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Abstract

Human conceptual knowledge supports the ability to generate
novel yet highly structured concepts, and the form of this con-
ceptual knowledge is of great interest to cognitive scientists.
One tradition has emphasized structured knowledge, view-
ing concepts as embedded in intuitive theories or organized
in complex symbolic knowledge structures. A second tradi-
tion has emphasized statistical knowledge, viewing conceptual
knowledge as an emerging from the rich correlational structure
captured by training neural networks and other statistical mod-
els. In this paper, we explore a synthesis of these two traditions
through a novel neuro-symbolic model for generating new con-
cepts. Using simple visual concepts as a testbed, we bring to-
gether neural networks and symbolic probabilistic programs
to learn a generative model of novel handwritten characters.
Two alternative models are explored with more generic neural
network architectures. We compare each of these three mod-
els for their likelihoods on held-out character classes and for
the quality of their productions, finding that our hybrid model
learns the most convincing representation and generalizes fur-
ther from the training observations.

Keywords: Categories and concepts; neural networks; com-
positionality; causality; generative models

Introduction
People can synthesize new concepts in imaginative ways; ar-
chitects design new houses, chefs invent new recipes, and
entrepreneurs create new business models. The resulting
productions exhibit novel variations but maintain important
structural consistencies with known entities (Ward, 1994).
In contrast, state-of-the-art generative models from machine
learning struggle with creative imagination, producing sam-
ples that either closely mimic the training data or that exhibit
anomalous characteristics (Lake et al., 2019). How do people
create novel yet coherent new concepts? How can we under-
stand these abilities in computational terms?

Human conceptual knowledge plays a central role in cre-
ative generalization. A chef knows not only a repertoire
of recipes, but also understands that recipes are built from
reusable ingredients (e.g. carrots, flour, butter), and that
these ingredients satisfy specific roles (thickening, seasoning,
greasing). Furthermore, a chef understands which ingredi-
ents can substitute for others (e.g. butter for oil when greas-
ing) and which should never be combined (e.g. ketchup and
milk). In addition, they understand that recipes are composed
of reusable causal procedures (cutting, whisking, browning),
and they know how to compose these procedures in terms
of order and substitutability. This causal and compositional
knowledge is essential to understanding a culinary concept,
as opposed to merely executing it, and is essential to a chef’s
ability to create new culinary concepts such as “carrots tartar”
or “pea guacamole.”

There have been two traditions of work on computational
models of conceptual knowledge. The first tradition em-
phasizes “structured knowledge” for capturing relations be-
tween concepts and correlations between conceptual features,
viewing concepts as embedded in intuitive theories (Murphy
& Medin, 1985) or capturing structured knowledge through
symbolic representations such as hierarchies, trees, grammars
and programs (Kemp & Tenenbaum, 2008, 2009; Tenenbaum
et al., 2011). This tradition has prioritized the composi-
tional and causal nature of conceptual knowledge, as em-
phasized through accounts of concept learning as program
induction (Goodman et al., 2008; Stuhlmuller et al., 2010;
Lake et al., 2015; Goodman et al., 2015; Ellis et al., 2018;
Lake & Piantadosi, 2019). The Bayesian Program Learning
(BPL) framework (Lake et al., 2015), for example, demon-
strates how to learn programs from images to express the
causal and compositional nature of concepts and background
knowledge. Although these models offer a convincing ac-
count for how strong inductive biases support flexible gener-
alization, they often make simplifying and rigid parametric
assumptions about the distributions of concepts in pursuit of
a structured representation. As a result, they so far have been
unsuccessful in characterizing the most complex correlations
and invariances associated with human concepts in raw, high-
dimensional stimulus spaces.

The second tradition in models of conceptual knowledge
emphasizes “statistical knowledge,” a more amorphous form
of background knowledge that is often not amenable to sym-
bolic description. In the statistics view, conceptual knowl-
edge manifests as complex systems of patterns and correla-
tions recorded from observations. The meaning of a word,
for example, can be derived from its patterns of co-occurrance
with other words (Deerwester et al., 1990). Similarly, latent
representations of objects and other sensory stimuli can be de-
rived from “suspicious coincidences” noted in the data (Bar-
low, 1989). The statistics view emphasizes emergence, where
conceptual knowledge emerges from the interaction of sim-
pler processes, as operationalized through training neural net-
work architectures (McClelland, 2010). Although a power-
ful modeling tool, standard neural networks do not explicitly
model the compositional and causal structure of concepts. As
result, they have difficulty generalizing to examples that vary
systematically from training (Marcus, 2003; Lake & Baroni,
2018), and to novel tasks, especially those that demand more
generative and creative abilities (Lake et al., 2017, 2019).

Our goal in this paper is to explore generative models of
concepts at the interface of these structured and statistical
traditions, with the aim of combining strengths from both ap-
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proaches. Previous efforts to integrate these traditions have
demonstrated ways of performing statistical inference over
structured representations (Tenenbaum et al., 2011). This in-
cludes models of concept learning as Bayesian inference over
fully-symbolic expressions in formal logical (Goodman et al.,
2008; Piantadosi et al., 2016), or models of inductive rea-
soning supported by structured intuitive theories (Kemp &
Tenenbaum, 2009). In accounts of this nature, statistics is
primary in selecting between structured symbolic hypotheses
(Kemp & Tenenbaum, 2008; Perfors et al., 2011; Lake et al.,
2015; Lake & Piantadosi, 2019), but plays little role in form-
ing the individual hypotheses themselves. Specifically, each
hypothesis may only have a few parametric distributions that
need to be inferred (Gaussians, multinomials, etc.), if any.

Here we aim to more thoroughly integrate the structured
and statistical traditions through hybrid neuro-symbolic gen-
erative models. Our goal is to devise a causal generative
model with explicit compositional structure, and with com-
plex correlations represented implicitly through neural net-
works rather than simple parametric distributions. We use
simple visual concepts – handwritten characters from the
world’s languages – as a case study for exploring neuro-
symbolic models of concept generation. The Omniglot
dataset (Lake et al., 2015) of handwritten characters pro-
vides an excellent preliminary modeling environment: it con-
tains a large number of natural, simple concepts that people
learn and use, and it has been explored extensively in prior
work from both cognitive science and AI. Following the mix-
ture density network framework for handwriting generation
(Graves, 2013), we explore three distinct generative neural
architectures, varying the strength and form of inductive bias
imposed on the model, including their position on the neuro-
symbolic spectrum and the fidelity in which compositionality
and causality are presented. We evaluate the generalization
capacity of these models by comparing their log-likelihoods
on a holdout set of characters. Furthermore, we analyze the
samples produced by each model, looking for characters that
are qualitatively consistent but sufficiently dissimilar from the
training set. We find that a hybrid neuro-symbolic architec-
ture with the strongest form of compositional structure ex-
hibits the best generalization performance, and that it gener-
ates characters that are highly consistent with human draw-
ings. In contrast, the generic neural models exhibit weaker
performance on the holdout set, and they produce characters
that more closely mimic the training examples.

Related Work

In the machine learning community, there have been a num-
ber of works studying generative neural network models
for handwritten characters, including DRAW (Gregor et al.,
2015), AIR (Eslami et al., 2016) and SPIRAL (Ganin et al.,
2018). Although these models learn a procedure to gener-
ate new characters, they do not use the human drawing data
from Omniglot, and therefore the generative process may not
reflect the true causal processes of human character produc-

tion. Our goal is different in that we aim to model the causal
process of human handwriting directly from drawing data.

Ha & Eck (2018) introduced a neural network architec-
ture called Sketch-RNN to model human drawing data for
simple objects like cats, firetrucks, and windmills. Although
their goal loosely resembles our own, the Sketch-RNN model
is trained on just a single class of objects at one time (e.g.
“cat”), and it receives 70,000 examples from the class. In
contrast, our motivation is to model human conceptual knowl-
edge of handwriting concepts in general. This background
knowledge plays a central role in creative generalization, en-
abling people to synthesize new concepts that deviate from
the observed entities. We train our models on many character
classes at once, providing only 20 training examples of each
class and asking them to generate new character concepts.
The Sketch-RNN model has not been applied in this way.

