ε = 0) and at ε = 0.1.
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remains unaltered when they are reflected over the x-axis and the y-axis. However, due to the deterministic
nature of the employed algorithm, we are unable to access multiple solutions leading to the same response
using the same initial domain and numerical scheme. To identify them we must either change the shape
of the initial domain or modify the optimization algorithm. Though, there are no guarantees that either of
these methods will identify different structures leading to the same response. In an attempt of identifying a
different solution to the optimization problem (while avoiding symmetric solutions) we change the update in
the optimization algorithm and choose to calculate it as the Riesz representation of the H1 norm. In Fig. 4 we
focus on structures with Ctarg

2 = 0.0 and Ctarg
1 = 0.2 and 0.5 and report results obtained using the H1 norm.

Our results indicate that for Ctarg
1 = 0.5 the optimization algorithm finds a geometry whose response closely

approximates the target. Remarkably, this optimal structure is very different from that reported in Fig. 3-c
and it is nearly periodic. All pores have shapes close to the initial circular one and the target stiffness is met
by thinning the ligaments in the vertical direction. However, this design strategy fails when considering
more compliant targets. For Ctarg

1 = 0.2 the objective function is hardly reduced since the optimization
algorithm attempts to converge to structures with very thin vertical ligaments whose behavior leads to large
distortions in the underlying mesh. As described in Section 4, when the mesh is excessively distorted (i.e. for
det(∇T) < 0.05), we abort the simulation and assign a NaN to the objective function, preventing convergence
to a local minimum.

Next, we consider target nonlinear stress–strain responses with stiffening. In particular, in Fig. 5 we
focus on four target stress–strain curves all characterized by Ctarg

1 = 0.2, but with Ctarg
2 = 1, 2, 3 and 5. For

all four cases we find that the optimization algorithm reduces the objective function J over the iterations,
with better convergence for targets with less pronounced stiffening (i.e. with smaller values of Ctarg

2 ). Similar
to the structures presented in Fig. 3, all optimal geometries are non-periodic and comprise a cluster of
mutually orthogonal elliptical holes surrounded by nearly-circular pores. However, different from the optimal
geometries for linear response, in this case the size of the cluster with elliptical holes is similar for all four
geometries and the stiffening rate is controlled by the aspect ratio of the pores. As we move from Ctarg

2 = 1 to
Ctarg

2 = 5, the aspect ratio of the elliptical pores monotonically decreases. This is because the more elongated
the elliptical holes are, the more applied deformation is needed for the ligaments to align along the vertical
direction and, therefore, lead to a stiffer response.

To validate the numerical results, we fabricated the optimal structures identified by our optimization
algorithm for (Ctarg

1 ,Ctarg
2 ) = (0.3, 0.0) and (0.2, 3) via a molding approach out of a silicone rubber (Elite

Double 32, Zhermack - with µ = 0.262 MPa [27, 28]). In Fig. 7-a, we compare the numerical and
experimental stress–strain curves for the two structures, whereas in Fig. 7-b we display snapshots taken at
ε = 0.0 and 0.1. We find good agreement between simulations and experiments, confirming the validity of
our optimization strategy.

Having demonstrated that the optimization algorithm can successfully identify architectures with target
stress–strain curves, we next seek to find architectures with a desired effective Poisson’s ratio ν̃ over a range
of applied strain,

ν̃targ(ε) = Dtarg
0 + Dtarg

1 ε. (8)

In Fig. 6 we present results for both target constant (with (Dtarg
0 ,Dtarg

1 ) = (−0.1, 0), (0, 0), and (0.1, 0)), linearly
increasing (with (Dtarg

0 ,Dtarg
1 ) = (−0.1, 0.5) and (0.1, 0.5)), and linearly decreasing (with (Dtarg

0 ,Dtarg
1 ) =

(−0.1,−0.5) and (0.1,−0.5)) Poisson’s ratio. We find that for all considered cases except for (Dtarg
0 ,Dtarg

1 ) =
(−0.1,−0.5) the optimization algorithm successfully reduces the objective function J and identifies geometries
with effective Poisson’s ratio that closely matches the desired one. The optimal structures discovered are
again aperiodic and comprise a cluster of mutually orthogonal elliptical pores. Since the geometry of this
region resembles that of the rotating squares, which are known to exhibit large negative values of Poisson’s
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Figure 5: Target nonlinear responses under uniaxial tension. (a) Evolution of the objective function J during the shape optimization
iterations for four targets defined by Ctarg

1 = 0.2 and Ctarg
2 = 1 (dark green), 2 (teal), 3 (light blue) and 5 (light pink), (b) Target

response (circular markers) and stress–strain curves for the optimal designs (continuous lines). The black dotted line denotes the
stress–strain curve of the initial domain Ω0. (c) Numerical snapshots of the optimal geometries in the undeformed configuration (i.e.
at ε = 0) and at ε = 0.1.

