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ABSTRACT OF THE DISSERTATION

Zeros of Dirichlet L-functions over Function Fields and Connections to Random Matrix
Theory

By

Hua Lin

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Professor Alexandra Florea, Chair

We study the one-level density of zeros for several families of Dirichlet L-functions over

function fields and prove results which support the connection between zeros of families of

L-functions and statistics of eigenvalues of random matrices.

In Chapter 1, we introduce definitions of various objects of relevance, such as Dirichlet

characters and Dirichlet L-functions over number fields, and present analogous ones over

function fields Fq(t). We discuss the construction of order ℓ Dirichlet characters over Fq[t]

specifically in Section 1.3.1, for both the Kummer setting (q ≡ 1 (mod ℓ)) and the non-

Kummer setting (q ̸≡ 1 (mod ℓ)). Section 1.4 dedicates to results that build connections

between statistics of the Riemann zeta function and families of L-functions and random

matrix theory; we also define and discuss the one-level density of zeros here in detail. Section

1.5 outlines the rest of the thesis, including statements of main theorems and a remark on

the average order of non-vanishing at low-lying heights.

In Chapter 2, we study the one-level density of zeros for cubic and quartic Dirichlet L-

functions over function fields in the Kummer setting. We prove the general explicit formula

for order ℓ Dirichlet L-functions in Lemma 2.1 and evaluate the main terms and error terms

for each order. As a consequence of Theorems 1.1 and 1.2, we prove that the cubic and
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quartic families have unitary symmetry, supporting the philosophy of Katz and Sarnak.

In Chapter 3, we study the one-level density of zeros for cubic, quartic and sextic Dirichlet L-

functions over function fields in the non-Kummer setting. We discuss a crucial construction

of non-Kummer characters in Section 3.2, motivated by the works of Baier and Young, and

David, Florea and Lalin. Similar to the Kummer setting, we evaluate the main terms and

error term of the one-level density and prove that the families of cubic, quartic and sextic

Dirichlet L-functions have unitary symmetry.

Appendix A somewhat extends the construction of non-Kummer characters in Section 3.2

to include characters of order equal to a Mersenne prime.
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Chapter 1

Introduction

1.1 Dirichlet Characters

The following definitions and facts about Dirichlet characters can be found in Chapter 1 of

[15] and Section 4.2 of [37].

In 1837, Dirichlet introduced arithmetic functions called Dirichlet characters to study primes

in arithmetic progression.

Definition 1.1. A function χ : Z → C× is a Dirichlet character modulo q ∈ N if for all

integers n,m:

• χ (nm) = χ (n)χ (m),

• χ (n) ̸= 0 ⇐⇒ (n, q) = 1,

• χ (n+ q) = χ (n).

The character χ0 (n) = 1 for all (n, q) = 1 is called the principal character modulo
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q. Furthermore, when χ has a period exactly q (on nonzero outputs), then χ is called a

primitive character, and the modulus q is called its conductor.

When a character χ (mod q) is imprimitive, there exists a proper nontrivial factor q1 | q and

a primitive character χ1 (mod q1) such that

χ (n) =


χ1 (n) if (n, q) = 1,

0 if (n, q) > 1.

In this case, we say that χ1 induces χ and the conductor of χ is q1.

One can also think of these Dirichlet characters as an extension of some group homomor-

phisms

f : (Z/qZ)× → C×.

Namely, we can define

χ (n) =


f ([n]q) if (n, q) = 1,

0 if (n, q) ̸= 1.

Using this interpretation and facts from group theory, we can deduce that the number of

characters modulo q is
∣∣(Z/qZ)×

∣∣ = ϕ(q) and

q∑
n=1

χ (n) =


ϕ (q) if χ = χ0,

0 otherwise.
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Furthermore, if (n, q) = 1,

∑
χ

χ (n) =


ϕ (q) if n ≡ 1 (mod q),

0 otherwise,

where the sum is over all Dirichlet characters modulo q. These two summation formulas are

referred to as orthogonality relations.

For example, there are ϕ(12) = 4 Dirichlet characters modulo 12. They are the following.

χ0 χa χb χc
1 1 1 1 1
5 1 1 -1 -1
7 1 -1 1 -1
11 1 -1 -1 1

Table 1.1: All characters modulo 12.

Observe that characters χ0, χa and χb are imprimitive. By examining their periods, we see

that χa is induced by a character modulo 4 and χb is induced by a character modulo 6 .

In general, Dirichlet characters can be defined on any ring of integers OK for a global field

K. Those over Fq[t] will be discussed in Section 1.3.1. Some features of Dirichlet L-functions

differ depending on the value of χ on (OK)×, so we have the following definition.

Definition 1.2. Let χ be a Dirichlet character on OK. Then

χ is


even if χ

(
(OK)×

)
= 1,

odd otherwise.

Observe that Z× = {1,−1}, thus χ is even if χ (−1) = 1. If χ (−1) = −1, then χ is odd.

3



1.2 Dirichlet L-functions

We refer the reader to [15] for some historical background and the proof of Dirichlet’s theo-

rem.

Long before the time of Dirichlet, it was conjectured that, for (a, q) = 1, there are infinity

many primes in the sequence

a, a+ q, a+ 2q, . . . .

Dirichlet proved this statement for prime q in 1837, and for general q in 1839. He was

motivated by Euler’s proof for the infinitude of primes, which showed

∑
p prime

1

ps
→ ∞ as s→ 1+.

In a key step, Dirichlet showed
∞∑
n=1

χ (n)

n
̸= 0

when χ ̸= χ0, the principal character. We now name the following functions after him.

Definition 1.3. Let χ be a Dirichlet character modulo q and s = σ+it be a complex variable.

For σ > 1, the Dirichlet L-series is defined as

L (s, χ) :=
∞∑
n=1

χ (n)n−s.

After analytic continuation to the whole complex plane, we also let L (s, χ) denote the

Dirichlet L-function associated to χ.

We note that when χ ̸= χ0, L (s, χ) is an entire function; when χ0 is the principal character

modulo q, L (s, χ0) has a pole at s = 1 with residue ϕ (q) /q.

Let χ (mod q) be a Dirichlet character and ℜ(s) > 1. Since χ is completely multiplicative,
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we can express the L-function as the product,

L (s, χ) =
∏

p prime
p∤q

(
1 − χ (p)

ps

)−1

. (1.1)

Riemann zeta function

The Riemann zeta function can be interpreted as a Dirichlet L-function with χ0 (mod 1).

We have for ℜ(s) > 1,

ζ (s) =
∞∑
n=1

1

ns
= L (s, 1) ,

and

ζ (s) =
∏

p prime

(
1 − 1

ps

)−1

. (1.2)

Equations (1.1) and (1.2) are equivalent to the fact that every natural number has a unique

prime decomposition.

Furthermore, for the principal character χ0 (mod q)

L (s, χ0) = ζ (s)
∏

p prime
p|q

(
1 − 1

ps

)
.

Functional Equations

In 1860, Riemann proved the functional equation for the zeta function and obtained that

ζ (s) is analytic on the whole complex plane except at s = 1. For ℜ(s) > 0, let

Γ (s) =

∫ ∞

0

ts−1e−tdt

5



denote the gamma function, and let

ξ (s) :=
1

2
s (s− 1) ζ (s) Γ (s/2) π−s/2. (1.3)

(ξ(s) is sometimes referred to as the completed zeta function.) Riemann showed that ξ (s)

is entire, and ξ (s) = ξ (1 − s) for all s. Since ζ (s) ̸= 0 for ℜ(s) ≥ 1, and Γ (s/2) has simple

poles at 0,−2,−4,−6 . . . , ζ (s) has simple zeros at −2,−4,−6, . . . . We call those the trivial

zeros. All non-trivial zeros of zeta are in the critical strip 0 < ℜ(s) < 1. In fact, the famous

Riemann Hypothesis states that all non-trivial zeros of the Riemann zeta function lie on the

line ℜ(s) = 1/2.

Similar to the zeta function, we have functional equations for Dirichlet L-functions. These

functional equations differ for even and odd characters as defined in (1.2), so we use the

following notation. Let

κ =


0 if χ (−1) = 1,

1 if χ (−1) = −1.

Now, for χ a primitive character modulo q > 1, the function

ξ (s, χ) = L (s, χ) Γ

(
s+ κ

2

)
(q/π)(s+κ)/2

is entire, and ξ (s, χ) = ξ (1 − s, χ) for all s. For more details on functional equations for

Dirichlet L-functions, please see Section 10 of [37].

1.3 Background in Function Fields

For more background on function fields, we refer the reader to [43].

Many features of Fq[t] are similar to those of Z. For example, both rings are principal ideal
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domains; they both have infinitely many primes, and finitely many units, F×
q and {-1,1}

respectively. Yet, many problems which are intractable over Z can be solved over Fq[t]. For

instance, the Riemann Hypothesis, still open over Z, was proven for curves over finite fields

by Weil in 1948 [46]. The Generalized Riemann Hypothesis (GRH), which states that all

zeros of Dirichlet L-functions L(s, χ) lie on the line ℜ(s) = 1/2, is true over function fields,

but still open over number fields.

The table below shows the dictionary from Z to Fq[t].

Over Number Fields Over Function Fields

Z Fq[t]
Q Fq(t)

n positive integer F monic polynomial
p prime number P irreducible (prime)
|n| = |Z/nZ| |F |q := |Fq[t]/F | = qdeg(F )

Table 1.2: Number fields to function fields analogies.

List of notations

We use the following notations in this document.

• Let Mq denote the set of monic polynomials in Fq[t] and Mq,d be those monic poly-

nomials of degree d. (Note that |Mq,d| = qd.)

• Let Pq be the monic irreducible polynomials in Fq[t] and Pq,d be those monic irreducible

polynomials of degree d.

• Let Hq be the monic squarefree polynomials in Fq[t] and Hq,d be those monic squarefree

polynomials of degree d. (Note that for d ≥ 2, we have |Hq,d| = qd
(

1 − 1
q

)
.)

• Let d(f) denote the degree of the polynomial f . If convenient, we also use deg(f).

• Let e(x) := e2πix.
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• Let |f |qn := qnd(f) define the norm of f in Fqn [t], and we write |f | := qd(f) if f ∈ Fq[t].

Some familiar arithmetic functions are defined analogously over Fq[t]. For example, for

c ∈ F×
q , the Mobius function is

µ (F ) =


(−1)k if F = cP1P2 · · ·Pk,

0 if F is not squarefree.

The von Mangoldt function Λ is defined analogously as

Λ(F ) =


deg (P ) if F = cPα for some c ∈ F×

q and α ≥ 1,

0 otherwise.

Using the von Mangoldt function, the Prime Polynomial Theorem can be written as

∑
f∈Mn

Λ(f) = qn.

Lastly, we write the function field analogue of the familiar Perron’s formula.

Lemma 1.1 (Perron’s Formula). If the generating series S(u) =
∑

f∈Mq
a(f)ud(f) is abso-

lutely convergent in |u| ≤ r < 1, then

∑
f∈Mq ,d

a(f) =
1

2πi

∮
|u|=r

S(u)

ud
du

u
,

where, as usual,
∮

denote the integral over the circle oriented counterclockwise.

8



1.3.1 Order ℓ Dirichlet Characters

The works described in the later sections involve families of Dirichlet L-functions of a specific

order. For example, we will compute the average behavior of low-lying zeros of cubic Dirichlet

L-functions L (s, χ) over function fields, such that χ3 = 1. Hence, we discuss order ℓ Dirichlet

characters over function fields more specifically.

First, analogous to Definition 1.1, we define Dirichlet characters χ : Fq[t] → C× as follows.

Definition 1.4. A function χ : Fq[t] → C× is a Dirichlet character modulo a polynomial

m of positive degree if for all a, b ∈ Fq[t]:

• χ (ab) = χ (a)χ (b),

• χ (a) ̸= 0 ⇐⇒ (a,m) = 1,

• χ (a+m) = χ (a).

The character χ0 (a) = 1 for all (a,m) = 1 is called the principal character modulo m.

Furthermore, when χ has a period exactly m (on non-zero outputs), then χ is called a prim-

itive character, and the modulus m is called the conductor. We use the notation χm (·)

to denote the Dirichlet character with conductor m.

Now, order ℓ Dirichlet characters χm (a) over Fq[t] can be defined based on the ℓth residue

symbol
( a
m

)
ℓ
, which are defined analogously as residue symbols over number fields. These

ℓth residue symbols are defined when q ≡ 1 (mod ℓ), i.e., when F×
q [t] contains an ℓth root

of unity. (Since units are of degree 0, we will simply write F×
q instead.) We can extend the

definition of the ℓth residue symbol to Fq[t] when q ̸≡ 1 (mod ℓ) and thus Dirichlet characters

in these settings differ. We call the case when q ≡ 1 (mod ℓ) the Kummer setting and

when q ̸≡ 1 (mod ℓ) the non-Kummer setting.

9



Primitive characters in the Kummer setting

First, we define the ℓth residue symbol

(
f

P

)
ℓ

on primes P over Fq[t] and the associated

primitive character with conductor P . Then, we extend multiplicatively to general ℓth power-

free conductors H. The following definition can be seen in Chapter 3 of [43].

Definition 1.5. Let f, P ∈ Fq[t] and P a prime polynomial that does not divide f . The ℓth

Jacobi symbol

(
f

P

)
ℓ

is the unique element of F×
q , such that

(
f

P

)
ℓ

≡ f
|P |−1

ℓ (mod P ).

We can extend this definition multiplicatively to any residue symbol

(
f

H

)
ℓ

, where H is a

monic polynomial in Fq[t]. We also note that

(
f

P

)
ℓ

is an ℓth root of unity in F×
q .

Given the definition above, we define primitive characters with a prime conductor P in the

Kummer setting.

Definition 1.6. Let Ωℓ be a fixed isomorphism from the ℓth roots of unity µℓ ⊆ C× to the

ℓth roots of unity in F×
q . We define χP (f) = 0 if P | f , and otherwise

χP (f) = Ω−1
ℓ

((
f

P

)
ℓ

)
.

Similarly to above, extending multiplicatively to a monic polynomial H = P e1
1 · · ·P es

s with

distinct primes factors Pi, we have..

χH = χe1P1
· · ·χesPs

, (1.4)

where χℓH = 1 with conductor H ′ = P1 · · ·Ps. Furthermore, χH is a primitive character if

and only if 1 ≤ ei ≤ ℓ− 1 for all i. For instance, when ℓ = 3, χH is primitive if and only if

10



ei ∈ {1, 2} as in [17].

Observe that grouping the primes factors by their exponents, we can write

H = F1F
2
2 · · ·F ℓ−1

ℓ−1 ,

where the Fi’s are monic squarefree polynomials and pairwise coprime. Thus, given these

Fi’s, we can consider the conductor

H ′ = F1F2 · · ·Fℓ−1, (1.5)

which corresponds to the original primitive character

χH = χF1χ
2
F2

· · ·χℓ−1
Fℓ−1

. (1.6)

Defining the family FK
ℓ (g)

In Chapter 2, we study the family of primitive cubic Dirichlet characters of genus g in the

Kummer setting. We denote this family by FK
3 (g). Here, we give the general definition of

FK
ℓ (g) for a prime ℓ ≥ 3. We also work with FK

4 (g) (defined separately below) in Chapter 2.

Let χℓ be a fixed order ℓ character such that on the group of units F×
q ,

χℓ(α) = Ω−1
ℓ

(
α

q−1
ℓ

)
. (1.7)

A character on Fq[t] is even if it is the principal character on F×
q , and odd otherwise. Thus

in the Kummer case, any order ℓ character on Fq[t] falls into ℓ classes depending on its

restriction to F×
q : it is either the principal character χ0 or it is χjℓ for some integer 1 ≤ j < ℓ.

The character is even in the first case, and odd otherwise.