Most related to our work is the Bayesian Program Learning
(BPL) approach of Lake et al. (2015) that was also applied
to the simple visual concepts in Omniglot. BPL is a para-
metric Bayesian model that captures causal, compositional
structure in human background knowledge of handwriting,
and shows that these ingredients are important for few-shot
learning of new character concepts. Beyond supporting few-
shot learning, the BPL character prior can also generate new
character concepts by unconditional sampling. Although a
powerful demonstration of compositional representation, the
BPL parametric model makes many simplifying assumptions
about characters. For example, it assumes that strokes in a
character are generated largely independently from each other
in the prior (although they are strongly correlated in the poste-
rior). As result, new characters generated by the model often
lack the rich correlation structure of human drawings. We
build on this work and develop a new neuro-symbolic model
that represents the compositional structure of characters while
using neural networks to capture richer correlations.

Omniglot Case Study
We use simple visual concepts as a case study for modeling
conceptual structure. The Omniglot dataset contains human
drawings of characters from 50 unique alphabets, providing
a large set of cognitively natural concepts that are simple
enough for evaluating models (Lake et al., 2015, 2019). In
our experiments, we use drawings from the Omniglot back-
ground set to train our models, which contains 30 alphabets
and a total of 19,280 unique drawings. We also use 10 al-
phabets from the Omniglot evaluation set as a holdout set for
quantitative evaluations, reserving the remaining 10 alphabets
for future work on few-shot classification.

In the drawing data, a stroke is represented as a variable-
length sequence of pen locations {z1, ...,zT}, with zi ∈ R2

(Fig. 2, left). During pre-processing, we convert each stroke
into a minimal spline representation using least-squares op-
timization (Fig. 2, right), borrowing the B-spline tools from
Lake et al. (2015). The number of spline control points de-
pends on the stroke complexity and is determined by a resid-
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GenerateStroke(I)

location model  p(y ∣ I)
stroke model  p(x ∣ y, I)

CNN MLP
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p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)

…

y ∼ p(y
∣ I)

I, y, x

x ∼ p(x
∣ y, I)

procedure GENERATECHARACTER
I  0 . Initialize image canvas
while true do

[yi, xi] GenerateStroke(I) . Sample stroke location & trajectory
I  Render(yi, xi, I) . Render stroke to image canvas
vi ⇠ p(v | I) . Sample termination indicator
if vi then

break . Terminate sample
return I . Return character image

1

termination model  p(v ∣ I)

CNN MLPI
1

0

Figure 1: Full neuro-symbolic (Full NS) model. Our Full NS model produces character samples one stroke at a time. The procedure
GenerateCharacter consists of sequentially reading from and rendering to an image canvas, which is initialized to zero. At each time step,
the current canvas I is fed to procedure GenerateStroke, which produces a stroke sample. The canvas is first processed by the location
model, a CNN-MLP architecture that processes the image and returns a Gaussian mixture model (GMM) distribution for the starting location
of the next stroke y. The location y is then sampled and passed along with I to the stroke model. The stroke model processes I with a CNN
and feeds the embedding to an LSTM with attention. The LSTM samples a stroke trajectory x sequentially one offset at a time using GMM
outputs. The sampled stroke is passed to a symbolic renderer, and the updated image canvas is then processed by a termination model that
decides whether to continue the character sample.

ual threshold. Furthermore, we removed small strokes using
a threshold on the trajectory length. These processing steps
help suppress noise and emphasize signal in the drawings.
Our generative models are trained to produce character draw-
ings, where each drawing is represented as an ordered set of
splines (strokes). The number of strokes, and the number of
spline coordinates per stroke, are allowed to vary.

original stroke minimal spline

Figure 2: Spline representation. Raw strokes (left) are con-
verted into minimal splines (right) using least-squares optimization.
Crosses (left) indicate pen locations and red dots (right) indicate
spline control points.

Neuro-Symbolic Model
Our primary interest is to test whether a hybrid neuro-
symbolic model can capture the compositional, causal struc-
ture in a large corpus of simple natural concepts. The archi-
tecture and sampling procedure of our hybrid model, which
we call the “Full Neuro-Symbolic” (Full NS) model, is given
in Fig. 1. Compared to generic neural networks, the Full NS
model lies closer to structure on the structure-statistics spec-
trum, possessing a much stronger inductive bias. As in BPL
(Lake et al., 2015), the generative model is a probabilistic
program that captures real compositional and causal struc-
ture by sampling characters as a sequence of parts and loca-
tions/relations. Unlike BPL, the model has a symbolic engine
that renders each part to an image canvas before producing
the next one, and parts are generated using a powerful recur-

rent neural network that encodes and attends to the current
canvas. Although correlations between parts can be captured
through a process of rendering and then encoding, the model
does not allow arbitrary information to flow between parts
and variables as in monolithic neural networks.

The Full NS model represents a character as a sequence
of strokes, with each stroke decomposed into a starting loca-
tion yt ∈ R2, conveying the first spline control point, and a
stroke trajectory xt = {∆1, ...,∆N}, conveying deltas between
spline control points. It generates characters one stroke at a
time, using a symbolic rendering procedure called Render,
as an intermediate processing step after forming each stroke.
An image canvas I is used as a memory state to convey in-
formation about previous strokes. At each time step t, the
next stroke’s starting location and trajectory are sampled with
procedure GenerateStroke. In this procedure, the current
image canvas I is first read by the location model (Fig. 1;
bottom middle), a convolutional neural network (CNN) that
processes the image and returns a probability distribution for
starting location yt :

yt ∼ p(yt | I).

A visualization of the density p(yt | I) is given in Fig. 3,
“Location Prediction.” The starting location yt is then passed
along with the image canvas I to the stroke model (Fig. 1;
bottom right), a Long Short-Term Memory (LSTM) architec-
ture with a CNN-based image attention mechanism inspired
by Xu et al. (2016). The stroke model samples the next stroke
trajectory xt sequentially one offset at a time, selectively at-
tending to different parts of the image canvas at each sample
step and combining this information with the context of yt :

xt ∼ p(xt | yt , I).
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Input 
Canvas

Termination 
Prediction

Location 
Prediction

Stroke 
Prediction

stroke 1

stroke 2

stroke 3

stroke 4

Figure 3: Predictions of the Full NS model for a test character. After each stroke, the model receives the current image canvas (“Input
Canvas”) and makes a series of predictions. Termination Prediction. First, the model predicts a termination probability p (blue bar), i.e.
a probability of terminating the drawing. Location Prediction. Next, the model predicts a probability density for the next stroke’s starting
location. The heatmap indicates the predicted density, and the hollow red dot indicates the ground-truth location. Stroke Prediction. Finally,
the model predicts an auto-regressive probability density for the next stroke’s trajectory (the “stroke”). Red dots indicate the previous control
points, heatmaps indicate the predicted density for the next control point, and hollow red dot indicates the ground-truth next control point.

A visualization of the auto-regressive density p(xt | yt , I) is
given in Fig. 3, “Stroke Prediction.” Finally, a similar net-
work decides when to terminate the character, p(vt | I).
Mixture Outputs. Both our location model and stroke
model follow a technique from Graves (2013), who pro-
posed to use neural networks with mixture outputs to model
handwriting data. The parameters θ = {π1:K ,µ1:K ,σ1:K ,ρ1:K}
output by our network specify a Gaussian mixture model
(GMM) with K components (Fig. 1; colored ellipsoids),
where πk ∈ (0,1) is the mixture weight of the kth compo-
nent, µk ∈ R2 its means, σk ∈ R2

+ its standard deviations, and
ρk ∈ (−1,1) its correlation. In our location model, a sin-
gle GMM describes the distribution p(yt | I). In our stroke
model, the LSTM outputs one GMM at each timestep, de-
scribing p(∆t |∆1:t−1,yt , I).

Training. Our Full NS model provides a density function
which can be used to score the log-likelihood for any char-
acter drawing. We train the model to maximize the log-
likelihood (minimize log-loss) of the training set drawings,
using mini-batch gradient descent with a batch size of 200
and the Adam update rule.

Alternative Models

In addition to our Full NS model, we explored two alternative
models with more generic neural network architectures. In
each alternative, we lesioned key structural ingredients of the
Full NS model, hoping to test the importance of these ingre-
dients to model performance.

Hierarchical LSTM. As one alternative neural model, we
explored a hierarchical recurrent architecture (Sordoni et al.,
2015; Ling et al., 2016; Chung et al., 2017), which we denote
“Hierarchical LSTM” (H-LSTM). Like our Full NS architec-
ture, the H-LSTM model is trained on causal data demonstrat-

…

y1

x1

y2

x2

y1

x1

yT

xT

yT−1

xT−1

LSTM LSTM LSTM

Location

yi

Stroke

xi

: stroke encoder

: location predictor

: stroke predictor

Figure 4: Hierarchical LSTM model. The model samples charac-
ters one stroke at a time, using a character-level LSTM as a memory
state. At each time, the model samples a starting location for the
next stroke from a location predictor (MLP), and a stroke trajectory
from the stroke predictor (LSTM). These samples are then fed to the
model as inputs for the next time, with the location fed directly and
the trajectory processed by a stroke encoder (bi-directional LSTM).

ing how people actually produce drawings of characters. In
addition, it models the compositional structure of characters
by separating them into explicit stroke parts, which defines
the hierarchy in the hierarchical LSTM. Unlike our Full NS
model, however, the H-LSTM has no renderer and thus lacks
any explicit causal knowledge of how motor actions become
raw images of inked characters. Instead, information about
the previous strokes is written to memory via recurrent con-
nections and gating mechanisms. These transformations can
propagate arbitrary correlations, and they must be learned en-
tirely from the data.

Specifically, at each time step t, the previous stroke xt−1 is
read by a stroke encoder fenc, a bi-directional LSTM that pro-
cesses the stroke and returns a fixed-length vector (red box in
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Fig. 4). This vector is then passed as an input to the character
LSTM along with previous location yt−1 and previous hidden
state ht−1:

ht = fLSTM(yt−1, fenc(xt−1),ht−1).

The new hidden state ht is then fed to the location model p(yt |
ht), a multi-layer perceptron that outputs a GMM distribution
for the next stroke’s starting location yt (green box in Fig. 4).
The location is sampled from this distribution and passed as
an input along with ht to the stroke model p(xt | ht ,yt), an
LSTM that samples a stroke trajectory one offset at a time
with GMM outputs (yellow box in Fig. 4):

yt ∼ p(yt | ht)

xt ∼ p(xt | ht ,yt).

Baseline LSTM. A second alternative is even less struc-
tured and represents the most purely statistical architecture
we examined. For this model, we explored a naive unrolled
LSTM, denoted “Baseline.” This model is a reproduction of
the unconditional version of Sketch-RNN (Ha & Eck, 2018,
Sec 3.3). Similar to Full NS and H-LSTM, the Baseline
LSTM is trained on causal data demonstrating the process of
producing characters; however, the architecture does not ex-
plicitly take compositional structure into account. Instead, it
uses a single RNN to model a character as one long sequence
of pen actions with stroke breaks.

Following Sketch-RNN, we expand the binary pen state
variable vt ∈ {0,1} from Graves (2013) to a ternary variable
vt ∈ {0,1,2} to handle multi-stroke drawings. Value 0 indi-
cates that we are continuing the current stroke, 1 that we are
ending the current stroke and starting a new one, and 2 that
we are ending the drawing. The initial hidden and cell states
of the LSTM are set to zero, and at each time step t, the previ-
ous offset ∆t−1, previous pen state vt−1, and previous hidden
state ht−1 are fed as inputs to the LSTM, which outputs new
hidden state ht :

ht = fLSTM(∆t−1,vt−1,ht−1).

An output layer receives ht and returns a categorical distribu-
tion for next pen state vt , and a GMM for next offset ∆t :

θv = fv(ht), vt ∼ p(vt | θv)

θ∆ = f∆(ht), ∆t ∼ p(∆t | θ∆).

Experiments
We evaluated the creative generalizations of our 3 models us-
ing both quantitative and qualitative analyses. Each of our
models estimates a probability density function for characters
from training examples. This density function can be used
to compute likelihoods for held-out characters and to gener-
ate new character samples. A generative model for charac-
ters that exhibits creative generalization should produce high
likelihood scores for novel character concepts from held-out

Alphabet Splits Character Splits Holdout
Model split1 split2 split3 split1 split2 split3 -
Full NS 13.77 14.18 17.53 12.35 12.59 12.57 19.51
H-LSTM 14.37 14.56 17.71 12.24 12.80 12.51 20.16
Baseline 14.32 14.42 17.71 12.20 12.77 12.39 19.66

Table 1: Test losses from our 3 models. Losses indicate the aver-
age negative log-likelihood per test character (lower is better). In our
“alphabet splits” task, we divide the background set into train/test
splits such that the model must generalize to new characters from
novel alphabets. In our “character splits” task, we divide the back-
ground set such that the model must generalize to new characters
from familiar alphabets. In our “holdout” task, we provide the en-
tire background set for training and use the held-out evaluation set–
which contains new characters from novel alphabets–for testing.

classes. In addition, the model should generate new charac-
ters that are sufficiently dissimilar from the training exam-
ples, but that are structurally consistent with ground truth. In
our quantitative analysis, we tested our models for their likeli-
hood performance on novel character classes using a rigorous
set of experiments with different train/test splits. In our qual-
itative analysis, we inspected the character samples, compar-
ing with BPL, ground truth concepts, and nearest neighbors
from the training set.

Evaluation on Held-Out Concepts

Methods. In our quantitative analysis, we evaluated our
models for two different forms of likelihood generalization,
corresponding to different train/test splits. In the first gener-
alization task, denoted “character splits,” we asked whether
our models could generalize to new character classes from
familiar alphabets. We created 3 train/test splits from the
Omniglot background set, sampling 80% of characters per
alphabet for train and 20% for test. In our second task, de-
noted “alphabet splits,” we asked whether our models could
generalize to new character classes from novel alphabets. We
again sampled 3 train/test splits of size 80-20, this time split-
ting by alphabet. In both the “character splits” and “alphabet
splits” tasks, we explored multiple hyperparameter configu-
rations for our models, varying parameters such as the num-
ber of hidden layers, number of units per layer, and dropout
probability.1 Average validation loss across splits was used to
select the best configuration for each model in each task. We
then took our best configurations in each task and reported
their validation losses on all 3 splits.

As a final quantitative analysis, we tested our models on
one additional task that extends the “alphabet splits” task.
Our motivation was to provide a more rigorous analysis us-
ing a completely withheld test set as per standard practice in
machine learning evaluations. We re-trained our best config-
urations of each model on the entire background set, using
the hyperparameters selected from our “alphabet splits” task.
We then reported losses on the evaluation set, which contains
character drawings from 10 completely novel alphabets.

1For details about hyperparameters, see Appendix section A:
https://www.cns.nyu.edu/˜reuben/files/cogsci20
appendix.pdf
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Full NS Model Hierarchical LSTM Baseline LSTM BPL (unconditional) Ground Truth

Figure 5: Character sample comparison. Characters generated by our Full NS, H-LSTM and Baseline LSTM models are shown side-by-
side, along with samples from the BPL forward model2 as well as ground truth characters from Omniglot.

Full NS Model Hierarchical LSTM Baseline LSTM

Figure 6: Novelty of character samples. Character drawings
sampled from each model were compared to their 5 nearest neigh-
bors from the training set. Each row corresponds to one character
sample from the model. The red box indicates the model sample,
and the 5 nearest neighbors are shown in the succeeding columns.

Results. Results from the cross-validation splits are shown
in Table 1, “Alphabet Splits” and “Character Splits.” In our
alphabet splits, the Full NS model consistently outperformed
the alternatives, exhibiting the best generalization perfor-
mance in each of the 3 splits. Thus, our neuro-symbolic ar-
chitecture appears best equipped to capture overarching prin-
ciples in handwriting concepts that generalize far outside of
the training examples.

In our character splits task, the Baseline LSTM exhibited
best performance in 2 out of 3 splits, and the Full NS model in
1 of 3. The character splits present a much easier generaliza-
tion task, where exemplar-based learning could offer a suit-
able alternative to learning general structural principles. In-
terestingly, the selected hyperparameter configuration for our
Full NS model remained constant across the “alphabet” and
“character” split tasks, whereas the configuration changed for
both the Baseline and H-LSTM models.

Results for each model on the held-out set of characters
are shown in Table 1, “Holdout.” Similarly to the “alphabets”
task, our Full NS model outperforms both alternative models
on the holdout set, providing further support that this archi-
tecture learns the best general model of these simple visual
concepts. A paired t-test reveals the Full NS model has reli-
ably better loss per example than the next-best model (Base-
line; t(5531) = 3.094; p < 0.002).

Generating New Concepts

Methods. In our qualitative analysis, we analyzed the 3
neural network models on their ability to produce novel vi-
sual concepts. We took our trained models from the previous
experiment and sampled 36 characters from each model, fol-
lowing the model’s causal generative procedure. In addition,
we sampled 36 characters from the BPL character prior, and
we selected 36 “ground truth” characters from Omniglot at
random. Samples were then compared visually side-by-side.

As an additional qualitative analysis, we compared charac-
ter samples from each model for their similarity to the train-
ing examples. Although the complexity and structural co-
herence of generated characters are important criteria, these
observations alone provide insufficient evidence for a human-
like generative process; a model that memorizes the training
examples might produce samples with structural coherence
and rich variations, but such a model does not account for the
flexible ways that humans generate new concepts. In our sec-
ond analysis, we took the character samples from our models
and found the 5 most-similar training characters for each, us-
ing cosine distance in the last hidden layer of a CNN classi-
fier as a metric space for perceptual similarity. The CNN was
trained to classify characters from the Omniglot background
set, a 964-way classification task.

Results. Fig. 5 shows samples from each of our three mod-
els, as well as from the BPL forward model2 and from the
Omniglot data (ground truth). Compared to BPL, the neural-
enhanced models capture more correlational structure and
character complexity. For instance, the Full NS model propa-
gates stylistic and structural consistency across three strokes
to form a Braille-like character, as shown by the sample in
column 1, row 2. Fig. 6 shows a handful of character sam-
ples produced by each neural model plotted alongside their
five nearest neighbors from the Omniglot training set. Unlike
the log-likelihood results, comparing models in this fashion
is subjective; nevertheless the H-LSTM and Baseline LSTM
produce more characters that closely mimic the nearest train-

2BPL character samples have been centered for better visual ap-
pearance; the actual samples often protrude outside of the image
window. A more complex non-parametric BPL model was used in
the visual Turing tests in Lake et al. (2015) that has explicit re-use
of character parts. Those samples were also centered.

2320



samples from Full NS 
model (T=0.5)

corresponding 
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stroke key:

Figure 7: Topologically-Organized character samples and their
nearest Omniglot neighbors. We drew 100 character samples
from our Full NS model and organized them into a 10x10 grid such
that neighboring characters have similar drawing styles (left). We
then found the “nearest neighbor” of each sample from the Omniglot
character dataset and organized the neighbors into a corresponding
10x10 grid (right).

ing examples (7/9 by our eyes). In contrast, our Full NS
model produces only a few (3/9) characters that are close mir-
rors of training examples, suggesting that it can generalize
further from the training observations.

To get an idea of the different character styles produced
by our Full NS model, we sampled 100 characters from the
model and organized them into a 10x10 grid such that neigh-
boring characters have high perceptual similarity (Fig. 7,
left). Characters were sampled at a lower level of stochastic-
ity, using the temperature parameter proposed by Ha & Eck
(2018) to modify the entropy of the mixture density outputs
(we used T = 0.5). The model produces characters in multi-
ple distinct styles, with some having more angular, line-based
structure and others relying on complex curves. In Fig. 7
(right), we plotted the most-similar Omniglot character for
each sample in a corresponding grid. In many cases, samples
from the model have a distinct style and are visually dissimi-
lar from their nearest Omniglot neighbor.

Conclusion
We presented a new neuro-symbolic generative model of sim-
ple visual concepts. Our model successfully captures com-
positional and causal structure in handwritten character con-
cepts, forming a representation that generalizes to new con-
cepts. We tested our model by comparing its likelihood scores
on a holdout set of novel characters, finding that it consis-
tently outperforms two generic neural network alternatives
when the test characters deviate significantly from the train-
ing examples. Furthermore, our generative model produces
new character concepts with richer variations than simple
parametric models, yet that remain structurally coherent and
visually consistent with human productions.

Neuro-symbolic models offer a promising set of tools to
express the rich background knowledge that enables cre-
ative generation. These models can explain the nonparamet-
ric correlation structure embodied in conceptual knowledge
while maintaining important inductive biases to account for

the structured ways that people generate new concepts. We
believe that models of this kind will be useful to explain
a variety of human imaginative behaviors, such as when a
chef creates the new recipe “pea guacamole.” In future work,
we’d like to explore applications of neuro-symbolic models
to other types of concepts with varying complexity.
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