Figure 6: Target Poisson’s ratio responses under uniaxial tension. (a) Evolution of the objective function J during the shape
optimization iterations for seven targets defined by (Dtarg

0 ,Dtarg
1 ) = (0.1, 0.5) (dark green), (0.1, 0) (teal), (0.1,−0.5) (light blue),

(0, 0) (light pink), (−0.1, 0.5) (dark pink), (−0.1, 0) (brown), (−0.1,−0.5), (red). (b) Target response (circular markers) and Poisson’s
ratio–strain curves for the optimal designs (continuous lines). The black dotted line denotes the stress–strain curve of the initial
domain Ω0. (c) Numerical snapshots of the optimal geometries in the undeformed configuration (i.e. at ε = 0) and at ε = 0.1.
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Figure 7: Experimental realization of structures with target responses under uniaxial tension. (a) Numerically predicted (contin-
uous lines) and experimentally measured (dashed lines) stress–strain curves for the optimal designs for two targets defined by
(Ctarg

1 ,Ctarg
2 ) = (0.3, 0.0) (light blue) and (0.2, 3) (dark pink). The black dotted line denote the stress–strain curve of the initial domain

Ω0. (b) Numerical and experimental snapshots of the optimal geometries in the undeformed configuration (i.e. at ε = 0) and at
ε = 0.1.

ratio [29], the size of the cluster grows as ν̃ is reduced. An exception is represented by the structure with a
specified target of ν̃targ = −0.1 − 0.5ε. In this case the optimization algorithm identifies another mechanism
to achieve large negative values of ν̃. Specifically, it combines a smaller region of elongated ellipses with
pores that resemble rotated rounded squares. However, although this geometry leads to an effective Poisson’s
ratio ν̃ more negative than the other considered in Fig. 6, its response does not match the decreasing target
behavior. This discrepancy may be due to either the fact that this specific target behavior is unfeasible or is
far from the initial starting configuration.

5.2. Designing the response under uniaxial compression

We now seek to optimize structures with target behavior upon uniaxial compression. This is a more
challenging task since instabilities can be triggered upon compression, which can make the underlying
system of nonlinear equations poorly conditioned and result in a complex energy landscape, characterized by
multiple bifurcations from which stable and unstable solution branches emanate [5].

We aim at identifying structures with target initial stiffness and an approximate critical buckling strain.
To this end, we specify a target response of the form

S 22(ε)
µ
=

Etarg
1 ε for ε > εtarg

cr ,
Etarg

2 ε + Etarg
1 ε

targ
cr for ε ≤ εtarg

cr .
(9)

During optimization we do not explicitly prescribe the critical buckling strain εtarg
cr , since this would require

either the introduction of an additional eigenvalue constraint [30] or a formulation constrained by an
augmented system of equations [31]. Instead, as described in Section 4, we still use 12 equally spaced
points to describe the target and calculate J (see Eq. (6)). In Fig. 8 we report results for (Etarg

1 , Etarg
2 , ε

targ
cr ) =

(1.03E0
1, E

0
2,−0.03), (1.05E0

1, E
0
2,−0.035), and (E0

1, E
0
2,−0.024) where E0

1 = 0.996 and E0
2 = −0.0167

are the pre- and post-buckling stiffness measured when compressing the initial configuration Ω0. For all
three cases the optimization algorithm reduces the objective function J over the iterations (Fig. 8-a) and
identifies architectures with responses that closely matches the target ones (Fig. 8-b). All optimal structures
reported in Fig. 8-c at first glance appear to be identical to the initial domain, with a square array of circular
pores. However, closer inspection of the holes reveals the target behavior is achieved by introducing small
fluctuations that move the boundaries of the pores away from a perfect circular shape (Fig. 8-d). Since these
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Figure 8: Target buckling responses under uniaxial compression. (a) Evolution of the objective function J during the shape
optimization iterations for three targets defined by (Etarg

1 , Etarg
2 , ε

targ
cr ) = (1.03E0

1 , E
0
2 , 0.3) (light pink), (1.05E0

1 , E
0
2 , 0.35) (dark

pink), and (E0
1 , E

0
2 , 0.024) (light blue), where E0

1 = 0.996 and E0
2 = −0.0167 are the pre- and post-buckling stiffness measured

when compressing the initial domain Ω0. (b) Target response (circular markers) and stress–strain curves for the optimal designs
(continuous lines). The black dotted line denote the stress–strain curve of the initial domain Ω0. (c) Numerical snapshots of the
optimal geometries in the undeformed configuration (i.e. at ε = 0) and at ε = −0.1. (d) Zoom in of the optimal configuration (dark
pink) overlayed above the initial domain Ω0 (black).

underlying aperiodic fluctuations do not suppress the instability, it suggests that the buckling-induced pattern
transformation observed in this class of mechanical metamaterials is a robust phenomenon.

Additionally, we can use the optimization algorithm to identify architectures for which instabilities are
not triggered upon application of a compressive strain ε = −0.1. Towards this end, we again use Eq. (7)
to specify a linear stress–strain target response defined by Ctarg

2 = 0.0 and Ctarg
1 = 0.2 and 0.4. To our

surprise, the optimization algorithm did not converge and could not identify geometries that support the
desired responses. In order to improve convergence, we then switched to linear elements and refined the
original mesh. While with these changes the algorithm can perform more iterations, it cannot still identify
geometries with responses that closely match the target ones (Fig. 9-b). More specifically, for the case of
Ctarg

1 = 0.4 the identified structure nearly converges to the target linear response, whereas for Ctarg
1 = 0.2 no

architecture is found that captures the target response.
Next, we examine the stress–strain curves of the intermediate domains Ωk explored by the optimization

algorithm when searching for linear behaviors and find that many of them can be captured by Eq. (7) with
Ctarg

2 , 0. Guided by these observations, we set Ctarg
1 = 0.6 and Ctarg

2 = 3.3 and 4.0. We find that for these
two targets the objective J is greatly reduced over the iterations and that the identified optimal geometries
closely match the target responses. We note that both structures are once more aperiodic and comprise
domains of mutually orthogonal elliptical pores. In these regions the ligaments are not straight in the
undeformed configuration and therefore mainly deform via bending, suppressing the instability. As for
the exact mechanisms governing the evolution of the overall structural stiffness, these are hard to deduce.
However, the ability of the identified designs to capture a wide range of mechanical behaviors suggests that
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Figure 9: Target linear and quadratic responses under uniaxial compression. (a) Evolution of the objective function J during the
shape optimization iterations for four target defined by Ctarg

2 = 0 and Ctarg
1 = 0.2 (light pink) , 0.4 (light blue) and Ctarg

1 = 0.6,
Ctarg

2 = 3.3 (dark green) and 4.0 (teal). (b) Target response (circular markers) and stress–strain curves for the optimal designs. The
black dotted line denotes the stress–strain curve of the initial domain Ω0. (c) Numerical snapshots of the optimal geometries in the
undeformed configuration and ε = −0.1

aperiodic metamaterials may support a richer set of functonalities than their periodic counterparts.
Finally, we focus on tailoring the effective Poisson’s ratio under compression. While the effective

Poisson’s ratio for the initial domain exhibits a sharp transition induced by buckling (Fig. 2-c), here we
aim at identifying architectures with constant ν̃ over the considered range of applied compressive strain.
More specifically, in Fig. 10 we report results for five constant target Poisson’s ratios specified by Eq. (8)
with Dtarg

1 = 0 and Dtarg
0 = 0.2, 0.1, 0.0, −0.1 and −0.2. The snapshots of the optimal structures reported in

Fig. 10-c indicate that to achieve the target behaviors the optimization algorithms identifies a mechanism
different from that exploited to reach a target Poisson’s ratio under tension (see Fig. 6). More specifically, the
algorithm converges to structures with several rows of pores next to the horizontal boundaries that transform
into a pattern of mutually orthogonal elongated ellipses upon compression. This transformation leads to a
significant lateral contraction, but it does not affect the effective Poisson’s ratio, since it occurs outside of
the region used to evaluate ν̃. Further, it absorbs most of the applied compressive strain, so that the interior
region does not have to deform significantly to satisfy the boundary conditions. Finally, since the chosen
targets have a lower Poisson’s ratio compared to the initial domain in the undeformed configuration, the
pores of the interior region are mutually orthogonal ellipses, which aspect ratio that monotonically increases
as ν̃ decreases.

5.3. Designing the response under shear

We now search for geometries that under shear result in a target linear response

S 12

µ
= Ctarg

1 ε. (10)
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Figure 10: Target Poisson’s ratio responses under uniaxial compression. (a) Evolution of the objective function J during the shape
optimization iterations for five targets defined by Dtarg

1 = 0 and Dtarg
0 = 0.2 (teal), 0.1 (light pink), 0.0 (dark green), −0.1 (dark pink),

−0.2 (light blue) (b) Target response (circular markers) and Poisson’s ratio–strain curves for the optimal designs (continuous lines).
The black dotted line denote the stress–strain curve of the initial domain Ω0. (c) Numerical snapshots of the optimal geometries in
the undeformed configuration (i.e. at ε = 0) and at ε = −0.1.