11



For some α ∈ F×
q , we have by definition

χF1F2
2···F ℓ−1

ℓ−1
(α) = Ω−1

ℓ

(
α

q−1
ℓ

(d1+2d2+···+(ℓ−1)dℓ−1)
)
,

where di := deg (Fi). Thus this character is even if and only if d1 +2d2 + · · ·+(ℓ−1)dℓ−1 ≡ 0

(mod ℓ). Furthermore, using the Riemann-Hurwitz formula, such as the version given in

(1.9), the degree of H ′ is given by the following.

d(H ′) =


2g+2ℓ−2
ℓ−1

if d1 + 2d2 + · · · + (ℓ− 1)dℓ−1 ≡ 0 (mod ℓ),

2g+2ℓ−2
ℓ−1

− 1 if d1 + 2d2 + · · · + (ℓ− 1)dℓ−1 ̸≡ 0 (mod ℓ).

For convenience, we restrict to the case of odd primitive characters whose restriction to F×
q

is χℓ as seen in (1.7). This means d1 + 2d2 + · · · + (ℓ− 1)dℓ−1 ≡ 1 (mod ℓ) and deg (H ′) =

2g + 2ℓ− 2

ℓ− 1
− 1. Hence, using the notation in (1.5) we have

FK
ℓ (g) := {H ′ : H ′ =F1F2 · · ·Fℓ−1, Fi squarefree and pairwise coprime,

deg(H ′) =
2g

ℓ− 1
+ 1, d1 + 2d2 + · · · + (ℓ− 1)dℓ−1 ≡ 1 (mod ℓ)}.

(1.8)

Defining FK
4 (g)

For the family of quartic Dirichlet L-functions in the Kummer setting, we consider curves of

the affine model

Y 4 = F1(t)F
3
3 (t),

where F1(t), F3(t) are squarefree and (F1(t), F3(t)) = 1. This correspond to characters of

order four, such that χ4 = 1 and χ2 remains primitive. As in the cubic case, we consider
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characters whose restriction to the units F×
q is χ4 as given in (1.7).

The Riemann-Hurwitz formula [43, 35] states that for characters of genus g and order ℓ

2g + 2ℓ− 2 =
ℓ−1∑
i=1

(ℓ− (ℓ, i)) di + (ℓ− (ℓ, d)), (1.9)

where di = deg(Fi) and d =
∑ℓ−1

i=1 idi. For ℓ = 4 and for the affine model above, we have

2g + 6 = 3d1 + 3d3 + 3,

which implies that the degree of the conductor is

2g + 6

3
− 1 = d1 + d3. (1.10)

Note that (1.10) gives an analogous formula to the degree of the conductor when ℓ is prime;

if d2 ̸= 0, then the relation between the genus and the conductor degree becomes more

complicated compared to the prime case. Lastly, since d1 + d3 =
2g

3
+ 1, there are

2g

3

non-trivial zeros for each L-function.

Let FK
4 (g) denote the conductors of primitive quartic characters of genus g. Following the

discussion above and the notation in (1.5) by denoting the conductor as H ′, we have

FK
4 (g) := {H ′ : H ′ = F1F3, Fi squarefree and pairwise coprime,

deg(H ′) =
2g

3
+ 1, d1 + 3d3 ≡ 1 (mod 4)}.

(1.11)

Before defining characters in the non-Kummer setting, we give the condition for perfect

reciprocity. We will consider the case of perfect reciprocity for convenience in the later

sections. The following is the reciprocity law derived from Theorem 3.5 in [43].

Lemma 1.2 (Order ℓ Reciprocity). Let a, b ∈ Mq be relatively prime polynomials, and let

13



χa and χb be the order ℓth characters defined above. If q ≡ 1 (mod 2ℓ), then

χa(b) = χb(a).

Primitive characters in the non-Kummer setting

Recall that when q ̸≡ 1 (mod ℓ), we have characters in the non-Kummer setting.

First, we consider the case when the character χ has a prime conductor P . Let nq be the

multiplicative order of q (mod ℓ), such that

qnq ≡ 1 (mod ℓ). (1.12)

If χP is an order ℓ character over Fq[t] in the non-Kummer setting, then nq must divide the

degree of P , since ℓ | (qnq − 1) and

χℓP = χq
nq−1
P = χ

|P |−1
P = 1.

Recall that |P | = qd(P ) denotes the size of the prime P . Thus, we define the ℓth Jacobi

symbol and the associated order ℓ primitive character with a prime conductor P the same

way as in the Kummer setting when the degree of P is divisible by nq.

Definition 1.7. Let nq be defined as in (1.12) and P a prime of degree divisible by nq. Then

1. for any f ∈ Fq[t] such that P ∤ f , the ℓth Jacobi symbol

(
f

P

)
ℓ

is the unique element

of F×
qnq such that

f
|P |−1

ℓ (mod P ) ≡
(
f

P

)
ℓ

.

2. Let Ωℓ be a fixed isomorphism from the ℓth roots of unity µℓ ⊆ C× to the ℓth roots of
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unity in F×
qnq . We define χP (f) = 0 if P | f , and otherwise

χP (f) = Ω−1
ℓ

((
f

P

)
ℓ

)
.

For works in the non-Kummer setting, it is crucial to have another (perhaps more natural)

description for these characters. We give more details in Section 3.2.

1.3.2 The Riemann zeta function and Dirichlet L-functions over

function fields

We refer to [43] for background on the zeta function over function fields.

For ℜ(s) > 1, the zeta function over Fq[t] is defined to be

ζq(s) :=
∑
f∈Mq

1

|f |sq
=
∏
P∈Pq

(
1 − 1

|P |sq

)−1

,

where Mq (given in the list of notations in Section 1.3) is the set of monic polynomials over

Fq[t], analogous to the positive integers on Z. Since |Mq,d| = qd, we have

ζq(s) =
∞∑
n=0

qn

qns
=

1

1 − q1−s
.

It is convenient to make the change of variable u = q−s, therefore we use the notation

Zq(u) := ζq(s) =
1

1 − qu
.

For an order ℓ character χ with conductor h, the Dirichlet L-function attached to χ is defined
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by

Lq (s, χ) :=
∑
f∈Mq

χ(f)

|f |sq
.

With the same change of variable u = q−s, we have

Lq (u, χ) := Lq (s, χ) =
∑
f∈Mq

χ(f)ud(f) =
∏
P∈Pq

P ∤h

(
1 − χ(P )ud(P )

)−1
.

Now let C be a curve of genus g with conductor h over Fq(t) and let the function field of C

be a cyclic degree ℓ extension of the base field. From the Weil conjectures, the zeta function

of the curve C can be written as

ZC(u) =
PC(u)

(1 − u)(1 − qu)
,

where PC(u) is a polynomial of degree 2g. Furthermore, we have that from [16], when χ is

an odd character

PC(u) =
ℓ−1∏
i=1

Lq(u, χi),

and when χ is even

PC(u) = (1 − u)−ℓ+1
ℓ−1∏
i=1

Lq(u, χi).

The Riemann Hypothesis for curves over function fields [46] states that all non-trivial zeros

of Lq(u, χ) are on the circle |u| = q−
1
2 . Recall that e(x) = e2πix. Hence we can express the

L-function in terms of its zeros

Lq(u, χ) = (1 − u)b
d(h)−1−b∏

j=1

(1 − u
√
qe(θj,h)) , (1.13)

where b = 1 if χ is even, and b = 0 otherwise.

Similar to the number field setting,“completed” L-functions with primitive characters χ have
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functional equations over function fields. Let

Λq(u, χ) := (1 − bu)−1Lq(u, χ)

denote the “completed” L-function where b is defined as above. Then

Λq(u, χ) = ω(χ) (
√
qu)d(h)−1−b Λq

(
1

qu
, χ

)
, (1.14)

with |ω(χ)| = 1 [45]. This implies that angles of zeros of Lq(u, χ) corresponds to the negative

of angles of zeros of Lq(u, χ).

Given a Dirichlet character of genus g, we have the following relation. To simplify notations,

let

Dℓ(g) =
2g + 2ℓ− 2

ℓ− 1
. (1.15)

Using the Riemann-Hurwitz formula [43], the degree of the conductor is

d(h) =


Dℓ(g) if χ is even,

Dℓ(g) − 1 if χ is odd.

(1.16)

Thus, there are Dℓ(g) − 2 non-trivial zeros for each L-function.

When evaluating the error term in sections such as 2.4.2, we use following results from [17]

to bound the size of L-functions. Note that these results hold for characters of any order.

Lemma 1.3. Let χ be a primitive order ℓ character of conductor h defined over Fq[t]. Then

for ℜ(s) ≥ 1/2 and for all ϵ > 0,

|Lq(s, χ)| ≪ qϵd(h).
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Lemma 1.4. Let χ be a primitive order ℓ character of conductor h defined over Fq[t]. Then

for ℜ(s) ≥ 1 and for all ϵ > 0,

|Lq(s, χ)| ≫ q−ϵd(h).

Note that Lemma 1.3 is analogous to the Lindelöf Hypothesis, since qϵd(h) = |h|ϵ.

1.4 Spectral interpretation of the non-trivial zeros of

the zeta and L-functions

In the early 1900s, Hilbert and Pólya independently stated that the non-trivial zeros of the

Riemann zeta function correspond to eigenvalues of a self-adjoint operator. Although there

seems to be no first-hand account due to Hilbert, Pólya discussed some historical details in

his correspondence with Odlyzko [40]. While in Göttingen studying analytic number theory

with Landau, Pólya was asked by Landau one day if there is a physical reason for the truth of

the Riemann Hypothesis (RH). He answered that if the non-trivial zeros of the ξ(s) function

(1.3) are associated to a physical problem, then RH would be equivalent to the fact that

eigenvalues of the physical problem to are real. This remark was never published, but it

became known and remembered.

There was little evidence at the time suggesting the connection between zeros of the zeta

function and the spectrum of matrices, but many results since then have supported such an

idea. Notably, Montgomery’s pair correlation conjecture [36], Katz and Sarnak’s philosophy

[31, 32] and conjectures on moments of the zeta function and L-functions using random

matrix theory by Keating and Snaith [34, 33]. We discuss these works in this section.
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1.4.1 Montgomery’s pair correlations of zeros

Let Z (T ) = {s = σ + iγ : ζ(s) = 0, 0 ≤ σ < 1, 0 < γ < T} denote the set of zeros in

the critical strip up to height T and γ̂ =
γ log T

2π
be the normalized imagarinary part of

s. To study the zeros of the Riemann zeta function, Montgomery [36] computed the pair

correlation of the normalized zeros, and found that, assuming the Riemann Hypothesis, for

a test function f with the support of its Fourier transform f̂ in (−1, 1),

lim
T→∞

1

|Z(T )|
∑

s,s′∈Z(T )
α≤γ̂−γ̂′≤β

f
(
γ̂ − γ̂′

)
=

∫ β

α

f(x)

(
1 −

(
sin(πx)

πx

)2
)
dx. (1.17)

In an encounter with the renowned physicist Freeman Dyson in 1972, Montgomery discovered

that the function 1−
(

sin(πx)

πx

)2

in the integrand above (what we refer to as the distribution

function today) also appears in statistics of eigenvalues of large random complex Hermitian or

unitary matrices [36]. Since then, this connection has been supported by extensive numerical

and theoretical tests, such as those done by Odlyzko in [38]. It deepened to give random

matrix models for moments of the zeta function and the low-lying zeros of families of L-

functions [31, 32, 34, 33].

One-level density of zeros by Özlük and Snyder

Before discussing the works of Katz and Sarnak in 1999, it may be worth highlighting

the results obtained in 1993 by Özlük and Snyder, the former of which was a student of

Montgomery. The authors studied the average behavior of low-lying zeros of quadratic

Dirichlet L-functions in a statistic called the one-level density. We discuss their results

below and give more details in Section 1.4.4.

Assuming the Generalized Riemann Hypothesis, Özlük and Snyder computed the one-level

density of quadratic Dirichlet L-functions and found that this family has a symplectic sym-
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metry. To determine the “symmetry type” of the family for quadratic L-functions, one does

it in the same way as in (1.17) for zeros of zeta. (The zeros of zeta up to height T actually

behave similarly to zeros of families of L-functions.)

The authors’ results also shed light on the important question of non-vanishing of L-functions.

Studying the non-vanishing of the zeta function was key in proving the Prime Number The-

orem in the late 1800s, and studying the non-vanishing of L-functions, besides being part

of the proof of Dirichlet’s theorem, gives arithmetic information about objects such as the

class number and the rank of an elliptic curves. Using their computation, Özlük and Snyder

showed that more than 93.75% of L-functions in the family do not vanish at the central point

s = 1/2. This corresponds to their result holding for test functions ϕ with Fourier transform

ϕ̂ supported in (−2, 2). In fact, Chowla’s conjecture [9] states that L (1/2, χ) ̸= 0 for any

Dirichlet character. Obtaining the one-level density result for ϕ̂ supported in (−A,A) for

any A is equivalent to 100% non-vanishing as predicted by Chowla’s conjecture.

1.4.2 Katz and Sarnak’s philosophy

The works by Katz and Sarnak [31, 32] further strengthened the connection between random

matrix theory and statistics of zeros of L-functions. In their works in 1999, the two authors

computed the one-level density of zeros for Dirichlet L-functions for curves over finite fields

as the genus of the curve g and the size of the finite field q both tend to infinity. They

showed that for some families of L-functions, their statistics of zeros follow distribution laws

of eigenvalues of classical groups. This lead them to predict that, in general, statistics of

families of L-functions have a spectral interpretation, i.e., there is a symmetry type associated

to each family given by the classical groups, such as the group of symplectic, unitary and

orthogonal matrices. This is referred to as Katz and Sarnak’s philosophy.

For example, in the case of quadratic characters, let FX denote the family of L-functions
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with conductors cf ≤ X (as f varies over FX) and, following the notation in [31], let ∆ (f, ϕ)

be the sum over imaginary part of zeros γf

∆ (f, ϕ) =
∑
γf

ϕ

(
γf log cf

2π

)
,

where ϕ ∈ S (R) is a test function in the Schwartz space. The one-level density of zeros in

this family is

W (X,F , ϕ) =
1

#FX

∑
cf≤X

∆ (f, ϕ) ,

which tends to the integral

W (X,F , ϕ) →
∫ ∞

−∞
ϕ (x)w (Sp) (x) dx

as X → ∞ and for any test function whose Fourier transform is supported in (−2, 2).

The function w (Sp) (x) = 1 − sin 2πx

2πx
is called the one-level scaling density for symplectic

matrices.

In general, Katz and Sarnak found that

w (G) (x) =



1 if G = U or SU,

1 − sin 2πx
2πx

if G = Sp,

1 + 1
2
δ0(x) if G = O,

1 + sin 2πx
2πx

if G = SO (even) ,

δ0(x) + 1 − sin 2πx
2πx

if G = SO (odd) ,
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with the Fourier transform given in [16],

ŵ (G) (x) =



δ0(x) if G = U or SU,

δ0(x) − 1
2
η(x) if G = Sp,

1
2

+ δ0(x) if G = O,

δ0(x) + 1
2
η(x) if G = SO (even) ,

1 + δ0(x) − 1
2
η(x) if G = SO (odd) ,

(1.18)

where

η(x) =


1 if |x| < 1,

1
2

if |x| = 1,

0 if |x| > 1.

Confirming Katz and Sarnak’s philosophy by computing the symmetry type of several fami-

lies of Dirichlet L-functions over function fields is a goal of works described in this document.

1.4.3 Moments conjectures of the Riemann zeta function and L-

functions

Motivated by the connection of non-trivial zeros of the Riemann zeta function to eigenvalues

of random unitary matrices, such as Montgomery’s pair correlation result discussed in 1.4.1,

Keating and Snaith computed moments of the characteristic polynomial of unitary matrices,

averaged over the group U (N) with respect to the Haar measure (over the circular unitary
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ensemble in random matrix theory). They found that for Z (U, θ) = det
(
1 − Ue−iθ

)
,

⟨|Z (U, θ) |s⟩U(N) =
N∏
j=1

Γ (j) Γ (j + s)

(Γ (j + s/2))2
(1.19)

for any θ ∈ R and ℜ(s) > −1.

This led them to conjecture asymptotics for moments of the zeta function, a difficult problem

that traces its origin from Hardy and Littlewood in the early 20th century. Studying moments

of the zeta function on the critical line s = 1/2 leads to results about the size of ζ(1/2 + it)

and progresses towards the Lindelöf Hypothesis, which states that

|ζ(1/2 + it)| ≪ tϵ, for any ϵ > 0 as t→ ∞.

The 2kth moment of the zeta function on the critical line is defined to be the integral

Ik (T ) =

∫ 2T

T

|ζ(1/2 + it)|2k dt.

Hardy and Littlewood computed the 2nd moment in 1916 [25] and Littlewood’s student, Ing-

ham, computed the 4th moment in 1927 [29]. For higher moments, only bounds for have been

computed, such as those assuming the Riemann Hypothesis in [42, 28] and unconditionally

in [41, 5, 26, 27]. Using Equation (1.19), Keating and Snaith conjectured that

lim
T→∞

∫ 2T

T

|ζ(1/2 + it)|2k dt = akgkT (log T )k
2

,

where

gk =
G2 (1 + k)

G (1 + 2k)
,
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for the Barnes G-function

G (1 + z) = (2π)z/2 e−[(1+γ)z2+z]/2
∞∏
n=1

[
(1 + z/n)n e−z+z

2/(2n)
]
, (1.20)

The ak term is a known arithmetic factor

ak =
∏

p prime

{
(1 − 1/p)k

2

(
∞∑
m=0

(
Γ (k +m)

m!Γ (k)

)2

p−m

)}
.

Note that we have g0 = 1 and for integer k ≥ 1,

gk =
k−1∏
j=1

j!

(j + k)!
.

In particular, g1 = 1 and g2 = 1/12, which match those computed by Hardy and Littlewood

and Ingham respectively; g3 = 42/9! and g4 = 24024/16!, which match those conjectured

by Conrey and Ghosh [13], and Conrey and Gonek [14] respectively using number theoretic

arguments.

As discussed in Section 1.4.2, Katz and Sarnak predicted that statistics of zeros of fami-

lies of L-functions correspond to the distribution of eigenvalues of random matrices in the

classical groups U(N), O(N) or USp(2N) [31, 32]. Motivated by these works, Keating and

Snaith [33] investigated moments of L-functions, applying the method they developed for

the unitary family in [34] to other families suggested to exhibit non-unitary symmetry types.

For example, the family of quadratic Dirichlet L-functions is suggested to have symplectic

symmetry, since statistics of zeros for the family, such as the one-level density of zeros, obey

the distribution law of the group of symplectic matrices.

For instance, in the symplectic family USp(2N), the eigenvalues of U ∈ USp(2N) lie on the

unit circle and come in complex conjugate pairs eiθ1 , e−iθ1 , eiθ2 , e−iθ2 , . . . , eiθN , e−iθN . Thus
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the characteristic polynomial related to such a matrix U can be written as

ZU(θ) =
N∏
i=1

(
1 − ei(θn−θ)

) (
1 − ei(−θn−θ)

)
.

Keating and Snaith computed kth powers of ZU(θ), averaged over USp(2N) with respect to

the Haar measure and obtained that

〈
ZU (0)k

〉
USp(2N)

= Nk/2+k2/22s
2/2 ×

G (1 + s)
√

Γ (1 + s)√
G (1 + 2s) Γ (1 + 2s)

(1.21)

as N → ∞, where G is the Barnes G-function given in (1.20). We note that for integer k,

Equation (1.21) simplifies to

〈
ZU (0)k

〉
USp(2N)

= Nk/2+k2/2

(
k∏
j=1

(2j − 1)!!

)−1

.

The authors then conjectured that in the case of quadratic Dirichlet L-functions,

1

D∗

∑
|d|≤D

L (1/2, χd)
k ∼ akgk (logD)k(k+1)/2

where D∗ is the number of quadratic characters in the sum and

gk = 2− k(k+1)
2

(
k∏
j=1

(2j − 1)!!

)−1

,

with the arithmetic factor given explicitly in [22],

ak =
∏
p

(
1 − 1

p

) k(k+1)
2
(

1 +
1

p

)−1
(

1

2

((
1 − 1

√
p

)−k

+

(
1 +

1
√
p

−k))
+

1

p

)
.

By Equation (1.4.3), g1 = 1, g2 = 1
3
, g3 = 1

45
and g4 = 1

4725
, which agree precisely with those

Conrey and Farmer reported in [11], supporting this conjecture.
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Moments conjecture and results over function field

In 2014, Andrade and Keating [2] gave conjectures for moments of quadratic Dirichlet L-

functions over function fields, adapting the approach in [12] over number fields. The method

used in [12] by Conrey, Farmer, Keating, Rubinstein and Snaith is often referred to as

the “recipe”. For the ideas used in the “recipe” over function fields, Florea gave a nice

presentation in Section 1.9 of [22].

Let q be a fixed odd prime, H2g+1 the set of monic squarefree polynomials of degree 2g + 1,

and X(s) = q−1/2+s. Andrade and Keating conjectured that

∑
D∈H2g+1

L (1/2, χD)k =
∑

D∈H2g+1

Qk

(
logq |D|

)
(1 + o(1)) ,

where Qk is the polynomial of degree k(k + 1)/2 given by the k-fold residue

Qk(x) =
(−1)k(k+1)/22k

k!

1

2πi

∮
· · ·
∮
G (z1, . . . , zk) ∆ (z21 , . . . , z

2
k)

2∏k
j=1 z

2k−1
j

q
x
2

∏k
j=1 zjdz1 . . . dzk,

with ∆ (z1, . . . , zk) being the Vandermonde determinant given by

∆ (z1, . . . , zk) =
∏

1≤i≤j≤k

(zj − zi) ,

and the function

G (z1, . . . , zk) = A

(
1

2
; z1, . . . , zk

) k∏
j=1

X

(
1

2
+ zj

)−1/2 ∏
1≤i≤j≤k

ζq (1 + zi + zj) ,

in which A
(
1
2
; z1, . . . , zk

)
is the Euler product, absolutely convergent when |ℜ(zj)| < 1

2
,
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defined by

A

(
1

2
; z1, . . . , zk

)
=

∏
P moinc
irreducible

∏
1≤i≤j≤k

(
1 − 1

|P |1+zi+zj

)

×

1

2

 k∏
j=1

(
1 − 1

|P | 12+zj

)−1

+
k∏
j=1

(
1 +

1

|P | 12+zj

)−1

+
1

|P |

(1 +
1

|P |

)−1

.

For the first moment, the conjecture matches the result computed by the same authors in

2012 [1]. Florea computed the asymptotics for the second and third moments in [21] and

the fourth moment in [20], all matching the prediction of the conjecture.

Compare to the wealth of literature on quadratic Dirichlet L-functions, there are few works

on higher order families of Dirichlet L-functions. Over number fields, Baier and Young [3]

computed the smoothed mean value of cubic Dirichlet L-functions and obtained that more

than Q
6
7
−ϵ cubic characters with conductors at most Q satisfy L(1/2, χ) ̸= 0. More recently,

David, Florea and Lalin [17, 18] computed the mean value of the cubic family over function

fields and found results corresponding to those with a unitary symmetry. The works of these

authors motivated the projects described in this thesis, where we study the same cubic family

and similar families of quartic and sextic L-functions.

1.4.4 One-level density of zeros

The one-level density of zeros studies the average behavior of low-lying zeros for families of

L-functions, L(s, χ) in the complex plane. More specifically, the one-level density formula

in the Kummer case can be seen in (2.3), and non-Kummer case in (1.27). As in the

case of moments, this statistic on families of L-functions corresponds to the distribution of

eigenvalues of random matrices in the classical group.
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In the works of Katz and Sarnak, the authors computed the one-level density for families of

L-functions for curves over finite fields by taking both the genus and the size of the field to

infinity. This allowed them to use deep equidistribution theorems by Deligne. Near the end

of 2010s, Rudnick considered the one-level density in the hyperelliptic ensemble

Y 2 = F (t), for F (t) ∈ H2g+1,

without taking q to infinity. One cannot use the equidistribution theorems by Deligne in

this case and the computation depended more on the arithmetic of the family.

Rudnick [44] proved that for H2g+1 the set of monic, squarefree polynomials of degree 2g+ 1

over Fq[t], ϕ (θ) =
∑

|n|≤N ϕ̂ (n) e (nθ) a real, even trigonometric polynomial, where e(x) =

e2πix and Φ (2gθ) = ϕ(θ), the one-level density of quadratic Dirichlet L-functions is

1

|H2g+1|
∑

D∈H2g+1

2g∑
j=1

Φ (2gθj,D) = Φ̂(0) − 1

g

∑
n≤g

Φ̂(n/g) +
dev(Φ)

g
+ o(1/g).

Here we have

dev(Φ) = Φ̂(0)
∑
P∈P

d(P )

|P |2 − 1
− Φ̂(1)

q − 1
,

where the sum is over all monic irreducible polynomials P , and d(P ) denotes its degree. Bui

and Florea computed the one-level density in the same family, obtained the result above

along with extra lower order terms not predicted by the powerful Ratios Conjecture by

further restricting the support of ϕ̂. Additionally, using the optimization in [30], Bui and

Florea showed that more than 94% of the L-functions in the family do not vanish at the

central point.

Katz and Sarnak predicted that the one-level density of zeros for higher order Dirichlet L-

functions should have the unitary symmetry. As discussed in 1.3.1, we need to consider two
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different settings (Kummer and non-Kummer) for higher order Dirichlet characters. In the

cubic Kummer setting over number fields under GRH, Cho and Park [8] studied the one-level

density of cubic L-functions and obtained results matching those predicted by the Ratios

Conjecture. David and Güloğlu computed the one-level density of a thin family of cubic

Dirichlet L-functions under GRH and obtained a positive proportion of non-vanishing at

s = 1/2 [19]. Gao and Zhao [23, 24] studied the one-level density of thin families of quartic

and sextic L-functions over number fields under GRH, and obtained at least 5% and 2/45

of non-vanishing respectively.

Below is a possibly non-exhaustive summary of one-level density results for Dirichlet L-

functions over number fields. All results assumed the truth of the Generalized Riemann

Hypothesis.

Over number fields Kummer non-Kummer Notable contributions

Cubic Cho and Park [8] matched the prediction
of the Ratios Conjecture [10]

David and Güloğlu showed ≥ 2/13 non-vanishing
[19] for the thin family

Quartic Gao and Zhao [23] at least 5% non-vanishing
for thin family for the thin family

Sextic Gao and Zhao [24] at least 2/45 non-vanishing
for thin family for the thin family

Table 1.3: One-level density of zeros results over number fields.

Although there are no one-level density results in the non-Kummer setting over number

fields in the literature (nor function fields besides the work in this thesis), we note that the

work of Baier and Young [3] on the mean value of cubic Dirichlet L-functions studies the

cubic non-Kummer family. The cubic non-Kummer family over function fields was studied

by David, Florea and Lalin [17, 18].
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1.5 Outline

We summarize Chapters 2 and 3 in this section. We also note an application of one-level

density results, such as Theorems 1.3 and 1.5, to the question of non-vanishing at low-lying

heights. This outline is written to be read as independently from the rest of this thesis as

possible.

1.5.1 One-level density of cubic and quartic families in the Kum-

mer setting

In Chapter 2, we compute the one-level density of zeros of cubic and quartic Dirichlet L-

functions in the Kummer setting over function fields. In Section 2.1, we briefly discuss

relevant works and reference results we obtained. We also prove the explicit formula for any

order ℓ Dirichlet L-functions over function fields, which rewrites the sum over zeros to a sum

over prime power.

For the cubic case, we consider the family of L-functions Lq(u, χH) given by primitive cubic

characters χH of genus g, where H denotes its conductor. Let FK
3 (g) be the set of conductors

of this family as seen in (1.8). Recall that for convenience, χH is odd and each Lq(u, χH)

has g non-trivial zeros. Furthermore, the Riemann Hypothesis over function fields implies

that, under the change of variable u = q−s, all non-trivial zeros lie on the circle |u| = q−1/2,

parametrized by their angles {θj,H}gj=1.

Given a test function ϕ(θ) in the Schwartz space S (R), the one-level density of zeros of cubic

Dirichlet L-functions in the Kummer setting is

DK
3 (ϕ, g) =

1

|FK
3 (g)|

∑
H∈FK

3 (g)

g∑
j=1

ϕ (θH,j) . (1.22)
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I proved the following.

Theorem 1.1 (Cubic Kummer setting). Let ϕ(θ) =
∑

|n|≤N ϕ̂(n)e(nθ) be a real, even

trigonometric polynomial and Φ (gθ) = ϕ(θ). The one-level density of zeros of cubic Dirichlet

L-functions is

DK
3 (ϕ, g) = Φ̂(0) − 2

g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|3r/2 (1 + 2|Q|−1)

+4Re

h1g ∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q) (1 − cQ)

|Q|3r/2 (1 + 2|Q|−1)


+

2h2
g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|3r/2 (1 + 2|Q|−1)2
+O

(
qN/2q−g/2qϵN

)
,

(1.23)

where cQ, h1 and h2 are explicitly defined in (2.10), (2.11) and (2.12) respectively.

We note that |cQ| < 2, and h1, h2 are of order 1/g and the sums over n and Q are convergent

in each lower order terms. Therefore, when N < g, all terms except for Φ̂(0) vanishes as the

genus g tends to infinity, as predicted by random matrix theory. The lower order terms are

not predicted by random matrix theory.

For the quartic Dirichlet L-functions, we consider curves of the affine model

Y 4 = F1(t)F
3
3 (t),

where F1(t), F3(t) are squarefree polynomials and (F1(t), F3(t)) = 1. This correspond to

characters such that χ4 = 1 and χ2 remains primitive. The Riemann-Hurwitz formula gives

the relation between the genus and the degree of the conductors as seen in (1.10), which

stays analogous to the prime case in this model. This implies that there are 2g/3 non-trivial
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zeros for each L-function. With the definition of FK
4 (g) correspondingly modified in (1.11),

the one-level density of zeros in the Kummer setting for quartic Dirichlet L-functions is

DK
4 (ϕ, g) =

1

|FK
4 (g)|

∑
H∈FK

4 (g)

2g/3∑
j=1

ϕ (θH,j) . (1.24)

I proved the following statement.

Theorem 1.2. Let ϕ(θ) =
∑

|n|≤N ϕ̂(n)e(nθ) be any real, even trigonometric polynomial and

Φ

(
2gθ

3

)
= ϕ(θ). The one-level density of zeros of quartic Dirichlet L-functions is

D4 (ϕ, g) =Φ̂ (0) − 3

g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|2r (1 + 2|Q|−1)

−3s2
g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|2r (1 + 2|Q|−1)2
+O

(
qN/2q−G/2qϵN

)
,

(1.25)

where G = 2g
3

+ 1 is the degree of the conductor, and s2 is explicitly defined in (2.18).

Note that the constant s2 is of order 1/g. Therefore, similar to Theorem 1.1, when N < 2g
3

+1

every term except for Φ̂(0) vanishes as the genus g tends to infinity.

Computing the limit as the genus g → ∞, I proved that both families correspond to the

unitary symmetry, confirming the suggestion of Katz and Sarnak’s philosophy [31, 32]. We

note that the condition N < Dℓ(g) − 2 below is equivalent to Φ̂ being supported in (-1,1),

analogous to the Fourier transform of the test function having limited support over number

fields.

Theorem 1.3 (Symmetry type of the Kummer families). Let ϕ(θ) =
∑

|n|≤N ϕ̂(n)e(nθ) be

any real, even trigonometric polynomial and Φ ((Dℓ(g) − 2) θ) = ϕ(θ). For N < Dℓ(g)− 2 =
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2g

ℓ− 1
, we have in the Kummer setting for ℓ = 3, 4,

lim
g→∞

DK
ℓ (ϕ, g) =

∫ ∞

−∞
Φ̂(y)ŴU(Dℓ(g)−2)(y)dy + o(1). (1.26)

Here ŴU(Dℓ(g)−2)(y) = δ0(y) denotes the one-level scaling density of the group of unitary

matrices seen in (1.18).

1.5.2 One-level density of cubic, quartic and sextic families in the

non-Kummer setting

In Chapter 3, we study the families of cubic, quartic and sextic Dirichlet L-functions in

the non-Kummer setting. As discussed in Section 1.4.4, Baier and Young [3] studied the

cubic non-Kummer Dirichlet characters in their work on the mean value of cubic Dirichlet

L-functions over number fields. They classified the characters as the restriction of those

in the Kummer setting in Z[ω] for ω = e2πi/3, and suggested that the cases of quartic and

sextic characters in the non-Kummer setting should be similar. Bary-Soroker and Meisner

[4] found analogous constructions over function fields and David, Florea and Lalin [17, 18]

studied cubic non-Kummer characters over function fields analogously to that of Baier and

Young over number fields.

We describe this interpretation of non-Kummer characters for the cubic family, and extend

it to families of quartic and sextic Dirichlet L-functions. The set of conductors for the

corresponding family is denoted FnK
ℓ (g) and explicitly defined in (3.3).

The one-level density of order ℓ Dirichlet L-functions in the non-Kummer setting for ℓ ∈
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{3, 4, 6} is

DnK
ℓ (ϕ, g) =

1

|FnK
ℓ (g)|

∑
H∈FnK

ℓ (g)

2g
ℓ−1∑
j=1

ϕ (θH,j) . (1.27)

I proved the following.

Theorem 1.4. Let ϕ(θ) =
∑

|n|≤N ϕ̂(n)e(nθ) be any real, even trigonometric polynomial and

Φ

(
2gθ

ℓ− 1

)
= ϕ(θ). The one-level density of zeros of order ℓ Dirichlet L-functions in the

non-Kummer setting for ℓ ∈ {3, 4, 6} is

DnK
ℓ (ϕ, g) = Φ̂ (0) − ℓ− 1

g

∑
1≤n≤N

Φ̂

(
(ℓ− 1)n

2g

)
q−n/2

− ℓ− 1

g

∑
1≤n≤N/ℓ

Φ̂

(
ℓ(ℓ− 1)n

2g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2q

(
1 + |Q|−2/mQ

q

)mQ
+O

(
qN/2q−Dℓ(g)/2qϵ(N+g)

)
,

(1.28)

where mQ = gcd (d(Q), 2).

Using Theorem 1.4, I proved that the families of cubic, quartic and sextic Dirichlet L-

functions in the non-Kummer setting have the unitary symmetry.

Theorem 1.5 (Symmetry type of the non-Kummer families). Let ϕ(θ) =
∑

|n|≤N ϕ̂(n)e(nθ)

be any real, even trigonometric polynomial and Φ ((Dℓ(g) − 2) θ) = ϕ(θ). For N < Dℓ(g) −

2 =
2g

ℓ− 1
,

lim
g→∞

ΣnK
ℓ (Φ, g) =

∫ ∞

−∞
Φ̂(y)ŴU(Dℓ(g)−2)(y)dy + o(1), (1.29)

for ℓ ∈ {3, 4, 6} in the non-Kummer setting. Here ŴU(Dℓ(g)−2)(y) = δ0(y) denotes the one-

level scaling density of the group of unitary matrices as seen in (1.18).
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1.5.3 Remark on the application to non-vanishing at low-lying

heights at the central point

Modifying results from a recent paper by Carneiro, Chirre, and Milinovich [7], and Theorems

1.3 and 1.5 above on symmetry types, one can prove results on the average order of non-

vanishing at s = 1/2 + it for small t > 0 for families considered in this thesis.

Following the notation in [7], the reproducing kernel for unitary symmetry, where the Fourier

transform of the test function is in (−∆,∆), is given by

KU,π∆ (w, z) =
sin π∆ (z − w)

π (z − w)
. (1.30)

Given that the families of cubic and quartic Dirichlet L-functions in the Kummer setting and

cubic, quartic, and sextic Dirichlet L-functions in the non-Kummer setting are of unitary

symmetry, and the support of Φ̂ is in (−1, 1), Theorem 2 of [7] states that for these families

the average order of vanishing at s = 1/2 + it for t > 0 is at most

1

KU,π (t, t) + |KU,π (t,−t)|
=

1

1 +
∣∣∣ sin(2πt)2πt

∣∣∣ . (1.31)

Thus the average order of non-vanishing at s = 1/2 + it for t > 0 is at least

n(t) = 1 − 1

1 +
∣∣∣ sin(2πt)2πt

∣∣∣ < 1

2
, (1.32)

where for t ∈ (0, 0.5), n(t) is decreasing and lim
t→0

n(t) =
1

2
.
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Chapter 2

One-level density of zeros of Dirichlet

L-functions in the Kummer setting

2.1 Introduction

As mentioned in Section 1.3.1, for families of order ℓ ≥ 3 Dirichlet characters over function

fields, either F×
q contains an ℓth root of unity, i.e., q ≡ 1 (mod ℓ), or otherwise when q ̸≡

1 (mod ℓ). The former scenario is called the Kummer setting, which is the focus of this

chapter.

The one-level density of zeros for quadratic Dirichlet L-functions over number fields was

computed by Özlük and Snyder in 1993 under the Generalized Riemann Hypothesis [39].

Many conditional one-level density results over number fields, some with the thin subfamily

restriction, were computed in the works such as [8, 19, 23, 24] as mentioned in Section 1.4.4.

Over function fields, Rudnick [44] and Bui and Florea [6] computed the one-level density for

quadratic Dirichlet L-functions. The works of these authors and the study of cubic characters

in [17, 18] of David, Florea and Lalin motivated the work in this chapter.
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Let FK
3 (g) be as defined in (1.8) for ℓ = 3, the set of conductors of primitive cubic Dirichlet

characters with genus g in the Kummer setting. The one-level density of zeros of cubic

Dirichlet L-functions in the Kummer setting is defined in (1.22) and I proved the statement

as seen in Theorem 1.1.

We highlight that for N < g and g → ∞, the main term matches that predicted by random

matrix theory. The lower order terms are not predicted by random matrix theory.

For the quartic Dirichlet L-functions, we consider curves of the affine model

Y 4 = F1(t)F
3
3 (t),

where F1(t), F3(t) are square-free and (F1(t), F3(t)) = 1. This corresponds to conductors

FK
4 (g) as defined in (1.11). The one-level density of zeros in the Kummer setting for quartic

Dirichlet L-functions is defined in (1.24) and I proved Theorem 1.2.

As a consequence of Theorems 1.1 and 1.2, I prove the result in Theorem 1.3, which states

that the one-level density for both families corresponds to the unitary symmetry type as q

fixed and g → ∞. This confirmed suggestions of Katz and Sarnak’s philosophy [31, 32]. We

note that the condition N < Dℓ(g)−2 is equivalent to Φ̂ being supported in (-1,1), analogous

to the Fourier transform of the test function having limited support over number fields.

2.2 The Explicit Formula

A key step in the computation of the one-level density is to rewrite the sum over the zeros

of Lq (u, χ) to a sum over prime powers. We call this type of equation the explicit formula.

We prove the following statement for order ℓ Dirichlet L-functions for any integer ℓ ≥ 3 for

both even and odd characters. (We will use the case of odd characters in Chapter 2 and
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even characters in Chapter 3.)

We use notations given in the beginning of Section 1.3 and recall that Λ(f) is the von

Mangoldt function given in (1.3).

Lemma 2.1. Let χF , χF be Dirichlet characters of conductor F ∈ Fq[t] and {θj,F} be the

angles of non-trivial zeros of the L-function Lq (u, χF ) as seen in (1.13). For any n ∈ N,

−
D∑
j=1

e(nθj,F ) =
b

qn/2
+

∑
f∈Mq,n

Λ(f)χF (f)

|f |1/2
. (2.1)

When n < 0,

−
D∑
j=1

e(nθj,F ) =
b

q|n|/2
+

∑
f∈Mq,|n|

Λ(f)χF (f)

|f |1/2
. (2.2)

Here D = deg(F ) − 1 − b denotes the number of non-trivial zeros, in which b = 1 if χF is

even and b = 0 if χF is odd.

Proof. We compute the explicit formula for n ≥ 0 first.

In terms of its zeros

Lq(u, χF ) = (1 − u)b
D∏
j=1

(1 − u
√
qe (θj,F )) ,

for some integer b ∈ {0, 1}, where b = 1 if and only if χF is an even character. Here

D = d(F ) − 1 − b denotes the number of non-trivial zeros, where F is the conductor of χF .

Alternatively, we can express the L-functions as the product over primes

Lq(u, χF ) =
∏
P∈Pq

(
1 − χF (P )ud(P )

)−1
.

Using log differentiation on the two expressions of Lq(u, χF ) and setting them equal, we
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obtain

−b
1 − u

+
D∑
j=1

−√
qe(θj,F )

1 − u
√
qe(θj,F )

=
∑
P∈Pq

d(P )χF (P )ud(P )−1

1 − χF (P )ud(P )
.

Now, expanding the denominators using geometric series, we have

∞∑
n=0

[
−b+

D∑
j=1

−√
qe(θj,F ) (

√
qe(θj,F ))n

]
un =

∞∑
n=0

∑
P∈Pq

d(P )χn+1
F (P )u(n+1)d(P )−1.

Rewriting using the von Mangoldt function, the sum over primes P on the right can be

expressed as
∑

f=Pn+1

P∈Pq

Λ(f)χF (f)ud(f)−1, hence we write

∞∑
n=0

[
−b+

D∑
j=1

−√
qe(θj,F ) (

√
qe(θj,F ))n

]
un =

∞∑
n=0

∑
f∈Mq,n+1

Λ(f)χF (f)un.

We match corresponding terms with the same power on u from both sides and obtain

−
D∑
j=1

e(nθj,F ) =
b

qn/2
+

∑
f∈Mq,n

Λ(f)χF (f)

|f |1/2

as given in the statement of the lemma.

Now for n < 0, using the functional equation in (1.14), we see that if {q−1/2e(−θj,F )} are

zeros of Lq(u, χF ), then {q−1/2e(θj,F )} are zeros of Lq(u, χF ). Thus doing the computations

above for χF , we derive that for n < 0

−
D∑
j=1

e(nθj,F ) =
b

q|n|/2
+

∑
f∈Mq,|n|

Λ(f)χF (f)

|f |1/2
.
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2.3 Preliminary Computations

In this section, we derive main terms and the error term of the one-level density computation

for a general order ℓ in the Kummer setting. For ℓ = 3, 4, we prove a lemma that helps to

evaluate the character sum over the family FK
ℓ (g).

Recall that the one-level density of zeros for order ℓ Dirichlet L-functions is

DK
ℓ (ϕ, g) =

1

|FK
ℓ (g)|

∑
H∈FK

ℓ (g)

Dℓ(g)−2∑
j=1

ϕ (θH,j) , (2.3)

where FK
ℓ (g) denotes the set of conductors defined in (1.8) for prime ℓ and (1.11) for ℓ = 4.

Dℓ(g) − 2 =
2g

ℓ− 1
is the number of non-trivial zeros of the L-functions given in (1.15) and

ϕ (θ) =
∑

|n|≤N ϕ̂ (n) e (nθ) is any real, even trigonometric polynomial.

Let Φ ((Dℓ(g) − 2) θ) = ϕ(θ). Since

Φ ((Dℓ(g) − 2)θj,F ) =
1

Dℓ(g) − 2

∑
|n|≤N

Φ̂

(
n

Dℓ(g) − 2

)
e(nθj,F ),

the sum over zeros in (2.3) can be written as

Dℓ(g)−2∑
j=1

Φ((Dℓ(g) − 2)θj,F ) = Φ̂(0) +
1

Dℓ(g) − 2

∑
0<|n|≤N

Φ̂

(
n

Dℓ(g) − 2

)Dℓ(g)−2∑
j=1

e(nθj,F ).

Applying the explicit formula on the inner most sum by using (2.1) and (2.2) for b = 0 and

D = Dℓ(g) − 2, we have

Dℓ(g)−2∑
j=1

Φ((Dℓ(g) − 2)θj,F )

= Φ̂(0) − 1

Dℓ(g) − 2

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

Λ(f)

|f |1/2
[
χH(f) + χH(f)

]
.
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Thus, we write the one-level density in (2.3) as

DK
ℓ (ϕ, g) = Φ̂(0) −AK

ℓ (ϕ, g) , (2.4)

where we let

AK
ℓ (ϕ, g) =

1

(Dℓ(g) − 2)|FK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

Λ(f)

|f |1/2
∑

H∈FK
ℓ (g)

[
χH(f) + χH(f)

]
.

(2.5)

We decompose AK
ℓ (ϕ, g) as the sum

AK
ℓ (ϕ, g) = MK

ℓ (ϕ, g) + EK
ℓ (ϕ, g) ,

where its main term MK
ℓ (ϕ, g) comes from f being an ℓth power

MK
ℓ (ϕ, g)

=
1

(Dℓ(g) − 2)|FK
ℓ (g) |

∑
1≤n≤N/ℓ

Φ̂

(
ℓn

Dℓ(g) − 2

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2
∑

H∈FK
ℓ (g)

[
χH
(
Qℓr
)

+ χH (Qℓr)
]
,

(2.6)

and the non-ℓth power contribution is

EK
ℓ (ϕ, g)

=
2

(Dℓ(g) − 2)|FK
ℓ (g) |

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

f non-ℓth power

Λ(f)

|f |1/2
∑

H∈FK
ℓ (g)

[
χH(f) + χH(f)

]
.

(2.7)

These equations hold for ℓ = 3, 4 and q an odd prime power coprime to ℓ.
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Character sum lemmas

Recall that for ℓ = 3, the set of conductors of primitive cubic characters FK
3 (g) as given by

(1.8) is

FK
3 (g) := {H : H = F1F2 ∈ Hq,g+1, (F1, F2) = 1, deg(F1) + 2 deg(F2) ≡ 1 (mod 3)}.

Thus we have the following lemma.

Lemma 2.2. Let q be a prime power coprime to 6, f ∈ Fq[t] be a monic polynomial, and χ3

be as defined in (1.7). Then

∑
χ primitive cubic

genus(χ)=g
χ|F×q

=χ3

χ(f) =
∑

d1+d2=g+1
d1+2d3≡1 (mod 3)

∑
F1∈Hq,d1
(F1,f)=1

χF1(f)
∑

F2∈Hq,d2
(F2,F1f)=1

χ2
F2

(f).

For the quartic case, recall that we defined FK
4 (g) in (1.11).

Lemma 2.3. Let q be an odd prime power, f ∈ Fq[t] be a monic polynomial, and χ4 be as

defined in (1.7). Then

∑
χ primitive quartic

χ2primitive
genus(χ)=g
χ|F×q

=χ4

χ(f) =
∑

d1+d3=
2g
3
+1

d1+3d3≡1 (mod 4)

∑
F1∈Hq,d1
(F1,f)=1

χF1(f)
∑

F3∈Hq,d3
(F3,F1f)=1

χ3
F3

(f).

We use these lemmas in the computations of (2.6) and (2.7) for ℓ = 3, 4 in sections below.
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2.4 Cubic Dirichlet L-functions

2.4.1 The Main Term

First we compute the following sum over the family of cubic Dirichlet L-functions with

primitive cubic characters of genus g and derive the size of the family
∣∣FK

3 (g)
∣∣.

Lemma 2.4. For f a monic polynomial, let

T1 :=
∑

F∈FK
3 (g)

(F,f)=1

1 =
∑

d1+d2=g+1
d1+2d2≡1 (mod 3)

∑
F1∈Hq,d1
(F1,f)=1

∑
F2∈Hq,d2
(F2,F1f)=1

1.

Then

T1 =
qg+1

3

(g + 2) J

(
1

q
,
1

q

)
−

d
du1
J(u1, u1) |1/q

q
− 2Re

J
(

1
q
, ζ3
q

)
ζ1+2a
3

1 − ζ3

+O
(
qg/3+ϵg

)
,

where

J(x, y) =
∏
P∈Pq

[(
1 + xd(P ) + yd(P )

) (
1 − xd(P )

) (
1 − yd(P )

)] ∏
P∈Pq

P |f

(
1 + xd(P ) + yd(P )

)−1
,

and ζ3 denotes the 3th root of unity, ζ3 = e2πi/3.

Proof. We consider the generating series for the sums over F1 and F2 in T1, which is

S(u1, u2) =
∑
F1∈Hq

(F1,f)=1

u
d(F1)
1

∑
F2∈Hq

(F2,F1f)=1

u
d(F2)
2 .
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Now, S(u1, u2) can be written as the product over primes as

S(u1, u2) =

∏
P∈Pq

(
1 +

u
d(P )
1

1+u
d(P )
2

)∏
P∈Pq

(
1 + u

d(P )
2

)
∏

P∈Pq

P |f

(
1 +

u
d(P )
1

1+u
d(P )
2

)∏
P∈Pq

P |f

(
1 + u

d(P )
2

) =

∏
P∈Pq

(
1 + u

d(P )
1 + u

d(P )
2

)
∏

P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
2

) .

Hence

S(u1, u2) = Zq(u1)Zq(u2)J(u1, u2),

where

J(u1, u2) =
∏
P∈Pq

(
1 + u

d(P )
1 + u

d(P )
2

)(
1 − u

d(P )
1

)(
1 − u

d(P )
2

) ∏
P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
2

)−1

=
∏
P∈P

(
1 − u

2d(P )
1 − u

2d(P )
2 − (u1u2)

d(P ) + (u21u2)
d(P ) + (u1u

2
2)
d(P )
) ∏
P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
2

)−1

.

Note that J (u1, u2) has analytic continuation when |u1| < q−1/3 and |u2| < q−1/3.

Using Perron’s formula twice, we have

T1 =
∑

d1+d2=g+1
d1+2d2≡1 (mod 3)

1

(2πi)2

∮ ∮
J(u1, u2)

(1 − qu1)(1 − qu2)u
d1
1 u

d2
2

du2
u2

du1
u1

.

Since g is fixed, we let g ≡ b (mod 3) for some b ∈ {0, 1, 2} and take the difference of

equations

d1 + d2 = g + 1, and d1 + 2d2 ≡ 1 (mod 3)

to obtain that

d2 ≡ b (mod 3).

Thus for some integer k and a fixed a ∈ {0, 1, 2},

d1 = 3k + a.
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By analyzing the cases, the sum over d1 is a sum over integers 0 ≤ k ≤ [g/3], where [x]

denotes the closest integer to x.

Computing the sum inside the integrals first,

T1 =

[g/3]∑
k=0

1

(2πi)2

∮ ∮
J(u1, u2)

(1 − qu1)(1 − qu2)u
3k+a
1 ug+1−3k−a

2

du2
u2

du1
u1

=
1

(2πi)2

∮
|u1|=q−3

∮
|u2|=q−2

J(u1, u2)

(1 − qu1)(1 − qu2)(u32 − u31)

[
u2+a−b2

ug+a−b1

− u3−a1

ug+1−a
2

]
du2
u2

du1
u1

.

We write the integral above as the difference of two integrals. Note that the second one

vanishes since the integrand over u1 has no poles inside the circle |u1| = q−3.

Hence

T1 =
1

(2πi)2

∮
|u1|=q−3

∮
|u2|=q−2

u2+a−b2 J(u1, u2)

ug+a−b1 (1 − qu1)(1 − qu2)(u32 − u31)

du2
u2

du1
u1

,

where the integrand has poles u1, ζ3u1, ζ
2
3u1 integrating over u2. Here ζ3 denotes the third

root of unity e2πi/3.

Computing the residue at the poles above, we have

T1 =
1

2πi

∮
|u1|=q−3

1

3ug+1
1 (1 − qu1)

[
J(u1, u1)

1 − qu1
+
J(u1, ζ3u1)ζ

2+a−b
3

1 − qζ3u1
+
J(u1, ζ

2
3u1)ζ

2(2+a−b)
3

1 − qζ23u1

]
du1
u1

.

(2.8)

Now to integrate over u1, we write (2.8) as the sum of three integrals

T1 = T1 + T2 + T3. (2.9)

For each Ti, we shift the contour to |u1| = q−1/3+ϵ, compute the residue at the corresponding

poles at either 1/q, 1/(ζ3q), or 1/(ζ23q) and bound the integral on the circle |u1| = q−1/3+ϵ.
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T1 has a double pole at 1/q, and we obtain

T1 =
1

2πi

∮
|u1|=q−3

J(u1, u1)

3ug+1
1 (1 − qu1)2

du1
u1

=
qg+1

3

[
(g + 2)J

(
1

q
,
1

q

)
−

d
du1
J(u1, u1) |1/q

q

]
+O

(
qg/3+ϵg

)
.

T2 has two simple poles at u1 = 1/q and u1 = 1/(ζ3q). Hence we have

T2 =
1

2πi

∮
|u1|=q−3

ζ2+a−b3 J(u1, ζ3u1)

3ug+1
1 (1 − qu1)(1 − ζ3qu1)

du1
u1

=
qg+1

3

J
(

1
q
, ζ3
q

)
ζ1+2a
3

1 − ζ3
+
J
(
ζ23
q
, 1
q

)
ζa3

1 − ζ23

+O
(
qg/3+ϵg

)
.

T3 has two simple poles at u1 = 1/q and u1 = 1/(ζ23q). We obtain

T3 =
1

2πi

∮
|u1|=q−3

ζ
2(2+a−b)
3 J (u1, ζ

2
3u1)

3ug+1
1 (1 − qu1)(1 − ζ23qu1)

du1
u1

=
qg+1

3

J
(

1
q
,
ζ23
q

)
ζ2+a3

1 − ζ23
+
J
(
ζ3
q
, 1
q

)
ζ2a3

1 − ζ3

+O
(
qg/3+ϵg

)
=ζ23T2.

where the last equality holds since J(u1, u2) = J(u2, u1). Hence, we can reduce (2.9) to

T1 = T1 + T2 + ζ23T2 = T1 − ζ3T2.

Plugging in the value of T1, we have

T1 =
qg+1

3

(g + 2)J

(
1

q
,
1

q

)
−

d
du1
J(u1, u1) |1/q

q
−
J
(

1
q
, ζ3
q

)
ζ1+g3

1 − ζ3
−
J
(
ζ23
q
, 1
q

)
ζ2+2g
3

1 − ζ23


+O

(
qg/3+ϵg

)
,

where we use the fact 2g + 1 ≡ a (mod 3).
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The size of the family is the following, obtained by removing the coprimality condition of f

in T1 as seen in Lemma 2.4.

Corollary 2.1. Let J0 (u1, u2) =
∏
P∈P

(
1 + u

d(P )
1 + u

d(P )
2

)(
1 − u

d(P )
1

)(
1 − u

d(P )
2

)
, then

∣∣FK
3 (g)

∣∣ =
qg+1

3

(g + 2) J0

(
1

q
,
1

q

)
−

d
du1
J0(u1, u1) |1/q

q
−
J0

(
1
q
, ζ3
q

)
ζ1+g3

1 − ζ3
−
J0

(
ζ23
q
, 1
q

)
ζ2+2g
3

1 − ζ23


+O

(
qg/3+ϵg

)
.

Now we compute the main term MK
3 (ϕ, g) of the one-level density of zeros of cubic Dirichlet

L-functions in the Kummer setting. We use notations in Section 1.3 as needed.

Lemma 2.5. Recall the main term of the one-level density of zeros in the Kummer setting

is given in (2.6). Let ℓ = 3 for cubic Dirichlet L-functions with characters of genus g, we

have

MK
3 (ϕ, g) =

2

g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|3r/2 (1 + 2|Q|−1)

+4Re

h1g ∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q) (1 − cQ)

|Q|3r/2 (1 + 2|Q|−1)


+

2h2
g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|3r/2 (1 + 2|Q|−1)2
+O

(
q−2g/3qϵg

)
,

where cQ, h1, h2 are explicitly defined in (2.10), (2.11) and (2.12) respectively.

Proof. Recall that for ℓ = 3, the degree of the conductor is D3(g) − 2 = g given by (1.16),

and the main term of the one-level density of zeros described in (2.6) comes from when f is
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a cube. For some monic irreducible polynomial Q and some positive integer r, let

f = Q3r.

Thus χF (f) = χF (f) = 1, and we can write

MK
3 (ϕ, g) =

2

g|FK
3 (g) |

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)T1

|Q|3r/2
.

Let

Df (u1, u2) =
∏
P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
2

)−1

.

Since f = Q3r, we have

Df (u1, u1) = DQ(u1, u1) =
(

1 + u
d(Q)
1 + u

d(Q)
2

)−1

,

and

J(u1, u2) = J0(u1, u2)DQ (u1, u2) .

Now, using Lemma 2.4 for T1, we can write the sum over Q as two sums

H1 +H2 +O
(
q−nqg/3+ϵg

)
,

grouped by the same order of derivation on DQ(u1, u2).
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We have

H1 =
qg+1

3

∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|3r/2 (1 + 2|Q|−1)
×

(g + 2)J0

(
1

q
,
1

q

)
−

d
du1
J0(u1, u1) |1/q

q
−
cQJ0

(
1
q
, ζ3
q

)
ζ1+g3

1 − ζ3
−
cQJ0

(
ζ23
q
, 1
q

)
ζ2+2g
3

1 − ζ23

 ,
where we denote

cQ =
DQ

(
1
q
, ζ3
q

)
DQ

(
1
q
, 1
q

) . (2.10)

Taking the derivative of DQ (u1, u1), we obtain

H2 = −
qg+1J0

(
1
q
, 1
q

)
3

∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|3r/2 (1 + 2|Q|−1)2
.

We now consider each
Hi

|FK
3 (g)|

.

H1

|FK
3 (g)|

=
∑

Q∈Pq,n/r

r≥1

d(Q)

|Q|3r/2 (1 + 2|Q|−1)
+ 2Re

h1 ∑
Q∈Pq,n/r

r≥1

d(Q) (1 − cQ)

|Q|3r/2 (1 + 2|Q|−1)

 ,

where h1 denotes the constant

h1 =
qg+1J0

(
1
q
, ζ3
q

)
ζ1+g3

3 |FK
3 (g)| (1 − ζ3)

. (2.11)

We remark that h1 is of order 1/g, and when d(Q) ≡ 0 (mod 3), cQ = 1 and latter two terms

in the sum vanish.
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Let

h2 = −
qg+1J0

(
1
q
, 1
q

)
3 |FK

3 (g)|
. (2.12)

Thus we have

MK
3 (ϕ, g) =

2

g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|3r/2 (1 + 2|Q|−1)

+4Re

h1g ∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q) (1 − cQ)

|Q|3r/2 (1 + 2|Q|−1)


+

2h2
g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|3r/2 (1 + 2|Q|−1)2
+O

(
q−2g/3qϵg

)
,

where h2 is also of order 1/g.

2.4.2 The Error Term

Recall that if f is not a cube, we have the error term EK
3 (ϕ, g) of the one-level density of

zeros expressed in (2.7). We prove the following upper bound.

Lemma 2.6. Let f ∈ Fq[t] be a monic polynomial and χ3 as defined in (1.7). Let

T2 =
∑

χ primitive cubic
genus(χ)=g
χ|F×q

=χ3

χ(f).

Then

T2 =
∑

d1+d2=g+1
d1+2d2≡1 (mod 3)

∑
F1∈Hq,d1

χf (F1)
∑

F2∈Hq,d2
(F2,F1)=1

χf (F2)
2 ≪ gqg/2qϵd(f).

The error term for the one-level density of zeros of Dirichlet L-functions in the Kummer
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setting is given in (2.7). For ℓ = 3, we have

EK
3 (ϕ, g) ≪ qN/2q−g/2qϵN .

Proof. First we give an upper bound on T2.

By Lemma 2.2, we have

T2 =
∑

d1+d2=g+1
d1+2d2≡1 (mod 3)

∑
F1∈Hq,d1

χf (F1)
∑

F2∈Hq,d2
(F2,F1)=1

χf (F2)
2.

Then we consider the generating series for the sums over F1 and F2,

S(u1, u2) =
∑
F1∈Hq

χf (F1)u
d(F1)
1

∑
F2∈Hq

(F2,F1)=1

χf (F2)
2u

d(F2)
2 .

The sum over F2 can be written as the product

∏
P∈Pq

(
1 + χf (P )2u

d(P )
2

)
∏

P |F1

(
1 + χf (P )2u

d(P )
2

) ,
thus factoring out the L-functions

S(u1, u2) =
L
(
u2, χ

2
f

)
L (u22, χf )

∑
F1∈Hq

χf (F1)u
d(F1)
1∏

P |F1

(
1 + χf (P )2u

d(P )
2

) .
Similarly, we write the sum over F1 as the product

∏
P∈Pq

(
1 +

χf (P )u
d(P )
1

1 + χf (P )2u
d(P )
2

)
=

L (u1, χf )

L
(
u21, χ

2
f

) ∏
P∈Pq

1 + χf (P )u
d(P )
1 + χf (P )2u

d(P )
2(

1 + χf (P )u
d(P )
1

)(
1 + χf (P )2u

d(P )
2

) .
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Combining the two, we obtain

S(u1, u2) =
L (u1, χf )L

(
u2, χ

2
f

)
L
(
u21, χ

2
f

)
L (u22, χf )

∏
P∈Pq

1 + χf (P )u
d(P )
1 + χf (P )2u

d(P )
2(

1 + χf (P )u
d(P )
1

)(
1 + χf (P )2u

d(P )
2

) .
Note here that the product over P is absolutely convergent for |u1|, |u2| < q−1/2.

Using Perron’s formula,

T2 =
∑

d1+d2=g+1
d1+2d2≡1 (mod 3)

1

(2πi)2

∮
|u1|=q−1/2

∮
|u2|=q−1/2

S(u1, u2)

ud11 u
d2
2

du1
u1

du2
u2

.

Then by Lindelöf Hypothesis type bounds (Lemma 1.3 and Lemma 1.4), we obtain the

following bounds on the integrals. For i ∈ {1, 2}

1

2πi

∮
|ui|=q−1/2

L
(
ui, χ

i
f

)
L
(
u2i , χ

2i
f

)
udii

d

dui
≪ qdi/2qϵd(f).

Hence

T2 ≪
g+1∑
d1=1

qg/2qϵd(f) ≪ qg/2qϵd(f).

Now for T2, since Lemma 1.3 and Lemma 1.4 hold for L
(
ui, χf

i
)

and L
(
u2i , χf

2i
)

for i ∈

{1, 2}, we have

T2 ≪ qg/2qϵd(f).

The error term in the Kummer setting given in (2.7) for ℓ = 3 can thus be written as

EK
3 (ϕ, g) =

1

g |FK
3 (g)|

∑
1≤n≤N

Φ̂

(
n

g

) ∑
f∈Mq,n

f noncube

Λ(f)

|f |1/2
(
T2 + T2

)
,
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where trivially bound the double sum over f and n, then divide by
∣∣FK

3 (g)
∣∣ to obtain

EK
3 (ϕ, g) ≪ qN/2q−g/2qϵN .

2.4.3 Proofs for ℓ = 3 Kummer setting results

Proof of Theorem 1.1. Recall that we use notations in Section 1.3 and FK
3 (g), the family of

cubic Dirichlet L-functions in the Kummer setting is defined in (1.8). The one-level density

of zeros for cubic Dirichlet L-functions in the Kummer setting is

DK
3 (ϕ, g) = Φ̂(0) −AK

3 (ϕ, g) , (2.13)

where

AK
3 (ϕ, g) =

1

g|FK
3 (g)|

∑
1≤n≤N

Φ̂

(
n

g

) ∑
f∈Mq,n

Λ(f)

|f |1/2
∑

H∈FK
3 (g)

[
χH(f) + χH(f)

]
.

Note that DK
3 (ϕ, g) is defined in (1.22) and AK

3 (ϕ, g) is the ℓ = 3 case in (2.5).

Using Lemma 2.5 and Lemma 2.6, we have the following result given in (1.23).

DK
3 (ϕ, g) = Φ̂(0) − 2

g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|3r/2 (1 + 2|Q|−1)

+4Re

h1g ∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q) (1 − cQ)

|Q|3r/2 (1 + 2|Q|−1)


+

2h2
g

∑
1≤n≤N/3

Φ̂

(
3n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|3r/2 (1 + 2|Q|−1)2
+O

(
qN/2q−g/2qϵN

)
.
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Here cQ, h1 and h2 are explicitly defined in the main term lemma, Lemma 2.5, by (2.10),

(2.11) and (2.12) respectively.

Computing the limit as g → ∞, we confirm the symmetry type of the family.

Proof of Theorem 1.3 for ℓ = 3. Let N < g. Then

lim
g→∞

DK
3 (ϕ, g) = Φ̂(0),

since the double sums over n and Q above are of constant size.

Furthermore, we compute the two integrals below and confirm that

∫ ∞

−∞
Φ̂(y)ŴU(g)(y)dy = Φ̂(0) =

∫ ∞

−∞
Φ̂(y)δ0(y)dy,

where WU(g)(y) = δ0(y) denotes the one-level scaling density of the group of g × g unitary

matrices.

This proves that the symmetry type of the family is unitary and it supports Katz and Sar-

nak’s philosophy.
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2.5 Quartic Dirichlet L-functions

2.5.1 The Main Term

First we compute the following sum over the family of quartic Dirichlet L-functions and

derive the size of the family
∣∣FK

4 (g)
∣∣.

Lemma 2.7. For f a monic polynomial, let

K1 =
∑

d1+d3=
2g
3
+1

d1+3d3≡1 (mod 4)

∑
F1∈Hq,d1
(F1,f)=1

∑
F3∈Hq,d3
(F3,F1f)=1

1.

Then

K1 =
qG+2

2

[
(G+ 1) J

(
1

q
,
1

q

)
−

d
du1
J(u1, u1) |1/q

q

]
+O

(
qG/3+ϵg

)
,

where G =
2g

3
+ 1, and

J(x, y) =
∏
P∈Pq

(
1 + xd(P ) + yd(P )

) (
1 − xd(P )

) (
1 − yd(P )

) ∏
P∈Pq

P |f

(
1 + xd(P ) + yd(P )

)−1
.

Proof. We first rewrite the outermost sum of K1.

The degree of the conductor is the integer 2g
3

+ 1 given in (1.16), so g ≡ 0 (mod 3). We let

g be even for convenience, which implies that d3 must also be even. The case when g is odd

is the symmetric case when d1 must be even. To simplify some notations, we let

v =
g

3
and G =

2g

3
+ 1 = 2v + 1. (2.14)
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Using d1 + d3 = G and d1 + 3d3 ≡ 1 (mod 4), we found that

2d3 ≡ 0 (mod 4) =⇒ d3 ≡ 0 (mod 2).

Since G is odd, for some integer k1,

2k1 + 1 = d1 ≤ G. (2.15)

Lastly, d3 = G− d1, which simplifies to

d3 = 2 (v − k1) . (2.16)

We also note that the congruence

d1 + 3d3 ≡ 1 (mod 4)

is satisfied for all d1, d3 in agreement with equations (2.15) and (2.16). Thus, we are summing

over all non-negative integers k1 ≤ v. Hence we rewrite the sum as

K1 =
∑

d1=k1≤v
d3=2(v−k1)

∑
F1∈Hq,d1
(F1,f)=1

∑
F3∈Hq,d3
(F3,F1f)=1

1.

Then, similar to the cubic case, we consider the generating series for the sum over F1 and

F3 of K1

S(u1, u3) =
∑
F1∈Hq

(F1,f)=1

u
d(F1)
1

∑
F3∈Hq

(F3,F1f)=1

u
d(F3)
3 .
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We can write it as the product,

S(u1, u3) =

∏
P∈Pq

(
1 +

u
d(P )
1

1+u
d(P )
3

)∏
P∈Pq

(
1 + u

d(P )
3

)
∏

P∈Pq

P |f

(
1 +

u
d(P )
1

1+u
d(P )
3

)∏
P∈Pq

P |f

(
1 + u

d(P )
3

) =

∏
P∈Pq

(
1 + u

d(P )
1 + u

d(P )
3

)
∏

P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
3

) .

Hence

S(u1, u3) = Zq(u1)Zq(u3)J(u1, u3),

where

J(u1, u3) =
∏
P∈Pq

(
1 + u

d(P )
1 + u

d(P )
3

)(
1 − u

d(P )
1

)(
1 − u

d(P )
3

) ∏
P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
3

)−1

=
∏
P∈P

(
1 − u

2d(P )
1 − u

2d(P )
3 − (u1u3)

d(P ) + (u21u3)
d(P ) + (u1u

2
3)
d(P )
) ∏
P∈Pq

P |f

(
1 + u

d(P )
1 + u

d(P )
3

)−1

.

Note that J (u1, u3) has analytic continuation when |u1| < q−1/3 and |u3| < q−1/3.

Using Perron’s formula twice,

K1 =
v∑

k1=0

1

(2πi)2

∮ ∮
J(u1, u3)

(1 − qu1)(1 − qu3)u
2k1+1
1 u2v−2k1

3

du3
u3

du1
u1

.

Computing the sum over k1 first, we have

v∑
k1=0

1

u2k1+1
1 u2v−2k1

3

=
u1

u2v3 (u23 − u21)

[(
u23
u21

)v+1

− 1

]

=
1

(u23 − u21)

[
u23

u2v+1
1

− u1
u2v3

]
.

Thus

K1 =
1

(2πi)2

∮
|u1|=q−3

∮
|u2|=q−2

J(u1, u3)

(1 − qu1)(1 − qu3)(u23 − u21)

[
u3

u2v+2
1

− 1

u2v+1
3

]
du3du1.
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We write the integral above as the difference of two integrals correspondingly and note that

the second one

1

(2πi)2

∮
|u1|=q−3

∮
|u2|=q−2

−J(u1, u3)

u2v+1
3 (1 − qu1)(1 − qu3)(u23 − u21)

du3du1 = 0

since the integrand over u1 has no poles inside the circle |u1| = q−3.

Hence

K1 =
1

(2πi)2

∮
|u1|=q−3

∮
|u3|=q−2

u3J(u1, u3)

u2v+2
1 (1 − qu1)(1 − qu3)(u23 − u21)

du3du1,

where the poles of the integrand integrating over u3 are u1,−u1.

Computing the residue at the poles above, we have

K1 =
1

2πi

∮
|u1|=q−3

1

2u2v+2
1 (1 − qu1)

[
J(u1, u1)

1 − qu1
+
J(u1,−u1)

1 + qu1

]
du1. (2.17)

Now to integrate over u1, we write (2.17) as the sum of two integrals

K1 = K1 +K−1

where for β ∈ {1,−1},

Kβ =
1

2πi

∮
|u1|=q−3

J(u1, βu1)

2u2v+2
1 (1 − qu1)(1 − qβu1)

du1.

For each Kβ, we shift the contour to |u1| = q−1/3+ϵ and encounter the pole 1/q and 1/(qβ).

We compute residues at the corresponding poles and bound the integral on circle |u1| =

q−1/3+ϵ.

K1 has a double pole at 1/q, and we obtain

K1 =
qG+2

2

[
(G+ 1) J

(
1

q
,
1

q

)
−

d
du1
J(u1, u1) |1/q

q

]
+O

(
qG/3+ϵg

)
.
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K−1 has two simple poles at u1 = 1/q and u1 = −1/q.

Computing the residues, we have

K−1 =
qG

4

[
J

(
1

q
,
−1

q

)
− J

(
−1

q
,
1

q

)]
+O

(
qG/3+ϵg

)
,

where since J

(
1

q
,
−1

q

)
= J

(
−1

q
,
1

q

)
, K−1 = O

(
qG/3+ϵg

)
.

Thus

K1 =
qG+2

2

[
(G+ 1) J

(
1

q
,
1

q

)
−

d
du1
J(u1, u1) |1/q

q

]
+O

(
qG/3+ϵg

)
.

This gives the result as desired.

From Lemma 2.7, the size of the family is the following.

Corollary 2.2. Let J0 (u) =
∏
P∈P

(
1 + 2ud(P )

) (
1 − ud(P )

)2
, then

∣∣FK
4 (g)

∣∣ =
qG+2

2

[
(G+ 1) J0

(
1

q

)
−

d
du
J0(u) |1/q
q

]
+O

(
qG/3+ϵg

)
,

where G =
2g

3
+ 1 as in (2.14).

Now we compute the main term of the one-level density of quartic Dirichlet L-functions over

function fields. We use some notations as needed given in Section 1.3. Furthermore, by

Equation (1.16), we have D4(g) − 2 =
2g

3
.

Lemma 2.8. Recall the main term of the one-level density of zeros in the Kummer setting

is given in (2.6). Let ℓ = 4 for quartic Dirichlet L-functions with characters of genus g, we
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have

MK
4

(
ϕ,

2g

3

)
=

3

g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|2r (1 + 2|Q|−1)
+

3s2
g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|2r (1 + 2|Q|−1)2

+O
(
q−2G/3qϵg

)
,

where s2 is an explicit constant defined in (2.18) and G = 2g
3

+ 1.

Proof. Recall that for ℓ = 4, the main term of the one-level density (2.6) comes from when

f is a 4th power. Since χF (f) = χF (f) = 1, we have

MK
4

(
ϕ,

2g

3

)
=

3

g|FK
4 (g)|

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)K1

|Q|2r
.

Let

Df (u) =
∏
P∈Pq

P |f

(
1 + 2ud(P )

)−1
,

then

J(u, u) = J0(u)Df (u).

Furthermore, if f = Q4r for some monic irreducible polynomial Q and some integer r, then

Df (u) = DQ(u) =
(
1 + 2ud(Q)

)−1
.

Now using Lemma 2.7 for K1, we can write the sum over Q as two sums

H1 +H2 +O
(
q−nqG/3+ϵg

)
grouped by the same order of derivation on DQ (u). Here G =

2g

3
+ 1 as given in (2.14).
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We have

H1 =
qG+2

2

[
(G+ 1)J0

(
1

q

)
−

d
du
J0 (u) |1/q

q

] ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|2r (1 + 2|Q|−1)
,

and

H2 =
qG+2J0(

1
q
)

2

∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|2r (1 + 2|Q|−1)2
.

Let si denote the constant obtained by the coefficient of Hi divided by
∣∣FK

4 (g)
∣∣.

We note that s1 = 1, and we have

s2 =
qG+2J0(

1
q
)

2 |FK
4 (g)|

. (2.18)

Therefore

MK
4

(
ϕ,

2g

3

)
=

3

g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|2r (1 + 2|Q|−1)
+

3s2
g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|2r (1 + 2|Q|−1)2

+O
(
q−2G/3qϵg

)
,

where s2 is of order 1/g.
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2.5.2 The Error Term

Recall that if f is a non-4th power, the error term contribution to the one-level density of

quartic Dirichlet L-functions over function fields is

EK
4

(
ϕ,

2g

3

)
=

3

2g |FK
4 (g)|

∑
1≤n≤N

Φ̂

(
3n

2g

) ∑
f∈Mq,n

f non-4th powers

Λ(f)

|f |1/2
∑

F∈FK
4 (g)

(
χF (f) + χF (f)

)
.

We prove the following upper bound.

Lemma 2.9. Let f ∈ Fq[t] be a monic polynomial and χ4 as defined in (1.7). Let

K2 =
∑

χ primitive quartic
χ2 primitive
genus(χ)=g
χ|F∗q=χ4

χ(f).

Then

K2 =
∑

d1+d3=G
d1+3d3≡1 (mod 4)

∑
F1∈Hq,d1

χf (F1)
∑

F3∈Hq,d3
(F3,F1)=1

χf (F3)
3 ≪ GqG/2qϵd(f),

for G =
2g

3
+ 1.

The error term for the one-level density of zeros of Dirichlet L-functions in the Kummer

setting is given in (2.7). For ℓ = 4, we have

EK
4

(
ϕ,

2g

3

)
≪ qN/2q−G/2qϵN .

Proof. We consider the generating series of K2

S(u1, u3) =
∑
F1∈Hq

χf (F1)u
d(F1)
1

∑
F3∈Hq

(F3,F1)=1

χf (F3)
3u

d(F3)
3 .
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First, the sum over F3 can be written as the product

∏
P∈Pq

(
1 + χf (P )3u

d(P )
3

)
∏

P |F1

(
1 + χf (P )3u

d(P )
3

) ,
thus

S(u1, u3) =
∏
P∈Pq

(
1 + χf (P )3u

d(P )
3

) ∑
F1∈Hq

χf (F1)u
d(F1)
1∏

P |F1

(
1 + χf (P )3u

d(P )
3

) .
Writing the sum over F1 as the product as well, we combine the two and obtain

S(u1, u3) =
∏
P∈Pq

(
1 + χf (P )u

d(P )
1 + χf (P )3u

d(P )
3

)
.

Thus

S(u1, u3) =
L (u1, χf )L

(
u3, χ

3
f

)
L
(
u21, χ

2
f

)
L
(
u23, χ

2
f

) ∏
P∈Pq

1 + χf (P )u
d(P )
1 + χf (P )3u

d(P )
3(

1 + χf (P )u
d(P )
1

)(
1 + χf (P )3u

d(P )
3

) ,
where the product over P is absolutely convergent for |u1|, |u3| < q−1/2.

Using Perron’s formula,

K2 =
∑

d1+d3=G
d1+3d3≡1 (mod 4)

1

(2πi)2

∮
|u1|=q−1/2

∮
|u3|=q−1/2

S(u1, u3)

ud11 u
d3
3

du1
u1

du3
u3

.

Then, we use the Lindelöf Hypothesis type results (Lemma 1.3 and Lemma 1.4) to obtain a

bound for each of the following integrals.

For β ∈ {1, 3}, we have

1

2πi

∮
|uβ |=q−1/2

L
(
uβ, χ

β
f

)
L
(
u2β, χ

2β
f

)
u
dβ
β

duβ
uβ

≪ qdβ/2qϵd(f),
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thus trivially bounding the outer sum, we have

K2 ≪ GqG/2qϵd(f).

Since Lemma 1.3 and Lemma 1.4 hold for L
(
uβ, χf

β
)

and L
(
u2β, χf

2β
)

for β ∈ {1, 3}, we

have

K2 ≪ GqG/2qϵd(f).

The error term in the Kummer setting is defined as in (2.7) for ℓ = 4.

EK
4

(
ϕ,

2g

3

)
=

3

2g |FK
4 (g)|

∑
1≤n≤N

Φ̂

(
3n

2g

) ∑
f∈Mq,n

f non-4th powers

Λ(f)

|f |1/2
(
K2 + K2

)
.

We trivially bound the double sum over f and n, then divide by
∣∣FK

4 (g)
∣∣ to obtain

EK
4 (ϕ, g) ≪ qN/2q−G/2qϵN .

2.5.3 Proofs of the Kummer setting results for ℓ = 4

Proof of Theorem 1.2. We compute the one-level density of zeros of quartic Dirichlet L-

functions in the Kummer setting. We use some notations in Section 1.3 and recall that

FK
4 (g) denotes the family of quartic Dirichlet L-functions in the Kummer setting as in

(1.11). We have

DK
4 (ϕ, g) = Φ̂(0) −AK

4

(
ϕ,

2g

3

)
, (2.19)
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where

AK
4

(
ϕ,

2g

3

)
=

3

2g|FK
4 (g)|

∑
1≤n≤N

Φ̂

(
3n

2g

) ∑
f∈Mq,n

Λ(f)

|f |1/2
∑

F∈FK
4 (g)

[
χF (f) + χF (f)

]
.

Note that DK
4 (ϕ, g) is defined in (1.24) and AK

4

(
ϕ, 2g

3

)
is given by setting ℓ = 4 in (2.5).

Using Lemma 2.8 and Lemma 2.9, we obtain the following result in (1.25).

DK
4 (ϕ, g) = Φ̂ (0)

− 3

g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|2r (1 + 2|Q|−1)
− 3s2

g

∑
1≤n≤N/4

Φ̂

(
6n

g

) ∑
Q∈Pq,n/r

r≥1

2d(Q)2|Q|−1

|Q|2r (1 + 2|Q|−1)2

+O
(
qN/2q−G/2qϵN

)
,

where s2 is an explicit constant defined in (2.18) and G =
2g

3
+ 1.

Using the theorem, we confirm the symmetry type of the family.

Proof of Theorem 1.3 for ℓ = 4. Let N < 2g/3. Then

lim
g→∞

DK
4 (ϕ, g) = Φ̂(0),

since the double sums over n and Q are o(1) as g → ∞.

Furthermore, by computing the two integrals, we confirm that

Φ̂(0) =

∫ ∞

−∞
Φ̂(y)ŴU(2g/3)(y)dy =

∫ ∞

−∞
Φ̂(y)δ0(y)dy,

where WU(2g/3)(y) = δ0(y) denotes the one-level scaling density of the group of unitary

matrices.
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Thus the symmetry type of the family is unitary. This supports Katz and Sarnak’s philoso-

phy.
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Chapter 3

One-level density of zeros of cubic,

quartic and sextic Dirichlet

L-functions in the non-Kummer

setting

3.1 Introduction

In this chapter, we study the low-lying zeros of order ℓ Dirichlet L-functions over function

fields for ℓ ∈ {3, 4, 6} and when F×
q does not contain an ℓth root of unity. For a general order

ℓ ≥ 3, we say this is the non-Kummer setting. In terms of congruences modulo ℓ, this is

equivalent to q ̸≡ 1 (mod ℓ). We describe the cubic non-Kummer characters over function

fields as appeared in [17, 18], previously studied by David, Florea and Lalin, and extend that

interpretation to quartic and sextic families in Section 3.2.

Let FnK
ℓ (g) denote the set of conductors for the family of order ℓ characters in the non-
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Kummer setting as defined in (3.3). The one-level density of zeros of order ℓ Dirichlet

L-functions in the non-Kummer setting for ℓ ∈ {3, 4, 6} is defined in (1.27) and I proved the

statement in Theorem 1.4.

Using Theorem 1.4, I proved that the families of cubic, quartic and sextic Dirichlet L-

functions in the non-Kummer setting have the unitary symmetry in Theorem 1.5. We note

that the condition N < Dℓ(g) − 2 is equivalent to Φ̂ being supported in (-1,1), analogous to

the Fourier transform of the test function having limited support over number fields.

3.2 Cubic, Quartic and Sextic Dirichlet Characters in

the Non-Kummer Setting

Recall that we first discussed order ℓ non-Kummer characters in Section 1.3.1. In this section,

we talk about works on cubic non-Kummer characters [3, 17, 18] and use results in [4] to

generalize the cubic case to the quartic and sextic case.

Baier and Young [3] observed that over number fields, if p ≡ 1 (mod 3) is the prime conductor

of a cubic non-Kummer Dirichlet character, then p = ππ over Z[ω] for ω = e2πi/3 and π, π

are primes with N(π) = p. Thus χp corresponds to either χπ or χπ.

Over function fields, David, Florea and Lalin [17, 18] found an analogous result for the cubic

non-Kummer characters. Since in the non-Kummer setting q2 ≡ 1 (mod 3), characters with

a prime conductor P ∈ Fq[t] have degree divisible by 2. Using results from the work of

Bary-Soroker and Meisner [4], P = ππ over Fq2 [t], and χP corresponds to either χπ or χπ

restricted to Fq[t].

Extending this construction to higher orders, since the Lemma 2.9 in [4] about the splitting

of P works for ℓ not necessarily a prime, we have the following lemma.
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Lemma 3.1. Let q ̸≡ 1 (mod ℓ) and nq the multiplicative order of q (mod ℓ), i.e., nq is the

smallest integer such that qnq ≡ 1 (mod ℓ). Let P ∈ Pq be a prime factor of the conductor

of an order ℓ character. Then

P = π1 · · · πnq ∈ Fqnq [t], (3.1)

with {πi}nq

1 being Galois conjugates.

Note that for q an odd prime power, if q ̸≡ 1 (mod ℓ), then q2 ≡ 1 (mod ℓ) for ℓ = 4, 6.

Thus conductors of quartic and sextic characters have prime factors of even degree and

those primes split into two primes in Fq2 [t]. Therefore, as suggested by Baier and Young, the

non-Kummer characters for the quartic and sextic case are indeed similar to the cubic one.

Lemma 3.1 implies that

|P | = qd(P ) = qnqd(πi) = |πi|qnq

for any i ∈ {1, 2, . . . , nq}. We give the definition of χπ below and note its relation to χP for

general multiplicative order nq. One can also use the definition given in Section 1.3.1 for the

Kummer case by setting the size of the base field equal to qnq .

Definition 3.1. Let P ∈ Pq be the conductor of a primitive order ℓ character in the non-

Kummer setting, with the splitting P = π1π2 · · · πnq over Fqnq [t]. Let π ∈ Pqnq be one of its

prime factors.

1. For any f ∈ Fq[t] such that P ∤ f , the ℓth Jacobi symbol

(
f

π

)
ℓ

is the unique element

of F×
qnq such that

f
|π|

qnq −1

ℓ (mod π) ≡
(
f

π

)
ℓ

.

2. Let Ωℓ be a fixed isomorphism from the ℓth roots of unity µℓ ⊆ C× to the ℓth roots of
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unity in F×
qnq . We define χπ(f) = 0 if π | f , and otherwise

χπ(f) = Ω−1
ℓ

((
f

π

)
ℓ

)
.

Note that by definition, one of the prime factors π dividing P satisfies

(
f

π

)
ℓ

=

(
f

P

)
ℓ

,

and

χπ(f) = χP (f). (3.2)

Thus, we have a (non-canonical) definition of the Jacobi symbol and associated character

with a prime conductor in the non-Kummer setting.

Focusing on ℓ = 3, 4, 6, we extend the definition above multiplicatively to general conductors

H of genus g, where

H = F1F2, H ∈ Hq,Dℓ(g), and (F1, F2) = 1,

similar to those given in (1.5). Note that for quartic characters such that χ4 = 1 and

χ2 remains primitive, the conductors should be H = F1F3 following the notations used in

Section 1.3.1; similarly H = F1F5 for sextic characters, χ6 = 1 and χ2, χ3 remains primitive.

This does not change the correspondence below.

Using (3.2), we can thus consider characters χF with certain conductors F ∈ Fq2 [t] restricting

their input to Fq[t]. We observe that the corresponding conductors F ∈ Fq2 [t] must also be

squarefree polynomials, and if P = ππ | H, since (F1, F2) = 1, π and π do not both appear

in the factors of F . Since each prime P | H is represented by a prime (either π or π) of

degree deg(P )
2

, we have deg(F ) = Dℓ(g)
2

. Thus we have the one-to-one correspondence between
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the set of conductors H and FnK
ℓ (g), given by

FnK
ℓ (g) = {F : F ∈ Hq2,Dℓ(g)/2, P | F =⇒ P /∈ Fq [t]}. (3.3)

We have proved the following result for ℓ = 3, 4 and 6, where the cubic case first appeared

in [17].

Lemma 3.2. Let f ∈ Mq. For ℓ = 3,

∑
χ primitive cubic

genus(χ)=g

χ(f) =
∑

F∈Hq2,D3(g)/2

P |F =⇒ P /∈Fq [t]

χF (f).

For ℓ = 4, we have ∑
χ primitive order 4

genus(χ)=g
χ2primitive

χ(f) =
∑

F∈Hq2,D4(g)/2

P |F =⇒ P /∈Fq [t]

χF (f).

For ℓ = 6 ∑
χ primitive order 6

genus(χ)=g
χ2,χ3 primitive

χ(f) =
∑

F∈Hq2,D6(g)/2

P |F =⇒ P /∈Fq [t]

χF (f).

3.3 Preliminary Computations

Recall that the one-level density of zeros for order ℓ Dirichlet L-functions in the non-Kummer

setting is

DnK
ℓ (ϕ, g) =

1

|FnK
ℓ (g)|

∑
H∈FnK

ℓ (g)

2g
ℓ−1∑
j=1

ϕ (θH,j) . (3.4)

where FnK
ℓ (g) denotes the set of conductors defined in (3.3), Dℓ(g) − 2 =

2g

ℓ− 1
given in

(1.15) is the number of non-trivial zeros of the L-functions and ϕ (θ) =
∑

|n|≤N ϕ̂ (n) e (nθ)
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is any real, even trigonometric polynomial.

Let Φ ((Dℓ(g) − 2)θ) = ϕ(θ). Then

Φ ((Dℓ(g) − 2)θj,F ) =
1

Dℓ(g) − 2

∑
|n|≤N

Φ̂

(
n

Dℓ(g) − 2

)
e(nθj,F ),

and the sum over zeros in (3.4) can be written as

Dℓ(g)−2∑
j=1

Φ((Dℓ(g) − 2)θj,F ) =Φ̂(0) +
1

Dℓ(g) − 2

∑
0<|n|≤N

Φ̂

(
n

Dℓ(g) − 2

)Dℓ(g)−2∑
j=1

e(nθj,F ).

Using the explicit formula (Lemma 2.1) for b = 1 and D = Dℓ(g) − 2, we rewrite the inner

most sum above and obtain

Dℓ(g)−2∑
j=1

Φ((Dℓ(g) − 2)θj,F ) =Φ̂(0) − 2

Dℓ(g) − 2

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

)
q−n/2

− 1

Dℓ(g) − 2

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

Λ(f)

|f |1/2
[
χH(f) + χH(f)

]
.

Thus we write the one-level density in (3.4) as

DnK
ℓ (ϕ, g) = Φ̂(0) − 2

Dℓ(g) − 2

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

)
q−n/2 −AnK

ℓ (ϕ, g) , (3.5)

where

AnK
ℓ (ϕ, g)

=
1

(Dℓ(g) − 2) |FnK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

Λ(f)

|f |1/2
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

[
χF (f) + χF (f)

]
.

(3.6)
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We decompose AnK
ℓ (ϕ, g) as the sum

AnK
ℓ (ϕ, g) = MnK

ℓ (ϕ, g) + EnK
ℓ (ϕ, g),

where the main term comes from when f is an ℓth power

MnK
ℓ (ϕ, g) =

1

(Dℓ(g) − 2) |FnK
ℓ (g)|

∑
1≤n≤N/ℓ

Φ̂

(
ℓn

Dℓ(g) − 2

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2

×
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

[
χF
(
Qℓr
)

+ χF (Qℓr)
]
,

(3.7)

and the non-ℓth power contribution is

EnK
ℓ (ϕ, g) =

1

(Dℓ(g) − 2) |FnK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

f non-ℓth power

Λ(f)

|f |1/2

×
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

[
χF (f) + χF (f)

]
.

(3.8)

Lastly, we use the following fact to select conductors of the three non-Kummer families

studied in Section 3.4.

Lemma 3.3. Let F be a polynomial in Fq2 [t]. Then

∑
D|F

D∈Fq [t]

µ (D) =


1 if F has no prime divisors in Fq[t]

0 otherwise

.

Proof. We observe that the sum above can be written as the product

∑
D|F

D∈Fq [t]

µ (D) =
∏
P |F
P∈Pq

(1 + µ (P )) .
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If F is divisible by a prime P ∈ Fq[t], then 1 + µ(P ) = 0, making the product on the right

vanish.

3.4 The non-Kummer setting

3.4.1 The Main Term

First we compute the main term in (3.7) of the one-level density of zeros of Dirichlet L-

functions for ℓ = 3, 4 and 6 in the non-Kummer setting.

Lemma 3.4. Let Dℓ(g) be the degree of conductors of primitive order ℓ characters over Fq[t]

as seen in (1.16) for ℓ = 3, 4 or 6. For a fixed f ∈ Mq,n, we have

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]
(F,f)=1

1 = qDℓ(g)
(
q−2 − q−4

) E0 (1/q2)

Ef (1/q2)

∏
π∈Pq2

π|f

(
1 + |π|−1

q2

)−1

+O
(
qDℓ(g)/2+ϵg

)
,

where

Eh(u) =
∏
P∈Pq

P |h
d(P )≡0 (mod 2)

(
1 − ud(P )

(1 + ud(P )/2)2

) ∏
P∈Pq

P |h
d(P )≡1 (mod 2)

(
1 − ud(P )

1 + ud(P )

)
, (3.9)

and E0(u) is the product over all primes in Pq.

Proof. Since

∑
D∈Fq [t]
D|F

µ(D) =


1 if F has no prime divisors in Fq[t],

0 otherwise.
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the generating series for the sum over F can be written as

S(u) =
∑
F∈Hq2

P |F⇒P /∈Fq [t]
(F,f)=1

ud(F ) =
∑
F∈Hq2

(F,f)=1

ud(F )
∑

D∈Fq [t]
D|F

µ(D) =
∑

D∈Fq [t]
(D,f)=1

µ(D)ud(D)
∑
F∈Hq2

(F,Df)=1

ud(F ). (3.10)

Writing the inner sum over F as the product over primes,

∑
F∈Hq2

(F,Df)=1

ud(F ) =
∏
π∈Pq2

π∤Df

(
1 + ud(π)

)
=

Zq2(u)

Zq2(u2)
∏

π∈Pq2

π|Df
(1 + ud(π))

.

Thus (3.10) above is

S(u) =
1 − q2u2

(1 − q2u)
∏

π∈Pq2

π|f
(1 + ud(π))

∑
D∈Fq [t]
(D,f)=1

µ(D)ud(D)∏
π∈Pq2

π|D
(1 + ud(π))

.

Similarly, the sum over D can be written as the product

∑
D∈Fq [t]
(D,f)=1

µ(D)ud(D)∏
π∈Pq2

π|D
(1 + ud(π))

=
∏
P∈Pq

P ∤f

1 − ud(P )∏
π∈Pq2

π|P
(1 + ud(π))


=

∏
P∈Pq

P ∤f
d(P )≡0 (mod 2)

(
1 − ud(P )

(1 + ud(P )/2)2

) ∏
P∈Pq

P ∤f
d(P )≡1 (mod 2)

(
1 − ud(P )

1 + ud(P )

)
,

(3.11)

where the last equality follows from lemma 2.9 in [4]. We denote this product by
E0(u)

Ef (u)

where Eh(u) is as defined in (3.9).

Note that
E0(u)

Ef (u)
is absolutely convergent for |u| < 1/q. We can see this by expanding the

denominator of the fraction in each product of (3.11), where for j ∈ {0, 1}, each term can
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be written as ∏
P∈Pq , P ∤f

d(P )≡j (mod 2)

(
1 − ud(P ) +B (u)

)

where B(u) contains uα for α > d(P ).

Hence

S(u) =
1 − q2u2

(1 − q2u)
∏

π∈Pq2

π|f
(1 + ud(π))

× E0(u)

Ef (u)
,

which is absolutely convergent for |u| < 1/q2.

Using Perron’s formula (Lemma 1.1), we first integrate along a circle of radius |u| = 1/q2+ϵ

and then shift the contour to |u| = 1/q1+ϵ, where we encounter a simple pole at u = 1/q2.

Let S(u)(1 − q2u) = F (u). For a small circle around the origin, for example, |u| = 1/q100,

we have

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]
(F,f)=1

1 =
1

2πi

∮
|u|=1/q100

F (u)

uDℓ(g)/2(1 − q2u)

du

u

= − Res
(
u = 1/q2

)
+

1

2πi

∮
|u|=1/q1+ϵ

F (u)

uDℓ(g)/2(1 − q2u)

du

u
.

We bound the integral and compute the residue to obtain

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]
(F,f)=1

1 = − lim
u→1/q2

F (u)(u− 1/q2)

uDℓ(g)/2(1 − q2u)
+O

(
qDℓ(g)/2+ϵDℓ(g)/2

)

=
F (1/q2)qDℓ(g)

q2
+O

(
qDℓ(g)/2+ϵg

)
=qDℓ(g)

(
q−2 − q−4

) E0(1/q
2)

Ef (1/q2)

∏
π∈Pq2

π|f

(
1 + |π|−1

q2

)−1

+O
(
qDℓ(g)/2+ϵg

)
.

This gives the result stated in Lemma 3.4.
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Now we compute the size of the family |FnK
ℓ (g)| in the non-Kummer setting. The proof is

similar to the previous lemma.

Corollary 3.1. For ℓ = 3, 4 and 6, the size of the family of Dirichlet L-functions of order

ℓ is

|FnK
ℓ (g)| = qDℓ(g)

(
q−2 − q−4

)
E0(1/q

2) +O
(
qDℓ(g)/2+ϵg

)
Proof. The number of primitive characters of order ℓ with conductor of degree Dℓ(g) is given

by

|FnK
ℓ (g)| =

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

1.

Using the same method as in Lemma 3.4, its generating series can be written as

S(u) =
∑
F∈Hq2

P |F⇒P /∈Fq [t]

ud(F ) =
∑
F∈Hq2

ud(F )
∑

D∈Fq [t]
D|F

µ(D) =
∑

D∈Fq [t]

µ(D)ud(D)
∑
F∈Hq2

(F,D)=1

ud(F ).

The sum over F is

∑
F∈Hq2

(F,D)=1

ud(F ) =
∏
π∈Pq2

π∤D

(
1 + ud(π)

)
=

Zq2(u)

Zq2(u2)
∏

π∈Pq2

π|D
(1 + ud(π))

,

so we can rewrite S(u) as

S(u) =
1 − q2u2

1 − q2u

∑
D∈Fq [t]

µ(D)ud(D)∏
π∈Pq2

π|D
(1 + ud(π))

.
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Now the sum over D can be written as the product

∑
D∈Fq [t]

µ(D)ud(D)∏
π∈Pq2

π|D
(1 + ud(π))

=
∏
P∈Pq

1 − ud(P )∏
π∈Pq2

π|P
(1 + ud(π))


=

∏
P∈Pq

d(P )≡0 (mod 2)

(
1 − ud(P )

(1 + ud(P )/2)2

) ∏
P∈Pq

d(P )≡1 (mod 2)

(
1 − ud(P )

1 + ud(P )

)
,

which we denote by E0(u) as in Lemma 3.4. Note that E0(u) is absolutely convergent for

|u| < 1/q as in the same lemma. Thus

S(u) =
(1 − q2u2)E0(u)

1 − q2u
,

which is absolutely convergent for |u| < 1/q2.

Using Perron’s formula, we first integrate along a circle of radius |u| = 1/q2+ϵ, then we shift

the contour to |u| = 1/q1+ϵ and encounter a simple pole at u = 1/q2.

Let S(u)(1 − q2u) = F (u). We have

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

1 =
1

2πi

∮
|u|=1/q100

F (u)

uDℓ(g)/2(1 − q2u)

du

u

= −Res
(
u = 1/q2

)
+

1

2πi

∮
|u|=1/q1+ϵ

F (u)

uDℓ(g)/2(1 − q2u)

du

u
.

Bounding the integral and computing the residue we obtain

∣∣FnK
ℓ (g)

∣∣ =
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

1 = − lim
u→1/q2

F (u)(u− 1/q2)

uDℓ(g)/2(1 − q2u)
+O

(
qDℓ(g)/2+ϵDℓ(g)/2

)

=
F (1/q2)qDℓ(g)

q2
+O

(
qDℓ(g)/2+ϵg

)
=qDℓ(g)

(
q−2 − q−4

)
E0

(
1/q2

)
+O

(
qDℓ(g)/2+ϵg

)
.
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Using our previous results, we compute the main term MnK
ℓ (ϕ,Dℓ(g)− 2) given in (3.7). We

recall some notations in Section 1.3 as needed.

Lemma 3.5. Let mQ = gcd (2, d(Q)). The main term of the one-level density of zeros of

Dirichlet L-functions with order ℓ characters for ℓ = 3, 4 and 6 in the non-Kummer setting

as given in (3.7) is

MnK
ℓ (ϕ,Dℓ(g) − 2) =

ℓ− 1

g

∑
1≤n≤N/ℓ

Φ̂

(
ℓ(ℓ− 1)n

2g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2
(
1 + |Q|−2/mQ

)mQ
+O

(
q−Dℓ(g)/2+ϵg

)
.

Proof. Recall that we use FnK
ℓ (g) as in (3.3) to denote the family of order ℓ Dirichlet L-

functions in the non-Kummer setting. In this case, the number of non-trivial zeros is Dℓ(g)−

2 =
2g

ℓ− 1
. Thus the main term, which comes from the ℓth power polynomials, is MnK

ℓ

(
ϕ, 2g

ℓ−1

)
as follows.

MnK
ℓ

(
ϕ,

2g

ℓ− 1

)
=

ℓ− 1

2g|FnK
ℓ (g)|

∑
1≤n≤N/ℓ

Φ̂

(
ℓ(ℓ− 1)n

2g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2

×
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

χF (Qℓr) + χF (Qℓr).
(3.12)

Since χF (Qℓr) = χF (Qℓr) = 1, we have

MnK
ℓ

(
ϕ,

2g

ℓ− 1

)
=

ℓ− 1

g|FnK
ℓ (g)|

∑
1≤n≤N/ℓ

Φ̂

(
ℓ(ℓ− 1)n

2g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

1.
(3.13)
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Using Lemma 3.4, the sum over Q can be written as

qDℓ(g)
(
q−2 − q−4

) ∑
Q∈Pq,n/r

r≥1

d(Q)E0(1/q
2)

|Q|ℓr/2Ef (1/q2)

∏
π∈Fq2 [t]

π|Q

(
1 + |π|−1

q2

)−1

+O
(
qDℓ(g)/2+ϵg

)

= qDℓ(g)
(
q−2 − q−4

) ∑
Q∈Pq,n/r

r≥1

d(Q)E0(1/q
2)

|Q|ℓr/2Ef (1/q2)
(
1 + |Q|−2/mQ

)mQ
+O

(
qDℓ(g)/2+ϵg

)
.

(3.14)

We divide (3.14) by |FnK
ℓ (g)| and obtain

∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2
(
1 + |Q|−2/mQ

)mQ
+O

(
Nq−Dℓ(g)/2+ϵg

g

)
.

Note here that the error term from dividing the size of the family is of the same size as the

error term above. Now using the equation above and (3.13) gives the stated result.

3.4.2 The Error Term

Recall that the error term in (3.8) comes from the non-ℓth power contributions. To compute

the error term we first prove the following lemma.

Lemma 3.6. Let f be a monic non-ℓth power polynomial in Fq[t]. Then

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

χF (f) ≪ qDℓ(g)/2qϵ(d(f)+Dℓ(g)).
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Proof. We first write the sum over F as

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

χF (f) =
∑

F∈Hq2,Dℓ(g)/2

χF (f)
∑

D∈Fq [t]
D|F

µ(D)

=
∑

D∈Fq [t]
d(D)≤Dℓ(g)/2

(D,f)=1

µ(D)
∑

F∈Hq2,Dℓ(g)/2−d(D)

(F,D)=1

χF (f),

where the inner sum over F has the generating series

∑
F∈Hq2

χF (f)ud(F ) =
∏
π∈Pq2

π∤Df

1 + χπ(f)ud(π) =
Lq2(u, χf )

Lq2(u2, χ2
f )

∏
π∈Pq2

π|D
π∤f

1 − χπ(f)ud(π)

1 − χ2
π(f)u2d(π)

.

We evaluate the inner sum above using Perron’s formula. Thus

∑
F∈Hq2,Dℓ(g)/2−d(D)

(F,D)=1

χF (f) =
1

2πi

∮ Lq2(u, χf )

Lq2(u2, χ2
f )uDℓ(g)/2−d(D)

∏
π∈Pq2

π|D
π∤f

1 − χπ(f)ud(π)

1 − χ2
π(f)u2d(π)

du

u
,

where we integrate along a circle of radius |u| = q−1 around the origin.

The Lindelöf bound in Lemma 1.3 for the L-function in the numerator gives

|Lq2(u, χf )| ≪ q2ϵd(f),

and the lower bound in Lemma 1.4 for the L-function in the denominator gives

|Lq2(u2, χ2
f )| ≫ q−2ϵd(f).

Hence ∑
F∈Hq2,Dℓ(g)/2−d(D)

(F,D)=1

χF (f) ≪ qDℓ(g)/2−d(D)q4ϵd(f)+2ϵd(D).
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Now, trivially bounding the sum over D gives

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

χF (f) ≪
Dℓ(g)/2∑
m=0

∑
D∈Fq [t]
d(D)=m

qDℓ(g)/2−mq4ϵd(f)+2ϵm ≪ qDℓ(g)/2qϵ(d(f)+Dℓ(g)).

This concludes the proof of the above lemma.

Using Lemma 3.6, we bound the contribution from EnK
ℓ (ϕ,Dℓ(g) − 2).

Lemma 3.7. The contribution of non-ℓth power terms is bounded by

EnK
ℓ (ϕ,Dℓ(g) − 2) ≪ qN/2q−Dℓ(g)/2qϵ(N+g).

Proof. Recall that

EnK
ℓ (ϕ,Dℓ(g) − 2)

=
1

(Dℓ(g) − 2) |FnK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

f non-ℓth power

Λ(f)

|f |1/2
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

[
χF (f) + χF (f)

]
,

as in (3.8).

Lemma 3.6 implies that,

∑
F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

χF (f) ≪ qDℓ(g)/2qϵ(d(f)+Dℓ(g)).
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Thus

EnK
ℓ (ϕ,Dℓ(g) − 2) ≪ ℓ− 1

g|FnK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
(ℓ− 1)n

2g

) ∑
f∈Mn

f non-ℓth powers

Λ(f)qDℓ(g)/2qϵ(n+Dℓ(g))

|f |1/2

≪ ℓ− 1

g|FnK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
(ℓ− 1)n

2g

)
nqn

qn/2
(
qDℓ(g)/2qϵ(n+Dℓ(g))

)
≪ qN/2q−Dℓ(g)/2qϵ(N+g),

which gives the result above.

3.4.3 The Non-Kummer Setting Results

Proof of Theorem 1.4. Recall some notations in Section 1.3. Since Dℓ(g) − 2 =
2g

ℓ− 1
, the

one-level density in the non-Kummer setting is

DnK
ℓ (ϕ, g) = Φ̂(0) −AnK

ℓ

(
ϕ,

2g

ℓ− 1

)
− ℓ− 1

g

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

)
q−n/2, (3.15)

where as in (3.6)

AnK
ℓ

(
ϕ,

2g

ℓ− 1

)
=

1

(Dℓ(g) − 2) |FnK
ℓ (g)|

∑
1≤n≤N

Φ̂

(
n

Dℓ(g) − 2

) ∑
f∈Mq,n

Λ(f)

|f |1/2
∑

F∈Hq2,Dℓ(g)/2

P |F⇒P /∈Fq [t]

[
χF (f) + χF (f)

]
.

From Lemma 3.5 and Lemma 3.7, we write Equation (3.15) above as

DnK
ℓ (ϕ, g) = Φ̂(0) − ℓ− 1

g

∑
1≤n≤N

Φ̂

(
(ℓ− 1)n

2g

)
q−n/2

− ℓ− 1

g

∑
1≤n≤N/ℓ

Φ̂

(
ℓ(ℓ− 1)n

2g

) ∑
Q∈Pq,n/r

r≥1

d(Q)

|Q|ℓr/2
(
1 + |Q|−2/mQ

)mQ
+O

(
qN/2q−Dℓ(g)/2qϵ(N+g)

)
,
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where mQ = gcd(d(Q), 2). This is the result in Theorem 1.4.

Using the theorem above, we prove the symmetry type of the family below.

Proof of Theorem 1.5. Let N <
2g

ℓ− 1
. Then

lim
g→∞

DnK
ℓ (ϕ, g) = Φ̂(0),

since the double sums over n and Q above are o(1) as g → ∞.

Furthermore, compute both integeral to confirm that

Φ̂(0) =

∫ ∞

−∞
Φ̂(y)ŴU(Dℓ(g)−2)(y)dy =

∫ ∞

−∞
Φ̂(y)δ0(y)dy,

where WU(Dℓ(g)−2)(y) = δ0(y) denotes the one-level scaling density of the group of unitary

matrices.

This proves the symmetry types of the families are unitary and it supports the philosophy

of Katz and Sarnak.
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Appendix A

Order ℓ Dirichlet characters in the

non-Kummer setting for ℓ a Mersenne

prime

The works above required the multiplicative order nq of q (mod ℓ) to be 2. We discuss a

special case when nq is the prime exponent of a Mersenne prime. Suppose nq is a prime

number p, and ϕ (ℓ) = 2p − 2. Since

(
p

1

)
+ · · · +

(
p

p− 1

)
= 2p − 2,

the number of order ℓ primitive characters with conductor P equals to the number of con-

ductors F ̸= P , and F a product of distinct primes in the splitting of P over Fqp [t]. More

precisely, let P splits as in (??) and let S (P ) denote the set

S (P ) = {F ∈ Fqp [t] : F ̸= P and F squarefree consisting of products of πi}. (A.1)
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For distinct {ei} coprime to ℓ, we have

∣∣{χe1P , · · · , χeϕ(ℓ)−1

P }
∣∣ = |S (P )| .

Furthermore, under certain conditions on q (mod ℓ), we have the equivalence of characters

as seen in (??). Let q ≡ 2 (mod ℓ) for convenience. (In general, we can take q ≡ 2k (mod ℓ)

for some positive integer k < p. This follows from the observation that a complete set of

residues modulo p is preserved under multiplication by an integer k for 1 ≤ k ≤ p− 1.) The

qth-power Frobenius map ψ defined on Fqp [t] (as seen in Lemma 2.9 of [4]) acts on the prime

factors of P . For πi = ant
n + an−1t

n−1 + · · · + a0,

ψ
(
ant

n + an−1t
n−1 + · · · + a0

)
= aqnt

n + aqn−1t
n−1 + · · · + aq0

where ψ raises the coefficients of πi to the power q. For convenience, we can order the prime

factors of P in the following way. Let π1 = π as given in Remark ??, and

ψ (πi) =


πi+1, 1 ≤ i ≤ p− 1,

π1, i = p.

(A.2)

Then, the character

χπi+1
= χψ(πi) = χ2

πi
,

and we have the equivalence of characters

{χe1P , · · · , χ
eϕ(ℓ)−1

P } = {χF |Fq [t] : F ∈ S (P )},

since each integer ei has a unique binary representation.

We have shown the following.
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Lemma A.1. Let ℓ = 2p − 1 for some prime number p be a Mersenne prime. Suppose χP

is a primitive order ℓ character over Fq[t] with the prime conductor P and q ≡ 2k (mod ℓ)

for some integer 1 ≤ k < p. Let χπi be the characters defined in Definition 3.1. Then

{χP , χ2
P , · · · , χ2p−2

P } = {χF : F ∈ S (P )}|Fq [t],

where the characters on the right are restricted to Fq[t] and S (P ) is defined in (A.1).

The septic non-Kummer characters

As an example, we compute explicitly the equivalence of character for septic Dirichlet L-

functions when q ≡ 2 (mod 7). The case for q ≡ 4 (mod 7) is exactly the same with some

reordering.

The multiplicative order of 2 in (Z/7Z)× is 3 = nq. Therefore, all prime conductors P ∈ Fq[t]

in the non-Kummer setting have degrees divisible by 3, and P splits over Fq3 [t] as

P = π1π2π3

for some primes πi in the extension following the ordering given in (A.2). Thus, restricting

the characters to Fq[t], we have

χπ1 = χP ,

χψ(π1) = χπ2 = χ2
P , χψ(π2) = χπ3 = χ4

P ,

χπ1π2 = χ3
P , χπ1π3 = χ5

P , χπ2π3 = χ6
P .

Note it is not crucial to take the ordering in (A.2). Without it, we have, for a fixed positive
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integer α less than 7 and restricting the characters to Fq[t],

χπ1 = χαP ,

χψ(π1) = χπ2 = χ2α
P , χψ(π2) = χπ3 = χ4α

P ,

χπ1π2 = χ3α
P , χπ1π3 = χ5α

P , χπ2π3 = χ6α
P .

Since multiplying by α is an automorphism on (Z/7Z)×,

{χαP , χ2α
P , · · · , χ6α

P } = {χP , χ2
P , · · · , χ6

P}.

Thus we have shown the following.

Lemma A.2. Let χP be a primitive septic character over Fq[t] with the prime conductor P

for some q ≡ 2, 4 (mod 7). Let χπi be the characters defined in Definition 3.1. Then

{χP , χ2
P , · · · , χ6

P} = {χπ1 , χπ2 , χπ3 , χπ1π2 , χπ1π3 , χπ2π3}|Fq [t],

where the characters on the right are restricted to Fq[t].
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