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ABSTRACT OF THE DISSERTATION

Second-Derivative Sequential Quadratic Programming Methods for
Nonlinear Optimization

by

Vyacheslav Kungurtsev

Doctor of Philosophy in Mathematics with specialization in Computational Science

University of California, San Diego, 2013

Professor Philip E. Gill, Chair

Sequential Quadratic Programming (SQP) methods are a popular and successful
class of methods for minimizing a generally nonlinear function subject to nonlinear con-
straints. Under a standard set of assumptions, conventional SQP methods exhibit a fast
rate of local convergence. However, in practice, a conventional SQP method involves solving
an indefinite quadratic program (QP), which is NP hard in general. As a result, approxima-
tions to the second-derivatives are often used, which can slow the rate of local convergence
and reduce the chance that the algorithm will converge to a local minimizer instead of a
saddle point. In addition, the standard assumptions required for convergence often do not
hold in practice. For such problems, regularized SQP methods, which also require second-
derivatives, have been shown to have good local convergence properties; however, there are
few regularized SQP methods that exhibit convergence to a minimizer from an arbitrary

xi



initial starting point. This thesis considers the formulation, analysis and implementation
of SQP methods with the following properties. (i) The solution of an indefinite QP is not
required. (ii) Regularization is performed in such a way that global convergence can be
established under standard assumptions. (iii) Implementations of the method work well on
degenerate problems.
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Chapter 1

Introduction

1.1 Introduction

This thesis concerns the formulation and analysis of methods for the solution of
a smooth nonlinear optimization problem with equality and inequality constraints. Let
f : D ⊆ Rn 7→ R1 be a differentiable scalar-valued function of the components of an n-
vector x. Similarly, let c : D ⊆ Rn 7→ R1 be a differentiable vector-valued function of x.
Consider the optimization problem

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I,

(1.1)

where E and I are non-intersecting index sets such that E ∪ I = {1, 2, . . . ,m}. Any point
x satisfying the constraints of (1.1) is called a feasible point, and the set of all such points
is the feasible region. The Lagrangian function associated with problem (1.1) is given by

L(x, y) = f(x)− c(x)Ty = f(x)−
m∑
i=1

yici(x) (1.2)

with Hessian H(x, y) = ∇2
xxL(x, y). The components of the vector y are known as the dual

variables.
Most algorithms seek to find a local minimizer of (1.1) by finding a point that

satisfies the first-order Karush-Kuhn-Tucker (KKT) conditions. These conditions state that
under certain regularity assumptions on the constraints, at a local solution x∗ of (1.1), there

1
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must exist at least one m-vector y such that

∇f(x∗)−
m∑
i=1

yi∇ci(x∗) = 0,

ci(x∗) = 0, i ∈ E ,
ci(x∗)≥ 0, i ∈ I,

yi≥ 0, i ∈ I,
yici(x∗) = 0, i ∈ I.

(1.3)

The components of any y satisfying these conditions are known as Lagrange multipliers. In
general, there may be a setMy(x∗) of Lagrange multipliers that satisfy the KKT conditions
(1.3). A point x∗ satisfying the KKT conditions (1.3) for some y ∈ My(x∗) is known as a
first-order KKT point.

The first-order KKT conditions are satisfied at a local minimizer only if certain
regularity conditions hold. These regularity assumptions are known as constraint qualifica-
tions. There are a number of alternative constraint qualifications, but almost all of them
involve the properties of a subset of the constraints that includes all the equality constraints
together with the inequality constraints that are satisfied exactly at x∗. The set of indices
of the inequality constraints that are satisfied exactly at a point is known as the active set.
The active set at the point x is denoted by A(x), i.e.,

A(x) = {i | ci(x) = 0, i ∈ I}.

The linear independence constraint qualification requires that the gradients of the equality
constraints and active constraints are linearly independent.

Second-order conditions for optimality also involve the properties of the active set.
For any KKT point x and multiplier y ∈My(x), we define the index sets

A0(x, y) = {i ∈ A(x) | yi = 0} and A+(x, y) = {i ∈ A(x) | yi > 0}.

As y ≥ 0, it follows that A(x) = A0(x.y) ∪ A+(x, y) and A0(x, y) ∩ A+(x, y) = ∅. Given
a point (x, y) satisfying the first-order conditions, the sets A+(x, y) and A0(x, y) define a
cone F̃(x) that consists of directions emanating from x such that

F̃(x) = {d | ∇ci(x)Td = 0, i ∈ E , ∇ci(x)Td = 0, i ∈ A+(x, y), ∇ci(x)Td ≥ 0, i ∈ A0(x, y)}.

The second-order necessary conditions hold if there is a (x, y) satisfying the first-order
conditions (1.3) such that dT∇2

xxL(x, y)d ≥ 0 for all d ∈ F̃(x). The second-order sufficiency
conditions hold if there exists a strictly positive σ such that dTH(x, y)d ≥ σ||d||2 for all
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d ∈ F̃(x), where H(x, y) denotes the Hessian of the Lagrangian function L(x, y), i.e.,
H(x, y) = ∇2

xxL(x, y). Some subtle variations of these conditions are discussed in Chapters 2
and 5.

Optimization problems of the form (1.1) may be solved using a sequential quadratic
programming (SQP) method. Conventional SQP methods solve a sequence of quadratic
programming (QP) subproblems defined in terms of a quadratic model of the objective
function and a linearization of the constraints. Given estimates (xk, yk) of primal and dual
variables satisfying (1.3), the QP subproblem for a conventional SQP is given by

minimize
x∈Rn

f(xk) +∇f(xk)T(x− xk) + 1
2(x− xk)TH(xk, yk)(x− xk)

subject to ci(xk) +∇ci(x)T(x− xk) = 0, i ∈ E ,

ci(xk) +∇ci(x)T(x− xk) ≥ 0, i ∈ I.

If the change in variables is written as p = x− xk, then an equivalent QP is given by

minimize
p∈Rn

∇f(xk)Tp+ 1
2p
TH(xk, yk)p

subject to ci(xk) +∇ci(x)Tp = 0, i ∈ E ,

ci(xk) +∇ci(x)Tp ≥ 0, i ∈ I.

(1.4)

(Note that the constant term in the objective may be omitted without changing the solution
of the QP.) In the original SQP method proposed by Wilson [85], the next iterate is xk+1 =
xk + pk, where pk is a solution of (1.4). The new estimate yk+1 of the Lagrange multipliers
are the Lagrange multipliers of the QP subproblem.

SQP methods use some method to ensure global convergence. This usually takes
the form of a line-search, trust-region or filter to either reject a subproblem step or limit it
by defining xk+1 = xk + αpk, for some α > 0. For example, a line-search method defines
the new iterate as xk+1 = xk + αkpk, where αk is a nonnegative scalar step length. In this
case, αk is chosen to reduce the value of a merit function, whose value provides a measure
of the distance of the point xk + αkpk to a solution x∗ of the nonlinear problem.

If the Hessian H(xk, yk) is indefinite, then the QP subproblem is non-convex. Non-
convex quadratic programming is NP-hard and there may be no positive α that gives a
reduction in a merit function. As a result, many practical SQP methods use a positive-
definite approximation to the Hessian. However, the use of an approximate Hessian may
have a detrimental effect on the convergence properties of an algorithm (see Chapter 3).
In this thesis we consider methods that use exact second derivatives in the QP subproblem
but do not require the solution of an indefinite quadratic program.
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Proofs of convergence generally rely on a set of assumptions called constraint qual-
ifications (CQs) that describe the geometry of the feasible region. Most SQP convergence
proofs have relied on the linear independence constraint qualification (LICQ), a relatively
strong assumption. There has been some theoretical work in the development of new CQs,
convergence theory and SQP methods that converge under weaker assumptions. Much of
that work, however, is limited to local convergence, and relies on finding a solution of the
QP subproblem, even though the subproblem may be indefinite. In this thesis, we formulate
and analyze effective computational methods that are able to use exact Hessian matrices
while avoiding the difficulties that are usually associated with them.

1.2 Previous Work

There are a few recent examples in the literature of second-derivative SQP methods.
In most of these methods, each iteration has two parts. The first part involves the solution of
a convex QP subproblem based an approximate Lagrangian Hessian. The optimal active set
of this QP is then used to define the constraints of an equality-constrained QP that is defined
in terms of the exact Hessian. For example, Byrd et al. [15] use a convex piecewise linear
problem to estimate the optimal active set, followed by an EQP step wherein the constraints
corresponding to the estimated active set are constrained to be equalities. They prove that
limit points of the sequence of iterates satisfy the first-order optimality conditions, and also
that the method eventually estimates the active set at the solution. (No results concerning
the rate-of-convergence are given.)

Chin and Fletcher [17] estimate the active set by first solving a linear program, and
then define a EQP based on the final linear programming active set. Their algorithm uses
a filter to ensure global convergence. They do not assume any constraint qualifications,
however, their (strictly global) convergence results are weak. In particular, the sequence
of the algorithm either ends at a point not satisfying the filter and failing to generate a
solvable LP, a Fritz John point, or generates an infinite sequence with all cluster points
feasible and one satisfying the Fritz John conditions.

Gould and Robinson ([49], [48], [47]) analyze an SQP method with several different
components, some involving convex subproblems and some using the exact Hessian. They
begin with a “predictor” step wherein a standard convex QP is solved. In [48] they propose a
method that uses some combination of 1) a “Cauchy step” that minimizes the merit function
with the exact Hessian using the predictor step, 2) an inequality-constrained SQP step using
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the exact Hessian, 3) an equality-constrained SQP step using the active set estimated by
the predictor step, and 4) an implicitly constrained SQP step that includes the constraints
as a penalty term in the objective. They use a trust-region approach and heuristics to
take the additional steps only if they demonstrate descent for the merit function. They
prove global convergence for the overall framework, never requiring a full solution to a
non-convex problem. Even though they provide a complete picture of how to incorporate
second-derivatives in a method that solves two or more subproblems, it remains unclear as
to the benefit of solving each particular additional subproblem.

In [47], Gould and Robinson analyze the local convergence of this framework. In this
case they use a predictor step that is the solution of a convex QP and an accelerator step
that consists of either an equality-constrained problem with the active set at the predictor
solution set as equality constraints, or an inequality constrained problem with a descent
constraint, both using the exact Hessian. The accelerator step here is meant to speed
convergence. Using strong assumptions (LICQ and second-order sufficiency at the limit
point) they are able to show a quadratic rate of convergence of the iterates. This points to
the feasibility of such a scheme in terms of using second derivatives as an additional element
to a conventional quasi-Newton SQP method to ensure rapid local convergence.

The methods discussed in this thesis differ from Gould and Robinson in 1) discussing
global convergence to second-order optimal points 2) only solving a modified convex problem
as necessary, and 3) ensuring local convergence under weaker assumptions.

Even though there are a number of papers on local convergence theory for SQP
methods under weak regularity assumptions, there are few fully-developed methods in this
area. Qi and Wei [78] demonstrate global and superlinear local convergence of the Panier-
Tits method under weak constraint qualification assumptions. Although this thesis will
reference their results in the subsequent convergence theory of the algorithm SQP2d, the
Panier-Tits method [75] on which their results are based relies on feasibility of the iterates
and has not performed particularly well in practice.

Regularized SQP methods are a class of modified SQP methods for which superlinear
convergence has been established for degenerate problems. Wright [87] discusses the the-
oretical aspects of several regularized SQP methods, including the stabilized SQP method.
This method was formulated by Wright [86] as one of a class of inexact SQP methods. The
analysis is purely local, and requires obtaining the closest solution to the current iterate of
the possibly indefinite SQP subproblem at each iteration. In [89], Wright presents a more
practical algorithm, wherein active-constraints are identified and an equality-constrained
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problem is solved with the active constraints enforced as equalities. However, the analysis
is still purely local, and one would still expect that, far away from the solution, numerous
incorrect guesses as to the active set would require the solution of a large quantity of EQPs
whose results would then be subsequently thrown out. The numerical results of this class
of methods are mixed (see, e.g., Mostafa et al. [68]).

This thesis will demonstrate how to take advantage of the local convergence prop-
erties of these methods in practical implementations involving a complete algorithm with
global and local convergence properties. In addition, it should be noted that much of these
strong local convergence results rely on the assumption of second-order sufficiency holding
at the limit point. By proving global convergence to a point satisfying second-order neces-
sary conditions, this assumption can be considerably weakened to just requiring that the
reduced Hessian at the solution is nonsingular, a condition generally expected to hold for
almost all NLPs.

1.3 Contributions of this Thesis

In this thesis we formulate and analyze sequential quadratic programming algo-
rithms that use second-derivatives for the definition of the quadratic programming sub-
problem. Two methods are considered for convexifying the QP subproblem. Convexifica-
tion obviates the need to solve an indefinite quadratic programming subproblem. Three
main SQP algorithms are presented for general (i.e., nonconvex) nonlinear optimization.
Algorithm SQP2d is a conventional primal second-derivative line-search method that uses
a primal-dual merit function to force global convergence. Algorithm pdSQP is a regular-
ized method based on minimizing a bound-constrained primal-dual augmented Lagrangian
function. Algorithm pdSQP2 is an extension of Algorithm pdSQP that provides conver-
gence to points that satisfy the second-order necessary conditions for optimality. Results
are presented for both methods that establish the global convergence and local superlinear
convergence degenerate and nondegenerate optimization problems. Preliminary numerical
results are presented using an implementation in Matlab.

1.4 Organization of the Thesis

This thesis is organized as follows. The next chapter gives a background of nonlin-
ear programming optimality conditions and constraint qualifications. Chapter 3 discusses
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conventional SQP methods. Chapter 4 discusses convergence theory and stability results
and provides some classical examples from the literature with regards to applications of
these results for proofs of convergence of algorithms. Chapter 5 discusses regularized SQP
methods, a class of theoretical SQP methods that have been proven to exhibit superlinear
convergence under weak CQ assumptions. Chapter 6 discusses convexification, the primary
methodology by which second derivatives are used in the algorithms discussed in this thesis.
Chapter 7 provides an application of convexification and degenerate convergence theory to
SQP2d, an inexact SQP method with an augmented Lagrangian merit function. Chapter
8 provides an application of convexification to a primal-dual augmented Lagrangian im-
plementation of SQP (pdSQP) , wherein the subproblems are equivalent to the familiar
regularized stabilized SQP method. Chapter 9 discusses directions of negative curvature
and convergence to second-order optimal points for pdSQP.

Chapter 10 includes numerical results for the algorithm pdSQP on a set of example
problems. The final chapter concludes and discusses the main results of the thesis.

1.5 Notation

1.5.1 Vectors

The i-th component of a vector labeled with a subscript will be denoted by [ · ]i,
e.g., [vN ]i is the i-th component of the vector vN . Similarly, a subvector of components with
indices in the index set S is denoted by ( · )S , e.g., (vN)S is the vector with components
[vN ]i for i ∈ S. The vector e will be used to denote the vector of all ones with length
determined by the context. The vector with components max{−xi, 0} (i.e., the magnitude
of the negative part of x) is denoted by [ x ]−. Similarly, the magnitude of the positive part
of a vector x is denoted by [ x ]+.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its in-
duced matrix norm. Given vectors a and b with the same dimension, the vector with i-th
component aibi is denoted by a · b. The component-wise maximum of two vectors x and y
is denoted by max(x, y), i.e., [max(x, y)]i = xi if xi ≥ yi, and [max(x, y)]i = yi otherwise.

A set of vectors {vi} is said to be positively linearly dependent if there exists a set
of scalars {αi} such that αi ≥ 0 for all i, there is at least one i for which αi > 0, and∑
i αivi = 0.

Let {αj}j≥0 be a sequence of scalars, vectors or matrices and let {βj}j≥0 be a
sequence of positive scalars. If there exists a positive constant γ such that ‖αj‖ ≤ γβj , we
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write αj = O
(
βj
)
. If there exist positive constants γ1 and γ2 such that γ1βj ≤ ‖αj‖ ≤ γ2βj ,

we write αj = Θ
(
βj
)
. If ‖αj‖/βj → 0, then αj = o

(
βj
)
.

Given a point x and a set S, the distance of x to S is the distance of x to the closest
point in S, i.e., dist(x,S) = infz∈S ‖x− z‖.

1.5.2 Matrices

The symbol I is used to denote an identity matrix with dimension determined by the
context. The j-th column of I is denoted by ej . Unless explicitly indicated otherwise, ‖ · ‖
denotes the vector two-norm or its induced matrix norm. The inertia of a real symmetric
matrix A, denoted by In(A), is the integer triple (a+, a−, a0) giving the number of positive,
negative and zero eigenvalues of A. Given vectors a and b with the same dimension, the
vector with i-th component aibi is denoted by a · b. The columns of the matrix N(A) form
a basis for null(A), the null-space of A. The column space of A is denoted by range(A).

The ith eigenvalue of a symmetric matrix A will be denoted by λi(A), and the
eigenvalues will be ordered in decreasing order λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). In(A)
denotes the inertia of A, which is the integer triple (a+, a−, a0) indicating the number of
positive, negative, and zero eigenvalues of A. Finally a sequence of matrices {Ak} is said
to be bounded if the sequence of norms {||Ak||} is bounded.

1.6 Some Useful Results

The first result appears prominently in this thesis.

Lemma 1.6.1 (Debreu’s Lemma [21]). Let H and A be matrices of order n×n and m×n,
respectively, with H symmetric. If vTHv > 0 for all v such that Av = 0, then there exists
a finite ρc such that H + ρATA is positive-definite for all ρ > ρc.

The next result is an important characterization of a class of matrices associated
with second-order conditions for optimality.

Theorem 1.6.1. Let H and A be matrices of order n× n and m× n, respectively, with H

symmetric. Assume that A has rank m. The matrix

H AT

A 0

 has inertia (n,m, 0) if and

only if ZTHZ is positive-definite, where Z is a matrix whose columns form a basis for the
null-space of A.



Chapter 2

Optimality Conditions

This chapter provides a brief overview of optimality conditions and constraint qual-
ification for a nonlinear optimization problem written in the form:

minimize
x

f(x)

subject to ci(x) = 0, i ∈ E
cj(x)≥ 0, j ∈ I.

(2.1)

Almost all algorithms attempt to find a point that satisfies a set of nonlinear equations,
constraint qualifications provide a link between the local optimality of that point and these
nonlinear equations.

2.1 First-Order Necessary Conditions

The Fritz John conditions hold at a point x if there exists an m-vector y and a
scalar y0 such that

y0∇f(x)−
m∑
i=1

yi∇ci(x) = 0,

cj(x) = 0, for every j ∈ E ∪ A(x),
cj(x) ≥ 0, yj ≥ 0, yjcj(x) = 0, for every j ∈ I,

where A(x) ⊂ I is the index set of the active inequality constraints at x. At a local
minimizer of (2.1), the Fritz John conditions always hold (see John [58], and Mangasarian
and Fromowitz [63]). Notice that y0 may be zero. If y0 = 0, then the Fritz John conditions
are satisfied by a stationary point of the sum of the constraints. This implies that there

9
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are many problems for which there are points that are not local minimizers but satisfy the
Fritz John condition.

The Karush-Kuhn-Tucker (KKT) conditions hold at a point x if there exists an
m-vector y such that

∇f(x)−
m∑
i=1

yi∇ci(x) = 0,

cj(x) = 0, for every j ∈ E ∪ A(x),
cj(x) ≥ 0, yj ≥ 0, yjcj(x) = 0, for every j ∈ I

(2.2)

(see Karush [59], and Kuhn and Tucker [61]). A point x∗ satisfying the KKT conditions
(2.2) is known as a first-order KKT point. In general, there is an infinite set of Lagrange
multipliers associated with a first-order KKT point.

Definition 2.1.1. The set of Lagrange multipliers associated with a first-order KKT point x
(i.e., an x that satisfies (2.2)) is denoted byMy(x). A pair of vectors (x, y) with y ∈My(x)
is called a primal-dual first-order KKT pair.

The KKT conditions are just the Fritz John conditions with the value y0 ≡ 1. The
Fritz John conditions always hold at a local minimizer, but the first-order KKT conditions
will satisfied at a local minimizer only if certain regularity conditions hold. These regularity
assumptions are known as constraint qualifications.

Since y0 must be nonzero at a KKT point, most algorithms seek to generate a
sequence of points that converge to a point x∗ that satisfies the first-order KKT conditions.

2.2 Overview of First-Order Constraint Qualifications

Constraint qualifications (CQs) are regularity assumptions about the geometry of
the feasible region of a constrained problem that guarantee that the Karush-Kuhn-Tucker
(KKT) conditions hold at a local minimizer. These conditions are necessary assumptions
in the convergence proofs of most algorithms for constrained nonlinear programming.

Global convergence results define the conditions under which a sequence of iterates
converge to a point that either satisfies the Karush-Kuhn-Tucker (KKT) conditions or fails
to satisfy a constraint qualification. Local convergence results state that, once a point in the
sequence of iterates is sufficiently close to its limit, the iterates converge at a superlinear
rate or that limit fails to satisfy the constraint qualification. The weaker the conditions
associated with a constraint qualification, the stronger the result of the convergence proof.
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Constraint qualifications specify geometric details of the local feasible region and
the constraint gradients. The condition introduced by Guignard [50] is the most general
(i.e., the weakest) constraint qualification. However, it is too theoretical for use in the
convergence proofs of algorithms.

The constraint qualification used in many proofs of convergence is the linear inde-
pendence constraint qualification (LICQ), which is a relatively strong condition that fails
to hold for a large class of problems. The LICQ has the advantage that it can be verified
using a finite linear algebraic procedure. Moreover, it is possible to prove strong stability
results when the LICQ holds (see Chapter 4).

The Mangasarian-Fromovitz constraint qualification (MFCQ), a weaker condition
than the LICQ that involves the existence of an interior feasible direction. The satisfaction
of the MFCQ is sufficient to ensure local and global and local convergence for a large class
of algorithms.

The constant-rank constraint qualification (CRCQ) is weaker than the LICQ, though
it is neither stronger nor weaker than the MFCQ. In this chapter it is shown that different
kinds of geometric irregularities present problems for the CRCQ and the MFCQ.

The constant positive linear dependence (CPLD) condition is a constraint qualifi-
cation that is weaker than both the MFCQ and the CRCQ. It was first introduced in Qi
and Wei [78] and used in the context of the convergence theory of an SQP method. In that
paper Qi and Wei conjecture that CPLD is a general constraint qualification and proved
the strongest result for convergence of SQP methods among the literature at the time.
Andreani, Martínez, and Schuverdt [5] proved the conjecture of CPLD being a constraint
qualification by showing that CPLD implies quasinormality, an established constraint qual-
ification. In subsequent papers, they proved global convergence of a standard augmented
Lagrangian method, assuming the CPLD condition.

Weaker constraint qualifications that define “relaxed” variations of the CPLD and
CRCQ have been developed by Andreani et al. [3]. In a separate paper, Andreani et al. [4]
introduce the weakest constraint qualifications with associated convergence results among
all of the ones discussed.

Research into second-order constraint qualifications, for which at a local minimizer
second-order (curvature) relations can be expected to hold, has been more limited. Far
fewer algorithms attempt to generate a sequence of points that converge to a second-order
optimal point. This is because algorithms rarely use explicit second derivatives, and so
accurate curvature information is not available, and with global convergence safeguards,
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convergence to saddle points and local maxima is rare. However, for more sophisticated
methods utilizing negative curvature and exact (as opposed to approximate) Lagrangian
Hessians, second-order constraint qualification theory is still useful for their convergence
theory.

2.3 First-Order Constraint Qualifications

In general, constraint qualifications involve structural relationships concerning the
constraint gradients and locally feasible points in a neighborhood of the point in consider-
ation, x∗. Designating the feasible region of the NLP as F, consider the definition of the
tangent cone at at a feasible point x ∈ F.

Definition 2.3.1. A nonzero vector p is a tangent at x ∈ F if there exists a feasible sequence
{xk}k≥0 such that xk 6= x for all k and

lim
k→∞

(xk − x)/‖xk − x‖ = p/‖p‖.

The set of all tangent vectors at x is denoted by T+(x). The set T (x) 4= T+(x)∪{0} is called
the tangent cone at x.

Definition 2.3.2. The polar of the tangent cone T (x) is the set

T (x)◦ = {w | wTp ≤ 0, for all p ∈ T (x)}.

The most succinct necessary condition for optimality is

−∇f(x) ∈ T (x)◦.

This condition implies that every feasible direction at x has a positive directional derivative
with respect to f .

Definition 2.3.3. Let F(x) denote the set of directions

F(x) = {d | ∇ci(x)Td = 0, i ∈ E , and ∇ci(x)Td ≥ 0, i ∈ A(x)}.

The normal cone of F(x) is the set

N (x) =
{
z | z = −

∑
i∈I

µi∇ci(x) +
∑
i∈E

λi∇ci(x)
}

(2.3)

defined for all λ such that λi = 0, i 6∈ E, and all µ such that µi ≥ 0, i ∈ A(x) and µi = 0,
i 6∈ A(x). The normal cone is the polar of F(x), i.e., N (x) = F(x)◦.
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Note the resemblance to the KKT conditions. In particular, −∇f(x) ∈ N (x) is
precisely the first-order condition that the gradient of the Lagrangian is zero. From this it
can be implied that N (x) = T (x)◦ serves as a suitable constraint qualification.

Definition 2.3.4. The Guignard constraint qualification holds at x if N (x) = T (x)◦.

The Guignard constraint qualification is the most general constraint qualification possible.
Gould and Tolle [44] show that this condition is equivalent to the KKT conditions being
necessary conditions for a local minimum for any objective function.

Definition 2.3.5. The Adabie constraint qualification holds at x if F(x) = T (x).

It may appear that the Guignard and Abadie constraint qualifications are equivalent.
However, T (x) is an arbitrary (possibly disconnected) set, whereas F(x) is a convex cone.

As an example, consider the equality constraint c(x) = (x2
2 − x1)(x2 − x2

1) = 0 at
x = 0. The gradient is given by

∇c(x) =

−(x2 − x2
1)− 2x1(x2

2 − x1)
2x2(x2 − x2

1) + (x2
2 − x1)

 , with ∇c(0) =

0
0

 .
This implies that every d ∈ R2 satisfies ∇c(0)Td = 0 and hence F(0) = R2. However, note
that a point is feasible with respect to this constraint if and only if it lies on one of the
parabolas x2 = x2

1 or x2 = x2
1. At x = 0, the tangent cone is the finite set

T (0) =


0

0

 ,
0

1

 ,
 0
−1

 ,
1

0

 ,
−1

0

 6= R2 = F(0).

However, notice that N (0) =

0
0

, and T ◦(0) =

0
0

 since the elements of T (0) span R2,

so N (0) = T (0)◦ and the Guignard constraint qualification holds.
The Abadie and Guignard constraint qualifications are not useful for proving the

convergence of algorithms because they are too abstract. However, Adabie’s condition is
frequently used in theoretical analyses because is does not involve the use of the polar
operation on a nonconvex set.

2.3.1 List of first-order constraint qualifications

One of the most commonly used constraint qualifications is the linear independence
constraint qualification.
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Definition 2.3.6. The linear independence constraint qualification (LICQ) holds at x if
the set {∇ci(x)}i∈E∪A is linearly independent.

If LICQ holds, then at a local minimizer, the set of multipliers satisfying the KKT
conditions contains a single point, i.e., My(x∗) = {y∗}. If LICQ does not hold at x, then
the point x is said to be degenerate. In the degenerate case, the Lagrange multipliers are
not unique in general.

Another strong constraint qualification used in convex programming is the Slater
constraint qualification (see Slater [84]).

Definition 2.3.7. The Slater constraint qualification holds if {ci(x)}i∈E are affine, {cj(x)}j∈I
are concave and there is a x̄ feasible with cj(x̄) > 0 for every j ∈ I.

The Slater constraint qualification is a constraint qualification used in convex opti-
mization. It is the only condition that is defined for the whole feasible region instead of a
specific point, and implies that there is no duality gap for a convex problem.

The MFCQ is a weaker condition than LICQ that is also frequently used in the
literature.

Definition 2.3.8. The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at
x if x is feasible, {∇ci∈E(x)} is linearly independent and there exists a direction d ∈ Rn

such that
∇ci(x)Td = 0, i ∈ E , and ∇ci(x)Td > 0, i ∈ A(x).

Gauvin [34] has shown that the MFCQ is equivalent to the setMy(x∗) being bounded.
The constant-rank constraint qualification is another condition that is weaker than

the LICQ. It has been used in some convergence theory, and is neither weaker nor stronger
than the MFCQ in terms of both the geometric conditions involved and the strength of the
convergence results implied. Essentially it states that the linear dependence of subsets of
the active constraint gradients is preserved locally.

Definition 2.3.9. The constant-rank constraint qualification (CRCQ) holds at a feasible
x if there is a neighborhood B(x) such that the linear dependence of {∇ci(x̄)}i∈U for any
index set U ⊂ E ∪ A(x) implies the linear dependence of {∇ci(x̄)}i∈U for every x̄ ∈ B(x).

The relaxed constant-rank constraint qualification states that just subsets of the ac-
tive constraint gradients that include all of the equality constraints, rather than all possible
subsets of

{
∇ci(x)

}
i∈E∪A(x) need to maintain their linear dependence.
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Definition 2.3.10. The relaxed constant-rank (RCR) constraint qualification holds at a
feasible x if there is a neighborhood B(x) such that for every subset U ⊂ A(x), the matrix
composed of constraint gradients

{
∇ci(x̄)

}
i∈E∪U has the same rank for every x̄ ∈ B(x).

The constant positive linear dependence constraint qualification is similar to the
CRCQ but involves the positive linear dependence of the active constraint gradients. This
constraint qualification is weaker than the CRCQ.

Definition 2.3.11. A feasible x satisfies the constant positive linear dependence (CPLD)
condition if it satisfies the MFCQ, or if the positive linear dependence of {∇ci∈U (x)} for any
U ⊂ E ∪ A(x) implies positive linear dependence of {∇ci∈U (x̄)} for all x̄ in a neighborhood
of x.

Just as CRCQ has a weaker version requiring linear dependence preservation in a
smaller set, there is a similarly weaker relaxed constant positive linear dependence condition,
also involving only sets that include all of the equality constraints.

Definition 2.3.12. Consider a feasible point x. Let V ⊂ E be the index set such that the
gradients {∇ci(x)}i∈V are linearly independent and span the same subspace as {∇ci(x)}i∈E .
The point x satisfies the relaxed constant positive linear dependence (RCPLD) constraint
qualification if there is a neighborhood B(x) of x such that the following conditions hold.

• The matrix with columns {∇ci(x̄)}i∈E has constant rank for every x̄ ∈ B(x).

• For all subsets U ⊂ A(x), if the gradients
{
∇ci(x)

}
i∈U∪V are positively linearly de-

pendent, then the gradients
{
∇ci(x)

}
i∈U∪V are positively linearly dependent for all

x̄ ∈ B(x).

The next two constraint qualifications use more specific index sets of the constraints.
The first identifies the set of inequality constraints that behave like equalities. For example,
inequality constraints c1(x) ≥ 0 and c2(x) ≥ 0 such that c1(x) = −c2(x) may be replaced
by the single equality constraint c(x) = c1(x) = c2(x) = 0. As ∇c1(x) = −∇c2(x), both
constraint gradients are in the normal cone and I−. This behavior can be generalized to be
a local property that is characterized by i ∈ A(x) and ∇ci(x) ∈ N (x). Let I− denote the
index set

I− = {j ∈ A(x) | ∇cj(x) ∈ N (x)}.

Indices in the set I+ = A(x) \ I− correspond to the well-behaved inequality constraints.
Let E ′ ⊂ E be such that {∇ci(x)}i∈E ′∪I+ is a positively linearly independent spanning set
of {∇ci(x)}i∈E∪A(x). It can be shown that the MFCQ implies that I− is empty.
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An an example, consider the constraints c1(x) = x ≥ 0 and c2(x) = −x ≥ 0, for
which ∇c1 = 1 and ∇c2 = −1. Clearly these are both in the normal cone, as ∇c1(x) =
−∇c2(x). For this set of constraints, I− = {1, 2} and I+ is empty.

These sets attempt to separate the two geometric patterns of constraint qualification
—a subspace of equality constraint gradients with a locally stable dimension and a tangent
cone of inequalities with a locally constant topology. The following two constraint qualifi-
cations make this formal by requiring on constant rank of the de facto equality constraints
and the local maintenance of the positive linear basis for all of the constraint gradients.

Since the constraints in I− behave like equalities, the next condition is the weakest
generalization of the constant rank conditions.

Definition 2.3.13. The constant rank of the subspace component (CRSC) holds at x if
there is a neighborhood B(x) of x in which the rank of {∇ci(x̄) | i ∈ E ∪ I−} is constant for
all x̄ ∈ B(x).

The following condition is the weakest generalization of the constant positive linear
dependence conditions.

Definition 2.3.14. The constant positive generator (CPG) constraint qualification holds
at x if there is a neighborhood B(x) of x wherein {∇ci(x̄) | i ∈ E ′ ∪ I+} positively spans
{∇ci(x̄) | i ∈ E ∪ A(x)} for all x̄ ∈ B(x).

There are two final constraint qualifications mentioned in the literature. These are
more for theoretical interest and have not been used in the convergence theory of algorithms.

Definition 2.3.15. The quasinormality constraint qualification holds at x if either x sat-
isfies the MFCQ or there are no nonzero vectors λ and µ such that

• µi ≥ 0, with µi = 0 for i 6∈ A(x);

•
∑
i∈E

λi∇ci(x) +
∑

i∈A(x)
µi∇ci(x) = 0; and

• there is no sequence xk → x such that for all i such that λi 6= 0 and µi 6= 0,

λici(xk) > 0 and µici(xk) > 0,

for all k.

Definition 2.3.16. The pseudonormality constraint qualification holds at x if either x
satisfies the MFCQ or there is no (λ, µ} such that
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• µi ≥ 0, with µi = 0 for i 6∈ A(x);

•
∑
i∈E

λi∇ci(x) +
∑
i∈I

µi∇ci(x) = 0;

• there is no sequence {xk} such that xk → x with

∑
λici(xk) +

∑
µici(xk) > 0,

for all k.

Bertsekas and Ozdaglar [9] showed that these two conditions imply that there exists
an exact penalty function for the original problem as well as implying the existence of strong
and informative Lagrange multipliers, which can identify redundant constraints.

2.3.2 Relationships between first-order constraint qualifications

The LICQ implies the CRCQ holds. If the LICQ holds, then none of the constraint
gradients are linearly dependent at x, therefore the implication that linear dependence at
x implies linear dependence in a neighborhood of x is trivially true.

The CRCQ does not imply the LICQ. Consider the inequality constraints c1(x) =

x1 + x2 ≥ 0 and c2(x) = −x1 − x2 ≥ 0 at x = 0. The gradients are ∇c1(x) =

1
1

 and

∇c2(x) =

−1
−1

 which are linear dependent for all x.

The LICQ implies the MFCQ. Let J denote the matrix of active constraint gradients.
If the LICQ holds, then J has full row-rank and the system J(x)p = r has a solution for
every vector r. The right-hand side r such that ri = 0, i ∈ E and ri = 1 for i ∈ A(x) gives
a p such that ∇ci(x)Tp = 0 for i ∈ E and ∇ci(x)Tp = 1 > 0 for i ∈ A(x).

The Slater constraint qualification implies the MFCQ. If the equality constraints
are linear, then their gradients must be linearly independent, otherwise they are redundant
constraints or there is no feasible point.

If the inequality constraints are concave and there is an x̄ for which ci(x̄) > 0 for all
i ∈ A(x), then at a feasible point x, every point along x+ tp = x+ t(x̄−x) must be feasible
since −ci(x+ tp) ≤ −ci(x)− ci(x̄) ≤ 0. This implies that p is a strictly feasible direction.
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The MFCQ does not imply the LICQ. Consider the inequality constraints c1(x) =
x1 ≥ 0, c2(x) = x1− x2

2 ≥ 0 and c3(x) = x1− x2 ≥ 0 at x = (0, 0). All three constraints are
active at x, which implies that LICQ does not hold since the constraint gradients are three
vectors in R2 and must be dependent. However p = (1, 0) is a strictly feasible direction at
x.

The CRCQ does not imply the MFCQ. Consider the constraints c1(x) = x ≥ 0 and
c2(x) = −x ≥ 0 at x = 0. The constraints are linearly dependent for every feasible x.
However, there is no strictly feasible direction.

The MFCQ does not imply the CRCQ. Consider the constraints c1(x) = x1 ≥ 0
and c2(x) = x1 − x2

2 ≥ 0 at x = 0. The vector p = (1, 0) is a feasible direction. However,

the constraint gradients ∇c1(x) =

1
0

 and ∇c1(x) =

 1
−x2

 are linearly dependent only

when x2 = 0.

The CRCQ implies the CPLD. The rank of {∇ci∈U (x)} is the same as the rank of
{{∇ci∈U ,i 6=j(x)} ∪ −∇cj∈U (x)}.

Let ∇ci∈U (x) be positively linearly dependent. Then all subsets of

{∇c1(x), . . . ,∇cl(x),−∇c1(x), . . . ,−∇cl(x)}

that include one positive or one negative gradient for each i are linearly dependent. Then
for every neighborhood of x, the CRCQ implies that the same subsets among

{∇c1(x̄), . . . ,∇cl(x̄),−∇c1(x̄), . . . ,−∇cl(x̄)}

are linearly dependent for x̄ in a neighborhood of x. This implies that ∇c1(x), . . . , ∇cl(x)
are positively linearly dependent.

The MFCQ implies the CPLD. This follows directly from the definition of the CPLD.

The CPLD implies neither the MFCQ nor the CRCQ. Consider the inequalities
c1(x) = x1 ≥ 0, c2(x) = x1 + x2

2 ≥ 0, c3(x) = x1 + x2 ≥ 0, and c4(x) = −x1 − x2 ≥ 0 at
x∗ = 0. The CPLD holds because c1, c3, and c4 are linear, so∇c1(x∗), ∇c3(x∗), and∇c4(x∗)
being positively linearly dependent implies that they are positively linearly dependent for
all x ∈ R2.
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However, since ∇c3 = −∇c4, the MFCQ cannot hold.
Also ∇c1(x∗) and ∇c2(x∗) are linearly dependent but not ∇c1(x) and ∇c2(x) for

any point, for instance, at which x1 = x2 6= 0. This example is in Andreani, Martínez and
Schuverdt [5].

The CRCQ implies the RCRCQ. This is trivial, since the set of subsets for which
constant rank must be maintained is strictly larger for the CRCQ as compared to the
RCRCQ.

The CPLD implies the RCPLD. This is trivial, since the set of subsets for which
constant positive linear dependence must be maintained is strictly larger for the CPLD as
compared to the RCPLD.

The RCRCQ implies the RCPLD. A proof is given by Andreani et al. [3].

The RCPLD implies the CRSC. A proof is given by Andreani et al. [4].

The CRSC implies the CPG. A proof is given by Andreani et al. [4].

The CPG implies the Abadie constraint qualification. A proof is given by Andreani
et al. [4]. As many of the constraint qualifications imply CPG, this implies that CPG is
the weakest of a hierarchy of constraint qualifications starting with the Abadie constraint
qualification.

CPLD implies quasinormality. A proof is given by Andreani, Martínez and Schuverdt
[5].

Quasinormality does not imply CPLD. Consider the equality constraints c1(x) =
x2e

x1 = 0 and c2(x) = x2 = 0 at x = 0. Then c1 and c2 are the same sign so take λ1 < 0,
λ > 0 to satisfy quasinormality. However, the gradients are trivially positively linearly
dependent at x∗ = 0 but not at any point in a neighborhood of x∗. This example is given
in Andreani, Martínez and Schuverdt [5].

Consider the following illustrative examples to understand the nuances of the hi-
erarchy of constraint qualifications. The first example is an illustration of the excessive
strictness of LICQ. Here there are three constraints that are active at x = (0, 0). Since
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LICQ

MFCQ CRCQ

Slater

RCRCQ

RCPLD

CRSC

CPG

CPLD

Quasinormality

Adabie

Guignard

Pseudormality

Figure 2.1: Hierarchy of constraint qualifications

these constraints live in R2 their gradients are trivially linearly dependent. Hence the
LICQ does not hold. However, all other constraint qualifications hold.

In the second example, there are two inequalities that are in actuality an equal-
ity constraint. Notice in this case MFCQ and the stronger conditions fail, however, the
constraint qualifications corresponding to constant rank in a neighborhood hold.

The next example illustrates a situation where locally the two active inequality
constraints are identical while otherwise entirely different functions. In this case the constant
rank conditions fail, while as there is a clear feasible direction, MFCQ holds.

In the final example, the challenges presented by the previous two example simul-
taneously hold, so there are two inequality constraints that act as equalities, and there are
two inequality constraints with the same gradient at the point of interest. Here, MFCQ
and CRCQ both fail. However, both pseudonormality and CPLD hold, since positive linear-
dependence is maintained locally.
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x = (0, 0)

x1 ≥ 0

x1 − x2 ≥ 0

x2 + x1 ≥ 0

Figure 2.2: Many (three in 2D) constraints active at a point resulting in linear dependence
of the constraint gradients. The constraint qualifications Slater, MFCQ, CRCQ, RCRCQ,
CPLD, RCPLD, pseudonormality, quasinormality, CRSC, CPG, Adabie, and Guignard all
hold. LICQ does not hold.

2.4 Second-Order Optimality Conditions

Second-order constraint qualifications define conditions on the geometry of the fea-
sible region that certify that a local minimizer is a second-order KKT point. Broadly
speaking, a second-order KKT point is a point at which the objective function exhibits
positive curvature along certain feasible directions. Consider the problem

minimize
x∈R2

1
2(x2

1 − x2
2) subject to −1 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1. (2.4)

Notice that at x∗ = (0, 0), it holds that ∇f(x∗) = 0. Since both constraints are feasible and
inactive, x∗ satisfies the first-order KKT conditions. Yet, clearly x∗ is a saddle point, and
movements in the feasible directions p = (0, 1) or p = (0,−1) would result in a decrease of the
objective function. This highlights the importance of curvature in determining optimality.
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x1 + x2 ≥ 0

−x1 − x2 ≥ 0

x=(0,0)

Figure 2.3: Equality constraint written as two inequalities. The feasible region is strictly
along the line. The constraint qualifications CRCQ, RCRCQ, CPLD, RCPLD, quasinor-
mality, CRSC, CPG, Adabie, and Guignard all hold. On the other hand, LICQ, Slater,
MFCQ, and pseudonormality fail to hold.

In addition, consider the problem

minimize
x∈R2

1
2(−x2

1 − x1) + x2
2 subject to −1 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1, (2.5)

which has a local (and global) minimizer at x∗ = (1, 0). In this case, the curvature of the
objective function is negative in a direction along e1 = (1, 0) close to x∗, suggesting that a
very particular set of directions have to be chosen in order to assess the relationship between
optimality and curvature.

For these examples the constraints are linear, which implies that the curvature of f
on the constraints with indices in E ∪A(x) does not involve the curvature of the constraints.
However, when the constraints are nonlinear, the curvature of f is characterized by the
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x2 ≥ 0

x2 ≥ x2
1

x = (0, 0)

Figure 2.4: Locally linearly dependent constraints. The constraint qualifications MFCQ,
pseudonormality, CPLD, RCPLD, quasinormality, CRSC, CPG, Adabie, and Guignard all
hold. However, LICQ, Slater, CRCQ, and RCRCQ all do not hold.

Hessian of the Lagrangian function, i.e.,

H(x, y) = ∇2f(x)−
∑
i∈E

yi∇2ci(x)−
∑

i∈A(x)
yi∇2ci(x),

which depends on the value of the multiplier vector y. In this case, the analysis is compli-
cated by the fact that there may be many y associated with a first-order KKT point, with
each y giving a Hessian with different properties.

2.4.1 Second-order necessary conditions

The set of all first-order feasible directions is

F(x) = {d | ∇ci(x)Td = 0, i ∈ E , and ∇ci(x)Td ≥ 0, i ∈ A(x)}

(see Definition 2.3.3, page 12). Consider any d ∈ F(x). If ∇f(x)Td > 0, then d is a direction
of increase for f , and the curvature is irrelevant. The inequality ∇f(x∗)Td < 0 cannot hold
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x1 ≥ 0

x1 + x2 ≥ 0

−x1 − x2 ≥ 0

x1 ≥ −x2
2

x = (0, 0)

Figure 2.5: Equality constraint written as two inequalities and locally linearly depen-
dent constraints. The feasible region is the origin. The constraint qualifications CPLD,
RCPLD, pseudonormality, quasinormality, RCPLD, CRSC, CPG, Adabie, and Guignard
hold, whereas LICQ, Slater, MFCQ, CRCQ, and RCRCQ all fail to hold.

because the first-order stationarity condition, since by taking inner product of d with the
vanishing Lagrangian, it must hold that yi∇ci(x∗)Td < 0, i ∈ E or yi∇ci(x∗)Td < 0, i ∈ I
for some i. It follows that the directions of interest have the property that ∇f(x∗)Td = 0,
i.e., if the objective is flat along a feasible direction at a local minimizer, the curvature must
be positive.

Definition 2.4.1. Given a KKT point x, the set of directions

C(x) = { d | ∇f(x∗)Td = 0, ∇ci(x∗)Td = 0, i ∈ E , ∇cj(x∗)Td ≥ 0, i ∈ A(x) } (2.6)

is called the critical cone at x.

Alternatively, in practice the appropriately named weak reduced semidefiniteness
property (WSRP) is sometimes used (see Andreani, Martínez, and Schuverdt [6]) where the
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Table 2.1: List of second-order necessary conditions of optimality

Condition Cone Curv Second-Order Necessary Conditions

WSRP C̃(x∗) L ∃y ∈My(x∗) s.t. dT∇2
xxLd ≥ 0, for every d ∈ C̃(x∗)

Fritz John C(x∗) LG for every d ∈ C(x∗) ∃{y0, y} ∈ My(x∗) s.t. dT∇2
xxLGd ≥ 0

SO-2 C(x∗) L for every d ∈ C(x∗), ∃y ∈My(x∗) s.t. dT∇2
xxLd ≥ 0

SO-3 C(x∗) L ∃y ∈My(x∗) s.t. dT∇2
xxLd ≥ 0, for every d ∈ C(x∗)

cone on which positive-semidefiniteness of the Hessian is required is

C̃(x∗) = {d | ∇ci(x∗)Td = 0, i ∈ E , ∇cj(x∗)Td = 0, i ∈ A(x)}. (2.7)

If strict complementarity holds at x∗, then C̃(x∗) = C(x∗).

Consider the generalized Lagrangian

LG(x, y0, y) = y0f(x)−
∑
i∈E

yici(x)−
∑

j∈A(x)
yjcj(x).

Without any constraint qualifications, a local minimizer satisfies the Fritz John second-
order necessary conditions, which state that there exist {y0, y} satisfying the first-order
Fritz John conditions and for every d ∈ C(x∗), there are multipliers {y0, y} such that
dT∇2

xxLG(x∗, y0, y)d ≥ 0.
This condition is difficult to verify computationally. First, y0 may be zero. Second,

there may be many multiplier vectors satisfying the conditions, and an algorithm may
generate multiplier estimates that do not approach those that satisfy the second-order
conditions. Finally, the optimality condition require that LG(x, y0, y) has positive curvature
at least one y ∈My, but there may be other y ∈My for which LG(x, y0, y) has negative or
zero curvature.

A stronger condition, which avoids the first issue, requires that for every d ∈ C(x∗),
there is a y for which dT∇2

xxL(x∗, y, y)d ≥ 0. This condition will be referred to as SO-2.
Finally, the condition SO-3 is said to hold if there exists a multiplier y such that

for all d ∈ C(x∗), dT∇2
xxL(x∗, y)d ≥ 0. Here there is a multiplier for which the Hessian is

positive semidefinite on the entire cone. This condition is commonly associated with the
existence of a single unique set of multipliers at x∗, with some exceptions (see [7]).

The second-order necessary conditions are summarized below:



26

2.4.2 Second-order sufficient conditions

Definition 2.4.2 (Second-Order Sufficient Condition (SOSC)). The second-order sufficient
condition is said to be satisfied at a KKT point x∗ if there is a positive σ such that

for every y ∈My(x∗), it holds that dT∇2
xxL(x∗, y)d ≥ σ‖d‖2 for all d ∈ C(x∗).

Definition 2.4.3 (Relaxed Second-Order Sufficient Condition (RSOSC)). A relaxed second-
order sufficient condition is said to be satisfied at a KKT point x∗ if there is a positive σ
such that

for some y∗ ∈My(x∗), it holds that dT∇2
xxL(x∗, y∗)d ≥ σ‖d‖2 for all d ∈ C(x∗).

The verification of the RSOSC at a KKT point requires finding the global minimizer
of a possibly indefinite quadratic form over a cone, which is an NP-hard problem. However,
stronger conditions may be formulated that can be verified using linear algebraic procedures.

For any y ∈My(x∗), consider the inner product of any d ∈ C(x∗) with the gradient
of the Lagrangian evaluated at (x∗, y). As x∗ is a first-order KKT point, it must hold that

∇f(x∗)Td−
∑
i∈E

yi∇ci(x∗)Td−
∑

i∈A(x∗)
yi∇ci(x∗)Td = 0.

The first two terms are zero, so that

0 =
∑

i∈A(x∗)
yi∇ci(x∗)Td =

∑
i∈A0(x∗,y)

yi∇ci(x∗)Td+
∑

i∈A+(x∗,y)
yi∇ci(x∗)Td

=
∑

i∈A+(x∗,y)
yi∇ci(x∗)Td, (2.8)

where A0(x, y) and A+(x, y) are sets containing the indices of the constraints with zero and
positive multipliers, i.e.,

A0(x, y) = {i ∈ A(x) | yi = 0} and A+(x, y) = {i ∈ A(x) | yi > 0}.

As each term in the sum (2.8) is nonnegative, it must hold that ∇ci(x∗)Td = 0, for every
i ∈ A+(x, y). This restriction and the overall requirement that ∇ci(x∗)Td ≥ 0, for every
i ∈ A(x∗), implies that the critical cone (2.6) may be written in the alternative form:

C(x∗) = { d | ∇ci(x∗)Td= 0, i ∈ E ,
∇ci(x∗)Td= 0, i ∈ A+(x, y),
∇ci(x∗)Td≥ 0, i ∈ A0(x, y) } .

(2.9)
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It must be emphasized that although the critical cone C(x∗) can written in terms of any
y ∈ My(x∗), the definition (2.6) implies that C(x∗) is independent of the choice of y. The
characterization of the critical cone in the form (2.9) implies that C(x) = C+(x, y)∩C0(x, y),
where C+ and C0 are the index sets

C+(x, y) = {d | ∇ci(x)Td = 0, i ∈ E ∪ A+(x, y)}

and C0(x, y) = {d | ∇ci(x)Td ≥ 0, i ∈ A0(x, y)}.

As C(x) is contained in both C+(x, y) and C0(x, y), it follows that by working with the set
C+(x, y) only, (which is larger and hence leads to more restrictive conditions than those
imposed by C(x)), we may derive conditions that are verifiable computationally.

Definition 2.4.4 (Strong Second-Order Sufficient Condition (SSOSC)). A strong second-
order sufficient condition is said to be satisfied at a first-order KKT point x∗ if there is a
positive σ such that:

for every y ∈My(x∗), it holds that dT∇2
xxL(x∗, y)d ≥ σ‖d‖2 for all d ∈ C+(x∗, y).

This condition was proposed by Robinson [82]. It is equivalent to the locally strong
second-order sufficient condition (LSSOSC) considered by Wright [87].

Definition 2.4.5 (Relaxed Strong Second-Order Sufficient Condition (RSSOSC)). The
relaxed strong second-order sufficient condition is said to be satisfied at a first-order KKT
point x∗ if there is a positive σ such that:

for some y∗ ∈My(x∗), it holds that dT∇2
xxL(x∗, y∗)d ≥ σ‖d‖2 for all d ∈ C+(x∗, y∗).

2.4.3 Second-order conditions involving strongly active constraints

Definition 2.4.6. A constraint ci(x) ≥ 0 is said to be strongly active at a KKT point x∗

if i ∈ A(x∗) and there exists at least one y∗ ∈ My(x∗) with y∗i > 0. Similarly, the ith
constraint is said to be weakly active at x∗ if i ∈ A(x∗) and y∗i = 0 for all y∗ ∈My(x∗); in
this case, we say that constraint i has a null multiplier.

For example, the problem

minimize
x∈R2

1
2(x2

1 + x2
2) subject to x1 + x2 ≥ 4 and x2 ≥ 2,

has a unique solution x∗ = (2, 2) with (unique) multiplier y∗ = (2, 0)T , which implies that
the second constraint has a null multiplier.
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The set of strongly active constraints at x∗ is denoted by A+(x∗) (without a second
argument y), i.e.,

A+(x∗) = ∪y∈MyA+(x∗, y∗)

With this definition, the set
A0(x∗) = A(x∗) \ A+(x∗)

is the set of all weakly active constraints.

Definition 2.4.7. The property of strict complementarity holds at the KKT point x∗ if
there is a multiplier y∗ ∈My(x∗) such that y∗i > 0 for all i ∈ A(x∗).

If strict complementarity holds at x∗, then A+(x∗) = A(x∗), in which case A0(x∗)
is empty.

Consider the set of critical directions defined in terms of the sets A+ and A0, i.e.,

Ĉ(x) =
{
d | ∇ci(x)Td = 0, i ∈ E ∪ A+(x), ∇ci(x)Td ≥ 0, i ∈ A0(x)

}
,

which is the intersection of the sets

Ĉ+(x) = {d | ∇ci(x)Td = 0, i ∈ E ∪ A+(x)}

and Ĉ0(x) = {d | ∇ci(x)Td ≥ 0, i ∈ A0(x)}

(cf. the critical set (2.9)).

Definition 2.4.8 (Second-Order Sufficient Condition (SOSC2)). The second second-order
sufficient condition is said to be satisfied at a KKT point x∗ if there is a positive σ such
that

for every y ∈My(x∗), it holds that dT∇2
xxL(x∗, y)d ≥ σ‖d‖2 for all d ∈ Ĉ(x∗).

Note that any d ∈ Ĉ(x∗) must also be in C(x∗), but C(x∗) may include directions
from the set

{d | ∇cj(x∗)Td > 0, for yj = 0, j ∈ A+(x∗), and ∇ci(x∗)Td ≥ 0, for all i ∈ A(x∗)},

which has no intersection with Ĉ(x∗). It follows that C(x∗) is a larger set than Ĉ(x∗), so
that the SOSC is a stronger condition than the SOSC2.
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2.4.4 Second-order constraint qualifications

Definition 2.4.9. Let x denote a first-order KKT point, and let y be any multiplier y ∈
My(x). A nonzero p is a second-order tangent at x if there exists a feasible sequence
{xk}k≥0 with xk 6= x such that

ci(xk) = 0, i ∈ E , ci(xk) = 0, i ∈ A+(x, y), ci(xk) ≥ 0, i ∈ A0(x, y),

and limk→∞ (xk − x)/‖xk − x‖ = p/‖p‖. The set of all second-order tangent vectors at x
is denoted by T (2)

+ (x). The set T (2)(x) 4= T (2)
+ (x) ∪ {0} is called the second-order tangent

cone at x.

For a point x∗ to be a local minimizer, it must hold that dTH(x∗, y)d ≥ 0 for some
y ∈My(x∗) and all d ∈ T (2)(x∗).

From the discussion above, it can be seen that if it is possible to establish that
a method generates a sequence of iterates that converge to a point where strong rather
than weak, second-order conditions hold, then the method will converge on a wider class
of problems. This class includes problems for which strict complementarity does not hold
and problems having positive-curvature hold for all multipliers satisfying the first-order
condition allows for robustness in primal-dual algorithms that converge to a point for which
the set of optimal multipliers is nonunique. However, for stronger results, it is necessary for
stronger constraint qualifications to be assumed. In the next section we define a number
of different second-order constraint qualifications and discuss the second-order conditions
that they imply.

There are far more first-order than second-order constraint qualifications. On the
other hand, most of the theoretical results have been with regards to the stronger second-
order condition, in particular showing SO-3.

Analogous to the Adabie first-order constraint qualification, the second-order Adabie
constraint qualification holds if

C(x) = T (2)(x),

which implies that the critical cone is the same as the second-order tangent cone.
The CRCQ was shown to be a second-order constraint qualification in Andreani,

Echagiie and Schuverdt [2], implying that, at a local minimum, SO-3 holds. Andreani et
al. [3] also remark that the RCRCQ has similar enough geometric properties to the CRCQ
so that the results for CRCQ can also be applied to RCRCQ to show the same property.
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In general, MFCQ is not a second-order constraint qualification. However, MFCQ
together with some additional assumptions does become a second-order constraint qualifi-
cation. Baccari and Trad [8] discuss this in detail. They give an example for which MFCQ
holds but WSRP does not hold. They show that if the set of multipliersMy(x∗) satisfying
the first order conditions is a bounded line segment and there is at most one constraint
which is weakly active for all multiplier vectors in My(x∗), SO-3 holds. Under MFCQ,
My(x∗) is a bounded line segment under any one of the following conditions:

1. n ≤ 2,

2. |A(x)| ≤ 2,

3. fi affine for all i ∈ E ∪ I,

4. f is convex, ci, i ∈ E affine, cj , j ∈ I convex, and x satisfies the Slater constraint
qualification,

5. there are multipliers (y, y) such that (x∗, y) is a saddle point for the Lagrangian
function, or

6. the rank of {∇ci(x∗),∇cj(x∗)}i∈E,j∈A(x) is |E|+ |A(x)| − 1 and there is only one j for
which yj = 0 for every y ∈My(x∗)

In addition, Andreani, Martínez, and Schuverdt [6] introduce a condition called the WCR
(weak constant-rank) which holds if {∇ci(x̄),∇cj(x̄)}i∈E,j∈A(x) has constant rank for x̄ in
a neighborhood of x∗. This, while not on its own even a first-order constraint qualification,
in conjunction with the MFCQ is a second-order constraint qualification that implies SO-3
holds at a local minimizer.

As the MFCQ is not a second-order constraint qualification, the set of constraint
qualifications that hold if the MFCQ holds, in particular, the CPLD, RCPLD, quasinor-
mality, CRSC, CPG, Adabie, and Guinard constraint qualifications, cannot be second-order
constraint qualifications. This implies that the extensive research associated with constant
positive linear dependence geometry for developing constraint qualifications is applicable
only to first-order conditions.



Chapter 3

SQP Methods

3.1 SQP Methods for Constraints in All-Inequality Form

As discussed briefly in Chapter 1, a conventional sequential quadratic programming
(SQP) method involves the solution of a sequence of quadratic programming subproblems
in which a quadratic model of the objective function is minimized subject to a linearization
of the constraints. Without loss of generality, the description of an SQP method may
be simplified considerably by assuming that there are no equality constraints, i.e., all the
constraints are inequalities. In this case, the QP subproblem (1.4) (Page 3) is given by

minimize
x∈Rn

f(xk) +∇f(xk)T(x− xk) + 1
2(x− xk)TH(xk, yk)(x− xk)

subject to ci(xk) +∇ci(x)T(x− xk) ≥ 0, i = 1, 2, . . . ,m,

where (xk, yk) is the kth primal-dual iterate and H(x, y) denotes the Hessian with respect
to x of the Lagrangian function (1.2). If the change in variables is written as p = x − xk,
then an equivalent QP is given by

minimize
p∈Rn

∇f(xk)Tp+ 1
2p
TH(xk, yk)p

subject to ci(xk) +∇ci(x)Tp ≥ 0, i = 1, 2, . . . ,m.
(3.1)

This problem may be written in matrix form as

minimize
p∈Rn

g(xk)Tp+ 1
2p
TH(xk, yk)p

subject to J(xk)p ≥ −c(xk),
(3.2)

where g(x) = ∇f(x), and J(x) is the Jacobian matrix of the vector-valued function c(x).
The Lagrange multipliers for the QP subproblem (3.2) may be regarded as estimates of the
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Lagrange multipliers of the nonlinear problem and are called the QP multipliers. If the
QP multipliers are written in the form yk + qk (so that qk defines the change to the dual
variables analogous to the change pk in the primal variables), then the first-order conditions
for (xk + pk, yk + qk) to be a primal-dual solution of the QP (3.2) are:

gk +Hkpk = JTk (yk + qk), yk + qk ≥ 0,

(yk + qk) · (Jkpk + ck) = 0, Jkpk + ck ≥ 0,
(3.3)

where gk = g(xk), Hk = H(xk, yk), ck = c(xk), and Jk = J(xk). The second-order neces-
sary conditions require the additional condition that the QP Hessian Hk has nonnegative
curvature on the surface of the active constraints at xk + pk. Let A(x) denote the index set
of the active constraints of the QP subproblem (3.1). Similarly, let JA denote the matrix
of rows of Jk with indices in A(x). Then the curvature condition is equivalent the reduced
Hessian ZTAHkZA being positive semidefinite, where the columns of ZA form a basis for the
null-space of JA, i.e., JAZA = 0.

In a line-search SQP method, the new iterate is defined as xk+1 = xk +αkpk, where
pk is a solution of (3.2) and αk is a nonnegative scalar step length. The step length is chosen
to reduce the value of a merit function, whose value provides a measure of the distance of
the point xk + αkpk to a solution x∗ of the nonlinear problem. Other SQP methods use a
trust-region or filter strategy to define the new point xk+1 based on the QP step pk. Various
trust-region and filter SQP methods are described in [10, 43, 71].

The step length αk is included to ensure “progress” at every iteration, since the
current approximation of the Lagrangian function and/or the constraints may be inaccurate
when the current iterate is far from x∗. In line search methods for unconstrained and linearly
constrained optimization, the value of the objective function f alone provides a “natural”
measure to guide the choice of αk. Matters are more complicated when solving a nonlinearly
constrained problem. Except in a few special cases, it is impossible to generate a feasible
sequence of iterates with decreasing values of the objective function.

The most common approach is to choose the step length αk to yield a “sufficient
decrease” (in the sense of Ortega and Rheinboldt [73, 74]) in a merit function M that mea-
sures progress toward the solution of the constrained problem. Typically, a merit function
is a combination of the objective and constraint functions. An essential property of a merit
function is that it should always be possible to achieve a sufficient decrease in M when
the search direction is defined by the QP subproblem (3.2). A desirable feature is that the
merit function should not restrict the “natural” rate of convergence of the SQP method,
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i.e., αk = 1 should be accepted at all iterations “near” the solution, in order to achieve
quadratic convergence (see Section 3.1.1 below). An intuitively appealing feature is that x∗

should be an unconstrained minimizer of M . A feature with great practical importance is
that calculation ofM should not be “too expensive” in terms of evaluations of the objective
and constraint functions and/or their gradients.

A commonly used merit function is the `1 penalty function:

M(x) = P1(x, ρ) = f(x) + ρ
m∑
i=1

max{−ci(x), 0} = f(x) + ρ‖c(x)−‖1, (3.4)

where ρ is a nonnegative penalty parameter. (Han [52], first suggested use of this function
as a means of “globalizing” an SQP method.) This merit function has the property that, for
ρ sufficiently large, x∗ is an unconstrained minimizer of M1(x, ρ). In addition, ρ can always
be chosen so that the SQP search direction pk is a descent direction for P1(x, ρ). However,
requiring a decrease in M1 at every iteration can lead to the inhibition of superlinear
convergence (the “Maratos effect”; see Maratos [64]), and various strategies have been
devised to overcome this drawback (see, e.g., Chamberlain et al. [16]). In practice, the
choice of penalty parameter in (3.4) can have a substantial effect on efficiency.

3.1.1 Convergence rate of SQP

An important issue associated with an SQP method is the rate of convergence of
the iterates {xk} to a local minimizer. Given an m-vector v, let vA denote the vector of
elements vi such that i ∈ A(xk +pk), where A(xk +pk) denotes the active set at an optimal
solution xk + pk of the QP subproblem (3.2). Similarly, let JA(xk) denote the matrix of
rows of J(xk) with indices in A(xk + pk). With this notation, the matrix-vector quantities
associated with the first-order optimality conditions (3.3) for the QP subproblem may be
written in the matrix form:H(xk, yk) −JA(xk)T

JA(xk) 0

pk
qA

 = −

g(xk)− JA(xk)TyA

cA(xk)

 . (3.5)

These conditions are the Newton equations for finding a stationary point of the equality
constrained problem defined in terms of the active set, i.e., (3.5) are the Newton equations
for solving the equations F (x, yA) = 0, where

F (x, yA) = ∇LA(x, yA) =

g(x)− JA(x)T yA

−cA(x)

 .
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Robinson [81] has shown that if xk is sufficiently close to a local minimizer x∗ that satisfies
the linear independence constraint qualification (LICQ), then the QP solution has the same
active set as the solution of the nonlinear problem. The LICQ implies that the active set
remains constant in a neighborhood of a solution and JA(xk) has full row rank. If, in ad-
dition, the second-order sufficient conditions hold, then the equations (3.5) are nonsingular
and the QP direction is equivalent to that defined by Newton’s method associated with an
equality-constraint nonlinear problem defined by the optimal active set. Under these cir-
cumstances, Newton’s method is quadratically convergent. Hence, under ideal conditions,
a conventional SQP method with a global optimization procedure that does not suffer from
the Maratos effect is quadratically convergent.

3.1.2 Difficulties associated with conventional SQP methods

Nonconvex QP subproblems. As mentioned in the introductory section of Chapter 1,
the problem of finding a local solution of a nonconvex QP is an NP-hard problem. The
principal difficulty occurs at so-called dead-points, where the QP second-order necessary
conditions for optimality hold, but the second-order sufficient conditions do not. At such
points, the verification of optimality is equivalent to verifying the copositivity of a symmetric
matrix (see, e.g., Forsgren, Gill and Murray [31]). Because of this, many existing SQP
methods implemented as software use a positive-definite approximations to the Hessian.
Unfortunately, if second derivatives are not used to define the QP direction the property
of quadratic convergence is lost. Furthermore, since any negative curvature of the reduced
Hessian is discarded, there is no readily available away to check whether, and ensure progress
towards, a stationary point satisfying the second-order optimality conditions. This implies
that the sequence of SQP iterates may converge to a local maximizer or saddle point.

The effects of rank-deficiency (I). For the Newton equations to be well defined, the
active-constraint gradients must be linearly independent, otherwise the matrix is singular.
Linear independence of the active-constraint gradients implies that the LICQ holds at the
limit point of the sequence of iterates. For many practical problems, the LICQ does not
hold at a local minimizer, in which case the equations (3.5) are singular with no unique
solution. In this situation, one remedy is to use a stabilized SQP method, which is based on
solving the QP subproblem:

minimize
x,y

gTk(x− xk) + 1
2(x− xk)TH(xk, yk)(x− xk) + 1

2µk‖y‖
2

subject to ck + Jk(x− xk) + µk(y − yk) ≥ 0,
(3.6)
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where µk is a scalar parameter such that µk → 0 (see, e.g., Wright [86], Hager [51], Li and
Qi [62], and Fernández and Solodov [25]).

The effects of rank-deficiency (II). If the active set A associated with a solution of
the subproblem (3.2) is known, then xk+pk may be found by solving the Newton equations
(3.5). In general, however, the optimal QP active set is not known in advance. The
general class of active-set QP methods are based on the observation that the equations (3.5)
represent the optimality conditions for an equality-constrained quadratic program (EQP) in
which the constraints in the active set are fixed as equalities. This suggests an algorithm in
which an estimate of the QP active set is used to define an EQP with solution satisfying a
system analogous to (3.5). If a component of the Lagrange multiplier vector for the EQP is
negative, then the estimate of the optimal active set is updated by excluding the constraint
with the negative multiplier.

If equations of the form (3.5) are to be used to solve for estimates of pk and qA,
then it is necessary that JA have full rank, which is probably the greatest outstanding issue
associated with methods that solve systems of the form (3.5). Two remedies are available.

• Rank-enforcing active-set methods maintain a set of row indices W associated with
a matrix JW of full rank, i.e., the rows of JW are linearly independent. The set W
defines a “working set” of indices that estimates the set A at a solution of (3.5). If N
is a subset of A, then the system analogous to (3.5) is given byH(xk, yk) −JW (xk)T

JW (xk) 0

pk
qW

 = −

g(xk)− JW (xk)TyW

cW (xk)

 . (3.7)

which is nonsingular because of the linear independence of the rows of JW . (More
details of rank-enforcing active-set methods are given in Section 3.1.3 below.)

• Regularized active-set methods include a nonzero diagonal regularization term in the
(2, 2) block of has (3.5). The magnitude of the regularization is generally based on
heuristic arguments that give mixed results in practice. The formulation and analysis
of regularized methods are discussed in Chapter 5.

3.1.3 Active-set methods for a QP subproblem in all-inequality-form

The SQP methods described in thesis utilize the properties of primal-feasible inertia-
controlling active-set methods for quadratic programming (see Gill et al. [37], and Gill and
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Wong [40]). An important feature of these methods is that once a feasible iterate is found,
all subsequent iterates are feasible. The methods have two phases. In the first phase
(called the feasibility phase or phase one), a feasible point is found by minimizing the sum
of infeasibilities. In the second phase (the optimality phase or phase two), the quadratic
objective function is minimized while feasibility is maintained. Each phase generates a
sequence of inner iterates {pj} such that J(xk)pj ≥ −c(xk). The new iterate pj+1 is defined
as pj+1 = pj+σjdj , where the step length σj is a nonnegative scalar, and dj is the QP search
direction. For efficiency, it is beneficial if the computations in both phases are performed by
the same underlying method. The two-phase nature of the algorithm is reflected by changing
the function being minimized from a function that reflects the degree of infeasibility to the
quadratic objective function. For this reason, it is helpful to consider methods for the
optimality phase first.

As the equations (3.5) may be singular for a general QP, inertia-controlling methods
approximate A by a working set W of mW row indices associated with a linearly indepen-
dent subset of the rows of J . Analogous to the active-constraint matrix JA, the mW by
n working-set matrix JW contains the gradients of the constraints in W. Once feasible,
inertia-controlling active-set methods solve the equationsH −JTW

JW 0

dj
qW

 = −

g − JTWyW

cW − Jpj

 , (3.8)

where g = g(xk), H = H(xk, yk), J = J(xk), and cW are the elements of the vector c = c(xk)
corresponding to indices in the working set. At each QP iteration the working set is chosen
in such a way that the implicit equality constrained problem associated with the working
set constraints has a well-defined minimizer.

Definition 3.1.1 (Subspace stationary point). Let W be a working set defined at a point p.
Then p is a subspace stationary point with respect to W (or, equivalently, with respect to
JW ) if g+Hp ∈ range(JTW ), i.e., there exists a vector y such that g+Hp = JTWy. Equivalently,
p is a subspace stationary point with respect to the working set W if the reduced gradient
ZTW (g +Hp) is zero, where the columns of ZW form a basis for the null-space of JW .

At a subspace stationary point, the components of y are the Lagrange multipliers associated
with a QP with equality constraints JWp = −cW . The identity g + Hp = JTWy holds at a
subspace stationary point.

To classify subspace stationary points based on curvature information, we define the
terms second-order-consistent working set and subspace minimizer.
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Definition 3.1.2 (Second-order-consistent working set). Let W be a working set associated
with a point p, and let the columns of ZW form a basis for the null-space of JW . The working
set W is second-order-consistent if the reduced Hessian ZTWHZW is positive definite.

The inertia of the reduced Hessian is related to the inertia of the (n + mW ) × (n + mW )

KKT matrix K =

H JTW

JW 0

 through the identity In(K) = In(ZTWHZW ) + (n,mW , 0)

(see Gould [45]). It follows that an equivalent characterization of a second-order-consistent
working set is that K has inertia (n,mW , 0). A KKT matrix K associated with a second-
order-consistent working set is said to have “correct inertia”. It is always possible to impose
sufficiently many temporary constraints that will convert a given working set into a second-
order consistent working set. For example, a temporary vertex formed by fixing variables
at their current values will always provide a KKT matrix with correct inertia.

Definition 3.1.3 (Subspace minimizer). If p is a subspace stationary point with respect to
a second-order-consistent basis W, then p is known as a subspace minimizer with respect
to W. If every constraint in the working set is active, then p is called a standard subspace
minimizer; otherwise p is called a nonstandard subspace minimizer.

Suppose that pj is a subspace minimizer. If yW is nonnegative, then pj is the solution
of the QP subproblem because conditions (3.3) are satisfied and ZTWHZW is positive definite.
Otherwise, there is at least one strictly negative component of yW (say, the i-th), and there
exists a feasible descent direction dj , such that gTdj + dTj Hdj < 0 and JWdj = ei, where
ei is the i-th column of the identity matrix. Movement along dj causes the i-th constraint
in the working set to become strictly satisfied. The direction dj is computed by solving
equations (3.8) with the shifted right-hand side cW + ei− Jpj . At this stage, two situations
are possible. The point pj +σ∗jdj such that σ∗j minimizes the quadratic along dj may violate
a constraint (or several constraints) not currently in the working set. In order to remain
feasible, a nonnegative step σ̄j < σ∗j is determined such that σ̄j is the largest step that retains
feasibility. A constraint that becomes satisfied exactly at pj + σ̄jdj (defined as a blocking
constraint) is then “added” to the working set (i.e., JW includes a new row). If the blocking
constraint is dependent on the constraints in Wj then the blocking constraint is swapped
with the working-set constraint corresponding to (yW )i. In either of these situations, it can
be shown that pj+1 = pj + σ̄jdj is a subspace minimizer with respect to the new working
set (see Gill and Wong [40]).

If there is no blocking constraint, then the feasible point pj+1 = pj + σ∗jdj is a
subspace minimizer with respect to JW and the iteration may be repeated at pj+1 with the
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constraint corresponding to (yW )i deleted from the working set. Methods of this general
structure will converge to a local solution of the QP subproblem in a finite number of
iterations if at every iteration the active set has full rank,

It is always possible to impose sufficiently many temporary constraints that will
covert a given working set into a second-order consistent working set. For example, a tem-
porary vertex formed by fixing variables at their current values will always provide a KKT
matrix with correct inertia. Alternatively, if J̄ is a full-rank matrix of active constraints
such that J̄Z = 0, and

ZTHZ =
(
Z1 Z2

)T
H
(
Z1 Z2

)
=

ZT1 HZ1 ZT1 HZ2

ZT2 HZ1 ZT2 HZ2

 , with ZT1 HZ1 positive definite,

then ZT2 p = 0 is an appropriate set of temporary constraints.

3.2 SQP Methods for Constraints in Standard Form

Every nonlinear program may be defined in the form

minimize
x∈Rn

f(x) subject to c(x) = 0, ` ≤ x ≤ u,

where c(x) is a vector of m nonlinear constraint functions ci(x), and ` and u are vectors of
lower and upper bounds. For example, an all-inequality constraint problem may be written
in the form

minimize
x∈Rn

f(x) subject to c(x)− s = 0, s ≥ 0, (3.9)

where s are a set of slack variables. Without loss of generality, we will consider a simpler
form of problem in which the upper bounds on x are omitted, i.e.,

minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0. (3.10)

This problem format is known as standard form. The vector-pair (x∗, y∗) is a first-order
solution to this problem if it satisfies

c(x∗) = 0 and min
(
x∗, z∗

)
= 0, (3.11)

where y∗ and z∗ are the Lagrange multipliers associated with the constraints c(x) = 0 and
x ≥ 0 respectively, with z∗ = g(x∗)− J(x∗)Ty∗.
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Given an estimate (xk, yk) of a primal-dual solution of (3.10), a line-search SQP
method computes a search direction pk such that xk + pk is the solution (when it exists) of
the quadratic program

minimize
x

gTk (x− xk) + 1
2(x− xk)THk(x− xk)

subject to ck + Jk(x− xk) = 0, x ≥ 0,
(3.12)

where ck, gk, Jk and Hk denote the quantities c(x), g(x), J(x) and H(x, y) evaluated at
(xk, yk). If the Lagrange multiplier vector associated with the constraint ck+Jk(x−xk) = 0
is written in the form yk+qk, then a solution (xk+pk, yk+qk) of the QP subproblem (3.12)
satisfies the optimality conditions

ck + Jkpk = 0 and min
(
xk + pk, gk +Hkpk − JTk (yk + qk)

)
= 0,

which are analogous to (3.11). Given any x ≥ 0, let A and F denote the index sets

A(x) = {i | xi = 0} and F(x) = {1, 2, . . . , n}/A(x). (3.13)

If x is feasible for the constraints ck+Jk(x−xk) = 0, then A(x) is the active set at x. With
these definitions, the optimality conditions analogous to (3.5) for all-inequality form areHF −JTF

JF 0

pF

qk

 = −

[gk − JTkyk ]F

ck

 , (3.14)

where pF , HF and JF are the components of pk, Jk and Hk associated with the indices in
F(xk +pk). These conditions represent the Newton equations for finding a stationary point
of the equality constrained problem defined in terms of the free variables. If Hk and JF have
full rank in a neighborhood of a solution, then Newton’s method converges at a quadratic
rate.

For problems in standard form, rank-enforcing active-set methods maintain a set
of indices B associated with a matrix of columns JB with rank m, i.e., the rows of JB are
linearly independent. The set B is the complement in (1 , 2, . . . , n) of a “working set” N of
indices that estimates the set A at a solution of (3.12). In this case, the system analogous
to (3.14) is given by HB −JTB

JB 0

 pB

qk

 = −

[gk − JTkyk ]B

ck

 , (3.15)

which is nonsingular because of the linear independence of the rows of JB. More details are
provided in the following section.
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3.2.1 Active-set methods for QPs in Standard Form

The QP subproblem associated with the NLP (3.10) with constraints written as in
standard form is given by

minimize
p∈Rn

g(xk)T p+ 1
2p
TH(xk, yk)p

subject to J(xk)p = −c(xk), xk + p ≥ 0.
(3.16)

Let J be m × n. An active set method keeps a set of mW fixed nonbasic variables with
indices in N and nB = n −mW free basic variables with indices in B. Let ETN denote the
rows of the identity corresponding to the nonbasic variables. The working-set matrix is

JW =

 J

ETN

 . (3.17)

If P is a permutation such that ETNP =
(
0 IN

)
, then

JWP =

JB JN

0 IN

 and P THP =

HB HD

HT
D HN

 .
Definition 3.2.1 (Subspace stationary point). If the following conditions hold,

g +Hp = JTπ + z

zB = [g +Hp]
B
− JTB π = 0

zN = [g +Hp]
N
− JTN π,

then p is a subspace stationary point. Equivalently, p is a subspace stationary point if the
reduced gradient ZTW(g +Hp) is zero, where ZW is a basis for the null-space of JW .

Definition 3.2.2 (Second-order consistent working set). If ZTBHZB is positive definite, or,
equivalently, the matrix

KB =

HB JTB

JB


has inertia (nB,m, 0), then the set N of nonbasic indices forms a second-order consistent
working-set.

Definition 3.2.3 (Subspace minimizer). If p is a subspace stationary point, and the current
working-set is second-order consistent , then p is also a subspace minimizer.

Moreover, if zN ≥ 0, then p is a local minimizer of(3.16).
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3.2.2 Temporary bounds

Let p0 be a stationary point for (3.16) and H be indefinite. In general the point
p0 may not be at a second-order consistent working set, however, one may be formed by
introducing temporary bounds on the constraints.

Decompose the null-space of JW :

Z = N(JWP ) =

N(JB)
0mW

 .
Attempt to form a inertia-revealing factorization (such as Cholesky or block diagonal with
interchanges) of ZTHFZ. At some point the factorization stops, resulting in the partially
factorized matrix

MPZTHFZP
TMT =

D 0
0 U

 ,
where, after permutation, the first mz columns of Z satisfy [ZP̄ TMT ]T1 H[ZP̄ TMT ]1 = D

which is a positive diagonal matrix. Let ZP̄ T =
(
Z1 Z2

)
. Similarly as in the all-inequality

case, we can make ZT2 p = 0 an temporary constraint to construct a second-order consistent
working set.



Chapter 4

Stability and Convergence

4.1 Background

For a given scalar or vector quantity ζ, consider an optimal solution x∗(ζ) of the
parameterized problem

minimize
x

f(x, ζ)

subject to ci(x, ζ) = 0, i ∈ E ,
ci(x, ζ)≥ 0, i ∈ I,

(4.1)

associated with the problem (2.1). The study of the stability of the problem (2.1) is the
study of the solutions of (4.1) as ζ → ζ∗, where ζ∗ is a value such that x∗ = x∗(ζ∗). In
general, let ζ be such that ζ ∈ Π, with Π a Banach space and f and c are both redefined
as f : Rn ×Π 7→ R and c : Rn ×Π 7→ Rm. Throughout this chapter, f and c are assumed
to be three-times Frechet differentiable in both x and ζ.

As an example, consider ζ, ζ∗ ∈ Rn+m, with ζ∗ = (x∗, y∗), ζ = (x̄, ȳ), and functions

f(x, ζ) = f(x̄) + g(x̄)T(x− x̄) + 1
2(x− x̄)TH(x̄, ȳ)(x− x̄)

ci(x, ζ) = ci(x̄) +∇ci(x̄)T(x− x̄), i = 1, 2, . . . ,m.

In this case, (4.1) is a quadratic program that has a local solution (x∗, y∗) for ζ = ζ∗.
If x∗ satisfies the optimality conditions of (4.1) for some ζ∗, an important topic is

the existence and characterization of solutions x(ζ) for (4.1) for ζ in a neighborhood of ζ∗,
including existence, uniqueness, and bounds on ‖x(ζ)− x∗‖ and ‖y(ζ)− y∗‖.

Stability, as the study of solutions to perturbed problems is called, assists in the
convergence theory of algorithms. For global convergence, the stability properties that hold

42
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under different constraint qualifications can be used to show that as the steps pk in some
sequential algorithm (xk+1 = xk + pk) approach zero, the iterate xk approaches a KKT
point. For local convergence, continuity assumptions together with stability are used to
show convergence rates, as the subproblem begins to resemble a framework or other specific
algorithm known to converge at the desired rate.

A multifunction is a multivalued (set-valued) function. A multifunction r : R 7→ R

may take on one value, no values, or multiple values for any x. A multifunction r(x) is upper
semicontinuous at x0 if for every neighborhood Bu of r(x0), there exists a neighborhood
Bx such that for every x ∈ Bx, it holds that r(x) ⊂ Bu. If a multifunction is upper
semicontinuous for every point x ∈ Bx, then it is said to be upper semicontinuous on the
set Bx (see, e.g., Bonnans and Shapiro [12]).

Let U be a neighborhood U ⊂ Rn and consider the quantity

cdist(ζ,U) = sup
i

sup
x∈U

max
{
|ci(x, ζ)− ci(x∗)|, ‖∇ci(x, ζ)−∇ci(x∗)‖,

‖∇2ci(x, ζ)−∇2ci(x∗)‖
}
,

which measures the perturbation in the constraints and their derivatives induced by the
perturbation ζ.

The set A+(y∗) contains the indices corresponding to the positive elements of y∗

(see Section 2.4.2, page 26). Let A+ and A0 denote the sets A+ = ∪y∗∈My(x∗)A+(y∗) and
A0 = A \ A+.

Definition 4.1.1. The second-order sufficiency condition (SOSC) holds at x∗ if for all
y∗ ∈My(x∗), wT∇2

xxL(x∗, y∗)w ≥ σ‖w‖2 for all w such that ∇ci(x∗)Tw = 0 for i ∈ E ∪A+,
and ∇ci(x∗)Tw ≥ 0 for w ∈ A0.

Definition 4.1.2. The strong second-order sufficiency condition (SSOSC) holds at x∗ if
for all y∗ ∈ My(x∗), wT∇2

xxL(x∗, y∗)w ≥ σ‖w‖2 for all w such that ∇ci(x∗)Tw = 0 for
i ∈ A+ ∪ E.

4.2 Robinson’s Theorem and the LICQ

Robinson [81] establishes a set of stability results that hold under the linear in-
dependence constraint qualification (LICQ). Nonlinear optimization convergence theorems
frequently refer to these results because of their strength and reliability. As these results
are the strongest stability results in the literature, and are relatively simple to apply, many
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proofs of global and local convergence assume that the LICQ holds at cluster points of the
sequence of iterates.

Robinson analyzes the solutions of a perturbed problem near a point x∗ satisfying
the LICQ, strict complementarity, and the sufficient second-order optimality conditions. He
proves the following main result, which implies that that for small perturbations, there is
always a solution of the perturbed problem that is close to the original solution.

Theorem 4.2.1 (Robinson [81, Theorem 2.1]). Let x∗ satisfy the first-order necessary and
the second-order sufficient conditions for optimality of (4.1) with ζ = ζ∗. Furthermore,
let the LICQ and strict complementarity hold at x∗. Then there are open neighborhoods
V(ζ∗, εζ) ⊂ Π and U(x∗, y∗, εx) ⊂ Rn × Rm with ζ∗ ∈ V and (x∗, y∗) = z∗ ∈ U and a
continuous function G : V 7→ U such that for each ζ ∈ V, G(ζ) = (x, y) = z(ζ) uniquely
satisfies the first-order KKT conditions of the perturbed problem (4.1). Furthermore, second-
order sufficiency, complementary slackness and the LICQ hold at z(ζ) = (x(ζ), y(ζ)).

The proof relies on the implicit function theorem and the local stability of linear
independence. The implicit function theorem requires a nonsingular Jacobian at x∗, which
implies that it is not possible to relax the assumption that the LICQ holds.

Robinson also derives a bound for points close to solutions of (4.1). Specifically,
consider the constraints arranged sequentially with the first |E| constraints being equalities
and the remaining constraints inequalities. Consider the vector defined as a concatenation
of all of the quantities that are required to be zero at a KKT point,

e(x, y, ζ) = [Lx(x, y, ζ), c1(x, ζ), . . . , c|E|(x, ζ), y|E|+1c|E|+1(x, ζ), . . . , ymcm(x, ζ)]T,

measuring the distance of the current values of the problem functions from optimality.
Denote the Jacobian matrix de(z, ζ)/dz|(z̄,ζ̄) = e′z(z̄, ζ̄).

The following holds:

Theorem 4.2.2 (Robinson [81, Theorem 2.2]). Consider U , V, and G defined as in The-
orem 4.2.1. For any scalar ε > 0, there are open neighborhoods Uε ⊂ U and Vε ⊂ V, such
that for any ζ̃ ∈ Vε and z̃ ∈ Uε,

‖z̃ −G(ζ̃)‖ ≤ 1
1− ε‖e

′
z(z∗, ζ∗)−1‖‖e(z̃, ζ̃)‖.

This theorem implies that the distance of a point z̃ to the solution to a problem
perturbed by ζ̃ is bounded by the size of the violation of the first-order optimality conditions
of the perturbed problem at the point z̃. This is later used to derive convergence rates of
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iterative algorithms, since, as illustrated by the introductory examples, subproblems can be
defined as perturbations of the original nonlinear problem. Specifically, Robinson [81] then
makes the following Lipschitz continuity assumption:

‖e(G(z), G(z))− e(G(z), z))‖ ≤ α‖G(z)− z‖λ,

and is able to prove linear (for λ = 1) and superlinear (λ > 1) convergence for a class of
Newton-like recursive algorithms.

4.2.1 Application to convergence theory

As an illustrative example of the applicability of these results, consider the sequential
quadratic programming of Gill et al. [36]. Their algorithm solves nonlinear programs by
solving a series of quadratic program subproblems

minimize
p

g(xk)Tp+ 1
2p
TH(xk, yk)p

subject to J(xk)p+ c(xk) ≥ 0.
(4.2)

where xk is the point at the current iteration. In addition, to force iterates towards a local
minimizer from an arbitrary starting point, they include an augmented Lagrangian merit
function,

φ(x, y, s; ρ) = f(x) + yT(c(x)− s) + 1
2ρ‖c(x)− s‖2,

where s are the slack variables and ρ a penalty parameter. Choosing an α that reduces
the merit function sufficiently, the algorithm sets xk+1 = xk + αpk, yk+1 = yk + αqk and
sk+1 = sk + αrk, where pk is the solution, qk are the change in the multipliers qk = πk − yk
for (4.2), and r the change in the slack variables.

For global convergence, Gill et al. [36] cite Robinson [81] to show that if a step
pk is sufficiently small, then the active set at xk is the same as the active set at x∗, the
nearest KKT point. They then use the full row rank of the linearization matrices of the
SQP subproblem (which holds under the LICQ) to bound ‖x∗ − xk‖ by ‖pk‖. Finally,
they use the properties of the merit function to show that ‖pk‖ → 0. Local convergence
is shown by proving that eventually α = 1 and, since the correct active set is estimated,
the subproblem solves Newton’s equations for the optimality conditions, as described in
Chapter 3 (Page 33). Since the LICQ holds, Newton’s method on the first-order KKT
conditions is well-defined.
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4.3 Stability under the MFCQ

4.3.1 Robinson’s results for the MFCQ

Robinson also analyzed the stability of a perturbed problem under the Mangasarian-
Fromovitz constraint qualification and the second-order sufficiency condition [83]. The
optimality conditions are considered in the context of a generalized equation

0 ∈ F (z) + T (z),

where F : Rl 7→ Rl and T is a multifunction T : Rl 7→ Rl. In the context of nonlinear
optimization

0 ∈

∇f(x) + J(x)Ty
−c(x)

+

 0
R(y)

 ,
where R(y) is the cone of nonnegative vectors that are complementary to y, i.e.,

R(y) =

 {b ∈ Rm | b ≥ 0, biyi = 0 for all i} if y ≥ 0,
∅, otherwise.

Let x∗ solve the KKT conditions for the perturbed problem (4.1) with perturbation
ζ0. The following continuity of perturbed problem solutions results hold.

Theorem 4.3.1 (Robinson [83, Theorem 3.1]). If the MFCQ and second-order sufficiency
conditions hold at x∗, then there are neighborhoods U and V of x∗ ∈ U and ζ0 ∈ V such that
ζ ∈ V implies that the perturbed problem (4.1) with perturbation ζ has a solution x ∈ U .

Theorem 4.3.2 (Robinson [83, Theorem 3.2]). Let the MFCQ and the SOSC hold at
x∗. There are neighborhoods U and V of x∗ and ζ0 such that x∗ ∈ U , ζ0 ∈ V and the
multifunctions SU : U2 × V2 7→ Rm and SP : V2 7→ U2 defined as

U(x, ζ) := {y ∈ Rm | (x, y) satisfies the KKT conditions for
the problem (4.1) with perturbation ζ},

SP (ζ) := {x ∈ U2 | there is a multiplier y such that (x, y, ζ)
satisfies the KKT conditions for the problem (4.1) with perturbation ζ},

are upper semicontinuous.

Robinson establishes the following result.

Theorem 4.3.3 (Robinson [83, Theorem 3.3]). Let LM : Π 7→ Rn be defined as

LM(ζ) = {x | x is a local minimizer of (4.1)},
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There are neighborhoods U3 of x∗ and V3 of ζ0, for which then SP ∩ U3, with SP as in
Theorem 4.3.2, is continuous and for each ζ ∈ V3, LM(ζ) ⊂ SP (ζ) ∩ U3.

These results establish local existence of solutions for perturbed problems as well as
provide some bound as to the distance of the perturbed problem solutions to the original
solution. While weaker than Lipschitz continuity, the local boundedness associated with up-
per semicontinuity does provide tools for convergence theory. Robinson’s results are applied
by Wright [87] for his analysis of the inexact SQP subproblems discussed in Chapter 5.

4.3.2 Kojima’s results for the MFCQ

Kojima [60] gives the following stability result for nonlinear programs for which the
MFCQ holds at a solution x∗.

Theorem 4.3.4 (Kojima [60, Theorem 7.1]). Let x∗ satisfy the first-order KKT conditions
and the MFCQ hold at x∗. Then the strong second order sufficiency (SSOSC) condition
holds at x∗ if and only if there exists a δ∗ such that for all δ ∈ (0, δ∗], there is an ε such
that when

cdist(ζ,Bδ(x∗)) ≤ ε,

Bδ(x∗) contains a KKT solution x̄ to (4.1) unique in Bδ(x∗).

Corollary 4.3.1. The MFCQ and strong second-order sufficiency conditions hold at x̄.

Corollary 4.3.2. The minimizer x∗ is an isolated KKT point.

The proof relies on the fact that under the MFCQ, the set of multipliers is bounded,
and in particular, it is a convex polyhedron. At an extreme point of the polyhedron, the
active constraint gradients for the equalities and the inequality constraints corresponding
to positive multipliers are linearly independent, and so he is able to apply the same results
he had developed earlier in his paper using degree theory for the case of the LICQ.

Kojima does not provide rate of convergence results. In particular, Kojima shows
continuity but not Lipschitz continuity of the solutions subject to perturbations. In the
proof of Lipschitz continuity under the LICQ in Robinson [81], the Lipschitz constant is the
inverse of the local linearization of the optimality conditions. As the constraint gradients
may be linearly dependent, this inverse may or may not exist. Robinson [83] gives an
example where Lipschitz continuity in the solutions does not hold when MFCQ holds but
the LICQ does not hold.
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The results of Kojima [60] and Robinson [83] imply that, while under the MFCQ, for
small perturbations, solutions should be expected to exist, no precise bound can be made
in proportion to the perturbation, regardless of the smoothness of the original problem
functions. To contrast the two results, Robinson [83] shows local boundedness of perturbed
problem solutions, while Kojima [60] shows local uniqueness, the reverse implication that
local existence implies the SSOSC and the local preservation of the MFCQ and SSOSC,
under the stronger assumption of the SSOSC.

4.3.3 Convergence theory for the MFCQ

Qi and Wei [78] provide convergence theory for both generic and specific SQP meth-
ods that use a constraint qualification that is weaker than the LICQ. Consider the approx-
imate KKT sequence,

Definition 4.3.1. A sequence of primal-dual iterations {(xk, yk)} is an approximate KKT
sequence if it holds that

∇f(xk) + J(xk)Tyk = εk

ci(xk) ≥ δk, i ∈ I

[yk ]i ≥ 0, i ∈ I

[yk ]ici(xk)− δk = 0, i ∈ I

‖ci∈E(xk)‖ ≤ νk,

where {εk, δk, νk} converges to zero as k →∞.

If an approximate KKT sequence converges to x∗ and the constant positive linear
dependence condition (CPLD) holds at x∗ then x∗ is a KKT point. This implies that for a
generic SQP method with a well-defined line-search, if the sequence has a cluster point x∗

and, along the sequence converging to x∗, lim inf ‖pk‖ → 0, then x∗ is a KKT point.
They require an additional assumption, namely that the second order sufficiency

condition holds at x∗, for showing results for sequences as opposed to subsequences. This is
because the second-order sufficiency conditions together with the CPLD imply that KKT
points are isolated. This fact is central to the proof that if ‖pk‖ → 0 then xk → x∗.

They then analyze the Panier-Tits [75] SQP method, wherein a generic SQP step
is combined with a step of descent and a second-order correction, using a line-search to
ensure global convergence. They assume that the CPLD holds at a limit point x∗ and that
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the MFCQ holds at all other points. The MFCQ condition implies that feasible sufficient
descent directions at non-KKT points will always exist. This fact is used by Qi and Wei to
show global convergence (i.e., xk → x∗, where x∗ is a KKT point).

Qi and Wei [78] then adjust the algorithm and decompose the constraints into
a subset with linearly independent constraint gradients and the rest, and assuming, in
addition, the CRCQ (implying that these sets are locally maintained), they show two-
step superlinear convergence, using the results of Kojima [60] to show that the perturbed
problems arising from selecting subsets of constraints are still feasible.

Qi and Wei [78] are able to use a number of weaker-than-LICQ assumptions to show
that the KKT conditions hold at limit points, global convergence, and local convergence,
with increasingly stronger conditions. As such, the results are some of the strongest among
the convergence theory in the literature.

4.4 Convergence Under Weak Constraint Qualifications

This section describes additional global convergence results that rely on constraint
qualifications that are weaker than the MFCQ.

In their paper on the constant rank subspace component (CRSC) and constant
positive generator (CPG) conditions, Andreani et al.[4] are able to show that a convergent
approximate KKT sequence converges to a KKT point x∗ if the CPG holds at x∗. This
allows them to generalize the results from Qi and Wei to assume the CPG instead of the
CPLD where appropriate. Specifically, if there is a convergent subsequence xk → x∗,
lim inf dk = 0 and the CPG holds at x∗, then x∗ is a KKT point. Likewise, if the CPG
holds at x∗ and the MFCQ at all other points, then the generic SQP algorithm converges
(xk → x∗ with x∗ a KKT point).

Andreani et al. [4] are also able to show a stronger result (assuming just that the
CPG holds at a cluster point x∗) for an augmented Lagrangian method. They apply the
standard Conn, Gould, and Toint [19] augmented Lagrangian for problems with general
equality constraints and bound constraints on the variables. They show that by the inherent
properties of the augmented Lagrangian function, the algorithm converges to a stationary
point of ‖c(x)‖2. This implies that one of two cases occur, convergence to a feasible point or
convergence to an infeasible minimum of the sum of squares of the constraints. It is shown
that a sequence with a feasible limit point is an approximate KKT sequence, which implies
that the feasible limit point is a KKT point.
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As there are no continuity-of-solution estimates, however, there are no known local
convergence results for these weaker constraint qualifications. However, in Chapter 5 it will
be seen that there are stability and resultant convergence results for a class of algorithms
that rely strictly on assumptions of second-order sufficiency.

4.5 Second-order Convergence Theory

Traditionally, algorithms have been constructed strictly to generate sequences of
iterates converging to first-order optimal points. Most algorithms calculate directions of
descent that decrease an objective or merit function until there is no feasible descent direc-
tion without being concerned with the curvature along that direction. However, it is also
possible to calculate directions of negative curvature that decrease the objective or merit
function until the curvature in the proper space is positive-definite. Computing a direction of
negative curvature and verifying second-order optimality is far more computationally chal-
lenging than finding a descent direction and checking for first-order optimality. Ultimately,
since both types of directions result in a decrease in the objective or a merit function, in
practice most strictly first-order algorithms end up rarely terminating at a saddle-point or
local maximum. Nevertheless, as algorithms in constrained nonlinear optimization become
increasingly successful, progress in the field entails solving a wider class of problems to full
optimality. Furthermore, it has been demonstrated that directions of negative curvature
can considerably decrease the required number of iterations for convergence to solutions
of unconstrained problems. A few algorithms demonstrating convergence to second-order
local minima for constrained problems have been formulated and will be discussed here.

4.5.1 Computing directions of negative curvature

Recall from Chapter 2 (Page 25) that C̃(x) = {d | ∇ci(x)Td = 0, i ∈ E , ∇cj(x)Td =
0, j ∈ A}. Convergence to a second-order optimal point requires computing directions of
negative curvature for the reduced Hessian matrix ZTHZ, where H is Lxx, and Z is a basis
for the space corresponding to C̃(x).

This is done by performing a factorization of ZTHZ which reveals its inertia, cal-
culating a direction of negative curvature from the remaining portion of the matrix to be
factorized, then performing a curvilinear line search or trust-region step using both the
direction of descent and the direction of negative curvature. The two most common such
factorizations are the partial Cholesky and the LBLT symmetric indefinite factorization.
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Forsgren et al. [33] describe a method in which a Cholesky factorization with piv-
oting is performed until there are no remaining potential positive pivots. The remaining
pivot element is a direction of negative curvature, whereas the completed portions of the
factorization correspond to directions of positive curvature for the particular reduced Hes-
sian.

Forsgren [29] describes a method using a modification of the symmetric indefinite
LBLT factorization to reveal the inertia of a KKT matrix. By specific selection of pivots,
the inertia of the initial phase of the factorization remains “correct” and modification in
the form of adding the norm of the remaining Schur complement to the components of the
Hessian matrix remaining to be factorized corrects the inertia while only changing H and
not the other blocks of the KKT matrix.

These procedures are discussed in more detail in Chapter 9.

4.5.2 A second-order exact Lagrangian method

DiPillo et al. [22] present a second-order augmented Lagrangian algorithm for in-
equality constrained problems. They use the following augmented Lagrangian function, an
alteration of the standard Hestenes-Powell-Rockafeller function to make it exact:

La(x, y, ρ) = f(x) + yTmax(ci(x),−ρr(x, y)y) + ‖max(c(x),−ρr(x, y)y)‖2

2ρr(x, y)

+ ‖∇c(x)T∇xL(x, y) +
∑
∇2ci(x)yi‖2,

where the function r(x, y) = (α− ‖c(x)−‖pp)/(1 + ‖y‖2), where ‖a‖s is defined as (
∑
i[a]pi )1/p

for some integer p.
Assuming the LICQ, they show that if there is a positive-definite matrix W ∈

∂2
BLa(x∗, y∗; ρ) (notice that La is not twice continuously differentiable), then (x∗, y∗) satisfy

the second order necessary optimality conditions. They define a the matrix Q as capturing
an appropriate amount of second-order information of the problem approximating W . For
each step of the inner augmented Lagrangian iteration, they perform a curvilinear line-
search:

x+ α2d+ αs,

where dT∇La ≤ 0 and sTQs ≤ 0 and sT∇La ≤ 0. They derive that sTkQsk → 0 implies that
the underlying sequence of iterates converges to a second-order optimal point, and show
that the properties of the line-search ensures this limit holds.
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4.5.3 A second-order standard augmented Lagrangian method under weak
regularity assumptions

Andreani et al. [1] manage to also prove second-order convergence for an augmented
Lagrangian algorithm, but use much weaker assumptions, in particular the MFCQ and the
WCR condition.

In solving the augmented Lagrangian subproblem, their inner iterations calculate
a descent and a negative-curvature step. They then choose the one that provides for the
largest reduction in the value of the augmented Lagrangian. The inner iterates stop when
the augmented Lagrangian has both vanishing gradient and positive curvature in the re-
duced space. The outer iteration is the standard augmented Lagrangian multiplier, penalty
parameter and tolerances updating procedure.

In their convergence proofs, they use a technical lemma from Andreani et al. [6] that
states that for any element of d ∈ C̃(x∗), there is a sequence of dk ∈ C̃(xk) converging to
d (where xk → x∗). The lemma allows them to prove that limit points of the sequences of
iterates generated by the algorithm satisfy the second-order necessary conditions for opti-
mality, and will be used in the second-order global convergence proofs of SQP2d (Chapter 7)
and pdSQP (Chapter 9).

Note that the cone in which positive semidefinite curvature is shown to hold is C̃(x∗),
so a constraint qualification certifying the weak semidefinite reduced property (WSRP) is
sufficient. There are currently no known factorization methods of computing directions of
negative on a cone as opposed to a subspace (as in, directions satisfying ∇ci(x)Tp ≥ 0 for
i ∈ A0).



Chapter 5

Regularized SQP Methods

5.1 Introduction

Regularized SQPmethods are a class of methods that involve slightly altered quadratic
programs as subproblems. They have been shown to converge at a superlinear rate for de-
generate problems. There are several regularized SQP algorithms, the most common one
being the stabilized SQP.

Except where otherwise noted, this chapter will concern problems with inequality
constraints only. The problem is written in the form

minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

At any x, the gradient of f and the Jacobian of c will be denoted by g(x) and J(x) re-
spectively. Similarly, the Hessian of the Lagrangian function with respect to x for given
multipliers y will be denoted by H(x, y).

The convergence theory for stabilized SQP requires some form of second-order suf-
ficiency assumption. The three principal forms that appear in the literature are presented
below in order of increasing strictness.

As defined in Section 2.4.2, page 26, A+(x∗) contains the indices corresponding to
the positive elements of y∗. Similarly, A+ and A0 are the sets A+ = ∪y∗∈My(x∗)A+(y∗) and
A0 = A \ A+.

Definition 5.1.1. The second-order sufficiency condition (SOSC) holds at x∗ if for all
y∗ ∈ My(x∗), dTH(x∗, y∗)d ≥ σ‖d‖2 for all d such that ∇ci(x∗)Td = 0 for i ∈ A+, and
∇ci(x∗)Td ≥ 0 for d ∈ A0.

53
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Definition 5.1.2. The relaxed second-order sufficiency condition (RSOSC) holds at (x∗) if
for some y∗ ∈My(x∗), dTH(x∗, y∗)d ≥ σ‖d‖2 for all d such that ∇ci(x∗)Td = 0 for i ∈ A+,
and ∇ci(x∗)Td ≥ 0 for d ∈ A0.

Sometimes, it will also be said that the RSOSC holds at a particular (x, y), implying
that the RSOSC holds and, in particular, this particular y is among the multipliers satisfying
the condition.

Definition 5.1.3. The strong second-order sufficiency condition (SSOSC) holds at x∗ if for
all y∗ ∈My(x∗), dTH(x∗, y∗)d ≥ σ‖d‖2 for all d such that ∇ci(x∗)Td = 0 for i ∈ A+ ∪ E.

Definition 5.1.4. The relaxed strong second-order sufficiency condition (RSSOSC) holds
at x∗ if for some y∗ ∈My(x∗), dTH(x∗, y∗)d ≥ σ‖d‖2 for all d such that ∇ci(x∗)Td = 0 for
i ∈ A+ ∪ E.

Note that these cones also correspond to cones in the definitions for the weak and
strong second-order necessary conditions.

The relaxed conditions are clearly weaker, but this is only because the Hessian
H(x∗, y∗) is a different matrix for each y∗ ∈ My(x∗), the space is directions are actually
equivalent.

Lemma 5.1.1 (Wright [89, Lemma 2.1]). The set of directions defined by:

{d | ∇ci(x∗)Td = 0 for i ∈ A+ ∪ E}

is equivalent to the set:

{d | ∇ci(x∗)Td = 0 for i ∈ A+(y∗) ∪ E}

for all y∗ ∈My(x∗).

Regularized SQP methods often use a regularization parameter µ. The parameter
µ is most commonly defined in terms of the optimality condition violation:

η(x, y) =

∥∥∥∥∥∥∥∥∥


g(x)− J(x)Ty

[ c(x) ]−
c(x)Ty


∥∥∥∥∥∥∥∥∥ . (5.1)

Typically µ = η(x, y)τ , where 0 < τ ≤ 1. Some methods require τ to be strictly less than
one, but if τ = 1 is permitted, then the local convergence rate is quadratic. If τ < 1, the
local convergence rate is superlinear.
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It can be shown that η = Θ
(
δ(x, y)

)
where δ(x, y) is the distance to the nearest

first-order KKT point,

δ(x, y)2 = ‖x− x∗‖2 + inf
y∗∈My(x∗)

‖y − y∗‖2.

In what follows, we define δ1(x) and δ2(y) to be δ1(x) = ‖x−x∗‖ and δ2(y) = dist(y,My(x∗)).

5.2 The Inexact SQP Method iSQP

First introduced by Wright [87], there is a class of methods called inexact SQP
(iSQP) that involve iterated solutions of subproblems perturbed in some way from the
standard SQP subproblem.

A number of methods can be fit into the iSQP framework including the first regu-
larized iSQP method of Fischer [26], and the stabilized SQP method described below. In
addition, many commercial SQP solvers do not solve the conventional subproblem exactly,
and have certain features that can be formalized as involving stabilized working-sets [87].

Throughout this section, assume that the MFCQ holds at all KKT points.
The iSQP subproblem at a given (x, y) is:

minimize
p∈Rn

(g(x) + t)Tp+ 1
2p
TH(x, y)p

subject to J(x)p+ r ≥ −c(x),
(5.2)

where t ∈ Rn and r ∈ Rm are perturbations that may also depend on x and y..
Assume there is a local minimizer x∗. Consider an initial primal-dual estimate

(x0, y0).

Theorem 5.2.1 (Wright [87, Lemma 5.1]). If the SOSC and the MFCQ hold at (x∗, y∗), a
first-order KKT point, then for all (x0, y0, t, r) with δ(x0, y0) and ‖(t, r)‖ sufficiently small,
the iSQP subproblem has a local solution (p, y1) = (x1 − x0, y1) near (0, y0) that satisfies

‖p‖+ δ1(y1) = O
(
δ1(x0)

)
+O

(
‖(t, r)‖

)
.

This result may be derived from Robinson’s general stability theorem (see Robin-
son [83, Theorem 3.2]), which is given as Theorem 4.3.2 in Section 4.3.1, page 46. Con-
sider the perturbation parameter as ζ = (x0, y0, t, r) and let the base perturbation be
ζ0 = (x∗, y∗, 0, 0), the results of the Theorem implies the existence of solutions to the per-
turbed problem, and the locally bounded continuity of solutions estimate bounds ‖p‖ and
‖y1 − y0‖.
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Consider a general iSQP algorithm wherein at each iteration, the iSQP subproblem
is solved and the step p closest to zero is chosen when there are multiple solutions. The
following local convergence rate holds.

Theorem 5.2.2 (Wright [87, Theorem 5.3]). For δ(x, y) and ‖(t, r)‖ sufficiently small,

δ(xk+1, yk+1) = ‖yk+1 − yk‖O
(
δ1(xk)

)
+O

(
δ1(xk)2)+O

(
‖(t, r)‖

)
.

Fischer [26] introduces a general framework of generalized modified Newton equa-
tions and a method that computes a step from the solution of two quadratic programs. It
can be shown that the method fits into the iSQP framework and superlinear convergence
can be proven. Fischer’s method requires the solution to two QPs, and whereas it is one of
the earliest regularized SQP methods in the literature, it does not resemble the others and
requires stronger assumptions for convergence.

Stabilized SQP, which also fits the context of the iSQP framework, will be discussed
in detail in the next few sections. The specific results achieved by using the iSQP framework
for stabilized SQP is presented as reference Wright [87] in Table 5.1.

There is one additional algorithm to discuss that fits in the iSQP framework, stabi-
lized working sets.

5.2.1 Stabilized working sets

In practice, the state-of-the-art SQP optimization packages rarely converge linearly
or worse to optimal points for most mildly degenerate problems. It appears as though this
is a result of two standard features of these algorithms:

• Use of the working set from the solution of the previous QP subproblem as an initial
working set for the current one.

• Allowing constraints not in the working set to be violated by small tolerances.

The stabilized working-set algorithm is an attempt to formalize these features [87].
A stack {Bs, Bs−1, . . . , B0 = {1, . . . , m}} of working sets is maintained with Bl ⊂ Bl−1. At
each major iteration, the subproblem

minimize
p∈Rn

g(xk)Tp+ 1
2p
TH(xk, yk)p

subject to ci(xk) +∇ci(xk)Tp ≥ 0, i ∈ Bs.
(5.3)
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is solved. If the primal solution p violates any of the constraints not in Bs by more than
µ1+τ
k , the subproblem is solved again with the constraints from the working set Bs−1 and

the process is repeated.
Otherwise, Bs+1 is defined as the final working set for the subproblem (5.3), and

added to the stack of working sets. The multipliers for the constraints not in Bs+1 are set
to zero.

Consider the extended iSQP subproblem, which is defined to be the iSQP subprob-
lem (5.2) defined with a subset of constraints B. The following result holds:

Lemma 5.2.1 (Wright [87, Lemma 8.2]). If the SOSC and the MFCQ hold at x∗, then
there exists a value δ̄ such that if δ(x, y) ≤ δ̄ and ‖(t, rB)‖ ≤ δ̄ and yi = 0 for i /∈ B, for B =
A+(y∗) for some y∗ such that {∇cB(x∗))} are linearly independent, then the corresponding
extended iSQP subproblem has at least one solution that satisfies, for this y∗,

‖p‖+ ‖y − y∗‖ = O
(
‖x− x∗‖

)
+O

(
‖t, rB‖

)
.

The next theorem concerning convergence of the stabilized working sets algorithm
follows from this result.

Theorem 5.2.3 (Wright [87, Theorem 8.3]). Assume the SOSC and the MFCQ hold at
x∗, then there exists a δ̄ such that if δ(x, y) ≤ δ̄, and there is a B in the stack of the
stabilized working sets algorithm satisfying the assumptions of the previous lemma, then this
B remains in the stack for all subsequent iterations and the algorithm converges superlinearly
to (x∗, y∗), y∗ the multiplier referenced in the previous lemma, to order 1 + τ .

Consider an additional procedure of dropping linearly dependent constraints to en-
sure linear independence of the working sets at each iteration. Upon adding this feature to
SQPsws, the following result holds.

Theorem 5.2.4 (Wright [87, Corollary 8.4]). Suppose that the LSSOSC, the MFCQ, and
the the CRCQ are satisfied at x∗. There is a δ̄ such that if δ(x, y) ≤ δ̄, the stabilized working
sets algorithm converges superlinearly to a primal-dual solution.

It should be noted that for the SQPsws method, the parameter τ must satisfy
0 < τ < 1, which implies that only superlinear, and not quadratic, convergence can be
proven.
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5.3 Stabilized SQP

The most common and well known regularized SQP method is the stabilized SQP
method, introduced first by Wright [86]. Dropping the dependence of g(x) and J(x) on x and
H(x, y) on (x, y) in the notation, the sSQP algorithm involves the following subproblem:

min
p

max
y≥0

pTg + 1
2p
THp+ (y + q)T(c+ Jp)− 1

2µ‖q‖
2,

which may be rewritten as

minimize
p∈Rn,q∈Rm

gTp+ 1
2p
THp+ 1

2µ‖y + q‖2

subject to Jp+ µq ≥ −c.
(5.4)

Let the initial point (x0, y0) be sufficiently close to a first-order KKT point (x∗, y∗).
There are a number of convergence results on stabilized SQP. In the first result, quadratic
convergence is shown to hold if µ = η for both exact and finite arithmetic under the as-
sumptions of the MFCQ, strict complementarity, and the SOSC (assumption 5.1.1) condi-
tion holding at (x∗, y∗), a first-order KKT point (see Wright [86]). Subsequently, quadratic
convergence was proven assuming just that the strong second order sufficiency condition
(assumption 5.1.3) holds (see Hager [51]).

Hager [51] proves quadratic convergence under the assumption that the relaxed
strong second order sufficiency condition (RSSOSC) holds (see Definition 2.4.5, page 27).
Instead of requiring µ to be the measure of optimality violation η explicitly, µ is relaxed
to require that σ0‖x − x∗‖ ≤ µ ≤ σ1, where σ0 is sufficiently large and σ1 depends on σ0.
With µ = ητ , Hager requires τ to satisfy 0 < τ ≤ 1. Since τ may equal one, quadratic
convergence can be proven.

The strength of the stabilized SQP method relies on the properties of the perturbed
KKT matrix

H(x, y) −J(x)T

J(x) µI


which can be nonsingular even when J(x) is not full rank. The smaller the value of µ, the
closer the method is to a conventional SQP method, while at the same time the closer the
KKT matrix is to being ill-conditioned if the constraints are degenerate.
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5.4 Indefinite sSQP Subproblems

One issue that many of the convergence results do not address is the fact that in
using the exact Hessian, the sSQP subproblem,

minimize
p∈Rn,q∈Rm

gTp+ 1
2p
THp+ 1

2µ‖y + q‖2

subject to Jp+ µq ≥ −c,

may be nonconvex, even close to a solution, and hence could have multiple, if not an
unbounded set of solutions. This can be the case even close to a point satisfying the
second-order sufficiency conditions, for which the reduced Hessian at the optimal active set
may be positive-definite, but not the Hessian of the subproblem.

This implies that there there are implicit assumptions in the strong local convergence
results of the sSQP literature in terms what the “sSQP method” means, such as that at
each iteration, either the global minimizer or the minimizer closest to the current point or
just any minimizer is taken as the iteration step. On the other hand, perhaps in penalizing
large multipliers, sSQP results in the active-set estimate being maintained to be optimal
once y is close to a y∗ satisfying the optimality conditions.

This section will discuss an illustrative example and discuss the results in the liter-
ature related to this issue.

5.4.1 Example

Consider the NLP:
minimize

x∈R2
x2

1 − x2
2

subject to −2 ≤ x2 ≤ 2.
(5.5)

The objective gradient is g =

 2x1

−2x2

 and the Hessian is

2 0
0 −2

 and hence is always

indefinite. Consider the bound constraints to be general inequality constraints, and consider

the inequality-constrained sSQP subproblem. The Jacobian matrix is J =

0 1
0 −1

.
The stabilized SQP subproblem becomes:

minimize
p∈Rn,q∈Rm

(
2x1 −2x2

)T
p+ 1

2p
T

2 0
0 −2

 p+ 1
2µ‖y + q‖2

subject to p2 + (x2 + 2) + µq1 ≥ 0,
−p2 + (2− x2) + µq2 ≥ 0.

(5.6)
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Since x1 = 0 is clearly optimal, and does not appear in the constraints, reduce the dimension
of the problem by setting x1 = 0, and it is clear that any solution to the subproblem has
p1 = 0.

The optimality conditions for the sSQP under this assumption are:

−2x2 − 2p2 = y1 + q1 − y2 − q2, (5.7a)

p2 + (x2 + 2) + µq1 ≥ 0, (5.7b)

−p2 − (x2 − 2) + µq2 ≥ 0, (5.7c)

(y1 + q1)( p2 + (x2 + 2) + µq1) = 0, (5.7d)

(y2 + q2)(−p2 − (x2 − 2) + µq2) = 0, (5.7e)

y1 + q1 ≥ 0, (5.7f)

y2 + q2 ≥ 0. (5.7g)

Solving the stationarity condition (5.7a) for p2 yields

p2 = −x2 + 1
2(y2 + q2 − y1 − q2).

As defined earlier in this chapter (Page 54), µ is defined as the optimality condition violation:

η(x, y) =

∥∥∥∥∥∥∥∥∥


g(x)− J(x)Ty

[ c(x) ]−
c(x)Ty


∥∥∥∥∥∥∥∥∥ .

For superlinear convergence, µ must be set to ητ , with τ > 0. At the same time, τ must be
set to satisfy τ ≤ 1 for the stability results to hold (see Hager [51, Theorem 1]). For this
example, set τ = 1, which a typical value that guarantees quadratic convergence.

Calculate µ, assuming x stays feasible, explicitly to be

µ =
√

(−2x2 + y1 − y2)2 + (y1(x2 + 2)− y2(2− x2))2.

Consider, for example, x2 = 2, y2 = 4. In this case, (x, y) = (x∗, y∗) and all the
optimality conditions for the NLP are satisfied and µ = 0. In this case, the subproblem
reduces to a conventional QP. This is unavoidable, since as discussed, µ must be µ = ητ .
As expected, it shall be seen that there are two solutions.

The problem is illustrated in Figure 5.1.
Consider the optimality conditions, using the substitution for p2 obtained from the

stationarity condition, the complementarity conditions become

1
2(q1) (8 + q2 − q1) = 0,

1
2(4 + q2) (−q2 + q1) = 0.
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x1

x2

(x∗, y∗)= ((0, 2), (0, 4))

(x∗, y∗) = ((0,−2), (4, 0))

Figure 5.1: Example of nonconvex problem

Note that, in addition, each product in both equations must be nonnegative. Consider the
graph of the lines in (q2, q1) space in Figure 5.2.

Note that a solution needs to be both feasible, and be a point at which a line A
intersects a line B. It is clear that there are two solutions, (0, 0), and (−4, 4), corresponding
to staying at the current point, and jumping to the other solution to the NLP.

It can be observed that the shape of these lines depends heavily on the value of µ.
A slight perturbation of y or x changes µ considerably. For instance, if x2 = 1.9, y1 = 0.01,
and y2 = 3.9, then µ = 0.42. Furthermore, there is a factor of (1 − 2µ) for the slope and
intercept of the upper B line, so the shape of the line changes considerably as µ approaches
one half.

If the same values for all the other quantities are maintained, but µ is set to be 0.45,
then the diagram in (q2, q1) space changes to appearing as in Figure 5.3.

In this case, the second solution is (−4, 40), a greater deviation from the original
point.



62

q2

A

A

B

B
q1

Figure 5.2: sSQP/SQP solution for example with (x, y) = (x∗, y∗), µ = 0.

If µ = 0.55 the qualitative nature of the solutions change completely, see Figure 5.4.
Note that the second solution disappears entirely, and, for µ > 0.5, there is only one

unique solution to this nonconvex QP.
This suggests that practically, µ does serve as a parameter penalizing jumps between

optimal active sets once y is sufficiently close to y∗. However, as µ→ 0, the stabilized SQP
subproblem approaches the conventional one, and is consequently more likely to contain
multiple solutions.

Unfortunately, however, artificially raising µ invalidates the fast local convergence
rates. Yet, as a theoretical point, it does appear that for some relatively large set of cases,
it could well be that stabilized SQP subproblems, even with an indefinite Hessian, have
unique solutions, and uniquely define a sequence of iterations towards an optimal point. It
still remains open as to the theoretical universality of this idea, and an open problem as to
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q1

q2

B

A

A

B

Figure 5.3: sSQP solution for example with (x, y) = (x∗, y∗), µ = 0.45.

how to ensure unique solutions while maintaining superlinear local convergence. However,
in practice, it appears that stabilized SQP may not suffer from this drawback frequently.

5.4.2 Uniqueness results

This illustration suggests that there are implicit assumptions and possible limita-
tions to the presentation of stabilized SQP. If there is no precisely defined “sSQP method”
in a practical sense, as there could be more than one solution to each subproblem, the
question arises as to what in particular the convergence results refer to.

The fine detail is that the results show that the solution satisfying the convergence
estimate is locally unique, in that there is a neighborhood around the current point for
which there is only solution to the subproblem.

In the one convergence result for sSQP, Wright [86] demonstrates that if strict



64

A

A

B

B

q1

q2

Figure 5.4: sSQP solution for example with (x, y) = (x∗, y∗), µ = 0.55.

complementarity holds at the x∗, then if y0 is sufficiently strictly complementary, as in,
it is close to a multiplier y∗ ∈ My(x∗) with mini y∗i > γ for some γ, the solution to the
optimality conditions with [yk]A > 0 and [yk]Ac = 0 satisfies

‖(p, yk+1 − yk)‖ ≤ Cµ

and is the only solution to the stabilized SQP problem that satisfies this estimate.
On a practical level, this suggests that, if one adds a trust region constraint that

limits the step in x and y, with the trust region radius being Cµ, then the solution to the
stabilized SQP subproblem is unique. While, as an example of a set of nonconvex QPs with
unique solutions, this is theoretically interesting, it is practically useless, since C depends
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on both the Lipschitz constants of the objective and constraint functions as well as the
distance to the optimal solution, the latter of which is obviously unknown a priori.

In a different convergence result Hager [51] shows the local uniqueness of the sSQP
solution. In particular, it is shown that there is a locally unique point satisfying the first-
order optimality conditions for sSQP given the conditions of RSSOSC at (x∗, y∗), (x0, y0)
being sufficiently close to (x∗, y∗) and µ bounding that distance from above. This is accom-
plished by considering a similar result for variational problems in Dontchev and Hager [23]
and applying it for the nonlinear optimization case.

It is important to note that the required result only concerns points in a neighbor-
hood of (xk, yk). It is assumed that the strictly positive multipliers remain strictly positive
in the local linearization, which permits separating the active and inactive constraints as
done in Hager [51]. This suggests that estimating the optimal active set, and maintaining
that estimate, is crucial for obtaining a well-defined sequence of sSQP iterates. The only
numerical implementation of sSQP [68] uses an active-set estimation procedure including
several heuristics to maintain strongly active multipliers.

The implication of the local uniqueness results’ dependence on constraint identifica-
tion is that if the iterates converge to x∗ normal to the active constraints, the subproblems
may be nonconvex at every iteration regardless of how close the iterations get to a local
minimizer satisfying any second-order sufficiency assumption.

5.5 Active Set Identification

It is a general feature of SQP methods that once the optimal active-set A(x∗) is
identified, convergence is usually reliable and rapid. This is also evident in the first two
convergence results of stabilized SQP, as the locally unique solution had the property of
having the same active set as the previous iterate which, in turn, had the same active
set as the closest local minimizer. This required the strong assumptions of either strict
complementarity or the strong second-order sufficiency condition. This implies that weakly
active constraints can make correctly identifying the active set in a well-defined algorithm
more difficult.

5.5.1 Multiplier adjustment

Facchinei, Fischer and Kanzow [24] propose a method for identifying active con-
straints. The method does not rely on any complementarity or multiplier uniqueness. It
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is shown that if there is a function ρ(x, y) such that ρ(x, y) → 0 as δ(x, y) → 0, with
ρ(x, y)/δ(x, y) → ∞ as δ(x, y) → 0, then the classification of a constraint as active if
ci(x) ≤ ρ(x, y) is correct provided that δ(x, y) is sufficiently small.

This idea may be expanded to identify weakly and strongly active constraints. Let
A(x, y) denote the set of estimated active constraints. Similarly, let Â ⊂ A(x, y) denote
an estimate of the weakly active constraints. The ID0 Algorithm proposed by Wright [88]
solves a sequence of linear programs of the form:

minimize
ŷ

−
∑
i∈Â

ŷi

subject to −η(x, y)τe ≤ g(x) +
∑

i∈A(x,y)
ŷi∇ci(x)≤ η(x, y)τe, ŷi ≥ 0 for i ∈ A.

The estimated set of weakly active multipliers Â is initialized to be A(x, y). Each step of
the algorithm involves solving the LP above and removing all multipliers from Â such that
ŷi ≥ η(x, y)τ . The steps are repeated until no multipliers are removed from Â. It can be
shown that Algorithm ID0 estimates the weakly and strongly active sets correctly. In the
situation where it is necessary to solve many LPs, the computational cost may be reduced
by solving the dual of the LP and using the final working set from one problem as the initial
working set for the next.

At each iteration of the algorithm sSQPa (Wright [88]) a standard sSQP inequality
constrained problem is solved. If the reduction of the optimality measures is not sufficiently
large, an ID0 algorithm is used to identify the weakly and strongly active multipliers. In
addition, an LP is solved to compute a multiplier such that the multiplier argmini yi for
i ∈ A+ is as large as possible (the so-called interior multiplier). The sSQP subproblem is
then re-solved.

It can be shown that sSQPa converges superlinearly under the assumptions of the
MFCQ and the SOSC.

The algorithm sSQPa has been implemented by Mostafa, Vicente, and Wright [68].
These numerical results, which are obtained for a small number of problems, are relatively
inconsistent, with some exhibiting the desired fast local convergence properties relative to
competitors, and others showing slower convergence, or no convergence at all. (As algorithm
sSQPa includes no procedure to force global convergence, some of these results are to be ex-
pected.) The constraint identification procedure is relatively reliable, but does not seem to
be effective for all problems, and the overall performance of sSQPa does depend on the iden-
tification procedure. While the numerical results are illustrative and show some potential
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for sSQP methods, they clearly indicate a need for further analysis and development.
Note that no mention is made of stability in the theoretical results, and no mention

is made of addressing multiple subproblem solutions in the numerical results or Wright’s
presentation of sSQPa.

5.5.2 Equality-constrained subproblems

As mentioned in Chapter 1, many of the second-derivative SQP methods involve two-
phase procedures of active-set estimation and equality-constrained subproblems. Noting
that the sSQP subproblem matrix, H JT

J −µI

 ,
is nonsingular due to the regularization parameter, once the proper active set is identified,
convergence should be fast and reliable.

In one method, due to Izmailov and Solodov [54], the active set is estimated, and
then the solution is sought for the equality constrained problem on the projection onto the
kernel of the active constraint Jacobian. However, the method uses an expensive singular
value decomposition that can introduce dense matrices in the large-scale case, and provides
no safeguards in the event of inaccurate identification of the active set. However, if a point is
sufficiently close to a local minimizer to the extent that the active set is correctly identified,
then this algorithm converges at a quadratic rate under the assumption of SOSC only.

A more robust procedure that implements active set estimation is given byWright [89].
This method is to be used with any reliable outer iteration procedure. Once an iterate from
the outer procedure satisfies a certain tolerance for optimality, he estimates the active set
and performs a sequence of equality-constrained Newton-Lagrange iterations. If, at some
point, the optimality measures from these iterations are not sufficiently reduced, a con-
straint not in the estimated active set becomes infeasible, the multipliers become negative,
or the step is too large, then the algorithm moves back to the outer iteration and decreases
the required threshold to come back to the equality-constrained problem. It can be shown
that once an iterate is sufficiently close to a KKT point and the correct active-set is iden-
tified, the iterations never leave the equality-constrained phase and converge quadratically
to the solution. The only assumption is the second-order sufficiency condition. This rela-
tively strong result points to the potential of integrating stabilized SQP with a robust outer
convergence procedure.
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5.6 Convergence and Stability of sSQP

By utilizing stability theory, it is possible to prove superlinear convergence for sta-
bilized SQP using only second-order sufficiency assumptions. As discussed above, stabilized
SQP subproblems have the effect of calming the dual iteration in the presence of nonunique
dual solutions of the nonlinear problem. This statement may be made more precise in terms
of specific statements about the solvability of the subproblems and relations between the
distances of the solutions to the previous iterate and the nearest KKT point. These proper-
ties, in turn, are shown to be responsible for the superlinear convergence rate of stabilized
SQP, independent of other stability results or constraint qualifications.

5.6.1 Fischer’s iterative framework

This section discusses the result by Fischer [27], which provides a link between cer-
tain stability properties and superlinear convergence. Fischer considers the same generalized
equation analyzed by Robinson [83], i.e.,

0 ∈ F (z) + T (z),

where F : Rl1 7→ Rl2 is continuous, and T : Rl1 ⇒ Rl2 is a closed multifunction. Let
Σ∗ denote the solution set of the generalized equation, with Σ0 ⊂ Σ∗ a nonempty closed
subset of the solution set. Let Σ(ζ) denote the set of solutions of the perturbed equation
0 ∈ F (z) + T (z) + ζ.

Consider a general iterative framework where subproblems of the form

0 ∈ Q(z, zk) + T (z),

are solved, where Q(z, zk) is an approximation to F . As the focus is on problems for which
the solutions are not unique, it is required that the iterative method define zk+1 to be such
that

‖zk+1 − zk‖ ≤ σ dist(zk,Σ∗).

This is an important restriction that reduces the chance of reaching a different local solution
when the subproblem is not convex. Nevertheless, this condition does not imply local
uniqueness of the solutions of the subproblem. The following main result holds for this
procedure,

Theorem 5.6.1 (Fischer [27, Theorem 1]). If the following conditions hold:
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1. There are ε1, γ, t > 0 such that, with Q = Σ0 + ε1B, it holds that

Σ(ζ) ∩Q ⊆ Σ∗ + t‖ζ‖B.

2. There is a ε2 > 0 and c > 0 such that, writing R(w, s) = F (w)−A(w, s),

sup{‖R(w, s)‖ | w ∈ s+ cdist(s,Σ∗), B} ≤ o(dist(s,Σ∗))}.

3. There is an ε4 such that Zc(s) 6= 0 for all s ∈ Σ0 + ε3B.

then the iterative procedure of solving 0 ∈ Q(z, zk) + T (z) is well-defined, and converges
superlinearly to some w∗.

If the order in Condition 2 is such that o(t) ≤ c0t
β, with β = 2, then the convergence

rate is quadratic.

The first assumption is called upper Lipschitz continuity of the subproblem. The
second condition quantifies the precision of the approximation of F by Q; and the third
condition stipulates that the subproblems are solvable.

The three properties can be shown to hold for a class of algorithms and problems,
including stabilized SQP under the assumption of the SSOSC (Assumption 5.1.3, see Fis-
cher [27]). The discussion that follows focuses on the specific results of Fernández and
Solodov [25], which are slightly stronger,

5.6.2 Convergence under the SOSC only

It can be shown that stabilized SQP satisfies the three properties required for su-
perlinear convergence under Fischer’s analysis, using only the assumption of the general
second-order sufficiency condition (Assumption 5.1.1, see Fernández and Solodov [25]).

The solvability of the subproblem is demonstrated by showing that under the sta-
bilized SOSC, it holds that the quantity

pTHp+ µ‖q‖2

is bounded away from zero over all (p, q) in the reduced space{
(p, q) | ∇ci(x)Tp− µqi = 0, i ∈ A+(x∗, y∗), and ∇ci(x)Tp− µqi ≥ 0, i ∈ A0(x∗, y∗)

}
.

This implies that the stabilized SQP KKT matrixH JT

J −µI

 ,
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is nonsingular, which is used in the existence result for the solution set.
Upper Lipschitz continuity of the subproblems can be shown using standard analysis,

and superlinear local convergence follows. Furthermore, under the SSOSC, the solution of
the subproblems are locally unique.

Note that, under the SOSC, although the sSQP method is well-defined and generates
superlinearly convergent iterates within a certain ball around the current point, the choice of
iterates is not unique. Under the SSOSC there is only one choice of iterate, and in practice,
this implies that choosing the closest subproblem solution to the current point produces local
superlinear (or quadratic) convergence, giving a precise convergence statement. However,
choosing the closest subproblem minimizer to the current point is NP-hard.

5.6.3 Convergence to noncritical multipliers

Izmailov and Solodov [57] also analyze the properties of sSQP subproblems in more
detail, analyzing the specific relationships between the notion of a critical multiplier, upper
Lipschitz stability, the SOSC, and subproblem solvability for equality, inequality and slack-
reformulated problems.

Equality constraints: Consider the following definition of a critical multiplier.

Definition 5.6.1. In the case of equality constraints, a multiplier ȳ is critical if there exists
a nonzero d ∈ null(J) such that H(x∗, ȳ)d ∈ range(JT )⊥, and noncritical otherwise.

In this case, the existence of a critical multiplier implies that the Hessian is singular
in the first-order tangent feasible cone, and so the SOSC does not hold. A critical multiplier
not existing in the setMy(x∗) is not equivalent, but is a weaker condition that the SOSC.

It is then shown that upper Lipschitz continuity around a solution (x∗, ȳ) is equiv-
alent to ȳ being noncritical, and that either of these two properties imply solvability of the
sSQP subproblem. These two facts imply that sSQP satisfies the assumptions of Fischer’s
iterative framework.

Inequality constraints: The definition of a critical multiplier may be extended to prob-
lems with inequality constraints.
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Definition 5.6.2. A multiplier is noncritical if and only if the problem

minimize
d

dTH(x∗, y∗)d

subject to ∇ci(x∗)Td = 0, i ∈ E ,
∇ci(x∗)Td ≥ 0, i ∈ A0,

∇ci(x∗)Td = 0, i ∈ A+,

has the unique solution d = 0.

If H(x∗, y∗) is either positive-definite or negative-definite in the cone of directions d
defined above, then y∗ is noncritical. However, this is not a necessary condition.

Upper-Lipschitz continuity of solutions to the perturbed problem is again equivalent
to the current iterate being sufficiently close to a KKT pair with a noncritical multiplier.

However, neither of these two conditions implies solvability.
When combined with the second-order necessary condition, upper Lipschitz conti-

nuity, or the existence of a noncritical multiplier close to the current iterate, does imply
local solvability.

Slack variables: Finally, a mixed equality-inequality problem reformulated so that the
inequalities are defined as equalities and bounds on slack variables is analyzed. In this
case, the two properties of upper Lipschitz continuity of solutions and solvability hold if
the primal-dual point is close to a solution wherein the multipliers are noncritical and the
multipliers corresponding to the slacks (and so, the inequality constraints) satisfy strict
complementarity.

5.6.4 Presence of critical multipliers

In general, the set of critical multipliers are of measure zero inMy(x∗). However, it
appears that there is evidence that Newton-like iterative methods, including stabilized SQP,
have inherent tendencies of generating dual iterates that converge to critical multipliers.
Izmailov and Solodov [56] point out that a relatively unlikely set of analytical conditions
have to hold for the dual sequence to not converge to critical multipliers. Numerical tests
in Izmailov and Solodov [55] confirm the tendency for dual iterates to converge to critical
multipliers, and numerical tests in [55] and [56] confirm that such iterations do not converge
superlinearly. These results show that this problem is pervasive with standard state-of-the-
art optimization software, specifically SNOPT and MINOS, and occurs far less frequently,
although still commonly (roughly half of the time) for sSQP.
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Note that this is still consistent with the previously mentioned convergence results.
Even if the set of critical multipliers is a set of measure zero, a trajectory of iterates could
converge towards one normal to the set of noncritical multipliers and never enter into a
domain of attraction for the noncritical multipliers.

This suggests that the research into stabilized SQP is by no means resolved, and care
must be taken to prevent convergence to critical multipliers if the superlinear convergence
results are to be realized.

5.7 Summary and Discussion

Table 5.1 summarizes the properties of the various regularized SQP methods that
have appeared in the literature. The column headed “Num” indicates if numerical results
have been given. Table 5.2 provides a legend for all of the abbreviations.

In Chapter 8, we discuss a primal-dual SQP method (pdSQP) that incorporates an
sSQP algorithm with a global optimization procedure. It is shown that pdSQP drives iter-
ates towards a KKT point and reproduces the fast local convergence properties of stabilized
SQP for degenerate problems.

The second derivative SQP method SQP2d, discussed in Chapter 7 is an algorithm
that is more similar to conventional SQP methods. It implements some of the ideas pre-
sented in Wright’s method of stabilized working sets. The method also has fast good local
convergence properties.
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Table 5.1: Summary of the properties of various regularized SQP methods

Reference Algorithm Assumptions Stable? Unique? Order r Num

Fischer [26] Two QPs WCC, SOSC, MFCQ, WCR Yes Yes Quad No

Wright [86] sSQP ineq MFCQ, RSOSC, SC No Yes Quad No

Hager [51] sSQP ineq RSSOSC Yes Yes Quad No

Wright [87] iSQP & sSQP MFCQ and SSOSC Yes No Super No

Wright [87] SQPsws MFCQ, SSOSC, CRCQ No Yes Super No

Wright [88] sSQP with ID0 MFCQ and SOSC No No Super Yes

Izmailov & Solodov [54] AS and proj RSOSC Yes Yes Quad No

Wright [89] AS and eq sSQP RSOSC on compact S ⊂My No Yes Quad Yes

Fernández & Solodov [25] sSQP ineq RSOSC Yes SSOSC Quad Yes*

Izmailov & Solodov [57] sSQP eq Noncritical ȳ Yes No Super No

Izmailov & Solodov [57] sSQP ineq Noncritical y and SONC Yes No Super No

Izmailov & Solodov [57] sSQP slacks Noncritical y and SC Yes No Super No

* for one problem.

Table 5.2: Legend

iSQP Inexact QP (page 55) AS Active-set estimation (page 65)

WCC range(JTA+
) is independent of y WCR Weak Constant Rank condition (page 29)

ineq inequality-constrained eq equality-constrained

proj Projection-based algorithm (page 65) Noncritical Noncritical multipliers (page 70)



Chapter 6

Convexification

6.1 Introduction

This chapters considers the “convexification” of various general quadratic programs
(QPs) arising in SQP methods for nonlinear optimization. It considers both the all-
inequality and standard form QP subproblem.

As noted in earlier chapters, the Lagrangian Hessian is not guaranteed to be positive
definite, and so a conventional SQP method could require the solution of an indefinite QP.
Such problems are NP-hard, and may be directions of ascent for a merit function. As a
result, many SQP methods use positive-definite approximations to the Hessian. However,
by avoiding second derivatives, they do not have the potential Newton local convergence
rate.

The proposed convexifications modify the Hessian matrix in the objective function
gTx+ 1

2x
THx so that it is positive definite. This procedure makes extensive use of Debreu’s

Lemma, first defined in Chapter 1, which states that ifH is positive definite on the null-space
of J , then there exists a finite ρc for which H + ρJTJ is positive definite for ρ > ρc.

6.2 Convexification in Standard Form

For a standard form quadratic program, a second-order consistent working set is
one at which the basic components of ZTHZ is positive-definite, where Z is the null-space
basis matrix of the equality constraint matrix J . This implies that by Debreu’s Lemma,
there is a ρ for which H̃ = H + ρJTWJW = H + ρJTJ + ρPNP

T
N is positive definite, and the
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quadratic program with H replaced by H̃ is convex. Consider the QP,

minimize
p∈Rn

gT p+ 1
2p
T(H + ρJTWJW )p

subject to Jp = −c, x0 + p ≥ 0.
(6.1)

Consider obtaining the unique solution of (6.1) using an active-set method. Denote this
solution by p̂. Let N̄ and B̄ denote the set of the nonbasic and basic indices at p̂. The
stationarity condition for p̂ implies:

z = g + (H + ρJTJ + ρPNP
T
N )p̂− JTȳ

= g +Hp̂− JT(ȳ + ρc) + PN p̂N .

Writing this equation in terms of the basic components gives

zB̄ = [g +Hp̂]B̄ − J
T
B̄
(ȳ + ρc) + ρ [PN p̂N ]B̄ = 0. (6.2)

Similarly, the nonbasic components are

zN̄ = [g +Hp̂]N̄ − J
T
N̄

(ȳ + ρc)− ρ [PN x̂0]N̄ ≥ 0. (6.3)

6.2.1 Relationship between solutions

Note that, from (6.2), if B̄ ∩ N is empty, then this implies p̂ is also a stationary
point of (3.16) with y = ȳ + ρc.

Let Z̃ denote a basis for the null-space for the final working set Jw̄ =

 J

ET
N̄

. Since
p̂ is a subspace minimizer, Z̃THZ̃ + ρZ̃TJTJZ̃ + ρZ̃TENE

T
NZ̃ = Z̃THZ̃ + ρZ̃TENE

T
NZ̃ is

positive definite. This implies that for every z̃ ∈ null(Aw̄) either z̃THz̃ > 0 or z̃N 6= 0. The
latter condition implies N 6= N̄ .

Finally, from (6.3), it holds that

[g +Hp̂]N̄ − J
T
N̄
y ≥ ρ [PN x̂]N̄ ≥ 0,

so if p̂ is a subspace minimizer of 3.16, the reduced costs are nonnegative and p̂ is also a
local solution.

Convexification at a QP local minimizer

Assume the convexification is formed at a local minimizer p∗ of (3.16). Let ȳ = y−ρc.
Then

0 = [g +Hp∗]
B
− JTBy

= [g +Hp∗]
B
− JTB(ȳ + ρc) + ρ(ENp

∗
N)B,
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so p∗ is also a stationary point of (6.1). Furthermore, p∗ is a subspace minimizer of (6.1)
since the problem is convex. Finally,

0 ≤ [g +Hp∗]
N
− JTN y

= [g +Hp∗]
N
− JTN (ȳ + ρc).

Comparing this to (6.3), p∗ may or may not be a local minimizer of (6.1) depending on the
size of (x0)N .

6.2.2 Effect on slack-variable merit function

The directional derivative of the slack-variable augmented Lagrangian merit function
can be expressed as:

φ′(α, ρ̃)
∣∣
α=0 = pTg − pTJTy0 + ρ̃pTJT(c− s0)− (c− s0)T q + yT0r − ρ̃rT (c− s0), (6.4)

where ρ̃ to denotes that a different parameter is used for the subproblem and the merit
function.

Take the product pT with the stationarity condition for the convexified subproblem:

pTg + pTHp+ ρpTJTJp+ ρpTPNP
T
N p = pTJTy + pTz.

Input this into (6.4) to get

φ′(α, ρ̃)
∣∣
α=0 = −(pTHp+ ρpTJTJp+ ρpTPNP

T
N p) + pTz

+ ρ̃pTJT(c− s)− (c− s)T q + yTr − ρ̃rT (c− s).

Let θ(p) be defined such that

θ(p) = pTHp+ ρpTJTJp+ ρpTPNP
T
N p.

The properties of q, r and c− s imply that

φ′(α, ρ̃)
∣∣
α=0 = −θ(p) + pT z + rT y − 2(c− s)T q − ρ̃(c− s)T (c− s).

Since rT y ≤ 0, θ(p) > 0 and (c − s)T (c − s) > 0, for large enough ρ̃ and ρ, we can make
this expression negative or even bounded away from 0, below 0, regardless of the sign of
pT z + (c− s)T q.
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6.3 Convexification of all-inequality QPs

At a second-order consistent point, construct the convex subproblem

minimize
p∈Rn

gT p+ 1
2p
T(H + ρJTWJW )x

subject to Jp ≥ −c.
(6.5)

By Debreu’s Lemma, there is a ρ such that H + ρJTWJW is positive definite and (6.5) is
convex.

Let p̂ be a local minimizer of (6.5). Stationarity implies:

g + (H + ρJTWJW )p̂ = JTAȳA. (6.6)

Optimality implies ȳA ≥ 0.

6.3.1 Relationship between solutions

Note that from (6.6), if JW = JA then

g +Hp̂ = JTAȳA − ρJTAJAp̂

= JTW(ȳA + ρcA).

This implies that p̂ is a stationary point for the original QP with yA = ȳA + ρcA.
Since p̂ is a subspace minimizer, letting Z̃ = null(JA), Z̃THZ̃+ρZ̃TJTWJW Z̃ is positive

definite. This implies that either Z̃THZ̃ is positive definite or JA 6= JW .
Finally, the sign of y, and hence the optimality of the original QP for p̂ depends on

the sign and magnitude of cA.

Convexification at a QP local minimizer

Let p∗ be a local minimizer for (6.5), and form the convexification at p∗. Consider
the stationarity condition,

g + (H + ρJTWJW )p∗ = JTWy + ρJTWJWp
∗ = JTW(yW − ρcW ),

which implies that p∗ is also a stationary point for (6.5) with multiplier ȳW = yW − ρcW .
By construction, p∗ is a subspace minimizer of (6.5). However, the sign of ȳW

depends on ρcW . This implies that a local minimum of the indefinite QP may not be a local
minimum of (6.5).
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6.4 Implementation

The implementation of convexification involves two primary considerations: 1) choos-
ing ρ and 2) the stage in the algorithm at which to apply the change to the Hessian matrix.
The challenges revolve around attempting to achieve the desired properties of a convex QP
while minimizing computational cost and the perturbation to the original indefinite prob-
lem. Three strategies will be discussed: 1) perfect convexification, 2) convexification using
Gershgorin circles, 3) streamlined-perfect convexification and 4) heuristic approaches.

6.4.1 Perfect convexification

Debreu’s lemma states that if H is positive-definite on the null-space of J there is a ρ̄
such that H+ρJTJ is positive-definite for ρ > ρ̄. The original proof of Debreu’s lemma [21]
suggests how to obtain the exact quantity ρ̄. From the proof, ρ̄ can be understood as the
objective value at the solution to

minimize
x∈Rn

xTHx

xTJTJx
subject to ‖x‖2 = 1, Jx 6= 0. (6.7)

This nonlinear program is indefinite, however, and hence potentially just as difficult to solve
as the original QP.

Alternatively, note that the assumptions of the Lemma imply that under the con-
straint xTJTJx = 0, xTHx has a minimum reached at only x = 0. This implies that ρ ≥ ρ̄

is the set of Lagrange multipliers for that problem. Hence, ρC is the minimum ρ for which

max
ρ

min
x

xTHx+ ρxTJTJx,

has the unique solution x = 0. This can be found by solving the problem

max
ρ

min
x

xTHx+ ρxTJTJx− µρ2,

for an increasing sequence of µ-values until x = 0 at the solution. At the solution for ρ to
the above problem,

ρ̄ = xTJTJx

2µ
and so this problem becomes

min
x
xTHx+ (xTJTJx)2

2µ .
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6.4.2 Standard form convexification with Gershgorin circles

Consider the Hessian decomposed as: HB HT
BN

HNB HN


where HB is positive definite and consists of the free indices. Consider adding a diagonal,0 0

0 DA

 ,
to H to make the entire Hessian matrix positive-definite, where DA is diagonal, but unlikely
previously, could have different values along the diagonal.

It holds that the entire matrix is positive definite if the Schur complement S =
HN −HT

BNH
−1
B HBN is positive definite. The Gershgorin circle theorem will be used for the

following analysis.

Theorem 6.4.1. Gerhgorin circle theorem: All eigenvalues of a matrix A lie in at least
one circle Di, where Di is defined to have center aii and radius Ri =

∑
j 6=i |aij |.

This implies that if the entries of the Schur complement are such that sii−
∑
j 6=i |sij | >

0 for all i, then H is positive definite. This motivates a bound that would imply that all of
the eigenvalues of S are positive.

Write

sii = [HN ]ii −
∑
j

[HBN ]ij [H−1
F HBN ]ji ≥ [HN ]ii −

‖HBN‖
‖HB‖

∑
j

[HBN ]ij .

and

−|sij | = −|[HBN ]ij +
∑
k

[HBN ]ik[H−1
F HBN ]kj | ≥ −|HBN |ij −

‖HBN‖
‖HB‖

∑
k

|[HBN ]ik|.

This implies that

Glow = sii −
∑
j 6=i |sij |

≥ [HN ]ii − ‖HBN‖
‖HB‖

∑
j [HBN ]ij −

∑
j 6=i

(
|HBN |ij + ‖HBN‖

‖HB‖
∑
k |[HBN ]ik|

)
≥ [HN ]ii − ‖HBN‖(1 + (mA + 1)‖HBN‖

‖HB‖ ),

where the norm can be taken to be the one- or ∞−norm (which are the same since H is
symmetric).

This implies that if

[HN ]ii +Di > ||HBN ||(1 + (mA + 1) ||HBN ||
||HB||

)

then the matrix has been sufficiently convexified.
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6.4.3 Streamlined-perfect convexification

In general, it is preferable to limit the degree to which the problem is altered in order
for the solution of the convex QP to be as nearest as possible to a solution to the original

indefinite QP. Consider a problem with two constraints

aT1
aT2

 p ≥ −c. If, at a point p̄,

both constraints are active and the working set is second-order consistent, a convexification

would add ρ

aT1
aT2

TaT1
aT2

 to H in the objective. However, an active-set method moves off

one constraint at a time. This implies that if a1 is held active, i.e., p ∈ N(aT1), then the
step would be identical as if the convexification only altered H by the term ρ

(
aT2

)T(
aT2

)
.

This suggests that it is possible to add one constraint at a time to H, i.e., H̃ = H̃ +ρsasa
T
s,

s denoting the constraint that the algorithm moves off of and ρs chosen appropriately.
Additionally, ρs can be chosen as in the perfect convexification for the entire J or a series
of ρs can be chosen for each s. In the latter case, ρs can vary for each s, allowing a smaller
overall change in the Hessian matrix of the subproblem.

6.4.4 Heuristic convexification

If every step pk that the QP algorithm computes is a direction of positive curvature
for H, then the QP algorithm executes as if the problem was convex. One approach this
suggests is to convexify only if the calculated step is a direction of nonpositive curvature
for H, calculating ρ to be just large enough to change the curvature along the step. Such
an algorithm is summarized in Algorithm 6.4.1

One immediately noticeable drawback to this specific approach is that a potentially
excessive number of steps may have to be calculated. It’d be desirable to ascertain a priori
whether a direction moving off a constraint will be a direction of nonpositive curvature and
the magnitude of the negative curvature (and hence the necessary magnitude of ρ to correct
for it).

Consider a step p moving off of constraint s at a second-order consistent point. The
step p may be decomposed into p = αas + Zpz, where Z is the null-space of the current
working set. Consider the curvature along p,

pTHp = α2aTsHas + 2αaTsHZpz + pTzZ
THZpz.

pTzZ
THZpz > 0 by assumption. If aTsHZ ≥ 0 and aTsHas ≥ 0 then for any value of α and

pz, the step p is a direction of positive curvature, and so a convexification is unnecessary.
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Algorithm 6.4.1. [Heuristic Convexification]
Let H̃0 = H, ρ0 = ρmin, ν > 0, η > 0, J̃ as empty.
while Not converged do

Let j = argmink yk;
if yj ≥ 0 then stop;
Calculate step pk+1;
Let ρk+1 = ρk, H̃k+1 = H̃k ;
if pTk+1H̃k+1pk+1 < ν, then

Let J̃k+1 =

J̃k
aTj

;
Let H̃k+1 = H + ρkJ̃

T
k+1J̃k+1;

Recalculate step pk+1 using the new H̃k+1;
if (pTk+1H̃k+1pk+1) < ν then

Let ρk+1 = − pT
k+1Hpk+1

ρk+1p
T
k+1J

T
k+1Jk+1pk+1

+ η;
else

break
end

end
Remove j from the working set.
Calculate α, take the step, and add any blocking constraints;

end do
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Otherwise, ρ may be calculated as some combination of −aTsHZ and −aTsHas. Since α and
pz is unknown a priori, an algorithm could initialize ρ by setting ρ0 = −aT

sHZe
||as||1 −

aT
sHas

||as||2 , and
then scale ρk+1 = γρk, γ > 1 as in Algorithm 6.4.1 if the direction turns out to still have
nonpositive curvature along H̃. Additionally, an initial scaling can be introduced based on
the size of ‖g‖, an estimate on the size of the feasible region or simply the size of the current
step pk.



Chapter 7

SQP with a Smooth Augmented
Lagrangian Merit Function

7.1 Introduction

This chapter discusses the convergence properties of a sequential quadratic pro-
gramming algorithm in which the QP objective is defined using the exact Hessian of the
Lagrangian. The algorithm uses the augmented Lagrangian merit function of Gill et al. [36],
and follows Murray and Prieto [69] in decomposing the QP subproblem into several simpler
parts where one requires only an approximate solution of the QP.

In addition, rather than assuming the strong and commonly violated assumption of
the linear independence constraint qualification (LICQ) holding at the solution, as is stan-
dard in the literature, the weaker Mangasarian-Fromovitz constraint qualification (MFCQ)
and weak constant rank (WCR) conditions are assumed (see Chapter 2, page 12). The
global convergence theory utilizes results of Qi and Wei [79]. The local convergence theory
involves the properties of stabilized working sets proposed by Wright [87, Section 8] (see
Chapter 5). The local convergence results in Wright [87] require the satisfaction of the
second-order sufficiency conditions at a solution. However, as our analysis implies global
convergence to a point satisfying the second-order necessary conditions, it is necessary only
that the reduced Hessian be nonsingular at the solution.

83
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7.2 Description of Outer Algorithm

The following problem is to be solved:

minimize
x∈Rn

f(x)

subject to c(x) ≥ 0.

The following smooth merit function is used:

LA(x, y, s, ρ) = f(x)− yT(c(x)− s) + 1
2ρ(c(x)− s)T(c(x)− s), (7.1)

where s ≥ 0 are slack variables, and the scalar ρ is known as the penalty parameter. In
other SQP methods the choice of merit functions is largely dictated by considerations of
efficiency. Here, however, it is essential that the merit function have continuous second
derivatives. The use of slack variables in the merit function is the feature that makes the
merit function smooth. Without slack variables it is necessary to define a merit function
in terms of only the “active” constraints. Such a merit function does not have continuous
second derivatives. Another virtue of this merit function is that it does not suffer from the
Maratos effect. A comparative discussion of this and other merit functions may be found
in Gill and Wong [41].

The choice of merit function requires a search direction defined in the x, y and s

variables and a search is performed on this expanded space. The approach adopted for the
slack variables is to set them at their optimal value (this is trivial since the merit function
is a quadratic function of the slack variables). Given a search direction in the x and y

variables, the search direction in the slack variables is then chosen to ensure that the slack
variables remain at their optimal values when the constraints are linear.

An important result of this chapter is to show how a direction of negative curvature
for the Hessian of the Lagrangian is transformed into a direction of negative curvature for
the Hessian of the merit function in the triple space of x, y and s.

For the curvilinear search used in the algorithm, the value of the merit function as
a function of the steplength α will be denoted by

φ(α;x, y, s, p, u, q, r, r̂, ρ) ≡ LA(x+ α2p+ αu, y + α2q, s+ α2r + αr̂, ρ). (7.2)

In what follows, only those arguments relevant to the current discussion will be included
in the notation for φ. At the kth iteration, the value of φ will be denoted by φk. The
first, second and third derivatives of φ with respect to α will be denoted by φ′, φ′′ and φ′′′,
respectively.
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The following notation will be used when appropriate:

gk ≡ ∇f(xk), Jk ≡ c′(xk), ck ≡ c(xk), Hk ≡ ∇2
xxL(xk, yk),

where L denotes the Lagrangian function.
The norm of the Lagrangian gradient is used to limit the size of some values in the

algorithm. Let δLk = δL(xk, yk, sk; ρk), where

δL(x, y, s; ρ) = ‖g(x)− J(x)T (y − ρ(c(x)− s)‖+ ‖c(x)− s‖

+
∑
j:sj>0

|yj − ρ(cj(x)− sj)|. (7.3)

The value of δL(x, y, s; ρ) provides a measure of the accuracy of (x, y, s; ρ) as an estimate
of a first-order KKT point for NP (assuming s is defined as in (7.4) below). In particular,
(xk, yk, sk) is a first-order KKT point at xk if and only if δLk = 0.

Finally, symbols of the form βab indicate constants related to properties of the
problem, or the implementation of the algorithm, where “ab” identifies the specific scalar
represented.

The computation of the search direction pk will be described in the next section.
Once pk has been computed, the slack variables are adjusted to minimize the merit function
for a fixed value of xk. This gives the optimal value sk such that

sk =


max {0, ck} if ρk−1 = 0,

max {0, ck − yk/ρk−1} otherwise.
(7.4)

The following inequality will prove useful (see Murray and Prieto [70, Equation (2.9)].

‖c(x)−‖ ≤ ‖c(x)− s‖. (7.5)

Let (pk, πk) be the primal-dual solution of the quadratic subproblem. If pk = 0,
then xk is a second-order KKT point for problem NP and the algorithm is terminated with
yk = πk. Otherwise, the dual search direction is given by

qk = πk − yk. (7.6)

Let ûk be a direction of negative curvature for Hk. The definition of ûk is discussed in a
subsequent section.

The algorithm adjusts the penalty parameter to ensure that a sufficient reduction
in the merit function is possible. Let

ωk ≡ 1
2
(
‖ck − sk‖2 + pTkB̄kpk

)
, (7.7)
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where B̄k is a positive-definite matrix described in the next section. If

φ′′k(0; ρk−1, ûk) ≤ −ωk + 1
2 û

T
kHkûk, (7.8)

then ρk = ρk−1. Otherwise, ρk is chosen to satisfy ρk ≥ ρ̂k, where

ρ̂k = ωk + gTkpk + (2yk − πk)T(ck − sk)
‖ck − sk‖2

. (7.9)

When ρk = ρk−1 the algorithm sets uk = ûk, otherwise uk = 0 since the direction of negative
curvature ûk may no longer be valid. It will be shown in Section 7.4.2 that when ρk 6= ρk−1,
the choice of ρk ensures that φ′′k(0; ρk, uk) ≤ −ωk, with uk = 0. If the condition (7.8) does
not hold and ρk is updated, then φ′′k(0; ρk−1, uk) > −ωk with uk = 0.

The search directions for the slack variables are

rk = Jkpk + ck − sk, and r̂k = Jkuk. (7.10)

If a constraint is linear, these directions maintain the corresponding slack variable at its
optimal value.

When uk 6= 0 a curvilinear search is performed to obtain a step length αk such that
xk+1 − xk becomes parallel to a direction of negative curvature as αk → 0. This type of
search gives a method that makes fewer adjustments to ρ. It is possible that no simple
linear combination of pk and uk gives a direction of descent because pk is not a direction of
descent for φk defined with the current value of ρ. In contrast, if u is a direction of negative
curvature, the merit function can be reduced by using a curvilinear search with the current
value of ρ.

The curvilinear search computes a steplength αk > 0 such that the new iterate
xk

yk

sk

+ αk


uk

0
r̂k

+ α2
k


pk

qk

rk


gives a sufficient reduction of the merit function LA while keeping the constraint violation
bounded.

The following termination criteria are used. If

φk(1)− φk(0) ≤ σ
(
φ′k(0) + 1

2φ
′′
k(0)

)
, (7.11)

set α̂ = 1. Otherwise, α̂ ∈ (0, 1) is determined such that

φk(α̂)− φk(0) ≤ σ
(
α̂φ′k(0) + 1

2 α̂
2φ′′k(0)

)
(7.12a)

φ′k(α̂) ≥ ηW
(
φ′k(0) + α̂φ′′k(0)

)
, (7.12b)
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where 0 < σ < 1
2 and 1

2 < ηW < 1. Let µk (0 < µk < 1) denote a stabilization parameter
defined in the next section. If the condition

c(xk + α̂uk + α̂2pk) ≥ −max(βc, µk)e (7.13)

holds, let αk = α̂; otherwise αk is computed by performing a backtracking linesearch from
α̂ until (7.13) and (7.12a) are simultaneously satisfied. These conditions have been shown
by Olivares et al. [72] to be appropriate for combining descent and negative curvature
directions when solving unconstrained problems. It will be shown in Section 7.4.2 that such
step lengths exist, and that Algorithm SQP2D is well defined.

Given a feasible point x for linear constraints Ax ≥ b, the maximum feasible step γ
such that A(x+ γp) ≥ b is given by

γ = min γi, with γi =


aTi x− bi
−aTi p

if aTi p < 0;

+∞ otherwise.

For brevity, the calculation of γ for the constraints Ax ≥ b will be summarized as γ =
maxStep(A, b, x, p).

The slacks sk+1 for the next iteration are recomputed from (7.4) based on the values
of xk+1 and yk+1.

Algorithm 7.2.1. [Algorithm SQP2D]
Given x0 and y0, choose ρ−1 ≥ 0
repeat

Compute gk, Jk and ck;
if ρk−1 = 0 then [Optimize the slack variables]

Compute sk from sk = max{0, ck};
else

Compute sk as sk = max{0, ck − yk/ρk−1};
end if
Compute a feasible step pF ; Compute Hk; pS; p̂; û;
pk = pS + p̂;
q = π − yk;
ω = 1

2(‖ck − sk‖2 + pTkB̄kpk;
if φ′′k(0; ρk−1, u) ≤ −ω + 1

2 û
THkû then
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u = û; ρk = ρk−1;
else

u = 0; ρk = max
(

2ρk−1,
1
2ω + gTkpk + (2yk − π)T(ck − sk)

‖ck − sk‖2
, βp

)
;

end if
r = Jkpk + ck − sk; r̂ = Jku;
Perform curvilinear search to compute α using the merit function;
xk+1 = xk + αu+ α2pk; yk+1 = yk + α2q; k ← k + 1;

until converged;

7.3 Solving the Subproblem

7.3.1 Calculating a feasible step, warm starts and stable active sets

A rank-enforcing active-set QP method maintains a linearly independent estimate of
the active set called the working set. The stabilized working-set algorithm uses the working
set from the previous subproblem as an initial estimate of the working set for the next
subproblems. In addition, there is a degree of infeasibility permitted for the constraints
not in the working-set. The details of such a procedure are discussed in this section. The
procedure described here is similar to, but not identical to, Wright’s stabilized working-set
framework [87], discussed in Chapter 5.

At the initial QP feasible point, the linearized constraints corresponding to the
previous working set are made active. If the final working set from the previous iteration
is Wk−1, then [J ]Wk−1 is checked for linearly independence. If it is linearly independent,
then the initial working set Wk is set to be Wk−1. If it is not linearly independent, then
the algorithm finds a new working set Wk by removing linearly dependent constraints.
Subsequently, a feasible point satisfying the following conditions is found:

∇cTi pF + ci = 0, i ∈ Wk,

∇cTi pF + ci ≥ −µk, otherwise,
‖pF‖ ≤ βpf‖c̃−‖,
gTpF ≤ βpf‖c̃−‖,

(7.14)

for some positive constant βp0, where c̃j denotes the vector of normalized constraints, c̃j =
cj/(1 + ‖∇cj‖). These conditions imply

‖pF‖ ≤ βpf‖c−‖, gT pF ≤ βpf‖c−‖. (7.15)
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The parameter µk is defined as

µk =

 η(xk, yk)τ if η(xk, yk) ≤ µk−1;
µ̄µk−1 otherwise

where µ̄ and τ are preassigned constants such that 1
2 < µ̄ < 1 and 0 < τ ≤ 1, and η(xk, yk)

is an estimate of the violation of the KKT conditions, i.e.,

η(x, y) =

∥∥∥∥∥∥
g(x)− J(x)T y

min(c(x), y)

∥∥∥∥∥∥ .
This definition implies that µk monotonically converges to zero. Wright [87] shows that
η(xk, yk) = Θ(δ(xk, yk)), where δ(xk, yk) is the distance to the nearest KKT point (x∗, y∗).
Let µ̂ be a vector such that [µ̂]i = 0 for i ∈ W and [µ̂]i = µ otherwise.

If a point pF satisfying the conditions of (7.14) cannot be found, define pF to satisfy
JpF ≥ −c, instead of the first two conditions of (7.14). In this case, define µ̂ = 0.

7.3.2 Definition of the QP stationary point pS

The direction pS is defined as a stationary point of the indefinite QP and satisfies
the conditions

g +HpS = JTπS,

c+ JpS ≥−µ̂,
πTS(c+ JpS) = 0.

(7.16)

The stationary point pS is found using the exact Hessian. The QP iterations are initialized
at pF . It will be shown later that as k → ∞, the working set corresponding to pF and
pS are the same and the stationary point is also a local minimizer for the QP defined by
the conditions of (7.16), i.e., πS ≥ 0 and the reduced Hessian is positive definite. When
this is the case and pS is also a local minimizer for the the convex QP defined in (7.17),
the subproblem returns (p, π) = (pS, πS). This ensures the fast Newton convergence rate
associated with using exact second-derivatives.

7.3.3 Convex QP

Convexification

A convex QP is defined with a Hessian B̄ that must be sufficiently positive-definite,
i.e., B̄ must satisfy the condition pTB̄p ≥ βBp‖p‖2 for all p. Debreu’s lemma [21] states that
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if H is positive-definite on the null-space of J there is a ρ̄ such that H + ρJTJ is positive-
definite for ρ > ρ̄. This means that a positive-definite B̄ can be formed from H using the
active constraints in the working set, with additional artificial constraints as necessary. See
Chapter 6 for details.

Solution to the convex QP

The convexified subproblem is given by:

minimize
p̂

gT(pS + p̂) + (pS + p̂)TB̄(pS + p̂)

subject to J(pS + p̂) ≥ −c− µ̂.
(7.17)

with solution (p̂, π).
Let the subscript w correspond to the entries or rows corresponding to the final

working set at pS. At the initial point for the convex QP, if there are no artificial constraints,
then

g + B̄pS = g +HpS + ρJTWJWpS = JTWπS + ρJTWJWpS = JTW(πS − cW − µ̂).

This implies that pS is also a stationary point for (7.17).
If πS − ĉW − µ̂ ≥ 0, where ĉW is such that [ĉW ]i = [cW ]i for i ∈ W and zero

otherwise, and there are no artificial constraints, then the convex QP is not solved. In this
case, if πS ≥ 0, use (p, π) = (pS, πS) as the estimates for the line search, otherwise use
(p, π) = (pS, πS − cW − µ̂).

Let Ak be the final active set and Wk the final working set from the subproblem.

7.3.4 Computation of the direction of negative curvature

Let Z0 denote a basis for the null space of the active QP constraint matrix at pS,
with bounded condition number. If ZT0HZ0 is sufficiently indefinite, in the sense that

λmin(ZT0 HZ0) ≤ −βδδL, (7.18)

holds for δL defined in (7.3), x is in a region that satisfies

δL‖x‖ ≤ βh, (7.19)

and the violation of the constraints is not too large, that is, if

c(x) ≥ −1
2 max(βc, 2µk)e, (7.20)
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compute ū = Z0ũ, a feasible direction of sufficient negative curvature; otherwise, let ū = 0.
More precisely, ũ is required to satisfy

gTZ0ũ ≤ 0, ũTZT0HZ0ũ ≤ βu1λmin(ZT0HZ0)‖ũ‖2,

βu3|λmin(ZT0HZ0)| ≤ ‖ũ‖ ≤ βu2|λmin(ZT0HZ0)|,
(7.21)

for positive constants βu1, βu2 and βu3, where λmin(H) denotes the smallest eigenvalue of
H. Note that the first condition is trivial to satisfy by adjusting the sign of any suitable
direction of negative curvature.

The direction of negative curvature ū is scaled so that the scaled value û is a feasible
step from pS, and also satisfies [Jû+ c]j ≥ 0 for cj > 0. Let γ′ be

γ′ = min
{

min
j

( [c+ JpS ]j
−[Jū]j

| [Jū]j < 0
)
,min

j

( cj
−[Jū]j

| [Jū]j < 0, cj > 0
)}
. (7.22)

Let û be defined as
û = min(1, γ′)ū. (7.23)

The actual direction of negative curvature used (if it is used at all) is a scaled version of ū.
The final scaling can be determined only after the descent step has been computed.

Details of the computation of a direction of negative curvature that satisfies the
requirements above are discussed in Chapter 9, which also describes another regularized
SQP algorithm incorporating directions of negative curvature.

7.3.5 Statement of the QP algorithm

Algorithm 7.3.1. [Algorithm QP2D]
Compute pF to satisfy (7.14);
Let Ĵ0 denote the working-set matrix at pF and w0 = pF ;
repeat

Solve

H ĴTi

Ĵ i 0

 di

−πS

 = −

g +Hwi

−µ̂

;
γ = min

(
1, maxStep( J,−c, wi, di )

)
; wi+1 = wi + γdi;

Set Ĵ i+1 to be the working-set Jacobian at wi+1;
i← i+ 1;

until (wi, πS) satisfy (7.16)
pS ← wi;
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Let Z0 be a basis for the null space at Ji;
if λmin(ZT0 HZ0) < −βδδL and δL‖x‖ ≤ βh and c(x) ≥ −1

2βce then
Compute ū = Z0ũ, where ũ is a direction of negative curvature of ZT0 HZ0;
γ′ ← maxStep( J,−c, pS, ū ); û← min(1, γ′)ū;

else
û← 0;

end if
Construct a positive-definite approximate Hessian B̄.
if πS − µ̂− c ≥ 0 then

if πS ≥ 0 then
(pk, π) = (pS, πS);

else
(pk, π) = (pS, πS − µ̂− c);

end
exit;

else
Compute (p̂, π), the primal-dual solution of

minimize
p̂

gT(pS + p̂) + (pS + p̂)TB̄(pS + p̂)

subject to J(pS + p̂) ≥ −c− µ̂.

Set pk = pS + p̂;
end if

7.4 Global Convergence

7.4.1 Assumptions and preliminaries

Assumption 7.4.1. The functions f and c are three-times Lipschitz continuously differ-
entiable.

Assumption 7.4.2. For some constant βpf , a feasible point pF exists for every QP sub-
problem satisfying,

‖pF‖ ≤ βpf‖c̃−k ‖, gTk pF ≤ βpf‖c̃−k ‖.
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Assumption 7.4.3. All first-order KKT points satisfy the Mangasarian-Fromovitz con-
straint qualification (MFCQ) and the weak constant rank (WCR) conditions.

Assumption 7.4.4. The multipliers π and πS are uniformly bounded for every subproblem.

Note that this implies that the sequence of multipliers {yk} are uniformly bounded.

Assumption 7.4.5. All iterates xk belong to a bounded, convex set.

In this case, the second-order necessary condition to be proven to hold at the solution
is the weak reduced semi-definiteness property (WSRP) which holds if the HessianH(x∗, y∗)
is positive definite on the subspace {d | JA(x∗)(x∗)d = 0} (see Chapter 2 for details).

7.4.2 Existence of the iterates

In this section it is shown that each iteration of the algorithm is well defined. In
particular, it is shown that the penalty parameter and the steplength are well defined at
every iterate.

Lemma 7.4.1. Under Assumptions 7.4.1–7.4.5, the algorithm for computing the values of
the penalty parameter ρk and the steplength αk are well defined.

Proof. In order to simplify notation, the subscript k associated with the iteration number
will be omitted. Consider the definition (7.9) of the penalty parameter.

The gradient of LA, with respect to x, y and s is given by

∇LA(x, y, s) ≡


g(x)− J(x)Ty + ρJ(x)T(c(x)− s)

−(c(x)− s)
y − ρ(c(x)− s)

 . (7.24)

From (7.10) and (7.24) it follows that

φ′(0) =
(
uT 0 r̂T

)
∇LA

= gTu− yTJu+ ρ uTJT(c− s) + yTr̂ − ρr̂T(c− s)

= gTu, (7.25)

where g, J , and c are evaluated at x. Note that from (7.21) it holds that φ′(0) ≤ 0.
Consider now the Hessian of LA with respect to x, y and s,

∇2LA(x, y, s) =


∇2L(x, y) + ρJ(x)TJ(x) −J(x)T −ρJ(x)T

−J(x) 0 I

−ρJ(x) I ρI

 . (7.26)
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From (7.24) and (7.26) it follows that

φ′′(0) = 2
(
pT qT rT

)
∇LA +

(
uT 0 rT

)
∇2LA


u

0
r̂


= 2pTg − 2pTJTy + 2ρpTJT(c− s)− 2qT(c− s) + 2rTy − 2ρrT(c− s) + uTHu

+ ρuTJTJu− ρuTJTr̂.

Using (7.6) and (7.10), this expression becomes

uTHu+ 2gT p+ 2(2y − π)T (c− s)− 2ρ‖c− s‖2. (7.27)

The penalty parameter (7.9) is well defined whenever ‖c − s‖ > 0. For the case
when c − s = 0, from (7.15) and (7.5) pF must simply move on to the constraints of the
linearly independent working set, and the definitions in algorithm QD2D together with
the positive definiteness of B̄ on the relevant subspaces imply that p is obtained by taking
descent steps from pF . It follows that gT p + 1

2p
T B̄p ≤ 0, and gT p ≤ −1

2p
T B̄p. It follows

from the definition of p that if c− s = 0,

φ′′(0) = 2gT p+ uTHu ≤ −pT B̄p+ uTHu = −2ω + uTHu,

implying that if c − s = 0, then (7.8) is satisfied and the penalty parameter need not be
modified.

If ‖c− s‖ > 0, then from (7.27) with u = 0 (if u 6= 0, condition (7.8) is satisfied by
the current value of ρ) and ρ = ρ̂ (see (7.9)) it holds that

φ′′(0) = −2ω,

which implies that (7.8) is satisfied for all ρ ≥ ρ̂.
It also must be shown that αk introduced in the algorithm is well defined. It will be

shown that a steplength α̂ that satisfies either condition (7.11) or conditions (7.12a) always
exists (see, for example, Moré and Sorensen [67]).

Assume that condition (7.11) is not satisfied. Let φ̄ be defined as,

φ̄(α;σ) ≡ φ(α)− φ(0)− σ(αφ′(0) + 1
2α

2φ′′(0)),

where φ̄(0;σ) = 0, φ̄′(0, σ) = (1−σ)φ′(0) ≤ 0 and φ̄′′(0;σ) = (1−σ)φ′′(0) < 0 (all derivatives
are taken with respect to the first argument).
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As (7.11) is not satisfied, it must hold that φ̄(1, σ) > 0, and there must exist an
α̂ ∈ (0, 1] for which φ̄′(α̂; ηW ) ≥ 0, where 1

2 < ηW < 1 is introduced in (7.12b). (If no
such α̂ exists, then φ̄′(α; ηW ) < 0 for all α ∈ (0, 1], and from the condition that ηW > σ,
φ′(0) ≤ 0 and φ′′(0) < 0 it must hold that φ̄′(α;σ) < 0 for all α ∈ (0, 1], and so (7.11) would
necessarily hold, contradicting our assumption that there is no such α̂.)

Suppose that α̂ is the smallest such point, which implies that φ̄′(α; ηS) < 0 for all
α ∈ (0, α̂). Integrating this inequality between 0 and α̂ yields

φ(α̂) ≤ φ(0) + ηW (α̂φ′(0) + 1
2 α̂

2φ′′(0)),

and from the conditions φ′(0) ≤ 0, φ′′(0) < 0 and σ < ηW , (7.12a) must be satisfied at α̂.
In addition, the inequality φ̄′(α̂; ηW ) ≥ 0, implies that (7.12b) is satisfied at α̂.

It remains to be shown that (7.13) can also be satisfied. The function

h(α) ≡ c(x+ αu+ α2p) + βce (7.28)

has derivatives
h′(0) = Ju, h′′j (0) = uT∇2cju+∇cTj p.

If −1
2βc > cj ≥ −βc, then condition (7.20) is not satisfied and u must be zero; from (7.28)

it holds that hj(0) ≥ 0, h′j(0) = 0 and h′′j (0) = ∇cTj pL ≥ −cj ≥ 1
2βc > 0. If cj ≥ −1

2βc

then hj(0) ≥ 1
2βc > 0 and in any case there exists a value α̃ > 0 such that hj(α) ≥ 0 (and

cj(x+αp) ≥ −βc) for all j and all α ∈ [0, α̃], implying that for α ∈ [0,min{α̂, α̃}] conditions
(7.13) and (7.12a) hold simultaneously.

The strategy for the selection of the penalty parameter ρk is to define its value to
be large enough to satisfy (7.8), while remaining small enough to be bounded by a multiple
of ρ̂k. The selection rule is as follows: Let

ρk =

 ρk−1 if φ′′k(0) ≤ −ω + 1
2u

T
kHkuk,

max(ρ̂k, 2ρk−1, βρ) otherwise,
(7.29)

where ρ̂k is defined as in (7.9). Then, for any iteration kl in which the parameter needs
to be increased, it holds that ρkl

≥ 2ρkl−1 . It follows from this result and (7.9) that the
penalty parameter goes to infinity if and only if its value is increased in an infinite number
of iterations.

When ρk 6= ρk−1 from (7.9) and (7.27) it holds that ρ̂k > ρk−1, and the definition
in (7.29) satisfies ρk ≤ 2ρ̂k.
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The algorithm may generate an infinite sequence of iterates, or it may find a solution
after a finite number of iterations. For the rest of the proofs, and to simplify the arguments,
it will be assumed that there is always an infinite sequence {xk}, and in the case of finite
termination the sequence is completed by repeating an infinite number of times the last
point computed. Lemma 7.4.1 implies that in both cases all the quantities associated with
the algorithm are well defined.

7.4.3 Properties of the merit function

Lemma 7.4.2. For any iteration kl in which the value of ρ is modified,

ρkl
‖ckl
− skl

‖ ≤ N (7.30)

and
ρkl

(‖pkl
‖2 + ‖ukl

‖3) ≤ N (7.31)

Proof. It holds that

ρ̂‖ck − sk‖2 = ω + gTkpk + (2yk − πk)T(ck − sk)

and so
ρ̂‖ck − sk‖2 = (‖ck − sk‖2 + pTkB̄pk) + gTkpk + (2yk − πk)T(ck − sk).

Considering that gTp = −pTB̄p+pTJTWπ, w corresponding to the final working set constraints,
and JWp = −cW − µ̂W , the expression becomes

ρ̂‖ck − sk‖2 = ‖ck − sk‖2 − cTWπW − µ̂Tπk + (2yk − πk)T(ck − sk).

It holds that πk and yk are uniformly bounded. Hence −cTWπ ≤ ‖c‖‖π‖ ≤ Cπ‖c− s‖. Also,
µ̂ ≤ ηS and so µ̂Tπ ≤ C‖c− s‖.

Finally, the continuity of c and boundedness of x imply that ‖c − s‖ ≤ Ccs. These
facts combined with the boundedness of multipliers and positive-definiteness of B̄ give the
result

ρ̂‖c− s‖2 ≤ C1‖c− s‖+ C2‖c− s‖+ C3‖c− s‖,

bounding ρ̂‖c− s‖ by a constant.
Since ρ is being modified, equations (7.7), (7.8) and (7.27) imply that,

φ′′k(0; ρk−1, u) = uTkHkuk+2gTkpk+2(2yk−πk)T(ck−sk) > −1
2‖ck−sk‖

2− 1
2p
T
kB̄kpk+ 1

2u
T
kHkuk.
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Considering that gTp = −pTB̄p − cTWπ ≤ −pTB̄p + Cπ‖c − s‖, and the fact that ‖c − s‖ is
bounded, it holds that

C4‖ck − sk‖ >
3
2p

T
kB̄kpk − uTkHkuk.

By construction, pTB̄p ≥ βBp‖p‖2 and Forsgren et al. [32, Lemma 2.4], uTkHkuk ≤ −Cu‖uk‖3,
the expression above becomes,

(‖pk‖2 + ‖uk‖3) ≤ C5‖ck − sk‖.

Applying equation (7.30) and 2ρ̂ ≥ ρ, the desired result (7.31) follows.

The subsequent results require the following assumption:

Assumption 7.4.6. There exists a ᾱ such that αk ≥ ᾱ for all k.

Lemma 7.4.3. LA(xk, yk, sk; ρk) is bounded from below

Proof. This follows immediately from assumptions 7.4.4, 7.4.1, and 7.4.5.

Lemma 7.4.4. For iterations in which ρ is not changed,
φk(α)− φk(0) ≤ Cα2(‖pk‖2 + ‖uk‖2).

Proof. Using the definition of u based on the penalty parameter update (7.8), the positive-
definiteness of B̄, and the properties of the direction of negative curvature, it follows that:

φk(α)− φk(0) ≤ σ(αφ′k(0) + 1
2α

2φ′′k(0))

≤ σ(αgTkuk + 1
2α

2(−ω + 1
2u

T
kHkuk))

≤ −1
2σα

2(ω − 1
2u

T
kHkuk)

= −1
2σα

2(‖ck − sk‖2 + pTkB̄kpk − 1
2u

T
kHkuk)

≤ α2C(‖pk‖2 + ‖uk‖2).

Theorem 7.4.1. The algorithm generates a cluster point x∗ with xkl
→ x∗, pkl

→ 0 and
ukl
→ 0.

Proof. If ρk grows without bound, then the subsequence of iterates {xkl
} at which the

penalty parameter is changed is bounded and hence has a cluster point. As in Lemma 7.4.2,
it holds that lim inf ‖pkl

‖ → 0 and lim inf ‖ukl
‖ → 0. It follows that there is a subsequence

that satisfies the requirements of Theorems 7.4.2 and 7.4.4.
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Now assume that ρk = ρ̄ for all k ≥ K. Then, similarly, by Lemmas 7.4.6, 7.4.3,
and 7.4.3, that lim inf ‖pkl

‖ → 0 and lim inf ‖ukl
‖ → 0. Since the underlying sequence xkl

is Cauchy, it must converge to a cluster point.

7.4.4 Properties of limit points

The following assumption is necessary for the results of this section:

Assumption 7.4.7. {B̄k} is bounded.

An approximate KKT sequence, first defined in Section 4.3.3, is defined as:

Definition 7.4.1. A primal-dual sequence {(xk, yk)} is an approximate KKT sequence if,

g(xk) + J(xk)Tyk = εk

ci(xk) ≥ δk

[yk ]i ≥ 0,

[yk ]i(ci(xk)− δk) = 0.

where {εk, δk} converges to zero as k →∞.

This first result shows that the limit point satisfies the first-order optimality condi-
tions.

Theorem 7.4.2. The cluster point x∗ from Theorem 7.4.1 is a first-order KKT point.

Proof. By the KKT conditions of (7.17)

g(xkl
) + B̄kl

pkl
− J(xkl

)Tπkl
= 0

c(xkl
) + J(xkl

)pkl
≥ −µ̂kl

πkl
≥ 0

πTkl
(c(xkl

)− J(xkl
)pkl

) = δkl
,

with µ̂k → 0 and |δ| ≤ πTµ̂→ 0. Theorem 7.4.1 and Assumption 7.4.7 imply that B̄kl
pkl
→ 0

and by continuity of J , J(xkl
)pkl

→ 0. This implies that the sequence {pkl
, πkl
} is an

approximate KKT sequence. Since the MFCQ implies the CPLD, by Qi and Wei [78,
Theorem 2.7], x∗ is a first-order KKT point.



99

Theorem 7.4.3. There is a subsequence {klm} such that ‖πklm
− y∗‖ → 0 for some y∗ ∈

My(x∗), where My(x∗) is the set of multipliers satisfying the first-order KKT conditions.
Moreover, the subsequence of Hklm

→ H(x∗, y∗).
In addition, there is an integer K such that for all kl ≥ K, the correct active set is

identified, in the sense that πj = 0 for j /∈ A(x∗).

Proof. The first part of the theorem is proved in Qi and Wei [78, Theorem 2.7]. Convergence
of the Hessians follows from xk lying on a compact set and the continuity of H.

Next it will be shown that for any constraint j for which cj(x∗) = δ1 > 0, it holds
that [πkl

]j = 0 for sufficiently large l. If pkl
+ ukl

→ 0, then the continuity of J(x) implies
that ‖pkl

+ ukl
‖ ≤ δ1/(4δ2), where δ2 = ‖∇cj(x∗)‖. It follows that

∇cj(xkl
)T (pkl

+ ukl
) + cj(xkl

) ≥ 1
2δ1 > 0,

which implies that [πkl
]j = 0, as required.

Theorem 7.4.3 implies that Ac∗ ⊂ Ack, which implies Ak ⊂ A∗.

Lemma 7.4.5. ‖pF‖kl
→ 0, ‖c−‖kl

→ 0.

Proof. Without loss of generality, label elements of the subsequence kl by k.
Since J(pk + uk) ≥ −µ̂k − ck, pk → 0 and uk → 0 imply that c−k → 0, which also

implies that pF → 0.

Lemma 7.4.6. For some K, for kl ≥ K, pF identifies the active set.

Proof. The convergence of c(xkl
)→ c(x∗) implies that for constraints inactive at x∗, c(xkl

)
is eventually bounded away from zero. pF → 0 and J bounded implies ck + JkpF > −µ̂kl

for the inactive constraints, for large enough kl.

Theorem 7.4.4. x∗ satisfies the second order necessary optimality conditions.

Proof. It has been shown that the limit point x∗ is a first-order KKT point by Theorem 7.4.2.
By Theorem 7.4.3 there exists a subsequence klm such that Hklm

→ H(x∗, y∗).
Without loss of generality, label elements of the subsequence klm by k.
Let d ∈ T (x∗) ≡ {d | JA∗(x∗)d = 0} with ‖d‖ = 1. By Andreani et al. [6, Lemma

3.1] there exists {dk} such that dk ∈ T (xk) ≡ {d | JA∗(xk)d = 0} and dk → d. Without loss
of generality, let ‖dk‖ = 1.
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It holds that
dTkHkdk ≥ λmin(ZTkHkZk),

and by (7.21) (which holds under the computational procedures for finding a direction of
negative curvature, e.g., see Forsgren et al. [32, Theorem 3.1]). The limit uTkZTkHkZkuk → 0
implies that λmin(ZTkHkZk)→ 0. Since Hk converges and uk → 0 by assumption, dTkHkdk →
dTH∗d ≥ 0.

7.5 Local Convergence

7.5.1 Additional assumptions

Assumption 7.5.1. The strong second-order sufficiency condition holds at all points sat-
isfying the second-order necessary conditions.

Assumption 7.5.2. The constant rank constraint qualification (CRCQ) holds at all second
order KKT points.

7.5.2 Convergence

Theorem 7.5.1. For K sufficiently large, k ≥ K implies uk = 0, x → x∗, and y → y∗,
and pk = pSk.

Proof. LetK be sufficiently large such that for the convergent subsequence, {kl}, for kl ≥ K,
Theorem 7.4.3, Lemma 7.4.6 and Assumption 7.5.2 are satisfied. In addition, invoke Qi and
Wei [78, Theorem 3.2] to assert that there is only one second-order optimal point in a region
around x∗.

Furthermore, from Theorem 7.4.3 it holds that Ak ⊂ A∗. Let km be the first iterate
of the convergent subsequence such that km ≥ K. Possibly by increasing K, the convex
subproblem (7.17) can be expressed as an inexact SQP subproblem with t = (B̄−H)(pS +p̂)
(see Wright [87] or Section 5.2 in Chapter 5). Invoke Wright [87, Lemma 4.1] to claim that
there exists a y∗ ∈ My(x∗) such that A+(y∗) ⊂ Wk(xkm + pkm) (the final working-set of
the QP iterations). By the CRCQ, since A+(y∗) ⊂ Wk(xkm + pkm) ⊂ A∗, and A+(y∗) is a
maximally linearly independent subset of A+, Wk(xkm + pkm) = A+(y∗).

At iteration km + 1, pF estimates the active set with this Wkm+1 as the initial
working set, since by the CRCQ, Wkm+1 = A+(y∗) is linearly independent. By Kojima [60,
Lemma 7.4], the full subproblem solution at xkm+1 satisfies Ak ⊂ A∗. Since only linearly
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dependent constraints would be added in the process of calculating a stationary point, there
is a stationary point such that gkm+1 +Hkm+1pkm+1 = JTWπS with πS ≥ 0, where w denotes
the rows corresponding to the working set. This implies that a convex subproblem need not
be formed and solved and that (pkm+1, πkm+1) = (pS, πS).

By Assumption 7.4.1, the QP subproblem is a perturbation of the original NLP.
Possibly by increasing K so as to make xkm+1 sufficiently close to x∗, invoke Kojima [60,
Lemma 7.5] to assert that the reduced Hessian of the problem is positive definite, so there
are no directions of negative curvature for iterations k ≥ km.

The full step taken satisfies the conditions:

Hkm+1pkm+1 + gkm+1 = JTkm+1πS,km+1

ckm+1 + Jkm+1pkm+1 ≥ −µ̂km+1

(ckm+1 + Jkm+1pkm+1 + µ̂km+1) · πS,km+1 = 0.

which is of the form of the inexact SQP problem (4.4) in [87] with t = µ̂ (alternatively, see
(5.2) in Chapter 5). Possibly by making K larger so that xkl

is sufficiently close to x∗ and
µ̂ is small enough, invoke Wright [87, Theorem 5.3] (or 5.2.2 in Chapter 5) to assert that

‖xkm+1 + pkm+1 − x∗‖+ ‖πkm+1 − y∗‖ = ‖πkm+1 − ykm+1‖O(‖xkm+1 − x∗‖)

+O(‖xkm+1 − x∗‖) +O(‖µ̂km+1‖).

Noting that ‖µ̂‖∞ ≤ η(x, y) = O(‖x− x∗‖), and using Assumption 7.4.6, let the original K
be large enough such that

‖xkm+1 + αp− x∗‖ ≤ γ‖xkm+1 − x∗‖, and ‖απ + (1− α)ykm+1 − y∗‖ ≤ γ‖ykm+1 − y∗‖.

with γ < 1.
By a similar argument, the equivalent statement for an inductive step can be shown

i.e. this estimate holding at km + j implies that it also holds for km + j + 1. This implies
that xk → x∗ and yk → y∗, where y∗ is unique by the fact that Wkm =Wkm+1 =Wkm+2 =
· · · =Wkm+l = . . . .

Theorem 7.5.2. There exists some K for which k ≥ K implies αk = 1.

Proof. From Theorem 7.5.1, u = 0. Now, as in Gill et al. [36] and Powell and Yuan [77],
assume

xk + pk − x∗ = o(‖xk − x∗‖),
yk + qk − y∗ = o(‖yk − y∗‖).

(7.32)
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which may be used to derive the expansions

f(x+ p) = f(x) + 1
2(g(x) + g(x∗))Tp+ o(‖p‖2),

c(x+ p) = c(x) + 1
2(J(x) + J(x∗))Tp+ o(‖p‖2).

Consider

φk(1) = fk + 1
2(gk + g∗)Tpk − (yk + qk)T(c(xk + pk)− sk) + 1

2ρk‖c(xk + pk)− sk‖2

and, using the definition of s, as in Gill et al. [36], write the following expression:

φk(1)−φk(0) = 1
2(gk+g∗)Tpk− 1

2π
T
k(J∗−Jk)pk−yTk(ck−sk)− 1

2ρk(ck−sk)
T(ck−sk)+o(‖pk‖2).

From (7.32), g∗ − JT∗π = o(‖p‖), which enables this expression to be modified to

φk(1)− φk(0) = 1
2g
T
kpk + 1

2π
T
kJkpk − yTk(ck − sk)− 1

2ρk(ck − sk)
T(ck − sk) + o(‖pk‖2).

To set α = 1, it must hold that

φk(1)− φk(0) ≤ σ(φ′k(0) + 1
2φ
′′
k(0)) ≤ −σ2 (‖ck − sk‖2 + pTkB̄kpk),

where the inequalities follow from the fact that φ′′(0) ≤ −ω and the definition of ω (7.7).
Let σ̂ be such that σ + σ̂ < 1

2 . The last expression becomes:

φk(1)− φk(0)− σ(φ′k(0) + φ′′k(0)) = 1
2g

T
kpk + (σ2 + σ̂ − σ̂)pTkB̄kpk + 1

2π
T
kJkpk − yTk(ck − sk)

+ (σ2 −
ρk
2 )‖ck − sk‖2 + o(‖pk‖2)

≤ −1
2π

T
k(ck + µ̂k)− σ̂pTkB̄kpk − yT(ck − sk) + o(‖pk‖2),

where the equations σ < 1
2 and pTkgk + 1

2p
T
kHkpk ≤ 0 were used, as well as the QP comple-

mentarity conditions πTkJkpk = −πTk(ck + µ̂k).
Let k be large enough that Wk estimates the active set at x∗. Then πTkck = πTkcW .
Since cW (x∗) = 0, and the linearization of constraint i is always feasible, cW =

o(‖pk‖2).
The expression [yTk(ck − sk)]i is clearly eventually zero for i ∈ Ac. By the same

argument as above, [yTk(ck− sk)]i is o(‖pk‖2) for i ∈ Wk, the stabilized working set. Finally,
for i ∈ A \ Wk, if [ck ]i > 0, then [s]i = [c]i, and [ck − sk ]i = 0. Otherwise, since the
linearization is always feasible, [ck ]i must be within o(‖pk‖2) of µ̂k, and since [yk ]i = o(‖pk‖),
the entire expression is o(‖pk‖2).

This implies that for some K, k ≥ K implies

φk(1)− φk(0)− σ(φ′k(0) + φ′′k(0)) ≤ 0,

and α = 1 thereafter.
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Theorem 7.5.3. There exists a K such that for k ≥ K, (xk, yk) converges superlinearly to
(x∗, y∗).

Proof. Theorem 7.5.1 implies that xk → x∗ and yk → y∗. By Theorem 7.5.2, αk = 1 for K
sufficiently large. Hence, eventually yk = πk, with πcW = 0 for the consistent working set
Wk. This implies that constraints not in Wk do not appear in the Lagrangian Hessian and
the subproblem solutions (pk, πk) must satisfy:

Hkpk + gk = JTWπW ,

cW + JWpk = 0,

πW ≥ 0.

These are the optimality conditions for the extended iSQP problem (8.3) of [87] with (r, t) =
0 (see Section 5.2.1 of Chapter 5). Hence we apply Wright [87, Lemma 8.2] (5.2.1 in Chapter
5) and Theorem 7.5.2 to conclude that

‖xk + pk − x∗‖+ ‖πk − y∗‖ ≤ ‖xk − x∗‖1+τ + ‖yk − y∗‖1+τ .

7.6 Discussion

This chapter presented an SQP algorithm that is globally and superlinearly conver-
gent under relatively weak assumptions. It drew from a number of results in the conver-
gence theory literature to utilize the augmented Lagrangian merit function’s strong global
convergence properties in conjunction with the fast local convergence exhibited by SQP
using linearly independent working sets. To fully establish the latter results, which de-
pend on the exact Hessian being used in the subproblem, the method of convexification
enabled the algorithm to a) never attempt to solve a nonconvex problem to completion,
b) retain some second-derivative information even in the altered problem and c) use exact
second-derivatives once the iterates are in a local neighborhood of a solution satisfying the
second-order sufficiency conditions for optimality.

Regardless of the results of upcoming numerical tests of the algorithm described
in this Chapter, these results should aid in the formulation of robust and efficient SQP
algorithms for solving NLPs.



Chapter 8

A Primal-Dual Stabilized SQP
Method

8.1 Introduction

In this chapter we focus on optimization problems with constraints written in so-
called “standard form”, i.e.,

minimize
x

f(x)

subject to c(x) = 0, x ≥ 0,
(8.1)

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable (see Section 3.2,
page 38). The purpose is to extend both the scope and the convergence theory of the
stabilized primal-dual SQP method proposed by Gill and Robinson [39]. The discussion is
in three parts. The first part provides a description of the overall algorithm. The second
part is concerned with the convexification of nonconvex QP subproblems and includes the
formulation and analysis of a new “concurrent” convexification that is performed during the
solution of the QP subproblem. The final part provides an overview of the first-order local
and global convergence results. Some changes are proposed that allow local superlinear
convergence to be established under weaker assumptions. An extension of the algorithm
that converges to points satisfying certain second-order necessary conditions for optimality
is considered in Chapter 9.
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8.2 Background

8.2.1 The regularized primal-dual line-search SQP algorithm

The regularized SQP line-search method is based on the primal-dual augmented
Lagrangian merit function

Mν(x, y; yE, µ) = f(x)− c(x)TyE + 1
2µ‖c(x)‖2 + ν

2µ‖c(x) + µ(y − yE)‖2, (8.2)

where ν is a scalar, µ is a penalty parameter, and yE is an estimate of an optimal Lagrange
multiplier vector y∗. This function, proposed by Robinson [80], and Gill and Robinson [38],
may be derived by applying the primal-dual penalty function of Forsgren and Gill [30] to a
problem in which the constraints are shifted by a constant vector (see Powell [76]). With
the notation c = c(x), g = g(x), and J = J(x), the gradient of Mν(x, y; yE, µ) may be
written as

∇Mν(x, y; yE, µ) =

g − JT
(
(1 + ν)(yE − 1

µc)− νy
)

ν
(
c+ µ(y − yE)

)
 (8.3a)

=

g − JT
(
π + ν(π − y)

)
νµ(y − π)

 , (8.3b)

where π = π(x; yE, µ) denotes the vector-valued function

π(x; yE, µ) = yE − 1
µ
c(x). (8.4)

Similarly, the Hessian of Mν(x, y; yE, µ) may be written as

∇2Mν(x, y; yE, µ) =

H(x, π + ν(π − y)
)

+ 1
µ(1 + ν)JTJ νJT

νJ νµI

 . (8.5)

The terms Mν(x, y), ∇Mν(x, y), and ∇2Mν(x, y) are used to denote Mν , ∇Mν , and ∇2Mν

evaluated with parameters yE and µ.

8.2.2 Definition of the search direction

Consider a quadratic approximation to the primal-dual function Mν based on an
approximate Hessian Hν

M ≈ ∇2Mν such that

Hν
M(x, y;µ) =

H̄(x, y) + 1
µ(1 + ν)J(x)TJ(x) νJ(x)T

νJ(x) νµI

 , (8.6)
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where H̄(x, y) is a symmetric approximation to H
(
x, π + ν(π − y)

)
≈ H(x, y) such that

H̄(x, y) + 1
µJ(x)TJ(x) is positive definite. The approximation π + ν(π − y) ≈ y is valid

provided π ≈ y. The restriction on the inertia of H̄ implies that Hν
M(x, y;µ) is positive

definite for ν > 0 and positive semidefinite for ν = 0.
Using this definition of Hν

M at the kth primal-dual iterate vk = (xk, yk), consider
the convex QP subproblem

minimize
∆v=(p,q)

∇Mν(vk)T∆v + 1
2∆v

THν
M(vk)∆v subject to xk + p ≥ 0, (8.7)

where Mν(v) denotes the merit function evaluated at v = (x, y).
The following result provides a useful equivalent definition for the search direction.

Theorem 8.2.1 (Gill and Robinson [39, Theorem 3.3]). For any primal-dual QP solution
∆vk = (pk, qk), the first-order conditions associated with the variables in the free part of
xk + pk may be written in matrix form as:H̄F −JTF

JF µI


pF

qk

 = −

 [gk − JTkyk − H̄sk ]F

ck + µ(yk − yE)− Jksk

 , (8.8)

where ck, gk and Jk denote the quantities c(x), g(x) and J(x) evaluated at xk, and sk is a
nonnegative vector such that

[sk ]i =

 [xk ]i if i ∈ A(xk + pk);
0 if i ∈ F(xk + pk).

(The assumption of positive-definiteness of H̄k + 1
µJ

T
kJk implies that the matrix associated

with the equations (8.8) is nonsingular.) It follows that if A(xk + pk) = A(xk), then sk is
zero and (pk, qk) satisfies the perturbed Newton equationsHF −JTF

JF µI


pF

qk

 = −

 [gk − JTkyk ]F

ck + µ(yk − yE)

 .
Given an iterate vk = (xk, yk) and Lagrange multiplier estimate yE

k , the primal-dual
search direction ∆vk = (pk, qk) is defined such that vk+∆vk = (xk+pk, yk+qk) is a solution
of the convex QP problem

minimize
v=(x,y)

(v − vk)T∇Mν(vk; yE
k , µ

R
k) + 1

2(v − vk)THν
M(vk;µR

k)(v − vk)

subject to x ≥ 0,
(8.9)
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where µR
k is a small parameter, and Hν

M(vk;µR
k) is the matrix (8.6) evaluated at vk =

(xk, yk). In this context, µR
k plays the role of a regularization parameter rather than a

penalty parameter, thereby providing an O(µR
k) estimate of the conventional SQP direction.

In general, augmented Lagrangian-based methods keep the penalty parameter µ as
large as possible (see, e.g., [18, 35]), whereas stabilized SQP methods keep µ small (see
Chapter 5). This motivates using a small µ for the quadratic subproblem, and a larger µ
for the merit function.

Finally, note that if v = vk is a solution of the QP (8.9), then vk is a first-order
solution of

minimize
v=(x,y)

Mν(v; yE
k , µ

R
k) subject to x ≥ 0. (8.10)

The following result provides an important link between the primal-dual SQPmethod
and regularized SQP methods,

Theorem 8.2.2 (Gill and Robinson [39, Theorem 3.1]). The primal-dual vector vk+∆vk =
(xk + pk, yk + qk) is a solution of problem (8.9) if and only if it solves the stabilized SQP
problem,

minimize
x,y

gTk(x− xk) + 1
2(x− xk)T H̄(xk, yk)(x− xk) + 1

2µ
R
k‖y‖2

subject to ck + Jk(x− xk) + µR
k(y − yE

k ) = 0, x ≥ 0.
(8.11)

8.2.3 Definition of the new iterate

This algorithm uses a “flexible penalty function” as defined in Curtis and No-
cedal [20]. Let αk = 2−j , where j is the smallest nonnegative integer such that

Mν(vk + αk∆vk; yE
k , µ

F
k) ≤Mν(vk; yE

k , µ
F
k) + αkηSδk (8.12)

for some value µF
k ∈ [µR

k , µk], and the scalar

δk
4= max

(
∆vTk∇Mν(vk; yE

k , µ
R
k),−10−3‖∆vk‖2

)
≤ 0 (8.13)

is a sufficiently negative value used in the proof of global convergence. Once an appropriate
value for αk is found, the new primal-dual iterate is given by

xk+1 = xk + αkpk and yk+1 = yk + αkqk.
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8.2.4 Updating the multiplier estimate

Consider the functions

φS(v) = ξ(x) + 10−5ω(v) and φL(v) = 10−5ξ(x) + ω(v), (8.14)

where
ξ(x) = ‖c(x)‖ and ω(x, y) =

∥∥∥min
(
x, g(x)− J(x)T y

)∥∥∥ (8.15)

are feasibility and stationarity measures at the point (x, y), respectively. These optimality
measures are based on the optimality conditions for problem (8.1) rather than for minimizing
the merit function Mν . Both measures are bounded below by zero, and are equal to zero if
v is a first-order solution to problem (8.1).

The multiplier estimate yE
k is updated when vk satisfies either φS(vk) ≤ 1

2φ
S
max or

φL(vk) ≤ 1
2φ

L
max, where φSmax and φLmax are bounds that are updated throughout the solution

process. To ensure global convergence, the update to yE
k is accompanied by a decrease in

either φSmax or φLmax.
Finally, yE

k is also updated if an approximate first-order solution of the problem

minimize
x,y

Mν(x, y; yE
k , µ

R
k) subject to x ≥ 0 (8.16)

has been found. The test for optimality is

‖∇yMν(vk+1; yE
k , µ

R
k)‖ ≤ τk and

∥∥min
(
xk+1,∇xMν(vk+1; yE

k , µ
R
k)
)∥∥ ≤ τk (8.17)

for some small tolerance τk > 0. Numerical experiments have shown that it is rare for
an iterate to not satisfy φS(vk) ≤ 1

2φ
S
max or φL(vk) ≤ 1

2φ
L
max and satisfy this condition,

however, the condition is still necessary for the convergence theory. It was shown in Gill
and Robinson [39] that a sequence of iterates converges to either a point satisfying the KKT
conditions or generates a sequence of M-iterates, converging to a stationary point of Mν .
It will be shown in this Chapter that under certain, conditions, a stationary point of Mν is
also a local minimizer.

If the condition (8.17) is satisfied, yE
k is updated with the safeguarded estimate

yE
k+1 =

(
−106, yk+1, 106

)
.
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8.2.5 Updating the penalty parameters

Since µR
k should only be decreased when “close” to optimality (ignoring locally in-

feasible problems), use the definition

µR
k+1 =


min

(1
2µ

R
k , ‖ηk‖γ

)
, if (8.17) is satisfied;

min
(
µR
k , ‖ηk‖γ

)
, otherwise,

(8.18)

where 0 < γ < 1 and, as in the regularized SQP methods, η is defined to a measure of the
primal-dual optimality violation,

ηk+1 ≡ ηopt(vk+1) 4=

 c(xk+1)
min

(
xk+1, g(xk+1)− J(xk+1)Tyk+1

)
 . (8.19)

This choice of ηk+1 ensures that, as vk approaches a primal-dual solution, and the asymp-
totically superlinearly convergent region is reached, µR

k is eventually equal to ηγk , which is a
typical value of µR used in the local convergence analysis of stabilized SQP methods. Far
from the solution, µ is held to be small so as to not perturb the problem too far from a
conventional SQP step, while monotonically converging to zero along iterates that improve
the merit function.

The update to the penalty parameter µk is motivated by the goal of decreasing µk
only when the trial step indicates that the merit function increases. The algorithm uses the
update,

µk+1 =


µk, Mν(vk+1; yE

k , µk) ≤Mν(vk; yE
k , µk) + α̂kηSδk

max
(1

2µk, µ
R
k+1

)
, otherwise,

(8.20)

where δk is defined in (8.13) and α̂k = min(αmin, αk) for some positive αmin. The use of the
scalar αmin increases the likelihood that µk will not be decreased.

8.2.6 Formal statement of the algorithm

In this section pdSQP is formally stated as Algorithm 8.2.1 and include some addi-
tional details. During each iteration, the trial step is computed as described in Section 8.2.2,
the solution estimate is updated as in Section 8.2.3, yE

k is updated as in Section 8.2.4, and
the penalty parameters are updated as in Section 8.2.5. The value of yE

k is crucial for both
global and local convergence. To this end, there are three possibilities. First, yE

k is set to
yk+1 if (xk+1, yk+1) is acceptable to either of the merit functions φS or φL given by (8.14).
These iterates are labeled as S- and L-iterates, respectively. It is to be expected that yE

k
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will be updated in this way most of the time. Second, if (xk+1, yk+1) is not acceptable to
either of the merit functions φS or φL, check whether an approximate first-order solution
to problem (8.16) has been computed by verifying conditions (8.17) for the current value
of τk. If these conditions are satisfied, the iterate is called an M-iterate. In this case, the
regularization parameter µR

k and subproblem tolerance τk are decreased and yE
k is updated

as in (8.2.4). Finally, an iterate at which neither of the first two cases occur is called an
F-iterate. The multiplier estimate yE

k is not changed in an F-iterate.

Algorithm 8.2.1. Regularized primal-dual SQP algorithm pdSQP
Input (x0, y0);
Set algorithm parameters αmin > 0, ηS ∈ (0, 1), τstop > 0, and ν > 0;
Initialize yE

0 = y0, τ0 > 0, µR
0 > 0, µ0 ∈ [µR

0 ,∞), and k = 0;
Compute f(x0), c(x0), g(x0), J(x0), and H(x0, y0);
for k = 0, 1, 2, . . . do

Define H̄k ≈ H(xk, yk) such that H̄k + (1/µR
k)JTkJk is positive definite;

Solve the QP (8.9) for the search direction ∆vk = (pk, qk);
Find an αk satisfying (8.12) and (8.13);
Update the primal-dual estimate xk+1 = xk + αkpk, yk+1 = yk + αkqk;
Compute f(xk+1), c(xk+1), g(xk+1), J(xk+1), and H(xk+1, yk+1);
if φS(xk+1, yk+1) ≤ 1

2φ
S
max then [S-iterate]

φSmax = 1
2φ

S
max;

yE
k+1 = yk+1;
τk+1 = τk;

else if φL(xk+1, yk+1) ≤ 1
2φ

L
max then [L-iterate]

φLmax = 1
2φ

L
max;

yE
k+1 = yk+1;
τk+1 = τk;

else if vk+1 = (xk+1, yk+1) satisfies (8.17) [M-iterate]
yE
k+1 = middle(−106, yk+1, 106);
τk+1 = 1

2τk;
else [F-iterate]

yE
k+1 = yE

k ;
τk+1 = τk;

end if
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Update µR
k+1 and µk+1 according to (8.18) and (8.20), respectively;

if ‖rk‖ ≤ τstop then exit ;
end (for)

8.3 Properties of the subproblem

8.3.1 Convexification

Introduction

The pdSQP convexification procedure in Gill and Robinson [39] proceeds as follows.
If HF is not positive-definite, then a value µH is found such that H + 1

µH
PAP

T
A is positive

definite, similarly to the procedure described for standard form problems in Chapter 6.
To review the results of Gill and Robinson [39], consider a subset A of the integers

{1, 2, . . . , n} and let JF and JA denote the columns of J associated with the set A and its
complement {1, 2, . . . , n}/A. (This notation indicates that A is often chosen as the set F(x)
of free variables.) For given H and J , let K and KF denote the matrices

K =

H JT

J −µI

 and KF =

HF JTF

JF −µI

 , (8.21)

i.e., KF is the matrix of m+ nF rows and columns of K corresponding to the index set A.
A set A for which KF has inertia (nF ,m, 0) is called a second-order consistent basis.

Suppose that we wish to define a convex QP at a point x0 at which a second-order
consistent basis A is known.

Lemma 8.3.1. If the KKT matrix KF (8.21) is defined in terms of a second-order consistent
basis A, then the matrix

B =

HF + 1
µ(1 + ν)JTFJF νJTF

νJF νµI

 , (8.22)

is positive definite for ν > 0, and positive semidefinite for ν = 0.

This implies the following primary result.

Theorem 8.3.1. If the KKT matrix KF (8.21) is defined in terms of a second-order con-
sistent A, then the matrix

HM =

H̄ + 1
µ(1 + ν)JTJ νJT

νJ νµI

 , with H̄ = H + 1
µ
PAP

T
A ,
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is positive definite.

The remaining results of this section relate the solution of the convexified problem
to the solution original problem. It is shown that if the active set does not change, then
the iterations are the same, suggesting the practicality of a procedure that adds additional
terms to the Hessian only if active constraints are dropped. It is also shown that the
convexification procedure is unnecessary for convex nonlinear problems.

Relation between the convexified problem and the original problem

The pdSQP subproblem is of the form:

minimize
∆v

gTM∆v +∆vTHM∆v,

subject to x+ p ≥ 0.
(8.23)

At a stationary point for this subproblem, the following conditions hold:

[g +Hp− JTy]F = 0, (8.24)

[g +Hp− JTy]A = zA, (8.25)

c+ µ(y − yE) + Jp = 0. (8.26)

Consider the convexified Hessian H̄ = H+ 1
µH
PAP

T
A . The following statement about

the QP iterations holds.

Proposition 8.3.1. If there is no change in the active set, the solution to the convexified
subproblem is a solution to the original indefinite subproblem.

Proof. A step for the convexified problem satisfiesH̄F −JTF
JF µRI

pF

qj

 = −

 [g + H̄pj − JTyj ]F

c+ µH(yj − yE) + Jpj

 , (8.27)

H̄F = P TF (H + 1
µH
PAP

T
A)PF = HF + 1

µH
P TFPAP

T
APF . The product P TFPA is just a matrix of

inner products of the columns of PA and PF . Since PA has columns ei, i ∈ A and PF has
columns ej , j ∈ F , and A ∩ F is empty, eTi ej = 0 for all i ∈ A and j ∈ F , so P TFPA = 0.
The matrix on the left-hand side of (8.27) remains unchanged.

The matrix [A]F is equivalent to P TFA. Consider [H̄pj ]F = P TF (H + 1
µH
PAP

T
A)pj .

Similarly, P TFPA = 0 and so [H̄pk ] = [Hpj ] and the right hand side of (8.27) remains
unchanged if H̄ is replaced by H.
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However, convexification changes the reduced costs, and therefore may change the
optimality of the active set. This is because, at a solution of the convex problem,

[g +Hp+ 1
µH
PAP

T
Ap− JTy]A = zA + 1

µH
PAP

T
Ap = zA −

1
µH

[x0]A,

which implies that the reduced costs may have different signs.
Suppose that zi < 0 and a direction is computed that moves off constraint i. The

direction for the convex problem is identical to the step for the problem with H1 = H +
(1/µH)eieTi . Consider iterating this procedure until a solution p̄ is found satisfying

[g +Hp̄+ 1
µH
PAP

T
A p̄− JTȳ]F = 0, (8.28)

[g +Hp̄+ 1
µH
PAP

T
A p̄− JTȳ]A = z̄ ≥ 0. (8.29)

Note that [g+Hp̄+(1/µH)PAP
T
A p̄−JTy]A = [g+Hp̄−JTy]A, so the reduced costs for

the convex problem are also reduced costs for the original problem if p̄ is also a stationary
point for the original problem.

However, [g+Hp̄− JTy]F = −[(1/µH)PAP
T
A p̄]F is nonzero if some of the constraints

originally active at the start of the QP subproblem became inactive during the algorithm
iterations. Since, in this case, the free components of the reduced costs are not zero, p̄ is
not a stationary point for the original QP.

Strictly convex problems

In this section, it is shown that it is not necessary to convexify a strictly convex
problem. Consider the QP subproblem in inequality form (3.2). If this problem is convex,
the objective f(x) is convex, the inequality constraints c(x) ≥ 0 are concave, and the
equality constraints c(x) = 0 are linear. In order to simplify the discussion only inequality
constraints are considered, although the theory is easily extended to problems with linear
equalities. If the problem is transformed to standard form, the constraints c(x) ≥ 0 are
changed to c(x)− s = 0, s ≥ 0, and HM has the form,

HM =


H + 1

µ(1 + ν)JTJ − 1
µ(1 + ν)JT JT

− 1
µ(1 + ν)J 1

µ(1 + ν)I −I
J −I νµI

 . (8.30)

If the Hessian of the Lagrangian is positive definite for all x and y, then the following result
holds.
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Lemma 8.3.2. If H is positive definite and ν ≥ 0, then HM is positive definite.

Proof. Consider the quadratic form dTHMd for the Hessian HM of (8.30). If HM is positive
definite, then for any d 6= 0, it holds that dTHMd > 0. If d is partitioned as d = (u, v, w),
the definition of HM (8.30) gives

dTHMd= uTHu+ 1
µ

(1 + ν)(Ju)T(Ju)− 1
µ

(1 + ν)uTJTv + νuTJTw

− 1
µ

(1 + ν)vTJu+ 1
µ

(1 + ν)vTv − νvTw + νwTJu− νwTv + µνwTw

> (Ju− v)T
( 1
µ

(1 + ν)(Ju− v) + 2νw
)

+ µνwTw

≥ 1
µ

(1 + ν)(Ju− v)T(Ju− v)− 2ν‖Ju− v‖‖w‖+ µν‖w‖2

≥
( 1
√
µ
‖Ju− v‖ − √µ‖w‖

)2

≥ 0.

This proves the positive definiteness of HM .

If f is not strictly convex but simply convex, then H can only be said to be positive-
semidefinite everywhere and HM is everywhere positive-semidefinite.

Lemma 8.3.3. The dual solution of (8.23) satisfies (y + q)i ≥ 0.

Proof. By Theorem 8.2.2, the solution of the pdSQP subproblem is the same as the solution
of the stabilized SQP subproblem. From the primal optimality conditions, it holds that,

g +Hp− JT(y + q)− z = 0.

For the slack variable si, this condition is (y + q)i = zi. Since zi ≥ 0, so is yi + qi.

Lemma 8.3.4. For a convex problem, if y0 is chosen such that y0 ≥ 0, then HM is always
positive definite.

Proof. As mentioned above, for a convex problem, f is convex, ci is linear for i such that
ci(x) = 0, concave for ci(x) ≥ 0 and convex for ci(x) ≤ 0.

Therefore H = ∇2f(x) −
∑
yi∇2ci(x) is always positive definite if y is such that

yi ≥ 0 for ci(x) ≥ 0.
By the assumption, yi ≥ 0 holds for the initial point. Now assume yi ≥ 0 at iteration

k. Then, by Lemma 8.3.3, (y + q)i ≥ 0, so (y + αq)i ≥ 0.
Hence H(xk, yk) = ∇2

xxf(xk)−
∑
i yi∇2

xxci(xk) is always positive definite, since f(x)
is convex, yi ≥ 0 and {ci(x)} are concave. By the Lemma 8.3.2 of this section, HM is always
positive definite.
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8.4 Solving the QP subproblem

8.4.1 Definition of the QP step

The bound constrained quadratic program has the form

minimize
∆v=(p,q)

gM(vk)T∆v + 1
2∆v

THν
M(vk)∆v subject to xk + p ≥ 0. (8.31)

In the convergence theory of Gill and Robinson [39], it is assumed that H̄ + 1+ν
µ JTJ is

positive-definite. If this is not the case, then a modified LBLT factorization is used to obtain
a diagonal matrix D such that the matrix of free rows and columns of H +D + 1+ν

µ JTJ is
positive definite (see Chapter 9 for details). If a nonzero matrix D is found, the variables
corresponding to the nonzero elements of D are temporarily fixed at their currents values
before the QP subproblem is started. These temporary constraints are removed during the
iterations of the QP subproblem. The initial nonbasic set of “real” and temporary bounds
defines a second-order consistent working set (see Section 3.2.2 of Chapter 3). The QP
subproblem is solved using an inertia-controlling QP method, described below.

8.4.2 An inertia-controlling method for bound-constrained QP

An inertia-controlling method for the bound-constrained QP,

minimize
x∈Rn

ϕ(x) = gT(x− x0) + 1
2(x− x0)TH(x− x0) subject to x ≥ 0, (8.32)

generates a sequence of primal-dual iterates (xj , zj) such that zj = g(xj) and every xj is
a subspace minimizer with respect to the current basis. The method generates a sequence
of sets of consecutive iterates such that the first and last iterate of each set is a standard
subspace minimizer. At the first point of each set, a nonbasic variable xs with a negative
dual variable is identified. In the sequence of subsequent intermediate iterates, there is
at most one strictly positive nonbasic variable (the variable with index νs). The set of
intermediate iterates ends at a point at which the dual variable for xs has been driven to
zero. At this point, the variable xs is made basic, which implies that the last iterate is a
standard subspace minimizer with respect to the new basis.

For the moment we focus on a set of consecutive iterates that starts at a standard
subspace minimizer xj . If g(xj) is nonnegative, then xj is the solution of the QP and the
algorithm is terminated. Otherwise, there is at least one strictly negative component of
gN(xj) (say, the s-th nonbasic, which corresponds to variable xs), and hence there exists a
direction p, such that gTp+ pTHp < 0 and p = es. Movement along pj causes the nonbasic
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variable xs to become strictly satisfied. An appropriate direction is given by pj = x − xj ,
where x is the solution of the equality-constraint QP:

minimize
x∈Rn

g(xj)T(x− xj) + 1
2(x− xj)TH(x− xj) subject to [x]N = es.

Given (xj , zj) we define the optimal (x, z) in the form (xj + pj , zj + qj), with

[xj + pj ]B ≥ 0, [xj + pj ]N = es,

[zj + qj ]B = 0, [zj + qj ]N ≥ 0.

As in the previous section, the equalities [xj + pj ]N = es and [zj + qj ]B = 0 are written in
terms of the equations

HB HD −IB

HT
D HN −IN

IB

IN




pB

pN

qB

qN

 = −


gB(xj)− [zj ]B

gN(xj)− [zj ]N

[zj ]B

[xj ]N − es

 .

As zj = g(xj), and xj is a subspace minimizer, it must hold that gB(xj) = 0, in which case
the equations simplify to give

HB HD −IB

HT
D HN −IN

IB

IN




pB

pN

qB

qN

 =


0
0
0

es − [xj ]N

 .

If xj is a standard subspace minimizer, then [xj ]N = 0, and the equations can be written as
HB HD

HT
D HN −IN

IN



pB

pN

qN

 =


0
0
es

 . (8.33)

It follows that pN = es, qN = [Hp]N and pB satisfies the equations

HBpB = −[Hes]B = −[hs]B. (8.34)

In practice, pN is defined implicitly and only the components of pB and qN need be computed
explicitly.

For any scalar step length α, the values of pj and qj specified by (8.33) give

gB(xj + αpj) = gB(xj) + α[Hpj ]B = gB(xj) = 0, (8.35)
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which implies that every point on the ray xj +αpj is a subspace minimizer with respect to
B. Moreover, the directional derivative and curvature along pj are given by

g(xj)Tpj = zTNpN = (zN)s, and pTjHpj = pTNqN = (qN)s. (8.36)

Once the direction pair (pj , qj) is computed, a nonnegative step length αj is com-
puted so that xj + αjpj is feasible and ϕ(xj + αjpj) ≤ ϕ(xj). If pTjHpj > 0, the step that
minimizes ϕ(xj+αjpj) as a function of α is given by α∗j = −g(xj)Tpj/pTjHpj . The identities
above give

α∗j = −g(xj)Tpj/pTjHpj = −(zN)s/(qN)s.

Since (zN)s < 0, if (qN)s = pTjHpj > 0, the optimal step length α∗j is positive. If pTjHpj ≤ 0,
then (qN)s = pTjHpj ≤ 0 and ϕ has no bounded minimizer along pj and α∗j = +∞.

If xj +α∗jpj is unbounded or infeasible, then α must be limited by ᾱj , the maximum
feasible step from xj along pj . The feasible step length is defined as ᾱj = γt = mini {γi},
where

γi =


(xj)i
−(pj)i

, if (pj)i < 0,

+∞, otherwise.

The step length αj is then min{α∗j , ᾱj}. If α∗j = +∞, the QP has no bounded solution
and the algorithm terminates. (For brevity, the calculation of γr is summarized as γr =
minRatioTest(xj , pj).) Once a bounded αj has been defined, the new iterate is xj+1 =
xj+αjpj . The composition of the new working set and multipliers depends on the definition
of αj .

Case 1: αj = α∗j . In this case, the curvature (qN)s must be positive, and the step length
αj = α∗j = −(zN)s/(qN)s minimizes ϕ(xj + αpj) with respect to α, giving the s-th element
of zN + αqN as

(zN + αqN)s = (zN)s + α∗j (qN)s = 0.

This identity shows that the Lagrange multiplier associated with the nonbinding nonbasic
variable is zero at xj + α∗jpj . This result, when used in conjunction with (8.35), implies
that xj+1 is a subspace stationary point with respect to B + {νs}. The following argument
shows that the new reduced Hessian is positive definite at xj+1 and is hence a subspace
minimizer. The reduced Hessian with respect to the new basis is given by HB [hs]B

[hs]TB hνs,νs

 ,
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which is positive definite if the Schur complement hνs,νs − [hs]TBH−1
B [hs]B is positive. The

definitions qN = [Hpj ]N and pN = es imply that

(qN)s = eTs(HT
DpB +HNpN) = [hs]TBpB + hνs,νs

= hνs,νs + [hs]TBpB.

The definition of pB (8.34) gives

(qN)s = hνs,νs
− pTBHBpB = hνs,νs − [hs]TBH−1

B [hs]B,

which is positive, as required.

Case 2: αj = ᾱj. In this case, αj is the step to the bound on xt. If the index t corresponds
to the r-th basic variable, then the index βr is moved from the basic set to the nonbasic set
at xj + αjpj . The following argument shows that xj + αjpj is a subspace minimizer with
respect to the new basic set B−{βr}. The point xj+αjpj is a subspace stationary point with
respect to B from (8.35), and remains so when gt(xj+1) is moved to zN . Moreover, every
symmetric subset of the rows and columns of the positive-definite matrix HB is positive
definite, which implies that the matrix obtained by removing the βr-th row and column of
HB is positive definite.

If temporary bounds are imposed at x0, and the index νs corresponds to a temporary
bound, then it is possible that t = νs. In this case, the nonbasic set does not change at
xj + αjpj , but the status of the nonbasic index νs is changed from being associated with
a temporary bound to being associated with the “real” bound on xs. As HB remains the
same at xj + αpj , it follows that xj+1 is also a subspace minimizer with respect to B. (A
similar scheme is used to handle bound swaps for upper and lower bound constraints of the
from ` ≤ x ≤ u.)

Algorithm 8.4.1. [Inertia-Controlling Method for QP with Bounds.]
Choose x0 such that x0 ≥ 0;
Choose B and N such that HB is positive definite;
Set x = x0; g = g +H(x− x̄); νs = argmini∈N {gi};
while gs 6= 0 do

Solve HBpB = −[hs]B; pN = es;

p = P

pB

pN

; qN = [Hp]N ;

[ᾱ, t] = minRatioTest(x, p); [blocking variable xt]
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if (qN)s > 0 then α∗ = −gs/(qN)s else α∗ = +∞;
α = min{α∗, ᾱ};
if α = +∞ then stop; [unbounded solution]
x← x+ αp; gN ← gN + αqN ;
if ᾱ = α∗ then
B ← B + {νs}; N ← N − {νs};

else if ᾱ < α∗ then
if t = βr then

B ← B − {βr}; N ← N + {βr};
end

end;
if gs = 0 then νs = argmini∈N {gi}; [standard subspace minimizer]
k ← k + 1;

end do
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8.4.3 ICQP as applied to the pdSQP subproblem

A subspace stationary point is found by solving,

[HM ]B

pB

q

 = −[gM ]B.

At a standard subspace minimizer of the inertia-controlling QP method identifies an active
constraint s with the largest nonoptimal component of z (i.e., xs is on its bound but zs < 0,
or xs is set on a temporary bound and zs is nonzero.) This bound is set for deletion from
the nonbasic set. At the next step, (gM)B must remain zero, while the nonbasic variables
remain fixed except for variable s, which moves off of its bound. These requirements may
be summarized in the equation,HM ETN

EN 0

∆v
−r

 =

 0
es

 ,
where EN is a matrix composed of the columns of the identity matrix corresponding to
the nonbasic set, ∆v is the QP iteration step, and r is the change in the reduced costs z.
Expanding HM , this is equal to

H + 1+ν
µ JTJ νJT ETN

νJ µνI 0
EN 0 0




p

q

−r

 =

 0
es

 .
The second equation is Jp+ µνq = 0, which implies that the first equation may be written
as

Hp− JTq − ETNr = 0. (8.37)

These equations can be simplified because EN∆v = es has the effect of constraining
all active variables except for the sth. In particular, they may be written as:

[HM ]B∆vB = −[HMes]B, (8.38)

which is equivalent to a regularized Newton system (also the stabilized SQP equations), as
shown in the following result.

Result 8.4.1. Consider the application of the active-set method to the bound constrained
QP (8.31). Then, for every ν ≥ 0, there exists a positive µ̄ such that, for all 0 < µ < µ̄,
the free components of the QP search direction (pj , qj) satisfy the nonsingular primal-dual
system HB −JTB

JB µI

 pB

qj

 = −

[hs]B

as

 . (8.39)
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Proof. Consider the definition of the search direction when ν > 0. In this case it suffices to
show that the linear systems (8.38) and (8.39) are equivalent. For any positive ν, we may
define the matrix

TB =

I −1+ν
νµ J

T
B

0 1
ν Im

 ,
where the identity matrix I has dimension nB, the column dimension of J0B. The matrix
TB is nonsingular with nB +m rows and columns. It follows that the equations

TB[HM ]B∆vB = −TB[HMes]B

have the same solution as those of (8.38). The primal-dual equations (8.39) follow by direct
multiplication. The nonsingularity of the equations (8.39) follows from the nonsingularity
of TB, and the fact that HM is nonsingular (as are all symmetric submatrices formed from
its rows and columns).

The resulting equations (8.39) are independent of ν, but the simple proof above is
not applicable when ν = 0 because TB is undefined in this case. For ν = 0, the QP objective
includes only the primal variables x, which implies that problem (8.31) may be written as

minimize
x≥0

(
g − JTπ

)T (
x− x0

)
+ 1

2
(
x− x0

)T(
H + 1

µ
JTJ

)(
x− x0

)
,

with y arbitrary. The active-set equations analogous to (8.34) are then(
HB + 1

µ
JTB JB

)
pB = −

[(
H + 1

µ
JTJ

)
es

]
B

. (8.40)

Let the m-vector q be such that

qj = − 1
µ
JB

(
pB + es

)
. (8.41)

Equations (8.40) and (8.41) may be combined to giveHB −JTB
JB µI

pB

qj

 = −

[hs]B

as

 ,
which are identical to the equations (8.39).

8.4.4 Properties of the curvature

Consider the curvature ∆vTHM∆v for any arbitrary ∆v. By definition, we have

HM∆v =

H + 1
µ(1 + ν)JTJ νJT

νJ νµI

p
q


=

Hp+ 1
µJ

TJp+ ν
µJ

T(Jp+ µq)
ν(Jp+ µq)

 .
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By assumption, both (x, y) and (x+ p, y + q) are subspace minimizers, which implies that

c+ J(x+ p− x0) + µ(y + q − yE) = Jp+ µq = 0.

Hence

HM∆v =

Hp+ 1
µJ

TJp+ ν
µJ

T(Jp+ µq)
ν(Jp+ µq)

 =

Hp+ 1
µJ

TJp

0


=

Hp− JTq
0

 . (8.42)

This identity implies that the scalar ∆vTHM∆v, which represents the curvature of ϕM along
∆v, may be written as

∆vTHM∆v = pTHp− pTJTq = pTHp+ µ‖q‖22. (8.43)

It follows that if the objective ϕ(x) for the QP is convex, then H is positive semidefinite
and the curvature is positive for all positive µ.

If p is written in terms of its basic and nonbasic components, the identity (8.43)
implies that the curvature ∆vTHM∆v can be expressed as

∆vTHM∆v = pTHp+ µ‖q‖22

=
(
pTB pTN

)HB HD

HT
D HN

pB

pN

+ µ‖q‖22

= pTBHBpB + pTB [hs]B + [hs]TBpB + hνs,νs + µ‖q‖22. (8.44)

The vector pB is independent of hνs,νs , which implies that if the curvature is not sufficiently
positive, it may be increased by adding a positive quantity θs to the νs-th diagonal of
H. This procedure will result in the final iterate being the solution of a QP with Hessian
H +∆H, where ∆H = diag(θ1, θ2, . . . , θn) is positive semidefinite.

8.4.5 Calculating the step-size

In the inertia-controlling bound-constrained QP algorithm 8.4.1, the step is scaled
to be either to a blocking constraint or an unconstrained one-dimensional minimizer along
∆v. If the curvature along the step, ∆vTHM∆v, is positive, this is given by the expression,

α∗ = −
(
gM +HM(v − v0)

)T
∆v/∆vTHM∆v,
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where v is the current primal-dual iterate in the QP subproblem and v0 is the base point
of the QP.

As (x, y) is a subspace minimizer at every iteration, it must hold that gM +HM(v−
v0) = z, and zB = 0. This implies that the numerator of α∗ can be expressed as:

(gM +HM(v − v0))T∆v = ∆vTz = zs,

because the only nonzero components of z are in N and xs is the only nonzero component
of xN .

In addition, as ENp = es, it must hold that

∆vTHM∆v = ∆vT(ETNr) = rTEN

p
q

 = [Hp− JTq]s,

where the last equality comes from equation (8.37). These expressions imply that the step
length α∗ may be written in the form:

α∗ = −
(
gM(v)

)
s
/∆vTHM∆v = −zs/rs, (8.45)

where r denotes the vector Hp− JTq.

8.4.6 Concurrent convexification

As described in Chapter 6, an ideal convexification method makes minimal changes
to H. In this section we propose a method that alters H only when negative curvature is
encountered during the solution of the QP subproblem. The idea is to monitor the sign of
the curvature ∆vTHM∆v at each step and add a quantity to Hss that is large enough to
make ∆vTHM∆v sufficiently positive. This idea can be extended to allow the curvature to
be increased whenever a small positive value of the curvature would otherwise cause the
QP solver to take a large step.

At any given QP iterate (x, y), the new reduced costs are a function of the step
length α, i.e., z(α) = g+H(x−x0 +αp)−JT(y+αq). The rate of change of z as a function
of α is given by the curvature ∆vTHM∆v. The situation in which the curvature is positive
is depicted in Figure 8.1. The intercept of z(α) is the starting value z = z(0) and the slope
is the curvature. In this case, the minimizer α∗ of ϕ as a function of α satisfies z(α∗) = 0.
In the case of negative curvature, z(α) is unbounded below as α→∞, and there is no finite
α∗, as shown in Figure 8.2.

Let σ denote the scalar σ = (x − x0)s. Adding a positive scalar θ to the s-th
diagonal of H has the effect of adding σθ to the multiplier zs, and θ to the curvature rs.
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∆vTHM∆v

z(0)

α?
α

z(α)

Figure 8.1: If the curvature along∆v is positive, then there is a finite α∗ at which z(α) = 0.

These modifications redefine the expression (8.45) for the step length to the minimizer along
∆v as

α(θ) = −
(
zs + σθ

)
/
(
rs + θ

)
. (8.46)

The derivative of α with respect to θ is given by

α′(θ) = − 1
(rs + θ)2

(
σrs + |zs|

)
.

There are two cases to consider for the choice of θ.

Case 1: σ ≤ 0. In this case, α(θ) has a pole at θ = −rs, and decreases monotonically for
θ > −rs. The inequality σ ≤ 0 and the assumption that rs ≤ 0 imply that α(θ) → |σ| as
θ → +∞. It follows that θ can always be chosen sufficiently large that α(θ) is smaller than
any given value larger than |σ|. If x(θ) is the new iterate x(θ) = x+ α(θ)p, then

(x(θ)− x0)s = (x+ α(θ)p− x0)s = (x− x0)s + α(θ)ps = σ + α(θ), (8.47)

which implies that (x− x0)s → 0 as θ →∞.

Case 2: σ > 0. If σ > 0, then the choice of θ is complicated by the fact that if σ ≥ |zs|/|rs|,
then α(θ) is not a decreasing function of θ. Moreover, even if α is decreasing, the amount
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∆vTHM∆v

z(0)
α

z(α)

Figure 8.2: When the curvature along ∆v is negative, z(α) is unbounded below.

that θ can be increased to reduce α(θ) is limited by the fact that the modified multiplier
zs + σθ is a monotonically increasing function of θ that will be positive for any θ > |zs|/σ.
This implies that θ can be chosen sufficiently large that the multiplier zs is positive. In this
case, the variable xs must be “deselected” as the nonbinding nonbasic variable. Gill and
Wong [40, 42] show that the curvature rs is nondecreasing during a sequence of nonstandard
iterations with the same nonbinding index νs. This result is crucial because it means that
a diagonal will be modified only at the start of a sequence of non-standard iterations.
Therefore, if a nonbinding nonbasic variable xs is deselected because its multiplier changes
sign after the modification, then xs must be at its bound and may be returned to being a
regular nonbasic variable at its current value.

The convexification procedure attempts to modify the Hessian so that the step
length taken is a particular desired value, αc, defined heuristically as a moving average of
the norms of the previous steps αp. In particular, the change to the diagonal of H required
to make αc the step length to solve z(α) = 0 is the solution to: θss[(x − x0 + αcp)]s =
[−g−H(x− x0 + αcp) + JT(y + αcq)]s. Ideally this modification will modify the curvature
to be positive so that z(α) resembles Figure 8.1, with α∗ = αc.

There are several limitations associated with this modification to H. First, it may
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be that [x−x0 +αcp]s is zero, which makes the solution undefined. In this case, αc is simply
doubled.

Another complication is that whenH is modified, then z(0) = g+(H+∆H)(x−x0)−
JTy is modified as well. In particular, the sth component can change sign. In particular, as
the modification to the Hessian increases, z(0) may change sign before the point at which
z(α) crosses the α axis is αc. In this case, the solution to the modification of H results in
the picture depicted in Figure 8.3. In this case, the optimal modification does not result
in positive curvature. In this case, the variable s set at its bound becomes optimal and no
step should be taken along ∆v, and a new constraint is found for moving off of (which may
be the same s but along the opposite direction if it is a temporary bound).

∆vTHM∆v
z(0)

α

z(α)

αc

Figure 8.3: The sign of z(0) changes as a result of a positive modification to H at a value
less than the curvature.

Finally, it can so happen that the calculated modification in H is negative. This
solution is depicted in Figure 8.4. The scenario which causes this to be the solution for
the modification of H is depicted in Figure 8.5. Here, as the diagonal ∆Hss increases, the
value of z(0) decreases faster than the curvature increases, and no positive value solves for
α∗ = αc.

The convexification procedure monitors the sign of ∆Hss = [−g−H(x−x0 +αcp)+
JT(y+αcq)]s/[(x−x0 +αcp)]s, and if it is negative, adds a value so as to make the curvature
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∆vTHM∆v

z(0)

α

z(α)

αc

Figure 8.4: The solution for the desired modification in H is negative.

positive with the opposite sign of ∆vTHM∆v. In this case, α∗ may be considerably larger
than αc. If there are no blocking constraints, then the step length may be very large.
This case is less than ideal, but should generally only occur if the QP is fundamentally
unbounded.

8.4.7 An alternative concurrent convexification method

Instead of bounding the inner iteration step-size, there could be a bound on the total
size of the step along variable s |[x− x0]s|. Note that this is similar to, but distinct from a
trust-region strategy, which, if an inf-norm trust-region, would already be reflected in the
boundary values, in which case convexification would be unnecessary as we "trust" stepping
to the boundary along a direction of negative curvature. It leaves open the question as to
how to define this bound. However, a method implementing this procedure ‖x − x0‖∞ is
described below.

The definition of θ depends on certain “target values” τm and zmin that define the
maximum change in x and the smallest positive multiplier. If σ > 0 then θ is chosen so that
the multiplier at x changes from a negative value to a nonnegative value than is no smaller
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∆vTHM∆v

z(0)

α

z(α)

αc

Figure 8.5: As the diagonal of H increases, the value of z(0) decreases more than the value
of ∆vTHM∆v increases.

than zmin, i.e.,
zs + σθ ≥ zmin ≥ 0.

This inequality is satisfied for every θ such that θ ≥ θF , where

θF = (zmin + |zs|)/σ.

is the value that “flips the sign” of the multiplier.

If σ ≤ 0, the definition of θ is based on choosing θ subject to a limit on the change
in the nonbinding nonbasic variable, The expressions (8.46) and (8.47) imply that (x(θ)−
x0)s > 0 for all θ > −rs and (x(θ)− x0)s → 0 as θ →∞. Accordingly, we require that θ be
chosen large enough that

(x(θ)− x0)s ≤ τm, (8.48)

where τm is a positive constant. This condition forces the distance of xs(θ) to [x0]s to be
of the same order as the distance of xs to [x0]s. An advantage of this choice of α is that
the modification is mainly determined by the behavior of ϕ along the component of the
direction along the “offending” variable xs.
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The restriction (8.48) implies that the value of θ must be larger than the critical
value θT such that

(x(θT )− x0)s = (x+ α(θT )p− x0)s = σ + α(θT ) = τm.

Combining this expression with the definition of α given by (8.46) yields

α(θ) ≤ αmax = τm + |σ| for all θ ≥ θT =
(
|zs|+ αmax|rs|

)
/τm.

The value of θ must be chosen such that θ > θL, where θL = |rs| is the smallest perturbation
that makes the curvature nonnegative. Observe that

θT = |rs|+
(
|zs|+ |σ|

)
/τm > θL,

as required. In summary, the definition of θ is given by

θ =


θT if θT ≤ θF ,

max{θL, θF }, otherwise.

One clear advantage of this method is that the scenario depicted in figure 8.5 is not
possible, and a modification that bounds the total deviation of variable s from the value
at x0 can always be found. The drawback is more subtle. This method requires the value
τm, a de facto trust-region on the variable. Without a proper trust-region framework, the
drawbacks will be inherent in whatever arbitrary heuristics are put in place. For instance,
by making τm = ‖x − x0‖∞, the algorithm potentially penalizes large step lengths early
among the iterations, when they are expected to be larger since the larger magnitude [z]s
are moved off of first, and these correspond to the directional derivative of the objective.
Of course the previous convexification procedure suffers from an arbitrary heuristic as well,
of using a moving average of inner iteration steps, but with a large collection of such steps
accumulated, it can be expected that this is a relatively safe and self-correcting procedure.

8.5 Global Convergence

This section contains several results concerning the global convergence of the primal-
dual iterates of pdSQP. For the primal iterates, it is shown that if the constant positive
generator constraint qualification holds, then a sequence of S- and L-iterates converges
to a first-order KKT point. (The constant positive generator (CPG) constraint qualifica-
tion is the weakest constraint qualification that ensures that approximate KKT sequences
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converge to KKT points; see [4] and Chapter 2, Page 16). It is also shown that for equality-
constrained problems, an infinite sequence of M-iterates converges to either a KKT point
or a point failing to satisfy the quasinormality constraint qualification.

8.5.1 Convergence of S- and L- iterates

The main result of this section is that a subsequence of S- and L-iterates form an
approximate KKT sequence. An approximate KKT sequence {xk}, defined in Chapter 4
(Page 48) is a sequence {xk} such that the following conditions hold

g(xk)−
∑

yj∇cj(xk)− zk = εk, (8.49)

xk ≥ −δk, (8.50)

z ≥ 0, (8.51)

zT(xk − δk) = 0, (8.52)

‖cj(xk)‖ ≤ νk, (8.53)

with {εk, δk, νk} → 0.
Andreani et al. [4, Theorem 5.7] show that if: (i) xk → x∗; (ii) xk is an approximate

KKT sequence; and (iii) CPG holds at x∗, then x∗ is a first-order KKT point.

Result 8.5.1. An infinite subsequence {vk} of S- and L-iterates is an approximate KKT
sequence.

Proof. Let γk = max(φmaxS , φmaxL ). As γk → 0, the definition of φS and φL implies
that the constraint inequality (8.53) holds. In addition, the stationarity condition implies
‖min(xk, g(xk)− J(xk)Tyk)‖ ≤ γk.

For components i satisfying min([xk]i, [g(xk)− J(xk)Ty]i) = [xk]i, we define [zk]i =
([g(xk)−J(xk)Tyk]i)+ and [δk]i = [xk]i. For the components i such that min((xk)i, (g(xk)−
J(xk)Tyk)i) = (g(xk) − J(xk)Tyk)i, we define [zk]i = 0 and [δk]i = 0. The resulting vector
zk satisfies (8.51), and xk and δk satisfy (8.50) by construction.

For the indices i such that min(xi, [g(xk) − J(xk)Tyk]i) = [xk]i, it must hold that
[xk]i = [δk]i ≤ γk, which implies that (8.52) holds for the ith component. The condition
[gk − JTkyk]i − [zk]i = 0 implies that the ith component of (8.49) holds with [εk]i = 0.

In the second case, [zk]i = 0, so equation (8.52) holds and [εk]i = [gk − JTkyk]i ≤ γk,
and (8.49) must hold also.

This proves that vk is an approximate KKT sequence with 0 ≤ {εk, δk, νk} ≤ γk and
γk → 0.
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8.5.2 Convergence of the M-iterates for equality constraints

Assuming very weak regularity conditions, a global convergence result can be derived
for the limit sequences of M-iterates when there are only equality constraints (i.e., there are
no bounds on the variables).

Let {vk} be a sequence of M-iterates, for which limk→∞ µ
R
k = 0 and limk→∞ τk = 0.

Note that, by assumption, {xk} lies in a compact set, and hence {xk} has a limit point x∗.
Without loss of generality, let k denote the indices of the corresponding subsequence.

It is assumed that the quasinormality constraint qualification holds at x∗. The
quasinormality constraint qualification, first defined in Chapter 2 (Page 16), implies the
following condition:

Definition 8.5.1. The quasinormality condition holds at x∗ if there is no {λi} such that

1.
∑
λi∇ci(x∗) = 0,

2. the λi are not all zero,

3. For every neighborhood N of x∗ there is an x ∈ N such that λic(x)i > 0 for all i with
λi 6= 0.

The gradient of Mν is

∇Mν =

gk − JTk
(

(1 + ν)
(
yE
k −

1
µR
ck
)
− νyk

)
ν
(
ck + µR(yk − yE

k )
)

 (8.54)

As the definition of an M-iterate implies that ‖∇M(vk)‖ ≤ τk, we define εk = ∇M(vk),
where ‖εk‖ ≤ τk. Let εxk = ∇xM(vk) and εyk = ∇yM(vk).

Proposed change to Algorithm 8.2.1: For the test that defines an M-iterate, the term
∇Mν(vk+1; yE

k , µ
R
k) is replaced by ∇Mν(vk+1; yE

k+1, µ
R
k), where yE

k+1 is defined as the new
multiplier estimate yk+1. This modification is necessary for the first result below to hold.
It does not change any of the other convergence results.

Theorem 8.5.1. If the sequence {yk} is bounded, then every cluster point of the sequence
of M-iterates is a first-order KKT point.
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Proof. As k is an M-iterate and {yk} is bounded, it follows that yk = yE
k in the definition

of ∇M . This implies that ck → 0 because the second component of the gradient of M
converges to zero,

The stationarity condition implies that

lim
k→∞

(
gk − JTkyk + 1 + ν

µk
JTk ck

)
= 0.

From the definition of the second component of ∇M , it holds that that ck = εyk/ν, where
εyk → 0. Furthermore, since ηk, the optimality residual, is bounded from below by assump-
tion, it holds that, for some index K, the update for µ is µk+1 = 1

2µk for all k ≥ K, where
µk is updated if and only if τk is updated. This implies that εyk/µk ≤ τk/µk = τK/µK is the
member of a bounded sequence and must have a cluster point ε∗.

If ck is written as εyk/ν, in the stationarity condition, it holds that

lim
k→∞

(
gk − JTkyk + 1 + ν

νµk
JTk ε

y
k

)
= 0,

which implies that, at any cluster point (x∗, y∗),

g∗ − JT∗
(
y∗ + 1 + ν

ν
ε∗
)

= 0,

as required.

Theorem 8.5.2. If the sequence {yk} is not bounded, then the sequence of M-iterates has
at least one cluster point that is either a first-order KKT point, or a point failing to satisfy
the quasinormality constraint qualification.

Proof. The second component of ∇Mν may be rearranged to give yk in the form

yk = 1
µR
k

(1
ν
εyk − c(xk)

)
+ yE

k .

Similarly, the first component of ∇Mν may be written as

gk − JTk

(
(1 + ν)

(
yE
k −

1
µR
k

ck
)
− ν

µR
k

(1
ν
εyk − ck

)
− νyE

k

)
= gk − JTk

(
− 1
µR
k

ck + yE
k −

1
µR
k

εyk

)
= εxk.

This implies that
lim
k→∞

(
µkgk − µkJTkyE

k + JTk ck + JTk ε
y
k

)
= 0.

As the sequences {JTkyE
k} and {gk} are bounded, with µk → 0 and εyk → 0, the sequence JTk ck

must converge to zero. Also, as the sequence {xk} is bounded, if the sequence of iterates
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has a cluster point x∗, it must hold that either c(x∗) = 0 or c(x∗) is a nontrivial member of
the null space of J(x∗). The latter case implies that the quasinormality condition fails at
x∗ with λ = c(x∗).

If c(x∗) = 0, then by the same argument as in Theorem 8.5.1, the sequence {εyk/µk}
is bounded and hence has a cluster point. Since xk and yE

k are also bounded, by the second
component of ∇M , there is a subsequence {kl} such that ykl

→ y∗. The stationarity KKT
condition is satisfied by the multiplier ȳ = yE

∗ − ε∗, where ε∗ is a cluster point of εyk/µk.

8.5.3 Convergence of the M-iterates for equalities and bounds

In the case of the general problem (8.1) with equality and bound constraints, only,
weak statements about infinite sequences of M-iterates can be made. Let xk be a sequence
of M-iterates with cluster point x∗. Consider the expression,

0 = lim
k→∞

‖min(xk,∇xMk)‖ = lim
k→∞

‖
[
(xk −∇xMk)− xk

]
+
‖

≥ lim
k→∞

‖
[(
xk − (µkgk − µkJTkyE

k + JTk ck + JTk ε
y
k)
)
− xk

]
+
‖

= ‖
[
(x∗ − J(x∗)Tc(x∗))− x∗

]
+
‖.

This implies that x∗ is a stationary point of the problem

minimize
x

‖c(x)‖2 subject to x ≥ 0.

This is a standard result for augmented Lagrangian methods (see, e.g., Conn et al. [19]).

8.6 Local Convergence

As noted in Section 3 of Gill and Robinson [39], the subproblem in the algorithm is
of the same form as the stabilized SQP subproblem. However, several other properties have
to hold for the two subproblems to be fully identical. Since stabilized SQP is superlinearly
convergent for degenerate problems, the two subproblems being identical would imply that
pdSQP is superlinearly convergent as well.

The following assumption is made throughout this section:

Assumption 8.6.1. There exists a subsequence of the S- and L- iterates that converges to
a first-order KKT point x∗.

In the global convergence results of Gill and Robinson [39, Theorem 4.2], the se-
quence of iterates generates either a subsequence of S- and L-iterates or converges to a
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stationary point of the primal-dual augmented Lagrangian. In view of the previous sec-
tion’s discussion of global convergence results, this assumption concerns the case where the
algorithm does not converge to a non-optimal stationary point of ‖c‖2.

The following second-order sufficiency condition was defined in Chapter 2, Page 26.

Definition 8.6.1. The second order sufficiency condition (SOSC) holds at a first-order
KKT point (x∗, y∗, z∗) if pTH(x∗, y∗)p > σ‖p‖2 for all p such that J(x∗)p = 0, pi = 0 for
z∗i > 0, and pi ≥ 0 for z∗i = 0.

The results of this section require that the SOSC and the MFCQ hold.

Assumption 8.6.2. The second-order sufficiency conditions and the MFCQ hold at all
first-order KKT limit points (x∗, y∗, z∗) of the iterates.

To begin with, it will be shown that eventually, an unconstrained step length is
taken, i.e., αk = 1 for k ≥ K for some K. In particular, the primal-dual augmented
Lagrangian merit function does not suffer from the Maratos effect.

8.6.1 The unconstrained step

Assume that for all sufficiently large k ∈ S, and xk is sufficiently close to x∗ to imply
that,

xk + pk − x∗ = o(‖xk − x∗‖), (8.55)

yk + qk − y∗ = o(‖yk − y∗‖). (8.56)

For the rest of this section, suppress the index k. Equations (8.55) and (8.56) allow f(x+p)
and c(x+ p) to be expressed as,

f(x+ p) = f(x) + 1
2(g(x) + g(x∗))Tp+ o(‖p‖2),

c(x+ p) = c(x) + 1
2(J(x)− J(x∗))Tp+ o(‖p‖2).

Alternatively, f(x+ p) and c(x+ p) can also be written as

f(x+ p) = f(x) + g(x)Tp+ o(‖p‖2).

c(x+ p) = c(x) + J(x)p+ o(‖p‖2)

Consider the expression for M(v +∆v),

M(v +∆v) = f + 1
2(g + g∗)Tp− (cT + 1

2(J + J∗)p)TyE + 1
2µ(c+ Jp)T(c+ Jp)

+ ν

2µ(c+ Jp+ µ(y + q − yE))T(c+ Jp+ µ(y + q − yE)) + o(‖p‖2).
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Using g∗ − J∗Ty = o(‖p‖2) and subtracting M(v), this expression becomes

M(v +∆v)−M(v) = 1
2g
Tp− 1

2p
TJTyE + 1

µ
pTJTc

+ ν

2µ(2cTJp+ 2µcTq + 2µpTJT(y + q − yE)

+ 2µ2qT(y + q − yE)) + o(‖p‖2).

On the other hand,

∇MT∆v = gTp− ((1 + ν)(yE − 1
µ
c)− νy)TJp+ νcTq + νµ(y − yE)Tq.

This implies that if ∆M is defined as ∆M = M(v +∆v)−M(v), then

∆M − ηS∇MT∆v= (1
2 − ηS)∇MT∆v − 1

2

(
gTp− ((1 + ν)(yE − 1

µc)− νy)TJp
)

− 1
2

(
νcTq + νµ(y − yE)Tq

)
+ 1

2g
Tp− 1

2p
TJTyE + 1

µ
pTJTc

+ ν

2µ
(
2cTJp+ 2µcTq + 2µpTJT(y + q − yE)

+ 2µ2qT(y + q − yE)
)

+ o(‖p‖2).

(8.57)

This expansion is used in the proof of the following result.

Theorem 8.6.1. For some K, it holds that αk = 1 for all k ≥ K.

Proof. Consider k to be an S-, L- or M-iterate. This implies that yE = yk. The expression
(8.57) becomes,

(1
2 − ηS)∇MT∆v − 1

2

(
gTp− (y − (1 + ν) 1

µ
c)TJp+ νcTq

)
+ 1

2g
Tp− 1

2p
TJTy + 1

µ
pTJTc

+ ν

2µ(2cTJp+ 2µcTq + 2µpTJTq + 2µ2qTq) + o(‖p‖2)

= (1
2 − ηS)∇MT∆v −−1 + ν

2µ cTJp− 1
2νc

Tq + 1
µ
pTJTc

+ ν

2µ(2cTJp+ 2µcTq + 2µpTJTq + 2µ2qTq) + o(‖p‖2).

From the optimality conditions of the sSQP subproblem, Jp = −µq − c. Substituting this
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into the above expression, it changes to

(1
2 − ηS)∇MT∆v + 1

2(1 + ν)cTq + 1
2(1 + ν)c

Tc

µ
− 1

2νc
Tq − cTq − 1

µ
cTc− νcTq

− ν

µ
cTc+ νcTq − νµqTq − νcTq + νµqTq + o(‖p‖2)

= (1
2 − ηS)∇MT∆v + cTq(1

2(1 + ν)− 1
2ν − 1− ν + ν − ν)

+ cTc
(

1
2(1 + ν)− 1

µ
− ν

µ

)
+ qTq(−νµ+ νµ) + o(‖p‖2)

= (1
2 − ηS)∇MT∆v + 1

µ
cT
(
−1

2µq + (1 + ν)(1
2µ− 1)c

)
+ o(‖p‖2)

= (1
2 − ηS)∇MT∆v − 1

2c
Tq + (1

2(1 + ν)− 1
µ

)cTc+ o(‖p‖2).

As µ becomes small, the multiple of cTc term is eventually negative. Since q = o(δ(x, y))
by (8.56) and c = O(δ(x, y)), the qTc term is o(‖p‖2). On the other hand ∇MT∆v =
−O(‖∆v‖2). This implies that the entire expression eventually becomes negative.

8.6.2 Equivalence of subproblems

To show that the superlinear convergence results of stabilized SQP are applicable
for pdSQP, it must be shown that, asymptotically, the solution to the convex problem is
a solution to the stabilized SQP problem. The two specific differences between the two
subproblems arise in the definition of the parameter µR and the modified Hessian. It was
shown in Section 8.3.1 that a stationary point of the convex problem is a stationary point
of the unconvexified subproblem, so whether or not a local minimizer of one is also a local
minimizer for the other depends on whether the reduced costs change in sign. It will be seen
that if strict complementarity holds for the reduced costs, then asymptotically they do not
change sign and the two subproblems produce identical local minimizers. In a subsequent
section, a modification is proposed which weakens the assumption of strict complementarity.

The following result, due to Hager [51], is a generalization of Debreu’s Lemma that
is useful for the local convergence theory below.

Theorem 8.6.2 (Hager [51, Lemma 3]). Let Q∗ be a symmetric matrix. Suppose that
wTQ∗w ≥ α‖w‖2 whenever B∗w = 0. Then, given any δ > 0, there exists a σ > 0 and
neighborhoods B or B∗ and Q of Q∗ such that

vT
(
Q+ 1

ρ
BTB

)
v ≥ (α− δ)‖v‖2,

for all v ∈ Rn, 0 < ρ ≤ σ, B ∈ B, and Q ∈ Q.
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Local convergence results for the original pdSQP

It will be seen that the following assumption of strict complementarity is both
sufficient (along with the MFCQ and SOSC) and necessary to establish the full asymptotic
equivalence of the pdSQP and sSQP subproblems.

Assumption 8.6.3. There exists a z∗ such that z∗ > 0.

Consider the convexification procedure that defines the positive-definite matrix H̄ = H +
1
µH
PAP

T
A based on the index set A(x) such that if i ∈ A(x), then xi ≤ µ (see Chapter 6,

Page refc:convex).

Theorem 8.6.3. There is an iteration index K for which k ≥ K implies that the pdSQP
subproblem solution satisfies the optimality conditions of the stabilized SQP subproblem. In
particular, µR

k = ηk and the local minimizer for the pdSQP subproblem is a local minimizer
for the stabilized SQP subproblem.

Proof. By construction µk ≤ ηk, and since ηk → 0, by Wright [89, Theorem 3.3], eventually
A(xk) = A∗, where A∗ is the active set at x∗. Construct the convexification of Hk using
the elements of A(xk). By the SOSC and Hager [51, Lemma 3], there exists a µH such that,
with H̄k defined to be H̄k = Hk + 1

µH
PAP

T
A , the matrix H̄ + 1

µR
k

JTkJk is positive-definite.
Since µk ≤ ηk, the optimality residual in the sSQP literature, it holds that µk ≤

ηk = O(‖xk − x∗‖). By Wright [87, Lemma 4.1], since stabilized SQP is an inexact SQP
subproblem, there is a solution (xk+1, yk+1, zk+1) to the non-convexified sSQP subproblem
(closest to (xk, yk, zk) among all the solutions) such that A+(z∗) is a subset of the active set
of (xk+1, yk+1, zk+1) for some z∗. By strict complementarity, z∗ is bounded away from zero.
This implies that, if k is large such that zk is sufficiently close to z∗, the optimal reduced
cost zk+1 satisfies zk+1 > 0.

For the remainder of the proof, the iteration subscript k is omitted. The optimality
conditions for the nonconvexified sSQP subproblem are:

g +Hp = JT(y + q) + z,

zT(x+ p) = 0,

c+ Jp+ µq = 0,

z ≥ 0.

Consider A to be the active set at the start of the current iteration, e.g. the one to be used
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for the projection matrix in the convexification. It holds that,

g +Hp+ 1
µH
PAP

T
A p = JTy + z + 1

µH
PAP

T
A p.

Since 1
µH

is bounded from above, and p approaches zero, eventually z + 1
µH
PAP

T
Ap ≥ 0.

Defining z̄ = z + 1
µH
PAP

T
A p, (p, q, z̄) is a solution to the convexified sSQP. Since a

solution of a convex QP is unique, this is the solution that the QP solver will generate.
For large enough k in the subsequence of S- and L- iterates, since α = 1, the subsequence
satisfies the conditions of Wright [87, Theorem 5.3], and

‖(xk+1 − x∗, yk+1 − y∗)‖ ≤ ‖q‖O(‖xk − x∗‖) +O(‖xk − x∗‖2) + µO(‖q‖).

Since η = O(‖x−x∗‖), µ ≤ η and, for the subsequence of S- and L-iterates, q → 0, xk → x∗,
it holds that eventually, for some K, ηk+1 ≤ 1

2ηk for k ≥ K and all such iterates are S- and
L-iterates and yE = y (see Section 8.2.4, Page 108). Likewise, eventually ηk+1 ≤ (1

2 − δ)ηk
for a small δ > 0 and by the the definition of µ (see (8.18), Page 109), eventually µk = ηk,
and the step is equivalent to an sSQP step.

Since the SOSC and the MFCQ are assumed to hold, superlinear convergence follows
from the superlinear convergence of the sSQP subproblem.

Example: The example in this section illustrates the necessity of sufficient strict comple-
mentarity for the equivalence of the sSQP and the convexified sSQP subproblem solutions
in the formulation of sSQP in Gill and Robinson [39], as shown in Theorem 8.6.3. Consider
the problem:

minimize
x

x2 − x2
1,

subject to x2 − 2x2
1 ≥ 0,

x2 + 2x1
2 ≥ 0.

(8.58)

At the minimizer x = (0, 0), it must hold that y1 + y2 = 1. SOSC holds for y2 >
1
2 + y1.

Consider the subproblem with the initial point x = (0, 1), s = (1, 1), µ = 1. First, it
is assumed that y = (0, 1). If the problem is reformulated with slack variables, the Hessian
is given by

H =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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The optimality conditions for the indefinite QP subproblem are:

1 = q1 + 1 + q2,

q1 = z1,

1 + q2 = z2,

p2 − ps1 + q1 = 0,

p2 − ps2 + q2 = 0.

It is clear that p = (0,−1,−1,−1) and q = (0, 0) solves the problem with z = (0, 1).
For the convexified subproblem, with the convexification parameter as µH = .1, it

holds that

1 = q1 + 1 + q2,

q1 + .1ps1 = z1,

1 + q2 + .1ps2 = z2,

p2 − ps1 + q1 = 0,

p2 − ps2 + q2 = 0.

at which, if p = (0,−1,−1,−1) and q = (0, 0), it must hold that z = (−.1, .9), which is not
optimal. However, if y = (.15, .85), then the optimality conditions become:

1 = q1 + 1 + q2,

.15 + q1 = z1,

.85 + q2 = z2,

p2 − ps1 + q1 = 0,

p2 − ps2 + q2 = 0,

which hold for p = (0,−1,−1,−1) and q = (0, 0) with z = (.15, .85).
For the convexified subproblem:

1 = q1 + 1 + q2,

.15 + q1 + .1ps1 = z1,

.85 + q2 + .1ps2 = z2,

p2 − ps1 + q1 = 0,

p2 − ps2 + q2 = 0.

In this case, p = (0,−1, 1, 1) and q = (0, 0) is a primal-dual solution with z = (.05, .75).
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8.6.3 Obtaining superlinear convergence under weaker assumptions

As outlined in the last section, the assumption of strict complementarity for the
reduced costs is essential for a proof of superlinear convergence of Algorithm 8.2.1. As
will be observed in the numerical results, strict complementarity is a strong assumption,
i.e., it fails for a large quantity of problems. From the example it can be seen that the
problem is particularly acute if there is a step onto the active constraints after predicting
that they should be active. This section shows that by identifying the variable indices that
fail to satisfy strict complementarity and selectively convexifying, it is possible to prove
superlinear convergence assuming the MFCQ and the SOSC only.

The following procedure is defined as algorithm pdSQPid0:

1. If xi ≤ µR then put i ∈ A(x). Set all xi on their bounds for i ∈ A(x).

2. Apply Algorithm ID0 to z to identify the weakly and strongly active bounds (see
Wright [88])

3. Solve for ẑ, the interior multiplier estimate.

4. Project x onto the bounds in A.

5. Check if, after convexifying on only the strongly active constraints, H̄ has the correct
inertia. If it does, proceed to the next step. If it does not, discard the interior
multiplier estimate and solve the QP subproblem as originally defined.

6. Solve the QP subproblem. As x changes with each step, change the value of ẑ by the
appropriate amount (H∆x). If ẑj < 0 for some j ∈ A+, then, and only then, step off
of the constraint j and add the appropriate (1/µH)PjP Tj to H.

Equivalence to a stabilized SQP method

For this section, let εz be defined as

εz = max
z∈My(x∗)

min
i∈A+

z∗i .

Theorem 8.6.4. If δ(xk, yk) is sufficiently small, the procedure described above is equivalent
to a sequence of iterations generated by solving the following stabilized SQP subproblem:

minimize
x,y

gTk(x− xk) + 1
2(x− xk)TH(xk, yk)(x− xk) + 1

2µ
R
k‖y‖2

subject to ck + Jk(x− xk) + µR
k(y − yE

k ) = 0, x ≥ 0, [x]A+ = 0.
(8.59)
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Proof. Wright [88, Theorem 4] has shown that for δ sufficiently small, the procedure ID0
identifies the strongly and weakly active constraints correctly. Moreover, Wright [88, The-
orem 5] shows that the interior estimate for the reduced costs satisfies [ẑ]i∈A+ ≥ εz.

By SOSC and Hager [51, Lemma 3] (see Theorem 8.6.2 above), H+ 1
µRJ

TJ+ 1
µH
PAP

T
A

is positive definite for some µH on the cone {d | [d]A0 ≥ 0}.
It will be shown that this implies that the subproblem is convex. As the subproblem

with the exact Hessian is equivalent to stabilized SQP subject to bounds, the subproblem
satisfies the inexact SQP framework. By Wright [87, Lemma 5.1] the solution satisfies the
estimate:

‖p‖+ δ(yk) + δ(zk+1) = O(δ(xk)) +O(‖(t, r)‖),

with t = 0 and r = −µRq. This implies that it is possible to take δ(xk, yk) to be sufficiently
small as to make p sufficiently small such that, since the sequence {Hk} is bounded, Hp
must satisfy ‖Hp‖∞ ≤ 1

2εz.
This implies that the strongly active components of ẑ never become negative. Since

[x]i∈A+ does not change for the pdSQPid0 subproblem iteration and [x]i∈A0 is initialized
at the bounds, the step p would satisfy [p]i∈A0 ≥ 0 and no step in the minor QP iterations
would be a step of negative curvature. Therefore H will not be modified and the steps are
identical to those for which H is not convexified. This implies that the subproblem has the
same solution as the sSQP subject to the additional constraint of [x]i∈A+ = 0.

The sSQP subproblem

Next we focus on the sSQP subproblem for which the variables associated with the
strongly active bounds are set to equality, i.e.,

minimize
x,y

gTk(x− xk) + 1
2(x− xk)T H̄(xk, yk)(x− xk) + 1

2µ
R
k‖y‖2

subject to ck + Jk(x− xk) + µR
k(y − yE

k ) = 0, x ≥ 0, [x]A+ = 0.

It will be shown that a sequence {xk} generated using this subproblem is superlinearly
convergent to an optimal point. The proof involves showing that the subproblem satisfies the
three properties described in Chapter 5 (see Page 68) for Fischer’s generalized framework.
The proof is similar to that of Fernández and Solodov [25].

The proof of the accuracy of the approximation defined by subproblem solution is
identical because the only additional constraints are the fixed variables [x]A+ = 0, which are
the values at the solution of the original problem. Similarly, the upper Lipschitz continuities
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of the solutions follows as well, since the addition of constraints cannot add solutions or
make them unbounded. Local solvability of the subproblem, however, must be explicitly
proven since the number of constraints has increased, potentially removing the existence of
local solutions.

In the notation of Fischer’s framework (see Page 68 in Chapter 5) that the general-
ized equation seeks to find a solution to

0 ∈ G(w)− T (w),

where, in this case,

G(w) =

g(x)− J(x)Ty
c(x)

 and T (x) =

N (x)
0

 ,
where

N (x) =

 {b ∈ Rn+ | b ≥ 0, bTx = 0} if x ≥ 0,
∅, otherwise.

The following will closely follow the proofs of the same assertions for inequality-
constrained problems in Fernández and Solodov [25].

Proposition 8.6.1. Let the SOSC hold at (x∗, y∗, z∗). There is a neighborhood B of
(x∗, y∗, z∗) such that for all (x, y, z) ∈ B, it holds that

uTH(x, y)u+ µ(x, y)‖v‖2 ≥ γ1(‖u‖2 + µ(x, y)‖v‖2),

for all (u, v) satisfying,

∇ci(x)Tu = µvi,

ui = 0, i ∈ A+(x∗, y∗, z∗),

ui ≥ 0, i ∈ A0(x∗, y∗, z∗).

Proof. Assume the contrary, that there exist (xk, yk) and (uk, vk) such that

uTkHuk + µk‖vk‖2 <
1
k

(‖uk‖2 + µk‖vk‖2).

Let ξk = ‖(uk,
√
µkvk)‖. Assume that

1
ξk

 uk
√
µkvk

→
ū
v̄

 6= 0.
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Since uk satisfies ∇ci(x)Tuk = µkvi and µk → 0, ∇ci(x)Tū = 0. Likewise, [ū]i = 0
for i ∈ A+ and [ū]i ≥ 0 for i ∈ A0.

But, dividing the original assumption by ξ2
k and taking limits, it holds that,

ūTH(x∗, y∗)ū+ ‖v̄‖2 = 0,

which contradicts the second-order sufficiency condition.

Corollary 8.6.1. There exists a neighborhood B of (x∗, y∗, z∗) such that for (x, y, z) ∈ B,
with [x]A = 0, the matrix 

H(x, y) −J(x)T −PA

J(x) µI 0
P TA 0 0

 ,
is nonsingular.

Proof. Let (u, v, w) be in the kernel of this matrix. So,

0 = Hu− JTv − PAw,

0 = Ju+ µv = 0,

[u]A = 0.

By the second equation and [u]A = 0, (u, v) are in the appropriate cone in Proposition 8.6.1.
Take the inner product of the first equation with u. Since [u]A = 0, this results in:

0 = uTHu− uTJTv.

By the second equation, Ju = −µv, so the previous equation becomes:

0 = uTHu+ µvTv,

which, by Proposition 8.6.1, implies that u = 0 and v = 0, which implies, by the first
equation row, w = 0.

Theorem 8.6.5 (Fernández and Solodov [25, Theorem 2]). Let K be a closed convex cone.
Suppose that d = 0 is the unique solution to the generalized complementarity problem K 3
d ⊥Md ∈ K∗, and that M is copositive on K.

Then for all q, the generalized complementarity problem of finding d such that K 3
d ⊥Md+ q ∈ K∗ has a nonempty compact solution set.
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Proposition 8.6.2. There is a neighborhood B of (x∗, y∗, z∗) such that for (x̄, ȳ, z̄), the
mixed complementarity problem of finding (x, y, z) to satisfy

0 = g +H(x− x̄) + J(x̄)Ty − z,

0 = c(x̄) + J(x̄)(x− x̄) + µ(y − ȳ) = 0,

0 ≤ z ⊥ x ≥ 0,

0 = [x]A+ ,

0 ≤ [x]A0 .

has a nonempty compact solution set.

Proof. Let

M =


H 0 PA

0 µI 0
P TA 0 0

 , q =


g −Hx̄

0
0

 ,
and

b = c+ Jx̄+ µȳ, a =
(
J −µI

)
,

b2 = 0, a2 =


I 0 0
0 0 0
0 0 0

 .
The solution to the mixed complementarity problem above can be written as:
Find ξ̄ ∈ Q such that

〈
Mξ̄ + q, ξ − ξ̄

〉
≥ 0 for all ξ ∈ Q, where Q is:

Q =
{
ξ | Aξ + b = 0, A2,A+ξ + b2,A+ = 0, A2,A0ξ + b2,A0 ≥ 0

}
.

Let (ũ, ṽ, w̃ solve, 
H −JT PA

J µI 0
P TA 0 0



u

v

w

 =


−g − JTy

c

0

 ,
which has a unique solution due to Corollary 8.6.1.

It can be seen that if ξ̃ = (x+ ũ, y + ṽ, z + w̃) then Aξ̃ = −b and A2ξ̃ = −b2.
Thus Q = ξ̃ + K, the critical cone, and so the solution of the original problem

becomes K 3 d ⊥Md+Mξ̃ + q ∈ K∗.
Since M is copositive by Proposition 8.6.1, by Theorem 8.6.5 there is a nonempty

compact solution set.
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Proposition 8.6.3. There is a neighborhood B of (x∗, y∗, z∗) and a constant γ3 > 0 such
that for all (x̄, ȳ, z̄) ∈ B with [x̄]A+ = 0, it holds that any solution to the complementarity
problem above satisfies

‖(x− x̄, y − ȳ)‖ ≤ γ3µ.

Proof. Suppose, to the contrary, that there is a sequence (xk, yk) such that (x̄k, ȳk, z̄k) →
(x∗, y∗, z∗) and ξk = ‖(x− x̄, y − ȳ)‖ > kµk, where (x, y, z) solves

0 = g +H(x− x̄) + J(x̄)Ty − z,

0 = c(x̄) + J(x̄)(x− x̄) + µ(y − ȳ),

0 ≤ z ⊥ x ≥ 0,

0 = [x]A+ ,

0 ≤ [x]A0 .

Notice that
µk
ξk
≤ 1
k
→ 0.

It holds that, by Lipschitz continuity of the constraint and objective functions,

‖c(x̄k)‖ = ‖c(x̄k)− c(x∗)‖ ≤ c1µ,

and
‖J(x̄k)− J(x∗)‖ ≤ c2µ.

Finally,

‖g − JTy − z‖ = ‖g − JTy − z − g(x∗) + JTŷ + ẑ‖ ≤ c(‖x̄− x∗‖+ ‖y − ŷ‖+ ‖z − ẑ‖ ≤ cµ,

where ŷ and ẑ are the projections of (y, z) onto M̄y(x∗), where the set M̄y is denoted to
include the reduced costs.

Let (u, v, w) be such that,

1
ξ


x− x̄
y − ȳ
z − z̄

→

u

v

w

 6= 0.

From the stationarity conditions of the subproblem, the constraint and objective
function bounds, and the original assumption, it holds that,

Hu− JTv − w = 0.
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From the equality constraints, it holds that,

Ju+ µv = 0.

Together, this implies that,
uTHu+ 1

µ
vTv + wTu = 0.

Since x̄A = 0 and z ⊥ x = 0, it holds that

uTHu+ 1
µ
vTv = 0,

which, since [u]A+ = 0, uA0 ≥ 0, and Ju = −µv, contradicts Proposition 8.6.1.

Theorem 8.6.6. There is a neighborhood B of (x∗, y∗, z∗) such that for (x̄, ȳ, z̄) in B with
[x̄]A+ = 0, there is a solution to

0 = g +H(x− x̄) + J(x̄)Ty − z,

0 = c(x̄) + J(x̄)(x− x̄) + µ(y − ȳ) = 0,

0 ≤ z ⊥ x ≥ 0,

satisfying ∥∥∥∥∥∥∥∥∥


x− x̄
y − ȳ
z − z̄


∥∥∥∥∥∥∥∥∥ ≤ γµ.

Proof. In view of Proposition 8.6.3, this holds if the solution to this problem satisfies [x]A+ =
0. However, from the proof of Theorem 8.6.4 z̄ is such that [z]A+ ≥ 1

2εz, so if µ is sufficiently
small, this holds by the complementarity condition z ⊥ x.

Convergence and discussion

The results in the previous section show local existence of solutions to the sSQP
subproblem with the additional constraint [x]A+ = 0, which, together with upper-Lipschitz
continuity and precise approximation, imply the final theorem:

Theorem 8.6.7. Assume δ(x, y, z) < δ̄ is sufficiently close to a first-order KKT point
(x∗,My(x∗)) satisfying the second-order sufficiency conditions and MFCQ. The sequence
of iterations computed by pdSQPid0 is superlinearly convergent to a point (x∗, y∗, z∗).
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Thus, by convexifying only on the strongly active variable indices, the weakly active
indices no longer present a problem of altering the reduced costs in a convexified solution
and potentially making the solutions of stabilized SQP and pdSQP distinct.

An interesting result arising from the nature of the subproblem is:

Corollary 8.6.2. The sequence of multipliers {yk} converges to a unique least-length mul-
tiplier solution to g(x)− J(x)Ty = 0.

8.6.4 Active-set stabilization

Note that by the superlinear convergence estimate, it holds that,

δ(xk+1) = O(δ(x)1+γ),

Assuming that K is sufficiently large that µR
k estimates the active-set, µk+1 = δ(x)1+τ

k+1 =
δ(x)τ+τ2

k . Since δ(x)τ+τ2

k > δ(x)1+τ and zero is the optimal value for the variables whose
indices are in A, if at the start of the QP subproblem, x0 is set to the estimated active
bounds, [pk ]A ≤ δ(x)1+τ < µk+1, which implies that it is active.



Chapter 9

Second-Order Primal-Dual SQP

9.1 Introduction

This chapter is concerned with the computation and use of a direction of nega-
tive curvature in the regularized sequential quadratic programming primal-dual augmented
Lagrangian method (pdSQP) of Gill and Robinson [38, 39] for the purpose of ensuring
convergence towards second-order optimal points. Section 9.2 discusses how to compute
a direction of negative curvature using appropriate matrix factorizations. Section 9.3 dis-
cusses the specific relevant changes to the algorithm. Section 9.4 discusses the changes in
the convergence results established by Gill and Robinson [39], showing that the desired
convergence results continue to hold. In Section 9.5, global convergence to points satisfying
the second-order necessary optimality conditions is established.

9.2 Direction of Negative Curvature

9.2.1 The active-set estimate

An index set Wk is maintained that consists of the variable indices that estimate
which components of x on their bounds. This set determines the the space in which to
calculate the directions of negative curvature. The tolerance for an index to be in Wk must
converge to zero. A test such as i ∈ Wk if [xk]i ≤ min{µk, εa}, would be appropriate for the
purpose of forming a Wk for convexification, initializing the QP, and obtaining a direction
of negative curvature. Otherwise, it would be necessary to use three different factorizations.
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9.2.2 Calculating the direction

In pdSQP, the QP must use a Lagrangian Hessian H̃ such that H̃+ 1
µJ

TJ is positive
definite (see Chapter 8, Page 105). The process for forming the requisite H̃, as well as
calculating a direction of negative curvature begins with the inertia-controlling factorization
of the KKT matrix (see Forsgren [29]). Consider the KKT matrix,HF JTF

JF −µI|F |

 , (9.1)

with F the set of estimated free variables (those not in Wk), and I|F | the identity matrix
with |F | rows and columns.

The algorithm begins an LBLT factorization of the KKT matrix, where L is lower
triangular and B is a symmetric diagonal with 1 × 1 and 2 × 2 diagonal blocks. Standard
pivoting strategies are described in the literature (see Bunch and Parlett [14], Fletcher [28],
and Bunch and Kaufman [13]). Let the lower-right block be defined as D = −µI|F |.

At step k of the factorization, let the partially factorized matrix have the following
structure: L1 0

L2 I

B 0
0 A

LT1 LT2

0 I

 ,
with L1 being lower triangular, I the identity of appropriate size, and A the matrix re-

maining to be factorized. Let A be partitioned as A =

a bT

b C

. If the top left element is

chosen as a 1× 1 pivot, at the next step,
L1 0 0
L3 1 0
L4 a−1b I



B 0 0
0 a 0
0 0 C − ba−1bT



LT1 LT3 LT4

0 1 a−1bT

0 0 I

 .
Let S = C − ba−1b denote the Schur complement of the factorization. The matrix S is
factorized at the next step.

For inertia control, this factorization has two stages. In the first stage, we restrict
the factorization to allow only for pivots of type H+, D− or HD. This means that an
element (i, j) of H is selected such that Hij > 0, a diagonal element of D is selected, or
(i1, i2, j1, j2) is selected such that (i1, j1) is an element of H, (i2, j2) is an element of D and
Sk[(i1, i2), (j1, j2)] has mixed eigenvalues. This procedure is continued until there are no
such remaining pivots.
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The KKT matrix can be partitioned as
H11 H12 JT1

H21 H22 JT2

J1 J2 −µI

 ,
where, all of the pivots have come from the rows and columns of H11, J1, and −µI. At the
end of the first stage, the factorization can be written as:L1 0

L2 I

B 0
0 H22 −K21K

−1
11 K12

LT1 L2
2

0 I

 . (9.2)

Let S = H22 −K21K
−1
11 K12. Forsgren [29, Proposition 3] shows that if δI is added to H22

such that δ > ‖S‖ then KF has the correct inertia. In practice this δ is excessively large for
the purpose of constructing the appropriate matrix with the required eigenvalues, but this
result does indicate that such a constant exists.

Instead of proceeding to the second phase of this factorization, the procedure of
Forsgren et al. [32, Lemma 2.4] is applied to S to compute û, a direction of negative
curvature for S. The procedure to calculate this û is as follows:

Let ρ = maxi,j |[S ]ij | with |[S ]qr| = ρ. Define û as:

û = √ρh, (9.3)

where

h =

 eq if q = r,

1√
2(eq − sgn([S ]qr)er) otherwise.

This û satisfies ûTSû ≤ γλmin(S)‖û‖2, with γ independent of S.
The following bounds are important for the subsequent second-order convergence

theory.

Lemma 9.2.1. Let û be defined as in (9.3), S be the Schur complement of the partially
factorized matrix (9.2), JF and HF defined as in (9.1), and Z a matrix consisting of columns
for the basis of the null-space of JF , then

ûTSû

γ‖û‖2
≤ λmin(S) ≤ λmin(HF + 1

µ
JTF JF ) ≤ λmin(ZTHFZ).

Proof. Forsgren et al. [32, Lemma 2.4] directly implies that ûTSû/‖û‖2 ≤ γλmin(S), where
γ > 0.
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The proof that λmin(S) ≤ λmin(HF + 1
µJ

T
F JF ) is given in the proof of Theorem 4.5 in

Forsgren and Gill [30]. For the final inequality, let w = Zv, with ZTHFZv = λmin(ZTHFZ)v
and ‖v‖ = 1. Then

λmin(HF + 1
µ
JTF JF ) ≤

wT(HF + 1
µJ

T
F JF )w

wTw
= wTHFw = vTZTHFZv = λmin(ZTHFZ).

9.3 Implementing Directions of Negative Curvature

9.3.1 Step of negative curvature

Several changes must be made to the algorithm of Gill and Robinson [39]. In order
to minimize the number of factorizations, the computation of the direction of negative
curvature should be followed by a test of second-order optimality. In addition, it is necessary
that the direction of negative curvature is bounded, and a feasible direction with respect to
both the linearized equalities and the bound constraints. Finally, the line search must be
extended to allow for this additional step of negative curvature.

In the description below, the subscript k denoting the step number in the sequence
of iterations is suppressed.

The following procedure satisfies these requirements.

1. The first step computes the direction of negative curvature for the free KKT-matrix
as described in Section 9.2, denoted as ûS, then defines ûF to be [ûF ]S = ûS with S
corresponding to indices corresponding to the remaining unfactorized entries of HF ,
and [ûF ]Sc = 0. Then the step defines û to be [û]F = ûF and [û]A = 0. If no such
direction of negative curvature exists, then û is set to zero.

2. The second step uses û in a test of second-order optimality. This is described in
Section 9.3.2.

3. The corresponding change in the multipliers corresponding to the definition for û
is defined as ŵ = − 1

µJû. This ensures that the linearized equality constraints are
satisfied, i.e.,

0 = Jp+ c+ µq = J(p+ û) + c+ µ(q − 1
µ
Jû).

The final resulting (u,w) is shown below in Section 9.3.3 to be a direction of negative
curvature for ∇2Mν .
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4. Since both (û, ŵ) and −(û, ŵ) are directions of negative curvature, the sign is chosen

so that the step is a descent direction for ∇M , i.e., ∇MT

û
ŵ

 ≤ 0.

5. Compute ∆v = (p, q), the solution of the convex QP.

6. The direction of negative curvature is scaled so that it is both bounded by max(umax, 2‖p‖)
and also, in conjunction with the definition of the QP step, satisfies the bound con-
straints x ≥ 0.

Specifically, u and w are set as u = βû and w = βŵ, where

β =
{

max β̂ | x+ p+ β̂û ≥ 0, ‖β̂û‖ ≤ max(umax, 2‖p‖)
}
.

Note that this implies that if [x+ p]i = 0 and [u]i < 0, then u is set to zero.

9.3.2 Optimality measures

In Gill and Robinson [39], an iterate is an S-iterate if φS(v) ≤ 1
2φ

max
S and an L-iterate

if φL(v) ≤ 1
2φ

max
L , where

φS(v) = ξ(x) + 10−5ω(v) and φL(v) = 10−5ξ(x) + ω(v),

with
ξ(x) = ‖c(x)‖ and ω(x, y) =

∥∥∥min
(
x, g(x)− J(x)T y

)∥∥∥ .
Otherwise, an iterate is an M-iterate if

‖∇yMν(vk+1; yE
k , µ

R
k)‖ ≤ τk and ‖min(xk+1,∇xMν(vk+1; yE

k , µ
R
k))‖ ≤ τk.

If none of these conditions hold, then vk is an F-iterate.
In order to force convergence to a second-order optimal point, it is necessary to

change the function ω(x, y) that appears in φS and φL, as well as the test for an iteration
being an M-iterate.

Ideally, the minimum eigenvalue of H on the null-space of JF should be computed,
as well as the minimum eigenvalue of ∇2

xxM
ν . However, this would require extensive

computation. Instead, these quantities are estimated based on the value of the negative
curvature. It holds that

ûT(H + 1
µJ

TJ)û
γ‖û‖2

≤ λmin
(
H + 1

µ
JTJ

)
,
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where the suffix F is omitted for clarify. As γ is bounded from below and above, if ûT(H +
1
µJ

TJ)û/‖û‖2 → 0, the estimate for û implies limλmin(H + 1
µJ

TJ) ≥ 0. Hence, the test for
the optimality of an M-iterate is:

‖∇yM(vk+1; yE
k , µ

R
k)‖ ≤ τk,

‖min(xk+1,∇xMν(vk+1; yE
k , µ

R
k))‖ ≤ τk,

and ûTk+1

(
H + 1

µ
JTJ

)
ûk+1 ≥ −‖ûk+1‖2τk.

Similarly, for the filter functions,

φS(v) = η(x) + 10−5ω(v) and φL(v) = 10−5η(x) + ω(v)

the optimality test functions are η(x) = ‖c(x)‖, and

ω(x, y) = min
(
‖min(x, g(x)− J(x)Ty)‖,−

ûTk+1(H + 1
µJ

TJ)ûk+1

‖ûk+1‖2

)
.

9.3.3 The merit function

The line search must also be modified to include the direction of negative curvature.
First, it will be shown that the full primal-dual step is a step of negative curvature for the
merit function Hessian.

Lemma 9.3.1. The vector (u,w) defined as in Section 9.3.1 is a direction of negative
curvature for ∇2Mν for all ν ≥ 0.

Proof. From the definition of ∇2Mν it holds thatu
w

T∇2Mν

u
w

 =

u
w

TH + 1
µ(1 + ν)JTJ νJT

νJ νµI

u
w


= uTHu+ 1

µ
(1 + ν)uTJTJu+ 2νuTJTw + νµ‖w‖2.

From the definition above, u = βû and ûT(H + 1
µJ

TJ)û ≤ γλmin(H + 1
µJ

TJ)‖û‖2, so multi-
plying both sides by β2, the expression becomes uT(H + 1

µJ
TJ)u ≤ γλmin(H + 1

µJ
TJ)‖u‖2.

If γ̄ = γλmin(H + 1
µJ

TJ) and w = − 1
µJu, then

uTHu+ 1
µ

(1 + ν)uTJTJu+ 2νuTJTw + νµ‖w‖2 ≤ −γ̄‖u‖2 − 2ν
µ
uTJTJu+ ν

µ
‖Ju‖2

= −γ̄‖u‖2 − ν

µ
‖Ju‖2

≤ −γ̄‖u‖2 − νµ‖w‖2.

which is negative for all ν ≥ 0.
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In order to simplify the notation, we suppress the dependence of the merit function
on ν and write M(v; yE, µ) = Mν(v; yE, µ).

Two approaches may be considered for the definition of the line search. The first
extends the method for unconstrained functions proposed by McCormick [65]. Let s de-

note the primal-dual negative-curvature step s =

u
w

. Let Rk denote the curvature

sTk∇2M(vk; yE
k , µ

R
k)sk, which is non positive by definition. McCormick defines αk = 2−j

such that
M(vk + αksk + α2

k∆vk; yE
k , µ

F
k ) ≤M + α2

kηSNk + αkηSRk. (9.4)

If we denote ᾱ , min(αmin, αk) and µ̂ , max
(1

2µk, µ
R
k+1

)
, a suitable update for the penalty

parameter is

µk+1 =


µk, M(vk+1; yE

k , µk) ≤M(vk; yE
k , µk) + ᾱηSRk + ᾱ2ηSNk

µ̂, otherwise.
(9.5)

This curvilinear line-search is expected to be effective in reaching a second-order minimizer
of the primal-dual augmented Lagrangian merit function. However, there are more robust
methods available. Moguerza and Prieto [66] formulate an interior-point augmented La-
grangian method that incorporates directions of negative curvature. Olivares et al. [72] give
a set of tests to determine whether or not a direction of negative curvature is appropriate for
a given iteration. The method presented here is based on a combination these two methods.

Consider the quadratic model of M at xk,

M2(d) = ∇MTd+ 1
2d

T∇2
xxMd.

Let η1 and η2 be constants such that 0 < η2 < 2 < η1, and η3 > 0.
If it holds that,

η2M2(s) ≥ ∇M(vk)T∆v
‖∆v‖2

≥ η1M2(s),

then both directions are suitable for decreasing the merit function. On the other hand, if
it holds that,

∇M(vk)T∆v
‖∆v‖2

< η1M2(s),

then the direction of negative curvature provides an insufficient reduction of the merit
function and the standard line-search using only ∆v will be used. Finally, if

η2M2(s) < ∇M(vk)T∆v
‖∆v‖2

and ∇M(vk) ≥ η3s
THM(vk)s,
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then it is clear that the direction of negative curvature provides for greater reduction in the
merit function than the QP solution, and the one-direction line-search will be used with s.

In this case, the step length αk = 1 is used if it holds that

φ(1) ≤ φ(0) + 1
2γ1φ

′′(0),

where φ(α) = M(vk + α2∆v + αs). Otherwise, α is reduced by a backtracking procedure
until a value αk is found that satisfies

φ(αk) ≤ φ(0) + γ1φ
′′(0),

φ′(αk) ≥ γ2(φ′(0) + αkφ
′′(0)),

‖c(x(α))‖ ≤ βc,

where 0 < γ1 <
1
2 ,

1
2 < γ2 < 1, and βc = ‖c(x0)‖.

9.4 Consistency with Established Convergence Theory

The first-order convergence analysis of Gill and Robinson [39], requires three as-
sumptions.

Assumption 9.4.1. Each H̄(xk, yk) is chosen so that the sequence {H̄(xk, yk)}k≥0 is
bounded, with {H̄(xk, yk) + (1/µR

k)J(xk)TJ(xk)}k≥0 uniformly positive definite.

Assumption 9.4.2. The functions f and c are twice continuously differentiable.

Assumption 9.4.3. The sequence {xk}k≥0 is contained in a compact set.

As ∇Mν does not involve any term involving the objective or constraint Hessians,
much of the first-order convergence theory holds. The use of a direction of negative curvature
implies that Theorem 4.1 of Gill and Robinson [39] must be restated as follows.

Theorem 9.4.1. If there exists an integer k̂ such that µR
k ≡ µR > 0 and k is an F-iterate

for all k ≥ k̂, then the following hold:

1. {‖∆vk‖+ ‖uk‖}k≥k̂ is bounded away from zero

2. There exists a positive ε such that for all k ≥ k̂, it holds that

∇Mν(vk; yE
k , µ

R
k)T∆vk ≤ −ε or sTk∇2Mν(vk; yE

k , µ
R
k)sk ≤ −ε.
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Proof. If all iterates k ≥ k̂ are F-iterates, then,

τk ≡ τ > 0, µR
k = µR, and yE

k = yE for all k ≥ k̂

Proof of the first result: Assume the contrary, i.e., there exists a subsequence S1 ⊂{
k | k ≥ k̂

}
such that limk∈S1 ∆vk = 0 and limk∈S1 uk = 0. The solution ∆vk to the QP

subproblem satisfieszk
0

 = Hν
M(vk;µR)∆vk +∇Mν(vk; yE, µR) and 0 = min(xk + pk, zk).

As Hν
M is uniformly bounded, eventually for some k ∈ S1 sufficiently large, ∆vk satisfies the

first-order conditions of an M-iterate, i.e.,

‖∇yM(vk+1; yE
k , µ

R
k)‖ ≤ τk and ‖min(xk+1,∇xMν(vk+1; yE

k , µ
R
k))‖ ≤ τk.

In the construction of uk, ‖u‖ is the largest possible value, subject to an upper
bound, that is feasible. This implies that if lim uk → 0, then eventually, u is constrained by
feasibility, or set to zero.

Consider the first case, i.e., the limiting upper bound constraint on uk must be
xk + pk + uk ≥ 0. Since uk → 0 and pk → 0, eventually, if i is a blocking bound for uk,
xi ≤ min(µ, εx) and i ∈ Wk, which implies that [uk]i ≡ 0. Hence, by construction and the
fact that the set of possible indices is finite, uk is eventually identically zero. This implies
that the second-order conditions of an M-iterate are also satisfied trivially, i.e.,

ûTk+1

(
H + 1

µ
JTJ

)
ûk+1 ≥ τk‖ûk+1‖2,

and µR
k is decreased. This contradicts the assumption that µR

k is held fixed at µR
k ≡ µR for

all k ≥ k̂.
Proof of Part 2. Assume that the result does not hold, i.e., there exists a subsequence

S2 of {k : k ≥ k̂} such that

lim
k∈S2
∇Mν(vk; yE, µR)T∆vk = 0 (9.6)

and
lim
k∈S2

sTk∇2Mν(vk; yE
k , µ

R
k)sk = 0.

Consider the matrix

Lk =

 I 0
1
µRJk I

 .
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Since the ∆v = 0 is feasible and ∆vk a solution for the convex problem, it follows that

−∇Mν(vk; yE, µR)T∆vk ≥ 1
2∆v

T
kH

ν
M(vk;µR)∆vk

= 1
2∆v

T
k L
−T
k LTkH

ν
M(vk;µR)LkL−1

k ∆vk

=

 pk

qk + 1
µRJkpk

T H̄k + 1
µRJ

T
k Jk 0

0 νµR

 pk

qk + 1
µRJkpk



As Hν
M is bounded, it must hold that

∆vTk L
−T
k LTkH

ν
M(vk;µR)LkL−1

k ∆vk ≥ λ̄min‖pk‖2 + νµR‖qk + (1/µR)Jkpk‖2,

for some λ̄min > 0. Combining this bound with (9.6) it follows that

lim
k∈S2

pk = lim
k∈S2

(
qk + 1

µR
Jkpk

)
= 0,

in which case limk∈S2 qk = 0. Hence ∆vk∈S2 → 0.
As limk∈S2 s

T
k∇2Mν(xk, yk; yE, µ)sk = 0, either there exists a k̂2, such that for all

k ≥ k̂2, γsTk∇2Mν(xk, yk; yE, µ)sk/‖sk‖2 > −τ or uk → 0, where γ > 0 is the scalar defined
in Lemma 9.2.1. The first case, by the same argument as for Part 1, together with ∆vk → 0,
implies that eventually k is an M-iterate. The latter, together with lim∆vk = 0, contradicts
the statement of Part 1 of the theorem. This implies that Part 3 must hold.

The proofs of the first result of Theorem 4.1, and the result of Theorem 4.2 of Gill
and Robinson [39] hold for the modified algorithm.

9.5 Global Convergence to Second-order Optimal Points

9.5.1 Filter convergence

Definition 9.5.1. The Weak Constant Rank (WCR) condition holds at x if there is a

neighborhood M(x) for which the rank of

J(z)
ETA

 is constant for all z ∈ M(x), where EA

is the columns of the identity corresponding to the indices of x active at x (as in i ∈ A if
xi = 0).

Theorem 9.5.1. Assume there is a subsequence vk of S- and L-iterates converging to v∗,
with v∗ = (x∗, y∗) satisfying the first-order KKT conditions. Furthermore, assume that
MFCQ and WCR hold at v∗. Then v∗ satisfies the necessary second-order necessary opti-
mality conditions.
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Proof. Let d ∈ C̃(x∗) ≡
{
d | J(x∗)d = 0 and ETw∗d = 0

}
with ‖d‖ = 1. By Lemma 3.1 of

Andreani et al. ([6]) there exists {dk} such that dk ∈ C̃(xk) and dk → d, where

C̃(xk) =
{
d | J(xk)d = 0 and ETw∗d = 0

}
.

Without loss of generality, we may let ‖dk‖ = 1. Since xk → x∗, eventually Wk = A∗,
where A∗ is the active set at x∗. Then, from the definitions of an S- and L-iterate, and
Lemma 9.2.1, it follows that dTk(∇2f(xk) +

∑
yk∇2c(xk))dk > λmin(ZkHkZk) > −ξk, where

0 < ξk → 0. Taking limits, it follows that dT(∇2f(xk) +
∑
y∗∇2c(x∗))d ≥ 0.



Chapter 10

Numerical Results

10.1 Standard Test Problems

The algorithms were tested on optimization problems from the CUTEr test set.
These problems include cases from from industrial applications, standard academic prob-
lems, and problems designed to exploit common weaknesses of optimization algorithms (see
Gould et al. [11, 46] for a more detailed description).

For many of the problems in the CUTEr test set, the size of the problem can be spec-
ified. In these cases, the number of variables and constraints were chosen to be the largest
permissible values less than 500. All the problems selected have at least one constraint (not
including any simple upper or lower bounds on variables). The total of 540 problems were
selected.

For each algorithm tested, the total number of outer iterations was limited to 1000.
If an algorithm did not converge in 1000 iterations, it was considered to have not converged.
The threshold for the optimality measures was set at 10−8. If the infeasibility and station-
arity measures are both below this value, the algorithm was terminated and the run was
considered to be a success.

10.2 First-Order pdSQP Results

10.2.1 Global convergence results

In total, pdSQP converged to a point satisfying the optimality conditions for 407
(75%) problems, compared to 452 (84%) for SNOPT, and 319 (59%) for Matlab’s fmincon
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Table 10.1: Reliability of SNOPT and pdSQP

Algorithm Total Rank-deficient SC fails SONC SOSC

SNOPT 452 70 198 431 337

pdSQP 407 55 127 402 366

SQP algorithm. These results are encouraging, as SNOPT and fmincon are sophisticated
packages that have been developed over a number of years, whereas pdSQP is a prototype
Matlab implementation.

Degenerate problems are of interest, as part of the intention of pdSQP is to use
the results of sSQP for degenerate problems. There is no a priori expectation of SNOPT

or pdSQP performing better in terms of global convergence, however, it is important to
investigate the practical global convergence of the primal-dual merit function compared
to the standard augmented Lagrangian merit function in SNOPT. Although a test on a
large number of known degenerate problems cannot be performed, as a solution needs to
be known in advance, the number of convergent problems for SNOPT and pdSQP can be
compared, with a higher proportion of degenerate problems suggesting the global procedure
performs comparatively well or poorly on those sets of problems.

In addition, as pdSQP uses second derivatives, the number of problems satisfying
second-order necessary and sufficiency conditions are included. This also provides motiva-
tion for the potential improvement in including directions of negative curvature.

There are several noticeable patterns. First, there is a distinct difference in the quan-
tities of convergent problems failing to satisfy strict-complementarity. This is intuitively
plausible, as the convexification procedure results in a solution for the original indefinite
problem only if strict-complementarity holds. Furthermore, the local convergence results of
sSQP rely on second-order sufficiency holding at the solution, and while there are no global
convergence results involving sSQP methods, aside from pdSQP, as the convergence theory
shows, local convergence results can imply global convergence if a cluster point at a local
minimizer exists, so pdSQP has stronger theoretical global convergence results for prob-
lems satisfying the SOSC, which is corroborated by the data shown. In addition, the larger
gap in the quantity of problems satisfying the SONC and SOSC for SNOPT compared to
pdSQP corroborates the experiments conducted by Izmailov and Solodov [56] that indicate
that sSQP is less likely to exhibit dual convergence to critical multipliers.
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10.3 Results for Selected Problems

A set of 116 problems were selected for a more detailed analysis of the performance
of different variations of pdSQP, in particular the Hock-Schittkowski “HS” problems from
the CUTEr test set (see also, Hock and Schittkowski [53]).

The next table summarizes the convergence results for the four solvers: pdSQP,
pdSQPcc, pdSQPid0 and pdSQPccnc. The solver pdSQP is the primal-dual SQP algo-
rithm implemented with preconvexification. pdSQPcc is pdSQP with concurrent and post
convexification. pdSQPid0 is the variation of pdSQP that uses the ID0 procedure to iden-
tify strongly active variables. pdSQPccnc is pdSQP with concurrent convexification and a
direction of negative curvature.

Below are the results for the 71 equality-constrained problems.

Algorithm Solved

pdSQP 56

pdSQPcc 48

pdSQPid0 48

pdSQPccnc 40

The details of the results for each solver are listed in the tables below. As there
are no inequality constraints, the results for pdSQPid0 are not shown because they are
identical to those of pdSQPcc. Overall, it was found that the solver pdSQPcc required post
convexification in at least one subproblem for 18 (25%) of the problems.

For the problems that could not be solved, an alphabetic code is used to indicate
the reason for the failure.

• m – the maximum number of iterations was exceeded

• b – the maximum number of backtracks for the line-search was reached

• i – the second order modification of the free Hessian matrix failed

• c – the preconvexification procedure failed

• q – the QP solver failed to produce a solution

• d – the QP solver failed to produce a descent direction for the merit function
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Table 10.2: Results for pdSQP on equality constrained
problems

Name m n Result nFun nQPs f -value

BT1 1 2 S 14 9 -1.00e+00

BT2 1 3 S 11 10 3.26e-02

BT3 3 5 S 4 3 4.09e+00

BT4 2 3 S 17 8 -4.55e+01

BT5 2 3 S 10 7 9.62e+02

BT6 2 5 S 21 17 4.88e+00

BT7 3 5 S 42 30 3.06e+02

BT8 2 5 S 11 10 1.00e+00

BT9 2 4 S 9 8 -1.00e+00

BT10 2 2 S 7 6 -1.00e+00

BT11 3 5 S 8 7 8.25e-01

BT12 3 5 S 8 5 6.19e+00

BYRDSPHR 2 3 S 52 30 -4.68e+00

COOLHANS 9 9 S 37 24 0.00e+00

DIXCHLNG 5 10 Fm 606 601 4.27e+03

EIGENA2 55 110 S 5 3 6.04e-24

EIGENACO 55 110 S 5 3 1.77e-20

EIGENB2 55 110 Fc 27 7 1.80e+01

EIGENBCO 55 110 Fm 1224 601 8.99e+00

EIGENC2 231 462 Fc 17 5 3.63e+02

EIGENCCO 231 462 Fc 116 53 1.84e+01

ELEC 200 600 Fi 6 2 2.84e+04

GRIDNETE 36 60 S 5 4 3.96e+01

GRIDNETH 36 60 S 5 4 3.96e+01

HS6 1 2 S 38 17 9.98e-31

HS7 1 2 S 38 18 -1.73e+00

HS8 2 2 S 6 4 -1.00e+00

HS9 1 2 S 5 4 -5.00e-01

HS26 1 3 S 21 18 1.02e-12

HS27 1 3 S 121 69 4.00e-02
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Table 10.2: Results for pdSQP on equality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS28 1 3 S 4 2 9.86e-32

HS39 2 4 S 9 8 -1.00e+00

HS40 3 4 S 5 4 -2.50e-01

HS42 2 4 S 8 6 1.39e+01

HS46 2 5 S 24 18 5.07e-12

HS47 3 5 S 23 16 1.92e-10

HS48 2 5 S 4 2 2.47e-31

HS49 2 5 S 18 14 8.43e-10

HS50 3 5 S 14 10 1.42e-22

HS51 3 5 S 4 2 1.21e-14

HS52 3 5 S 4 3 5.33e+00

HS56 4 7 S 6 5 -3.46e+00

HS61 2 3 S 19 14 -1.44e+02

HS77 2 5 S 18 16 2.42e-01

HS78 3 5 S 6 5 -2.92e+00

HS79 3 5 S 8 7 7.88e-02

HS100LNP 2 7 S 18 7 6.81e+02

HS111LNP 3 10 S 25 14 -4.78e+01

LUKVLE1 98 100 S 15 9 5.50e-16

LUKVLE3 2 100 S 18 13 2.76e+01

LUKVLE6 49 99 Fm 606 601 2.00e+06

LUKVLE7 4 100 S 23 12 -1.30e+01

LUKVLE8 98 100 Fm 602 601 4.65e+05

LUKVLE9 6 100 S 43 21 1.02e+01

LUKVLE10 98 100 S 51 31 3.48e+01

LUKVLE13 64 98 S 26 25 7.90e+02

LUKVLE14 64 98 Fm 602 601 1.06e+06

LUKVLE16 72 97 Fm 604 601 1.62e+05

LCH 1 300 Fc 59 18 -6.41e+00

LCH 1 300 Fc 59 18 -6.41e+00
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Table 10.2: Results for pdSQP on equality constrained
problems (continued)

Name m n Result nFun nQPs f -value

MARATOS 1 2 S 4 3 -1.00e+00

MWRIGHT 3 5 S 11 5 2.50e+01

ORTHRDM2 100 203 S 7 5 7.78e+00

ORTHRDS2 100 203 Fm 1206 601 8.28e+02

ORTHREGA 64 133 S 48 27 3.50e+02

ORTHREGB 6 27 S 7 5 3.02e-23

ORTHREGC 10 25 S 7 6 3.99e-01

ORTHREGD 10 23 Fb 379 377 3.25e+01

ORTHRGDM 10 23 Fb 473 399 9.65e+00

ORTHRGDS 76 155 S 239 118 2.34e+01

S316-322 1 2 S 10 9 3.34e+02

Table 10.3: Results for pdSQPcc on equality constrained
problems

Name m n Result nFun nQPs f -value

BT1 1 2 S 14 9 -1.00e+00

BT2 1 3 S 11 10 3.26e-02

BT3 3 5 S 4 3 4.09e+00

BT4 2 3 S 19 9 -4.55e+01

BT5 2 3 S 40 18 9.62e+02

BT6 2 5 Fq 43 18 3.32e+03

BT7 3 5 S 58 38 3.06e+02

BT8 2 5 S 11 10 1.00e+00

BT9 2 4 S 9 8 -1.00e+00

BT10 2 2 S 7 6 -1.00e+00

BT11 3 5 S 8 7 8.25e-01

BT12 3 5 S 8 5 6.19e+00

BYRDSPHR 2 3 Fm 602 601 -4.97e+00

COOLHANS 9 9 S 361 320 0.00e+00
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Table 10.3: Results for pdSQPcc on equality constrained
problems (continued)

Name m n Result nFun nQPs f -value

DIXCHLNG 5 10 Fm 606 601 4.27e+03

EIGENA2 55 110 S 5 3 6.06e-24

EIGENACO 55 110 S 5 3 1.77e-20

EIGENB2 55 110 Fq 3 2 1.80e+01

EIGENBCO 55 110 Fq 3 2 9.00e+00

EIGENC2 231 462 Fq 2 2 3.63e+02

EIGENCCO 231 462 Fq 3 2 2.00e+01

ELEC 200 600 Fq 6 2 2.84e+04

GRIDNETE 36 60 S 5 4 3.96e+01

GRIDNETH 36 60 S 5 4 3.96e+01

HS6 1 2 S 38 17 0.00e+00

HS7 1 2 S 14 8 -1.73e+00

HS8 2 2 S 6 4 -1.00e+00

HS9 1 2 S 5 4 -5.00e-01

HS26 1 3 S 21 18 1.02e-12

HS27 1 3 S 133 75 4.00e-02

HS28 1 3 S 4 2 9.86e-32

HS39 2 4 S 9 8 -1.00e+00

HS40 3 4 S 5 4 -2.50e-01

HS42 2 4 S 8 6 1.39e+01

HS46 2 5 S 24 18 5.07e-12

HS47 3 5 S 23 16 1.92e-10

HS48 2 5 S 4 2 4.93e-32

HS49 2 5 S 18 14 8.43e-10

HS50 3 5 S 14 10 1.42e-22

HS51 3 5 S 4 2 1.21e-14

HS52 3 5 S 4 3 5.33e+00

HS56 4 7 S 6 5 -3.46e+00

HS61 2 3 Fm 602 601 -7.03e+00

HS77 2 5 S 40 23 2.42e-01
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Table 10.3: Results for pdSQPcc on equality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS78 3 5 S 6 5 -2.92e+00

HS79 3 5 S 8 7 7.88e-02

HS100LNP 2 7 S 18 7 6.81e+02

HS111LNP 3 10 Fq 3 2 -4.17e+01

LUKVLE1 98 100 S 15 9 5.50e-16

LUKVLE3 2 100 S 18 13 2.76e+01

LUKVLE6 49 99 Fm 606 601 2.23e+06

LUKVLE7 4 100 S 21 11 3.56e+01

LUKVLE8 98 100 Fq 45 45 4.62e+05

LUKVLE9 6 100 S 57 35 1.12e+01

LUKVLE10 98 100 Fq 88 36 4.66e+01

LUKVLE13 64 98 S 28 25 7.90e+02

LUKVLE14 64 98 Fm 602 601 1.06e+06

LUKVLE16 72 97 Fm 604 601 1.62e+05

LCH 1 300 Fq 6 2 5.42e+04

LCH 1 300 Fq 6 2 5.42e+04

MARATOS 1 2 S 4 3 -1.00e+00

MWRIGHT 3 5 S 11 5 2.50e+01

ORTHRDM2 100 203 S 7 5 7.78e+00

ORTHRDS2 100 203 Fq 9 4 1.48e+02

ORTHREGA 64 133 Fq 3 3 1.64e+02

ORTHREGB 6 27 Fq 38 10 9.22e-02

ORTHREGC 10 25 S 7 6 3.99e-01

ORTHREGD 10 23 Fq 49 12 2.18e+01

ORTHRGDM 10 23 Fb 28 4 3.23e+01

ORTHRGDS 76 155 Fb 25 2 3.55e+01

S316-322 1 2 S 9 8 3.34e+02
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Table 10.4: Results for pdSQPccnc on equality constrained
problems

Name m n Result nFun nQPs f -value

BT1 1 2 S 16 7 -1.00e+00

BT2 1 3 S 13 12 3.26e-02

BT3 3 5 S 4 3 4.09e+00

BT4 2 3 S 71 35 -4.55e+01

BT5 2 3 Fb 25 2 9.56e+02

BT6 2 5 S 12 10 2.77e-01

BT7 3 5 Fb 33 11 1.27e+00

BT8 2 5 S 15 13 1.00e+00

BT9 2 4 S 13 11 -1.00e+00

BT10 2 2 S 7 6 -1.00e+00

BT11 3 5 S 8 7 8.25e-01

BT12 3 5 S 8 5 6.19e+00

BYRDSPHR 2 3 Fb 39 2 -5.00e+00

COOLHANS 9 9 Fb 27 4 0.00e+00

DIXCHLNG 5 10 S 41 40 2.47e+03

EIGENA2 55 110 S 6 5 3.44e-25

EIGENACO 55 110 S 6 5 3.19e-18

EIGENB2 55 110 Fq 2 2 2.64e+01

EIGENBCO 55 110 Fb 24 2 1.60e+01

EIGENC2 231 462 Fq 2 2 8.27e+02

EIGENCCO 231 462 Fq 2 2 7.81e+02

ELEC 200 600 Fq 2 2 4.11e+04

GRIDNETE 36 60 S 5 4 3.96e+01

GRIDNETH 36 60 S 5 4 3.96e+01

HS6 1 2 S 77 36 0.00e+00

HS7 1 2 Fb 24 2 -2.54e+00

HS8 2 2 S 6 4 -1.00e+00

HS9 1 2 S 5 2 -5.00e-01

HS26 1 3 S 18 17 9.31e-13

HS27 1 3 S 18 11 4.00e-02
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Table 10.4: Results for pdSQPccnc on equality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS28 1 3 S 3 2 3.94e-31

HS39 2 4 S 13 11 -1.00e+00

HS40 3 4 S 5 4 -2.50e-01

HS42 2 4 S 5 4 1.39e+01

HS46 2 5 S 20 18 1.41e-11

HS47 3 5 Fm 1224 601 1.51e+00

HS48 2 5 S 3 2 2.47e-31

HS49 2 5 S 18 17 1.14e-09

HS50 3 5 S 11 10 2.02e-24

HS51 3 5 S 3 2 1.50e-14

HS52 3 5 S 4 3 5.33e+00

HS56 4 7 Fb 26 2 -3.21e+00

HS61 2 3 Fb 24 2 -9.30e-03

HS77 2 5 S 11 10 2.42e-01

HS78 3 5 S 5 4 -2.92e+00

HS79 3 5 S 44 21 7.88e-02

HS100LNP 2 7 Fm 1233 601 6.87e+02

HS111LNP 3 10 Fd 3 2 -8.50e+01

LUKVLE1 98 100 S 12 11 6.23e+00

LUKVLE3 2 100 S 11 10 2.76e+01

LUKVLE6 49 99 Fm 602 601 2.82e+07

LUKVLE7 4 100 Fq 21 7 1.20e+03

LUKVLE8 98 100 Fq 2 2 5.71e+04

LUKVLE9 6 100 Fb 32 6 3.84e+01

LUKVLE10 98 100 Fb 24 2 1.68e+02

LUKVLE13 64 98 S 18 16 7.90e+02

LUKVLE14 64 98 Fm 602 601 1.58e+06

LUKVLE16 72 97 Fm 602 601 5.90e+02

LCH 1 300 Fq 2 2 3.39e+04

LCH 1 300 Fq 2 2 3.39e+04
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Table 10.4: Results for pdSQPccnc on equality constrained
problems (continued)

Name m n Result nFun nQPs f -value

MARATOS 1 2 Fb 33 2 -1.12e+00

MWRIGHT 3 5 S 15 8 2.50e+01

ORTHRDM2 100 203 Fq 8 3 3.79e+01

ORTHRDS2 100 203 Fq 2 2 3.34e+00

ORTHREGA 64 133 Fq 4 4 3.02e+02

ORTHREGB 6 27 Fq 25 6 1.79e-01

ORTHREGC 10 25 S 7 6 3.99e-01

ORTHREGD 10 23 S 10 7 3.41e+00

ORTHRGDM 10 23 Fb 28 3 5.56e+00

ORTHRGDS 76 155 Fq 2 2 9.76e+01

S316-322 1 2 S 9 7 3.34e+02

Figure 10.1 gives performance profiles for SNOPT, pdSQP and pdSQPcc. A perfor-
mance profile provide an “at a glance” comparison of a set of algorithms on a large test set.
Let rp,s be the ratio of major iterations for solver s as compared to the best-performing
solver on problem p. Let |A| denote the size of a set. The function,

πs(τ) = 1
|P|
|{p ∈ P | log2(rp,s) ≤ τ}|,

expresses the proportion of problems that are solved in at worst 2τ iterations times the
number of iterations the best solver takes. The performance profile plots πs(τ) as a function
of τ for the different solvers. A solver starting and initially staying at a comparatively a
high-value on the vertical axis indicates a fast solver, and a solver that has a comparatively
high value on the vertical axis for larger values of τ represents a reliable solver. As can
be seen, pdSQP outperforms SNOPT, on average, with respect to speed. However, it is
less reliable in terms of being able to solve the most problems in a reasonable number of
iterations. This is to be expected, as SNOPT has been tested and maintained for a long
period of time.

Below is a summary of results of a set of inequality and equality constrained prob-
lems. Overall it was found that for pdSQPcc, post convexification was necessary for 48
(41%) problems.
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Figure 10.1: Performance profile comparing SNOPT, pdSQP and pdSQPcc

Table 10.5: Reliability of variants of pdSQP

Algorithm Solved

pdSQP 101

pdSQPcc 84

pdSQPid0 84

Table 10.6: Results for pdSQP on inequality constrained
problems

Name m n Result nFun nQPs f -value

HS6 1 2 S 38 17 9.98e-31

HS7 1 2 S 38 18 -1.73e+00

HS8 2 2 S 6 4 -1.00e+00

HS9 1 2 S 5 4 -5.00e-01

HS10 1 2 S 10 9 -1.00e+00

HS11 1 2 S 6 5 -8.50e+00
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Table 10.6: Results for pdSQP on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS12 1 2 S 14 7 -3.00e+01

HS13 1 2 S 446 443 9.85e-01

HS14 2 2 S 6 5 1.39e+00

HS15 2 2 Fm 602 601 1.40e+01

HS16 2 2 S 33 16 2.31e+01

HS17 2 2 S 9 8 1.00e+00

HS18 2 2 S 59 30 5.00e+00

HS19 2 2 S 18 17 -6.96e+03

HS20 3 2 S 14 7 4.02e+01

HS21 1 2 S 3 2 -1.00e+02

HS21MOD 1 7 S 3 2 -9.60e+01

HS22 2 2 S 5 4 1.00e+00

HS23 5 2 S 19 11 2.00e+00

HS24 3 2 S 8 7 -1.00e+00

HS26 1 3 S 21 18 1.02e-12

HS27 1 3 S 121 69 4.00e-02

HS28 1 3 S 4 2 9.86e-32

HS29 1 3 S 16 8 -2.26e+01

HS30 1 3 S 12 11 1.00e+00

HS31 1 3 S 10 6 6.00e+00

HS32 2 3 S 11 5 1.00e+00

HS33 2 3 S 8 6 -4.00e+00

HS34 2 3 S 15 7 -8.34e-01

HS35 1 3 S 3 2 1.11e-01

HS35I 1 3 S 3 2 1.11e-01

HS35MOD 1 3 S 3 2 2.50e-01

HS36 1 3 S 4 3 -3.30e+03

HS37 2 3 S 8 6 -3.46e+03

HS39 2 4 S 9 8 -1.00e+00

HS40 3 4 S 5 4 -2.50e-01
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Table 10.6: Results for pdSQP on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS41 1 4 S 7 6 1.93e+00

HS42 2 4 S 8 6 1.39e+01

HS43 3 4 S 12 6 -4.40e+01

HS44 6 4 S 6 5 -1.30e+01

HS44NEW 6 4 S 6 5 -1.50e+01

HS46 2 5 S 24 18 5.07e-12

HS47 3 5 S 23 16 1.92e-10

HS48 2 5 S 4 2 2.47e-31

HS49 2 5 S 18 14 8.43e-10

HS50 3 5 S 14 10 1.42e-22

HS51 3 5 S 4 2 1.21e-14

HS52 3 5 S 4 3 5.33e+00

HS53 3 5 S 4 3 4.09e+00

HS54 1 6 Fc 2 2 -7.22e-34

HS55 6 6 S 4 3 6.67e+00

HS56 4 7 S 6 5 -3.46e+00

HS57 1 2 S 7 4 3.06e-02

HS59 3 2 Fm 1206 601 2.37e+01

HS60 1 3 S 6 5 3.26e-02

HS61 2 3 S 19 14 -1.44e+02

HS62 1 3 S 67 66 -2.63e+04

HS63 2 3 Fm 602 601 9.70e+02

HS64 1 3 Fm 603 601 6.22e+03

HS65 1 3 S 20 10 9.54e-01

HS66 2 3 S 13 6 5.18e-01

HS67 14 3 Fb 417 185 -9.39e+02

HS68 2 4 S 128 69 -9.20e-01

HS69 2 4 S 18 11 -9.57e+02

HS70 1 4 S 24 17 7.50e-03

HS71 2 4 S 5 4 1.70e+01
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Table 10.6: Results for pdSQP on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS72 2 4 S 426 425 7.28e+02

HS73 3 4 S 5 4 2.99e+01

HS74 5 4 S 14 13 5.13e+03

HS75 5 4 S 269 268 5.17e+03

HS76 3 4 S 3 2 -4.68e+00

HS76I 3 4 S 3 2 -4.68e+00

HS77 2 5 S 18 16 2.42e-01

HS78 3 5 S 6 5 -2.92e+00

HS79 3 5 S 8 7 7.88e-02

HS80 3 5 S 5 4 5.39e-02

HS81 3 5 S 7 6 5.39e-02

HS83 3 5 S 11 10 -3.07e+04

HS84 3 5 Fm 604 601 -3.59e+06

HS86 10 5 S 6 4 -3.23e+01

HS88 1 2 S 224 222 1.36e+00

HS89 1 3 S 33 28 1.36e+00

HS90 1 4 S 29 27 1.36e+00

HS91 1 5 Fm 610 601 5.83e-01

HS92 1 6 S 27 25 1.36e+00

HS93 2 6 S 31 16 1.35e+02

HS95 4 6 S 11 6 1.56e-02

HS96 4 6 S 11 6 1.56e-02

HS97 4 6 S 5 4 4.07e+00

HS98 4 6 S 5 4 4.07e+00

HS99 2 7 Fb 264 247 -8.31e+08

HS100 4 7 S 18 10 6.81e+02

HS100LNP 2 7 S 18 7 6.81e+02

HS100MOD 4 7 S 44 37 6.79e+02

HS101 5 7 S 463 400 1.81e+03

HS102 5 7 S 213 184 9.12e+02
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Table 10.6: Results for pdSQP on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS103 5 7 S 111 97 5.44e+02

HS104 5 8 S 28 13 3.95e+00

HS105 1 8 S 9 8 1.06e+03

HS106 6 8 Fm 1210 601 1.35e+04

HS107 6 9 S 55 54 5.06e+03

HS108 13 9 S 12 8 -5.00e-01

HS109 10 9 Fm 602 601 1.15e+03

HS111 3 10 S 25 14 -4.78e+01

HS111LNP 3 10 S 25 14 -4.78e+01

HS112 3 10 S 12 11 -4.78e+01

HS113 8 10 S 9 6 2.43e+01

HS114 11 10 S 58 46 -1.77e+03

HS116 14 13 Fc 80 63 1.66e+02

HS117 5 15 S 20 13 3.23e+01

HS118 17 15 S 4 3 6.65e+02

HS119 8 16 S 34 33 2.45e+02

HS268 5 5 S 13 5 2.91e-11

Table 10.7: Results for pdSQPcc on inequality constrained
problems

Name m n Result nFun nQPs f -value

HS6 1 2 S 38 17 0.00e+00

HS7 1 2 S 14 8 -1.73e+00

HS8 2 2 S 6 4 -1.00e+00

HS9 1 2 S 5 4 -5.00e-01

HS10 1 2 S 10 9 -1.00e+00

HS11 1 2 S 6 5 -8.50e+00

HS12 1 2 S 41 35 -3.00e+01

HS13 1 2 Fm 603 601 9.90e-01
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Table 10.7: Results for pdSQPcc on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS14 2 2 S 6 5 1.39e+00

HS15 2 2 Fm 602 601 1.57e+02

HS16 2 2 S 5 4 2.31e+01

HS17 2 2 S 13 11 1.00e+00

HS18 2 2 Fm 604 601 6.86e+00

HS19 2 2 S 17 16 -6.96e+03

HS20 3 2 S 14 7 4.02e+01

HS21 1 2 S 248 247 -1.00e+02

HS21MOD 1 7 S 248 247 -9.60e+01

HS22 2 2 S 5 4 1.00e+00

HS23 5 2 S 552 551 2.00e+00

HS24 3 2 S 63 62 -1.00e+00

HS26 1 3 S 21 18 1.02e-12

HS27 1 3 S 133 75 4.00e-02

HS28 1 3 S 4 2 9.86e-32

HS29 1 3 S 88 86 -2.26e+01

HS30 1 3 S 12 11 1.00e+00

HS31 1 3 S 10 6 6.00e+00

HS32 2 3 S 34 32 1.00e+00

HS33 2 3 S 53 52 -4.00e+00

HS34 2 3 S 15 7 -8.34e-01

HS35 1 3 S 3 2 1.11e-01

HS35I 1 3 S 3 2 1.11e-01

HS35MOD 1 3 S 3 2 2.50e-01

HS36 1 3 S 4 3 -3.30e+03

HS37 2 3 S 6 5 -3.46e+03

HS39 2 4 S 9 8 -1.00e+00

HS40 3 4 S 5 4 -2.50e-01

HS41 1 4 S 6 5 1.93e+00

HS42 2 4 S 8 6 1.39e+01
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Table 10.7: Results for pdSQPcc on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS43 3 4 S 40 35 -4.40e+01

HS44 6 4 S 41 40 -1.30e+01

HS44NEW 6 4 S 10 9 -1.50e+01

HS46 2 5 S 24 18 5.07e-12

HS47 3 5 S 23 16 1.92e-10

HS48 2 5 S 4 2 4.93e-32

HS49 2 5 S 18 14 8.43e-10

HS50 3 5 S 14 10 1.42e-22

HS51 3 5 S 4 2 1.21e-14

HS52 3 5 S 4 3 5.33e+00

HS53 3 5 S 4 3 4.09e+00

HS54 1 6 S 3 2 -7.22e-34

HS55 6 6 S 4 3 6.67e+00

HS56 4 7 S 6 5 -3.46e+00

HS57 1 2 Fm 610 601 3.06e-02

HS59 3 2 Fm 602 601 2.98e+01

HS60 1 3 S 6 5 3.26e-02

HS61 2 3 Fm 602 601 -7.03e+00

HS62 1 3 S 67 66 -2.63e+04

HS63 2 3 Fm 602 601 9.76e+02

HS64 1 3 Fm 603 601 6.22e+03

HS65 1 3 S 120 110 9.54e-01

HS66 2 3 S 13 6 5.18e-01

HS67 14 3 S 408 331 -1.16e+03

HS68 2 4 S 22 16 -9.20e-01

HS69 2 4 S 18 15 -9.57e+02

HS70 1 4 S 338 334 7.50e-03

HS71 2 4 S 5 4 1.70e+01

HS72 2 4 S 426 425 7.28e+02

HS73 3 4 S 89 88 2.99e+01
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Table 10.7: Results for pdSQPcc on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS74 5 4 S 15 14 5.13e+03

HS75 5 4 S 269 268 5.17e+03

HS76 3 4 S 56 55 -4.68e+00

HS76I 3 4 S 56 55 -4.68e+00

HS77 2 5 S 40 23 2.42e-01

HS78 3 5 S 6 5 -2.92e+00

HS79 3 5 S 8 7 7.88e-02

HS80 3 5 S 5 4 5.39e-02

HS81 3 5 S 7 6 5.39e-02

HS83 3 5 S 98 97 -3.07e+04

HS84 3 5 Fm 605 601 -2.63e+06

HS86 10 5 S 13 11 -3.23e+01

HS88 1 2 Fm 603 601 2.83e-04

HS89 1 3 S 35 28 1.36e+00

HS90 1 4 Fq 24 12 7.08e-01

HS91 1 5 Fq 16 8 1.87e-02

HS92 1 6 Fq 6 5 3.37e-01

HS93 2 6 S 59 29 1.35e+02

HS95 4 6 S 91 90 1.56e-02

HS96 4 6 S 91 90 1.56e-02

HS97 4 6 Fm 611 601 3.15e+00

HS98 4 6 Fm 611 601 3.15e+00

HS99 2 7 Fb 264 247 -8.31e+08

HS100 4 7 S 287 277 6.81e+02

HS100LNP 2 7 S 18 7 6.81e+02

HS100MOD 4 7 Fm 608 601 6.79e+02

HS101 5 7 Fm 1204 601 2.18e+03

HS102 5 7 Fm 714 601 1.71e+03

HS103 5 7 Fm 634 601 1.63e+03

HS104 5 8 S 33 15 3.95e+00
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Table 10.7: Results for pdSQPcc on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS105 1 8 S 7 6 1.06e+03

HS106 6 8 Fb 387 342 1.44e+04

HS107 6 9 S 55 54 5.06e+03

HS108 13 9 S 18 15 -5.00e-01

HS109 10 9 Fm 602 601 6.87e+02

HS111 3 10 Fm 1215 601 -4.89e+01

HS111LNP 3 10 Fq 3 2 -4.17e+01

HS112 3 10 S 12 11 -4.78e+01

HS113 8 10 Fm 604 601 2.47e+01

HS114 11 10 Fm 801 601 -1.59e+03

HS116 14 13 Fm 1064 601 2.42e+02

HS117 5 15 Fq 2 2 1.22e+03

HS118 17 15 S 59 58 6.65e+02

HS119 8 16 S 42 41 2.45e+02

HS268 5 5 Fm 609 601 1.38e-01

Table 10.8: Results for pdSQPid0 on inequality constrained
problems

Name m n Result nFun nQPs f -value

HS6 1 2 S 38 17 0.00e+00

HS7 1 2 S 14 8 -1.73e+00

HS8 2 2 S 6 4 -1.00e+00

HS9 1 2 S 5 4 -5.00e-01

HS10 1 2 S 10 9 -1.00e+00

HS11 1 2 S 6 5 -8.50e+00

HS12 1 2 S 41 35 -3.00e+01

HS13 1 2 S 445 443 9.85e-01

HS14 2 2 S 6 5 1.39e+00

HS15 2 2 Fm 602 601 1.58e+02
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Table 10.8: Results for pdSQPid0 on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS16 2 2 S 5 4 2.31e+01

HS17 2 2 S 13 11 1.00e+00

HS18 2 2 Fm 604 601 6.86e+00

HS19 2 2 S 17 16 -6.96e+03

HS20 3 2 S 13 8 4.02e+01

HS21 1 2 Fm 602 601 -1.00e+02

HS21MOD 1 7 Fm 602 601 -9.60e+01

HS22 2 2 S 6 5 1.00e+00

HS23 5 2 S 552 551 2.00e+00

HS24 3 2 S 84 83 -1.00e+00

HS26 1 3 S 21 18 1.02e-12

HS27 1 3 S 133 75 4.00e-02

HS28 1 3 S 4 2 9.86e-32

HS29 1 3 S 88 86 -2.26e+01

HS30 1 3 S 12 11 1.00e+00

HS31 1 3 S 13 8 6.00e+00

HS32 2 3 S 34 32 1.00e+00

HS33 2 3 S 53 52 -4.00e+00

HS34 2 3 S 16 9 -8.34e-01

HS35 1 3 S 3 2 1.11e-01

HS35I 1 3 S 3 2 1.11e-01

HS35MOD 1 3 S 3 2 2.50e-01

HS36 1 3 S 4 3 -3.30e+03

HS37 2 3 S 6 5 -3.46e+03

HS39 2 4 S 9 8 -1.00e+00

HS40 3 4 S 5 4 -2.50e-01

HS41 1 4 S 6 5 1.93e+00

HS42 2 4 S 8 6 1.39e+01

HS43 3 4 S 40 35 -4.40e+01

HS44 6 4 S 48 47 -1.30e+01
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Table 10.8: Results for pdSQPid0 on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS44NEW 6 4 S 29 28 -1.30e+01

HS46 2 5 S 24 18 5.07e-12

HS47 3 5 S 23 16 1.92e-10

HS48 2 5 S 4 2 4.93e-32

HS49 2 5 S 18 14 8.43e-10

HS50 3 5 S 14 10 1.42e-22

HS51 3 5 S 4 2 1.21e-14

HS52 3 5 S 4 3 5.33e+00

HS53 3 5 S 4 3 4.09e+00

HS54 1 6 S 3 2 -7.22e-34

HS55 6 6 S 4 3 6.67e+00

HS56 4 7 S 6 5 -3.46e+00

HS57 1 2 Fm 610 601 3.06e-02

HS59 3 2 Fm 602 601 2.99e+01

HS60 1 3 S 6 5 3.26e-02

HS61 2 3 Fm 602 601 -7.03e+00

HS62 1 3 S 68 67 -2.63e+04

HS63 2 3 Fm 602 601 9.76e+02

HS64 1 3 Fm 603 601 6.64e+03

HS65 1 3 S 139 132 9.54e-01

HS66 2 3 Fb 5 4 5.44e-01

HS67 14 3 S 411 337 -1.16e+03

HS68 2 4 S 22 16 -9.20e-01

HS69 2 4 S 18 15 -9.57e+02

HS70 1 4 S 338 334 7.50e-03

HS71 2 4 S 5 4 1.70e+01

HS72 2 4 S 426 425 7.28e+02

HS73 3 4 S 86 85 2.99e+01

HS74 5 4 S 15 14 5.13e+03

HS75 5 4 S 269 268 5.17e+03
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Table 10.8: Results for pdSQPid0 on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS76 3 4 S 70 69 -4.68e+00

HS76I 3 4 S 70 69 -4.68e+00

HS77 2 5 S 40 23 2.42e-01

HS78 3 5 S 6 5 -2.92e+00

HS79 3 5 S 8 7 7.88e-02

HS80 3 5 S 5 4 5.39e-02

HS81 3 5 Fb 18 14 5.39e-02

HS83 3 5 S 90 89 -3.07e+04

HS84 3 5 Fm 605 601 -2.63e+06

HS86 10 5 S 13 11 -3.23e+01

HS88 1 2 Fm 603 601 2.83e-04

HS89 1 3 S 33 26 1.36e+00

HS90 1 4 Fq 38 12 4.21e+00

HS91 1 5 Fq 85 72 7.32e-01

HS92 1 6 Fq 12 6 9.95e-01

HS93 2 6 S 71 39 1.35e+02

HS95 4 6 S 91 90 1.56e-02

HS96 4 6 S 91 90 1.56e-02

HS97 4 6 S 448 441 4.07e+00

HS98 4 6 S 448 441 4.07e+00

HS99 2 7 Fm 602 601 -7.77e+08

HS100 4 7 S 287 277 6.81e+02

HS100LNP 2 7 S 18 7 6.81e+02

HS100MOD 4 7 Fm 608 601 6.79e+02

HS101 5 7 Fm 1146 601 2.15e+03

HS102 5 7 Fm 1009 601 1.99e+03

HS103 5 7 Fm 674 601 1.67e+03

HS104 5 8 S 41 23 3.95e+00

HS105 1 8 S 9 8 1.06e+03

HS106 6 8 Fb 306 298 1.47e+04
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Table 10.8: Results for pdSQPid0 on inequality constrained
problems (continued)

Name m n Result nFun nQPs f -value

HS107 6 9 S 55 54 5.06e+03

HS108 13 9 S 103 68 -5.00e-01

HS109 10 9 Fm 602 601 6.87e+02

HS111 3 10 Fm 1215 601 -4.89e+01

HS111LNP 3 10 Fq 3 2 -4.17e+01

HS112 3 10 S 12 11 -4.78e+01

HS113 8 10 Fm 604 601 2.60e+01

HS114 11 10 S 542 314 -1.77e+03

HS116 14 13 Fm 1162 601 2.50e+02

HS117 5 15 Fq 2 2 1.22e+03

HS118 17 15 S 45 44 6.65e+02

HS119 8 16 S 51 50 2.45e+02

HS268 5 5 Fb 626 595 2.72e-01
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