
UC Berkeley
UC Berkeley Previously Published Works

Title
Distributed-Memory k-mer Counting on GPUs

Permalink
https://escholarship.org/uc/item/6089p11k

ISBN
9781665440660

Authors
Nisa, Israt
Pandey, Prashant
Ellis, Marquita
et al.

Publication Date
2021-05-21

DOI
10.1109/ipdps49936.2021.00061

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6089p11k
https://escholarship.org/uc/item/6089p11k#author
https://escholarship.org
http://www.cdlib.org/

Distributed-Memory k-mer Counting on GPUs
Israt Nisa†, Prashant Pandey∗†, Marquita Ellis ∗†, Leonid Oliker†, Aydın Buluç∗† Katherine Yelick∗†

∗Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
†Computational Research Division, Lawrence Berkeley National Laboratory

Abstract—A fundamental step in many bioinformatics compu-
tations is to count the frequency of fixed-length sequences, called
k-mers, a problem that has received considerable attention as
an important target for shared memory parallelization. With
datasets growing at an exponential rate, distributed memory
parallelization is becoming increasingly critical. Existing dis-
tributed memory k-mer counters do not take advantage of GPUs
for accelerating computations. Additionally, they do not employ
domain-specific optimizations to reduce communication volume
in a distributed environment. In this paper, we present the first
GPU-accelerated distributed-memory parallel k-mer counter. We
evaluate the communication volume as the major bottleneck in
scaling k-mer counting to multiple GPU-equipped compute nodes
and implement a supermer-based optimization to reduce the
communication volume and to enhance scalability. Our empirical
analysis examines the balance of communication to computation
on a state-of-the-art system, the Summit supercomputer at Oak
Ridge National Lab. Results show overall speedups of up to two
orders of magnitude with GPU optimization over CPU-based k-
mer counters. Furthermore, we show an additional 1.5× speedup
using the supermer-based communication optimization.

Index Terms—GPU, k-mer counter, distributed memory

I. INTRODUCTION

A significant number of omics applications, including ge-
nomics, transcriptomics, metagenomics, and proteomics, rely
on efficient counting of length-k subsequences called k-mers.
This step, which often takes a large fraction of the overall
application runtime, is a key computation within popular
tools that perform taxonomic assignment [32], metagenome
classification [3], genome and metagenome assembly [15], and
transcriptome abundance estimation [26].

Due to lowering costs and exponential growth of sequence
data, the input sets for k-mer counting analysis are exceeding
the memory capacities of single shared memory systems, even
high end servers. This results in a performance penalty for
software that needs to rely on external memory. A growing
number of tools from the bioinformatics community try to
address this issue by compressing k-mers [20], offering more
space-efficient data structures [24], or using external mem-
ory [8] during k-mer counting.

In addition to space constraints, computational costs on a
single workstation can make the processing requirements of
k-mer counting on modern data sets impractical. To reduce
this run time, a recent work Gerbil [8] has shown that GPUs
can be a superior alternative to CPUs for computing k-mer
counts. Unfortunately, GPUs generally have smaller memories
compared to CPUs, making single GPU nodes less practical
for analyzing larger data sets.

In this work, we address these challenges by presenting the
first k-mer counting methodology that leverages the compu-
tational power and scalable memory capacity of distributed-
memory GPU systems. Results using real, large-scale, ge-
nomic data sets demonstrate that our GPU-based computation
significantly reduces the execution time by one to two orders
of magnitude, compared to its distributed-memory CPU coun-
terpart used in a long-read aligner [7]. However, the GPU
accelerated kernels make communication the new bottleneck,
as explained in section III-C. Note that, the communication
volume is independent of the CPU- or GPU-based counting.

To address the communication bottleneck, we partition the
input data using minimizers. Minimizers allow efficient bin-
ning of k-mers such that sequences with overlaps are binned
together [27], [28]. Using the minimizers, we partition data
into supermers which are larger than k-mers in length, and
distribute supermers directly across nodes thereby reducing
the communication volume. Our supermer-based partitioning
is independent of the GPU implementation and can be used
in other distributed-memory k-mer counters to reduce the
communication volume.

The key contributions of out work include:

• We propose a high-performance distributed k-mer counter
for GPUs, as an extension of the state-of-the-art k-
mer counter for distributed-memory. Experimental results
demonstrate one to two orders of magnitude improvement
across a variety of genomic data sets at scale.

• To address the inter-node communication bottleneck that
is exacerbated by the distributed implementation, our
novel approach leverages supermers to reduce commu-
nication volume by up to 4×, which is supported by
an analysis of its theoretical communication reduction
potential.

• Overall, our GPU accelerated supermer-based k-mer
counter on the Summit system outperforms the existing
CPU based framework by up to 150× on the H. sapien
54X genome data set, and opens the door to omics
computations at unprecedented scale.

The rest of the paper is organized around these optimiza-
tions, as follows: Section II gives an overview of the k-
mer counter and introduces the notion of minimizers which
are key to the supermer approach. Section III describes our
proposed GPU-based k-mer counter, and section IV discusses
the optimization technique to reduce communication using
supermers. Section V presents experimental evaluation on
high end multicore and GPU system, with up to 128 nodes

1

with either 6 GPUs or 42 CPU cores per node. Our analysis
also explores some of the trade-offs in the design space and
identifies the scaling bottlenecks with each version. Section
VI discusses the related work, and Section VII concludes.

II. BACKGROUND

A. k-mer counting

k-mer counting is the process of counting length-
k subsequences—strings of k nucleotides or bases
(A,C, T,G)—in genomic or transcriptomic data. Many
analyses in computational biology begin by counting k-mer
occurrences in the input data [3], [15], [26], [32]. The
resulting k-mer histograms are valuable for understanding
the distributions of genomic subsequences, creating “profiles”
of genome and metagenomic data, identifying k-mers of
scientific interest by frequency, and so on. These histograms
support many downstream analyses as well. For example,
as a (weighted) de Bruijn graph representation [4], [11],
[25] , as an input for building large-scale sequence search
indexes [2], [23], [29]–[31], and for weighted locality
sensitive hashing [18].

k-mer counting is one of the most common and arguably
one of the simplest preliminary steps in many bioinformatics
analyses. The number of existing papers on this problem
suggests, however, that efficient execution of this task, with
reasonable memory use, is far from trivial. k-mer counting is
non-trivial because the datasets can exceed single node shared
memory resources and the frequency distribution of the k-
mers is often skewed. There are many different k-mer counter
software implementations, because there are many different
competing performance issues, including space consumption,
cache-locality, scalability with multiple threads, and in a
distributed memory setting, with multiple nodes.

Irregularity in the input data makes k-mer counting a
challenging problem for distributed memory parallelization.
In particular, the distribution of k-mers is not fixed across bi-
ological input datasets and cannot be determined until the run
time. The primary methods for scalable-distributed memory
k-mer counting rely on distributed hash tables [6], [7], [10],
[12], [21], [33].

B. Minimizers

A minimizer [27], [28] of a k-mer is the smallest subse-
quence of length m (m < k) based on an arbitrary order.
In genomic sequences, consecutive k-mers often share the
same minimizer and can be represented as a single sequence
of more than k bases, significantly reducing the redundancy.
Minimizers have been extensively used to efficiently process
and represent genomic sequences [1], [4], [5], [16], [27], [28],
[32].

In the context of k-mer counting, minimizers have been
used to partition genomic data into bins and these bins
are then processed sequentially and independently for k-mer
counting reducing the maximum main memory requirements.

Algorithm 1 Distributed k-mer counting [7]

1: procedure PARSEKMER . Read files and parse k-mers
2: for r ∈ reads do
3: for i = 0 to LEN(r)− k + 1 do
4: kmer = EXTRACTKMER(r, i, k)
5: P = HASH(kmer, nProc) . Find processor
6: kmers[P]← kmer . Outgoing kmer vector

7: procedure EXCHANGEKMER . Communicate k-mers
8: recvdkmers = ALLTOALLV(kmers, P)

9: procedure COUNTKMER . Count local k-mers
10: kcounter ← INITIALIZE
11: for kmer ∈ recvdkmers do
12: if kcounter.HAS(kmer) then
13: kcounter.INCREMENT(kmer)
14: else
15: kcounter.INSERT(kmer)

Partitioning the k-mers based on minimizers ensures that a k-
mer, irrespective of the its location in the genomic sequence,
will always end up in the same bin.

Multiple minimizer orderings have been proposed in differ-
ent contexts. The simplest to reason about pecind implement
is the lexicographical ordering proposed by Roberts [27].
However, in practice, the lexicographical ordering often leads
to unbalanced partitions. This leads to performance being
dominated by the largest bin. The KMC2 [5] k-mer counter,
introduced a slight modification in lexicographical ordering
by assigning lower priority to m-mers starting with AAA or
ACA. This special ordering helps to spread out k-mers and
reduces the skew in the bin sizes. This ordering is also used
by GPU-based k-mer counter Gerbil [8].

III. DISTRIBUTED-MEMORY k-MER COUNTER ON GPUS

The proposed GPU based distributed memory k-mer counter
in this work follows the general approach introduced by
Georganas et al. [12], originally developed for CPUs. On a
high level, the framework is consist of three main modules:
1)parse & process k-mers- parses the reads into k-mers and
finds destination for them, 2)exchange the k-mers to their
corresponding destination, and 3)build the k-mer counter at
each local machine. Figure 1a demonstrates the main modules
of the distributed k-mer counting pipeline.

A. k-mer counter on CPU [12]

In the CPU based framework by [12], also as shown in
Figure 1a, at the beginning, input reads are partitioned across
processors. Next, independently in parallel, processors parse
k-mers from input reads and map the k-mers to a partition of
the global hash table (and “owner” processor) via a uniform-
random hash function. The choice of the hash function is
critical, but does not alone guarantee load balance — an
issue addressed in subsequent discussion. The end result is

2

(a) Pipeline in a distributed k-mer counter.

(b) Pipeline in a distributed k-mer counter on GPUs.

Fig. 1: k-mer counting pipeline in a distributed environment.

a partitioned hash table storing the set of all k-mers and their
respective global frequencies.

Algorithm 1 demonstrates an overview of this approach.
Line 2 iterates over the reads from a given read partition and
Line 3 iterates over the bases in the read. To construct the
global hash table, all instances of a k-mer are mapped to a
single hash table location on the same processor. Line 5 uses
MurmurHash3 hash function to find the destination proces-
sor. Any given instance of a k-mer will be communicated
from the source processor to a single processor owning the
respective hash table partition. This many-to-many exchange
is implemented using MPI Alltoall and Alltoallv routines, as
shown in the Line 8.The k-mers are stored and counted in the
destinations’ partition of the global hash table1 as shown from
Line 11 to Line 15. Depending on the total size of the input,
relative to software limits (approximating available memory),
the computation and communication may proceed in multiple
rounds.

B. k-mer counter on GPU

1) Parse & process k-mers: In the GPU-based solution,
as a first step, we concatenate the input reads into one long
array of bases and mark the read ends by special bases, before
copying the data to GPU memory. Inside the GPU kernel,
the copied array is evenly partitioned into smaller chunks of
bases and is assigned to different thread blocks (group of
threads/warps). In a genomic dataset, individual reads from the

1See also the analysis of destination- versus source-side k-mer consolida-
tion by Georganas [10].

Fig. 2: Parsing k-mers (k=3) from reads and mapping k-mers
to destinations processors using k-mer based k-mer counter
on GPU

same read partition can have a big variance in their lengths.
Moreover, the performance on GPUs is highly sensitive to
load imbalance across threads, warps (group of 32 threads),
or thread-blocks (group of warps). This even work distribution
provides a balanced work load and avoids the variance coming
from the lengths of reads.

To exploit coalesced memory accesses on GPU (combining
multiple memory accesses into a single transaction), which
is another crucial factor for high performance, consecutive
threads are mapped to a continuous series of bases. Figure
2 shows the mapping of the bases and the work distribution
across threads. The threads starts constructing the k-mer
starting from the base and reads up to k-mer length number of
bases. Thread t1 and t2 start reading at G and T , and build k-
mer GTC and TCA, respectively. This technique also ensures

3

Ti
m

e
(s

)

0

1000

2000

3000

4000

 H. sapien 54x

kmer counter exchange (incl. MPI call)
parse & process kmers

(a) 2688 CPU cores

Ti
m

e
(s

)

0

10

20

30

40

 H. sapien 54x

kmer counter exchange (incl. MPI call)
parse & process kmers

(b) 384 GPUs

Fig. 3: Runtime breakdown of CPU- and GPU-based k-mer
counters on 64 nodes for the H. sapien 54X dataset. Note that
due to k-mer counting GPU acceleration, the y-axis in (a) is
two orders of magnitude higher than (b). The k-mer exchange
time is roughly the same across (a) and (b).

intra-warp load balance.
After parsing k-mers, a thread finds the destination pro-

cessor of each k-mer using the hash function, as mentioned
in the previous paragraph. A global array, outgoing buffer,
with P partitions, as shown in fig. 2 stores the k-mers in their
corresponding destinations (outgoing processor). The numbers
of k-mers at the partitions can vary depending on the skewness
of the datasets. As all the GPU threads concurrently update
this buffer, the update operation is performed atomically.
In genomic or transcriptomic sequences, we encounter four
different bases A,C,G, T , which can be encoded into 2-bit
representations and compress the representation of the k-mers
[7]. For example, a p11-mer k-mer can fit into a 32 bit data
type instead of an 11 · 8 = 88 bit character array.

2) Exchange k-mers: In the next step, the k-mers are
communicated between processes via MPI Alltoall and
MPI Alltoallv routines. Depending on the underlying con-
nection of the system, we can deploy a GPUDirect com-
munication, where data can be directly transferred between
GPUs. Alternatively, a CPU based communication can be
used, where data are first copied to CPU, which handles the
communication, and finally, copied back to GPU. Our current
framework supports both methods.

3) Build k-mer counter: In the last stage of the pipeline,
we maintain a global k-mer counter where each unique k-
mer is stored along with its frequency. To count the received
k-mers, the same thread mapping strategy is used where
each thread processes one k-mer. k-mers find unique slots
in the k-mer counter table via the MurmurHash3 function.
If the table has already seen the k-mer, it increments its
frequency, otherwise, a new k-mer is inserted. Both operations
are handled atomically to avoid race conditions. Collisions are
addressed using similar concept as the open-addressing based
hash table. If a slot the k-mer is hashed to is already occupied
by another k-mer, it seeks for a free slot in a probe sequence
(linear, quadratic, etc). In this work, we use linear probing to
find the next empty slot.

C. GPU acceleration and communication bottleneck

Our GPU-acceleration of k-mer counting provides a signifi-
cant computational and performance improvement over CPU-

Fig. 4: Parsing a read for supermers with k-mer length 8 and
minimizer length 4. We are not cannonicalizing the k-mers and
minimizers. For simplicity, we use the lexicographical order
to choose the smallest minimizer.

based k-mer counting. Figures 3a and 3b show a breakdown
of runtime, on the H. sapien 54X dataset (Table I), of the
CPU baseline version alongside the GPU accelerated version
using 64 Summit nodes. The CPU baseline was gathered using
42 cores (IBM Power9) per node and the GPU accelerated
data use 6 GPUs (NVIDIA V100) per node. More details
on the Summit cluster can be found in section V-A. For this
important computation, our results show an impressive GPU
code acceleration of 100× compared to the CPU baseline, a
reduction in overall runtime from approximately 50 minutes
to just 30 seconds (excluding I/O).

Due to this speedup, the computational overhead of the
k-mer counter has effectively been minimized via our GPU
optimization. As highlighted in Figure 3b, the new bottle-
neck now becomes communication, primarily the many-to-
many exchange of k-mers implemented with MPI Alltoallv.
This communication cost can hinder the distributed memory
scalability of the GPU-accelerated k-mer counters. In the next
section, we address this challenge by leveraging a domain-
specific approach in data packing to reduce data exchange
overhead and facilitate scalability.

IV. OPTIMIZING COMMUNICATION

There are two main approaches that we use to reduce the
communication cost in our GPU-accelerated k-mer counter.
First, we use a minimizer-based scheme to partition and
transfer sequencing data to GPU nodes for k-mer counting.
Second, instead of sending individual k-mers across nodes for
counting we send sequences longer than k bases.

A. Supermers

A supermer is a contiguous sequence of bases wherein each
k-mer shares the same minimizer. During the read parsing
phase, instead of computing individual k-mers using a sliding
window of length k, we extend the window until we find a
k-mer with a different minimizer. These supermers are then
sent to their respective nodes to for k-mer counting.

The supermers are generally longer than k-mers and help in
reducing the data amount that is required to be communicated

4

across nodes. Figure 4 shows an example of how to compute
supermers from a given read. The read is of length 19 bases, k-
mer length 8, and minimizer length 4. We use lexicographical
ordering to choose the smallest minimizer in each k-mer.
In the traditional setting, parsing k-mers from the read and
sending k-mers to the respective GPU nodes for counting
would require (19−8+1) ·8 = 96 bases to be communicated.
However, our approach only requires three supermers of total
length 33 (average length 11 per supermer) bases, which
results in a total communication reduction of 2.9×.

To communicate, we partition the supermers based on the
minimizers and assign a single GPU node to each minimizer
for counting. The minimizer-based partitioning guarantees that
each k-mer, irrespective of the supermer it appears in, will
always be sent to the same node for counting. The minimizer-
based partitioning scheme has been previously applied in
k-mer counting tools to reduce the main memory require-
ments and speed up the counting process [5]. Gerbil k-mer
counter [8] also uses the supermer approach to partition the
data into temporary files such that all occurrences of a certain
k-mer are together. In this work, we extend the concept of
minimizers and supermers to efficiently distribute data across
multiple processors.

Choosing the minimizer based on the lexicographical or-
dering produces skewed or imbalanced partitions [4], [5]. In
the past, people have come up with custom orderings for
minimizers that are optimized for the underlying genomic
data. However, computing custom orderings during supermer
construction incurs extra computational overhead. An easier
way to break away from lexicographical ordering without
having to compute a custom ordering is to map nucleotide
bases A,C, T,G to 2-bit representations in a random order.
Specifically, we map A = 1, C = 0, T = 2, G = 3.
This random ordering of bases implicitly creates a custom
ordering for minimizers and tends to spread out supermers and
produce balanced partitions. This ordering have been explored
by Squeakr [24] in the past for k-mer counting.

B. Using window to build supermers on GPUs

In this section, we discuss the challenges of extending the
supermer concept to a massively parallel architecture like
GPUs. In an ideal scenario, a complete read can be mapped
to a thread, and the thread can sequentially parse the k-mers,
find the minimizers, and extend the supermer as long as it
shares a common minimizer with the previous k-mer. In the
k-mer-based k-mer counter, coalesced memory access and low
variance in workload distribution are achieved by processing
the k-mers independently in parallel. In the supermer-based
case, multiple threads need to communicate with each other
to check if they have a common minimizer and can contribute
to the same supermer. To avoid thread communication as well
as write conflict, we partition reads into smaller windows and
assign one thread to process all the k-mers in that window.
Therefore, a thread uses its private register to update the
supermer and writes out the final version in the global memory.
Figure 5 demonstrates an example with a window length

Fig. 5: Parsing k-mers (k=3) from reads, building superm-
ers, and mapping supermers to destinations processors using
supermer based k-mer counter on GPU

of three. Thread t1, at first, processes k-mer GTC, finds
its minimizer (e.g., TC), and starts constructing a supermer
starting from GTC. Then, it moves on the second k-mer
TCA, and follows the same process. As they share same
minimizer, e.g., TC, it extends the supermer to GTC − A.
Each thread processes all the k-mers from the same window.
This technique also helps to resolve the load imbalance issue
coming from variation in length of reads.

However, by partitioning the reads into windows, we limit
the length of the supermers. The maximum length of the
supermer can only be as long as the length of the window. In
this work, we select a window size depending on the length of
k-mer (user provided) and efficiency of packing supermers into
one or more machine words. An extra buffer is also maintained
to store the length of each supermer (i.e., the number of k-
mers packed inside).

After constructing the supermers, similar to k-mer based
framework from Section III, each thread finds the destination
processor based on the minimizer of the supermer and popu-
lates the outgoing buffer with supermers. Next, the supermer
array and the length of the supermers are communicated via
MPI AlltoAllv among processors. At the receiving end of the
processors, each supermer is parsed into its constituent k-mers
and the k-mers are counted accordingly.

Results show that the supermer-based version increases run-
time by an average of 27% due to the overhead of constructing
the supermers and 23% for counting the k-mers (compared to
the k-mer-only version). However, given that the GPU-based
k-mer counter is a communication-bound problem, the super-
mer approach achieves an overall performance improvement
as shown in Section V.

C. Supermer implementation

Algorithm 2 shows the pseudo code for computing superm-
ers given a read and minimizer and window sizes. Each read
is processed in chunks of window size w (Line 3). In our
implementation, the window length was set to 15 (for a k-mer
length of 17) in order to be able to encode each supermer in

5

Algorithm 2 Supermer–based distributed k-mer counting
1: procedure BUILDSUPERMER . Parse k-mers and build supermer
2: for r ∈ reads do
3: for i = 0 to LEN(r)− k + 1 step window do
4: kmer = EXTRACTKMER(r, i, k)
5: minimizer = MINIMIZER(kmer)
6: prev ← minimizer

7: P = HASH(minimizer, nProc) . Find processor
8: supermers[P].PUSHBACK(kmer)
9: slens[P].PUSHBACK(k)

10: INCREMENT(nSmer[P])

11: for w = 1 to window do
12: kmer = EXTRACTKMER(r, i+ w, k)
13: minimizer = MINIMIZER(kmer)

14: if minimizer 6= prev then
15: P = HASH(minimizer, nProc)
16: supermers[P].PUSHBACK(kmer)
17: slens[P].PUSHBACK(k)
18: INCREMENT(nSmer[P])
19: else
20: supermers[P][nSmer].ADDCHAR(kmer, k − 1)
21: INCREMENT(slen[P][nSmer[P]])

22: prev ← minimizer

23: procedure EXCHANGESUPERMER
24: recvdsupermers = ALLTOALLV(supermers, P)
25: recvdlens = ALLTOALLV(slens, P)

26: procedure COUNTKMER . Count local k-mers
27: kcounter ← INITIALIZE
28: for supermer ∈ recvdsupermers do
29: for slen ∈ recvdlens do
30: kmer = supermer.EXTRACTKMER(slen, k)
31: if kcounter.HAS(kmer) then
32: kcounter.INCREMENT(kmer)
33: else
34: kcounter.INSERT(kmer)

a single 64-bit machine word. For each window, k-mers are
appended to the same supermer sequence until a k-mer with
a different minimizer is found (Line 14). Each supermer is
assigned to a processor for counting based on the hash value of
the minimizer (Line 7 and 15). All the supermers, and thereby
all the k-mers that share the same minimizer, are always
assigned to the same processor for counting. These supermers
are stored in an array corresponding to each processor along
with the lengths of those supermers. During counting, k-mers
are first extracted from the supermers and then counting is
performed using a hash table.

D. Theoretical analysis

We now perform a theoretical analysis to determine the
communication volume in the GPU-accelerated k-mer counter.
We analyze both k-mer- and supermer-based approaches. We
will use the following notation in the communication volume
analysis:

m length of minimizer
k length of k-mer
w window to select supermers
s Average length of supermers
D Total input data size
P Number of parallel processors
L Average length of reads

We begin by assuming the input of size D is partitioned
roughly uniformly over P parallel processors. This is ensured
by the parallel I/O in the implementation. Let the average
length of reads in the input be L. So there are D/L input
reads in total, and L − k + 1 k-mers are computed from
each read on average. The total size of the k-mer multiset
is therefore K ≈ D

L (L − k + 1). With a uniform distribution
of the input, the computational cost of computing k-mers from
the reads in parallel is O(K/P) . Given a hash function
that maps k-mers to processor partitions uniformly at random,
each processor will communicate O(P−1

P × K
P) k-mers to

other processors. The per processor communication volume
is therefore, O(P−1

P × K
P × k).

In the supermer-based k-mer counter, nodes communicate
supermers instead of k-mers. If the average length of a
supermer is s (s > k) then total size of supermers across
all reads would be S ≈ D

L (L − s + 1). Therefore, the total
volume of communication would be O(P−1

P × S
P × s). Given

that the average length of supermers is dependent on the
characteristics of the input reads, it is hard to come up with
an exact communication bound using the variables involved
in computing supermers. However, if the average supermer
length is s and k-mer length is k, then the total reduction in
communication is ≈ (s− k)×. As explained in section IV-A,
where the k-mer length is 8 and average supermer length is
11 the total reduction is 2.90×.

V. RESULTS AND DISCUSSION

A. Experiment setup

We present performance results of our k-mer and supermer-
based k-mer counters with GPU acceleration. