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Abstract

Climate-change adaptation focuses on conducting and translating research to minimize the dire 

impacts of anthropogenic climate change, including threats to biodiversity and human welfare. 

One adaptation strategy is to focus conservation on climate-change refugia (that is, areas relatively 
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buffered from contemporary climate change over time that enable persistence of valued physical, 

ecological, and sociocultural resources). In this Special Issue, recent methodological and 

conceptual advances in refugia science will be highlighted. Advances in this emerging 

subdiscipline are improving scientific understanding and conservation in the face of climate 

change by considering scale and ecosystem dynamics, and looking beyond climate exposure to 

sensitivity and adaptive capacity. We propose considering refugia in the context of a multifaceted, 

long-term, network-based approach, as temporal and spatial gradients of ecological persistence 

that can act as “slow lanes” rather than areas of stasis. After years of discussion confined primarily 

to the scientific literature, researchers and resource managers are now working together to put 

refugia conservation into practice.

Anthropogenic climate change is predicted to impose an assortment of dramatic effects on 

society and ecosystems across the globe, prompting resource managers to look for place-

based solutions to minimize associated biodiversity losses. The identification, protection, 

and management of climate-change refugia – generally defined as areas relatively buffered 

from contemporary climate change (see WebPanel 1 for a glossary of specialist terms) – has 

increasingly been proposed as a focus of climate adaptation actions to support the 

persistence of species, communities, and ecosystems, as well as sociocultural values (Keppel 

et al. 2015; Morelli et al. 2016). Since the refugia concept was first explored in a modern 

climate-change adaptation context (Ashcroft 2010; Dobrowski 2011; Keppel et al. 2012), 

technological and theoretical advances, as well as better recognition of practical applications 

(Anderson et al. 2014; Suggitt et al. 2018), have created more nuanced ways to identify and 

conserve these areas (Keppel et al. 2015; Morelli et al. 2016).

Here, we explain not only how conservation strategies that focus on climate-change refugia 

increasingly incorporate ecological complexity, including issues of scale and the spectrum of 

climate-change vulnerability, but also how to consider objectives for climate-change refugia 

beyond their original static definition. The papers included in this Special Issue discuss how 

this burgeoning area of study is focused on improving conservation in the face of climate 

change. We take an inclusive view of climate-change refugia that recognizes the 

simultaneous importance of conservation in place (“in situ”) and beyond (“ex situ”) (Figure 

1). Conservation of in situ refugia can help ensure some continuation of ecosystem services 

in the near term and preserve unique biodiversity (Keppel et al. 2015). Anticipatory planning 

for ex situ refugia recognizes, for example, the value of locations outside of a species’ 

current native range that act as “stepping-stones”, aiding long-term efforts to help species 

track their climatic niche by means of passive or assisted migration. Climate-change refugia 

could also protect sociocultural and physical resources (Morelli et al. 2016), although that is 

not a focus of this Special Issue.

Given that they buffer species and ecosystems from the effects of climate change, refugia 

can be considered a “slow lane” for resident biodiversity and ecosystem function, embedded 

within faster climatic changes occurring in the broader landscape or region (Figure 2). As 

such, climate-change refugia can help to safeguard constituent species and ecosystems for 

long periods of time; however, they can also be transient, being only lightly or temporarily 

decoupled from changes experienced in the surrounding landscape (McLaughlin et al. 2017). 
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For example, certain freshwater springs have served as refugia through major eco-climatic 

changes (eg landscape changed from wetlands to deserts) for millennia, whereas most 

refugial springs are likely to be relatively transient (Cartwright et al. 2020). Although all 

refugia are temporary for their resident species and ecosystem on a long enough timescale, 

they can provide buffered areas into which the next species or ecosystem can transition.

From a conservation management perspective, climate-change refugia represent potential 

opportunities to retain biodiversity and ecosystem function in a rapidly changing 

environment. Numerous challenges remain in identifying these refugia at multiple scales, 

and in mobilizing a shift in natural resource priorities to ensure that they receive necessary 

protection on the ground and over useful time spans. In recent years, climate-change refugia 

science has progressed on several fronts, with methodological advances that have moved the 

research beyond a narrow focus mostly limited to local-scale, terrain-based protection from 

climate exposure.

Incorporating ecological complexity

Beyond local

Climate-change refugia exist along spatial and temporal continuums (Figure 3; Keppel and 

Wardell-Johnson 2015), ranging from regional scales (where macrorefugia can facilitate 

ecosystem persistence over centuries and even millennia), to landscape and local scales 

(where microrefugia can maintain particular species and communities for years and 

decades), to “hyper-local” scales (where refuges can provide temporary shelter for 

individuals) (Fey et al. 2019). In addition, disturbance refugia (WebPanel 1) can delay 

ecosystem transitions for decades or longer (Krawchuk et al. 2020).

For conservation planning purposes, researchers recommend integrating environmental 

metrics targeting a range of refugia types (Ashcroft 2010) and scales (Carroll et al. 2017; 

Michalak et al. 2020). Climate-based (ie coarse-filter, broadscale) macrorefugia can be 

identified by locating places with low climate-change exposure (Game et al. 2011; Belote et 
al. 2018) or low climate velocity (speed and direction needed to maintain the same climate 

conditions; Loarie et al. 2009; Hamann et al. 2015), indicating analogous climatic conditions 

either are retained in place or remain in close proximity to their historical locations (Carroll 

et al. 2017). Species distribution models can then identify regions with high species-specific 

(ie fine-filter) refugia potential (Stralberg et al. 2018). Downscaled global climate models 

project future conditions at a relatively coarse (~1–10 km) resolution (Willis and Bhagwat 

2009; Stralberg et al. 2018; Michalak et al. 2020) and as such might underestimate refugia 

potential by overlooking microrefugia (Ashcroft 2010; Dobrowski 2011). Incorporating 

information from a suite of environmental diversity metrics based primarily on relatively 

fine-resolution (ie 100 m) topographic data can help detect regions with high topographic 

complexity and therefore high potential for harboring microrefugia (Carroll et al. 2017).

In some cases, the areal extent of individual refugia may not be large enough to support 

subpopulations or populations, but these sites can maintain persistence over time when 

connected to one another and to protected non-refugial areas (Keeley et al. 2018). For 

instance, highly mobile species such as salmon or migratory butterflies might require 
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networks of small, temporary refuges from exposure. While these might be insufficient on 

their own in sustaining populations in the face of climate change, such features can play a 

critical supplemental role in supporting overall climate-change refugia for mobile species 

(Ebersole et al. 2020). Ultimately, combining complementary approaches to identifying 

refugia that operate at different scales and target different ecological processes will produce 

a more robust assessment of climate-change refugia potential than relying on a single 

approach or scale (Michalak et al. 2020).

Beyond terrain

Initial descriptions of refugia focused on climatic mechanisms, mediated by terrain. Refugia 

are therefore traditionally characterized as being decoupled from regional climates and tied 

to local meteorological phenomena driven by physical terrain characteristics (Ashcroft 2010; 

Dobrowski 2011; Keppel et al. 2012). Many velocity-based macrorefugia metrics heavily 

emphasize regions with complex terrains (Carroll et al. 2017; Michalak et al. 2020), 

although methods have been developed to adjust algorithms to identify topography in 

relatively flat terrains (Anderson et al. 2014). However, other physical and ecological factors 

beyond terrain contribute to the creation and persistence of refugia (Millar and Westfall 

2019; Stralberg et al. 2020). Hydrologic microrefugia can be produced not only by 

topography and soil, which are relatively well-mapped, but also by subsurface 

hydrogeological structures and processes that are often poorly understood (eg complex 

groundwater flow paths linking recharge zones to surface discharge as springs; Cartwright et 
al. 2020). In addition, ecological interactions and eco-hydrological processes can confer 

additional resistance to change in systems like beaver (Castor spp)-engineered landscapes, 

intertidal wetlands, boreal peatlands, and montane uplands dominated by mixtures of rock 

and ice known as rock glaciers. Such “ecosystem-protected” refugia – where ecosystem 

processes provide buffering against climate change – might be particularly important as the 

magnitude of climate change exceeds the buffering capacity of terrain-mediated refugia 

(Stralberg et al. 2020).

Beyond exposure

Refugia have traditionally been considered as locations that could protect species, 

communities, and ecosystems from exposure to climate change, primarily focusing on 

increases in average temperature, but recent studies have evaluated more complex climate 

stressor gradients, including moisture, snowpack, stream flow rate and timing, extreme 

events, and disturbance (Reside et al. 2014; Krawchuk et al. 2020). “Disturbance refugia” 

are locations that are disturbed less severely or frequently than the surrounding landscape. In 

forested ecosystems, the overlap of multiple disturbances can lead to degradation of refugia 

function in some cases, but resistance to change in others (Krawchuk et al. 2020).

In addition to exposure, differences in other aspects of climate-change vulnerability, 

including how species respond to climate change (sensitivity) and the ability of any 

individual species to adapt (adaptive capacity), will have a substantial influence on the 

location and duration of refugia functionality (Stralberg et al. 2018; Michalak et al. 2020), as 

well as the capacity for communities and ecosystems to persist and function. For instance, 

springs that have flow diminished by climate change but do not desiccate could be refugia 
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for some species (eg plants from the surrounding landscape tracking soil moisture) but not 

for others (eg obligate aquatic invertebrates) (Cartwright et al. 2020). In addition, evidence 

suggests that species living in landscapes with historically rapid climatic changes have 

evolved to be less sensitive to those changes (Sandel et al. 2011). Bringing these ideas 

together, Ackerly et al. (2020) explore the relationships between regional and local 

landscape distributions, linking climatic niche and distributions along topographic gradients 

to species’ projected sensitivity to climate change.

Methodological advances

Considerable advances in modeling and validation have been made over the past decade of 

research on refugia. Better data, models, and validation (Ashcroft et al. 2012; Franklin et al. 
2013; Anderson et al. 2014; Suggitt et al. 2018; Ebersole et al. 2020; Thorne et al. 2020) are 

improving the spatial resolution at which climate-change refugia may be identified, as well 

as the capacity for testing spatial hypotheses on landscape features (Morelli et al. 2017; 

Barrows et al. 2020). For example, combining satellite-based mapping or intensive field 

sampling with climate projections can provide the basis for in situ assessments of climate 

exposure to identify areas of persistence for vegetation (“vegetative refugia”; Schut et al. 
2014; Thorne et al. 2020) and hydrologic integrity (Cartwright et al. 2020) at watershed to 

ecoregional scales.

From management implications to management applications

Resource managers will require innovative strategies to counteract climate-change impacts 

and better ensure conservation project success, particularly methods that improve 

communication between themselves, scientists, and decision makers (Enquist et al. 2017). 

Climate-change refugia conservation is poised to shift from planning, which is based on 

general recommendations, to implementing spatially explicit actions addressing site-specific 

conditions and network connectivity. Effective management will consider climate-change 

effects at both large (eg metapopulation, species ranges) and small (eg individual organism) 

scales that govern adaptive responses to changes in the environment and in management 

practices (Opdam and Wascher 2004).

In recent years, several tangible examples of refugia conservation practices have emerged 

(Beller et al. 2019). Morelli et al. (2016) established the Climate Change Refugia 

Conservation Cycle (CCRCC), which lays out steps for operationalizing the climate-change 

refugia management concept. The first steps – identifying management objectives and 

assessing resource vulnerability – are widely incorporated into climate-change adaptation 

(Stein et al. 2013). The next step, which is unique to climate-change refugia management, 

involves the mapping and ideally the validation of refugia using physical and biological data. 

For example, Ebersole et al. (2020) describe current efforts by US state and federal agencies 

to integrate streamflow, water temperature, and interannual patterns of fish distribution to 

map and evaluate potential climate-change refugia for coldwater fish species. The final steps 

include selecting and implementing actions to protect the identified refugia, and monitoring 

outcomes. Successful application of the CCRCC may require (1) modification of 

prioritization frameworks, (2) evaluation of alternative management actions, (3) a 
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commitment to systematic monitoring, and (4) the capacity to update refugia identification 

as climate-change projections are refined. For instance, the US Forest Service is 

incorporating projections of vegetative climate refugia locations into restoration planning for 

areas affected by the 2014 King Fire in California (Thorne et al. 2020). Likewise, The 

Nature Conservancy has led a proactive planning initiative that focuses on principles of 

ecological resilience and protection of topographically and geologically diverse landscapes 

(Anderson et al. 2014).

Looking to the future, monitoring of climate-change refugia will become increasingly 

important for tracking the responses of species, ecosystems, and other resources. Monitoring 

can be used to detect new threats (Heller and Zavaleta 2009; Reside et al. 2018), validate 

projected change (Morelli et al. 2017), and identify threshold conditions beyond which 

refugia could lose their functionality and become ecological traps, which reduce fitness 

instead of increasing persistence (Morelli et al. 2012). Managers will benefit from 

systematic, continuous monitoring that spans large spatial scales and time frames of climate 

and ecological dynamics in areas of particular interest (eg reference sites) and will require 

dedicated funding. Alternatively, efforts that harness unconventional sources of personnel, 

such as citizen scientists (eg Barrows et al. 2020), may provide additional means of 

conducting standardized, large-scale monitoring when funding is scarce.

Scales of management

Conceptualizing climate-change refugia as temporal and spatial gradients of ecological 

persistence – rather than discrete points of stasis (Hobbs et al. 2009; Keppel et al. 2015) – 

may improve how resource managers identify and protect them. Different components of 

biodiversity will respond to climate change at different rates (Hannah et al. 2014); 

monitoring how species shift along climate gradients will reveal their relative risk of local or 

global extinction (Keppel and Wardell-Johnson 2015). This shift in focus, from stasis to 

slow change, recognizes the magnitude of anticipated climatic changes, that management 

intensity may need to increase over time in order to maintain current ecosystem functions, 

and that changes to management goals may also be necessary. Although adaptive 

management provides a process for shifting management goals, the time required to 

complete management activities, from planning to project implementation, might be 

outpaced by ecological responses on the ground. However, by adopting a climate-change 

refugia gradient perspective, coupled with an adequate monitoring program, resource 

managers will be better positioned to anticipate and keep pace with rapid change. 

Frameworks that enable agencies to collaborate in planning and permitting to address a suite 

of common ecological responses rather than on a project-by-project basis are especially 

needed. One way forward is to designate climate-change refugia at local scales (Opdam and 

Wascher 2004) that exist within landscapes of more general conservation priority (Lawler 

2009). For example, the California Department of Fish and Wildlife is using locations of 

vegetative climate refugia within the range of a suite of vertebrate species to embed climate 

risk in land management and regulatory considerations (Thorne et al. 2020).
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Persistence/resistance versus transition/transformation

Climate-change refugia conservation has primarily been invoked as a resistance strategy in 

the context of climate-change adaptation (Millar et al. 2007). Although applicable for 

resources of particularly high value, we suggest that the scope of management of refugia be 

expanded. First, unlike natural historical climate cycles, contemporary climate change is 

probably unidirectional within a societally relevant time frame, barring ambitious political 

and technological advancements. It is likely that Earth will continue to warm; that 

precipitation patterns will shift and exhibit escalating extremes at seasonal and annual 

scales; and that disturbances such as fire, insects, and disease will become even more 

widespread, frequent, and intense. Therefore, apart from the small fraction of refugia that are 

fully decoupled, climate-change refugia for most current resident species or other resources 

are only temporary (Morelli et al. 2016; Ackerly et al. 2020). Second, managing places to 

maintain stability at all costs can in some circumstances lead to unintended consequences 

(Millar and Stephenson 2015), for instance where native species become increasingly 

stressed and vulnerable to extensive mortality given an extreme weather event or 

disturbance. Finally, taking a more broad-scale/network approach could create opportunities 

for species, ecosystems, and other resources that will soon be the next most vulnerable, as 

well as those whose distributions are shifting spatially (Figure 2). In this way, conservation 

strategies could focus on climate-change refugia as places that may be the least affected by 

climate change into the future (ie the “slow lane”). These places can therefore act as 

stepping-stones (Hannah et al. 2014) to suitable habitats, or as “evolutionary incubators” by 

allowing time for genetic adaptation to occur, a factor that is of great concern given the 

rapidity of climate change (Jump and Peñuelas 2005; Hoffmann and Sgrò 2011). This tactic 

calls for greater focus on slow lane “hold-outs” (Hannah et al. 2014) that provide transitional 

or “relative” refugia value (McLaughlin et al. 2017) and help to buy time for species and 

ecological communities.

We suggest that an effective climate adaptation strategy must encompass targets that are 

spatially diverse, temporally dynamic, and multifaceted. Climate-change refugia can be 

managed with a network approach, considering temporary refugia for residents as well as 

resource transitions and even future refugia for species, communities, and ecosystems 

previously occurring elsewhere. The result could be novel community assemblages created 

by the loss of certain species or the gain of others that might lead to ecological replacement, 

as has happened in the past (Jackson and Overpeck 2000). However, in the context of 

maintaining ecosystem services in an era of continuous directional change, this dynamic 

network approach could help achieve conservation objectives (Millar and Stephenson 2015).

Conclusions

As the effects of climate change accelerate, climate-change refugia provide a slow lane to 

enable persistence of focal resources in the short term, and transitional havens in the long 

term. Planned wisely, they can serve as stepping-stones for multiple species as climates 

continue to change. This subdiscipline of climate-change adaptation can generate practical 

recommendations for resource managers, inform guidance on incorporating ecological 

complexity at multiple scales considering all aspects of vulnerability, and encourage 
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solutions coproduced by researchers and practitioners. Far from being merely static 

preserves where species are managed to resist change, climate-change refugia networks can 

be designed to accommodate changing climates as environments transition to new states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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In a nutshell:

• Climate-change refugia can serve as a “slow lane”, in that their relative 

buffering from climate change can protect native species and ecosystems from 

the negative effects of climate change in the short term, and provide longer-

term havens from climate impacts for biodiversity and ecosystem function

• Climate-change refugia can be identified and managed by evaluating 

ecological complexity, scale, and species traits as well as climate and 

landscape factors

• Natural resource managers now have theory, guidance, and concrete examples 

to apply the refugia concept in practice
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Figure 1. 
The diverse and expanding terminology of climate refugia, with similar terms grouped by 

color (see WebPanel 1 for definitions).
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Figure 2. 
Climate-change refugia create a “slow lane” that enables the long-term persistence of 

species, communities, and ecosystems despite climate change. As the climate changes over 

time, both sites (depicted as blue-outlined polygons) ultimately transition from moose 

(Alces alces) to white-tailed deer (Odocoileus virginianus) habitat. However, the bottom site 

transitions more slowly; by allowing resident moose to remain within their climate niche 

longer, the bottom site serves as a refugium for moose. In the near term, prioritization and 

protection of refugial locations are key management strategies for selected focal species. In 

the long term, as climate changes exceed the climatic tolerances of the initial focal species, 

refugial locations can be managed for transition to other climate-vulnerable species, such as 

elk (Cervus canadensis). Symbols courtesy of the Integration and Application Network, 

University of Maryland Center for Environmental Science (www.ian.umces.edu/symbols).
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Figure 3. 
At regional scales, macrorefugia can facilitate ecosystem persistence over centuries and even 

millennia. At landscape and local scales, microrefugia can maintain selected species and 

communities for similar lengths of time. At shorter time scales (days to years), hyper-local 

refuges can provide temporary shelter for individual organisms.
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