In Fig. 11 we focus on Ctarg
1 = 0.025, 0.05, 0.08, 0.1. For all prescribed targets the optimization algorithm

finds aperiodic and non-intuitive pore arrangements leading to stress–strain responses that closely match the
target ones. To achieve the softest target behavior the numerical algorithm tilts the vertical ligaments in the
central part of the structure in direction opposite of that of the applied strain. As a result, these ligaments
mainly rotate upon shearing, leading to a soft behavior. By contrast, the vertical ligaments in the stiffest
structure are tilted in the direction of the applied strain and generate a diagonal band-like structure. It follows
that the applied deformation further stretch them, resulting in a stiff response.

6. Discussion

We have used shape optimization to identify porous architectures with target mechanical responses. In
contrast to previous studies which have focused on the optimization of periodic unit cells [16, 17], here we
considered a finite size structures. Remarkably, all optimal solutions identified by our numerical algorithm
are aperiodic and non-intuitive. As such, our study suggests that non-periodicity may open new avenues for
the design of structures capable of supporting a wide range of mechanical responses.

In this study we focused on an elastomeric metamaterial comprising a square array of holes and subjected
to uniaxial tension, uniaxial compression, and shear, but the proposed numerical approach can be extended
to flexible structures with different geometries and made of different materials. As an example, in Fig. 12 we
consider an elastomeric square block with edges of length L and an embedded triangular array of holes. We
choose the holes to be circular in the initial domain Ω0, with radius r = 0.0442L and center-to-center spacing
of L/10, resulting in an area Aelas = 0.325L2 covered by elastomeric material. When subjected to uniaxial
tension, this structure has a nearly-linear stress–strain curve with S 22/µ ≈ 0.325ε (dotted line in Fig. 12-b).
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Figure 11: Target linear responses under shear. (a) Evolution of the objective function J during the shape optimization iterations for
the four targets defined by Ctarg

2 = 0 and Ctarg
1 = 0.025 (dark green), 0.05 (teal), 0.08 (light blue), 0.1 (light pink). (b) Target response

(circular markers) and stress–strain curves for the optimal designs (continuous lines). The black dotted line denote the stress–strain
curve of the initial domain Ω0. (c) Numerical snapshots of the optimal geometries in the undeformed configuration (i.e. at ε = 0)
and at ε = 0.1.

We then seek a domain shape leading to a stiffer linear response, S 22/µ = 0.4ε. As shown in Fig. 12-c, the
optimization algorithm successfully identifies an aperioidic structure whose stress–strain response closely
approximates the target.

Our results indicate that the proposed optimization strategy is capable of identifying optimal geometries
for different loading conditions and initial geometries, but for certain targets it may fail to find an appropriate
structure. Such failures arise either because these targets are unfeasible, or because the designs separating the
initial domain from the local minimum exhibit very small geometric features that cause excessive distortion
in the underlying mesh. To overcome this issue, in future endeavours the mesh-distortion constraint can be
relaxed in place of a method that adaptively remeshes to preserve an underlying high quality mesh.
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Figure 12: Target linear responses under uniaxial tension for a metamaterial comprising a triangular array of holes. (a) Evolution of
the objective function J during the shape optimization iterations for a target defined by S targ

22 /µ = 0.4ε. (b) Target response (circular
markers) and stress–strain curves for the optimal designs (continuous lines). The black dotted line denote the stress–strain curve of
the initial domain Ω0. (c) Numerical snapshots of the initial domain and optimal geometry in the undeformed configuration (i.e. at
ε = 0) and at ε = 0.1.

Figure A.13: Topology optimization for non-periodic compliant structures. Evolution of the strain energy and the overall volume of
the structure during the topology optimization iterations when we seek to minimize the strain energy under (a) uniaxial tension and
(b) shear. For both loading conditions we show a numerical snapshot of the optimal geometry.

Supervision, Writing - original draft, Writing & editing.

Appendix A. Topology optimization for non-periodic compliant structures

To demonstrate the limitations of topology optimization for the design of non-periodic compliant
structures, we performed topology optimization using the solid isotropic material with penalization (SIMP)
technique [32] implemented in firedrake [23]. We consider an initially square domain with sides length
L = 1 and model the material as linear elastic, assuming that the Young’s modulus is proportional to the
material density, E ∝ ρ3 [32]. To identify very compliant architectures under uniaxial tension and shear, we
then minimize the strain-energy while applying suitable displacements to the top and bottom boundaries.

In Fig. A.13, we plot the evolution of the strain energy and the overall volume of the structure for both
uniaxial tension (left) and shear (right). We find that for both loading conditions the algorithm generates
disconnected domains. To the best of the authors’ knowledge, the ability to generate connected finite sized
aperiodic still remains an open problem in topology optimization. As such, in this study we chose to use
shape optimization to guide the design of nonlinear flexible mechanical metamaterials.
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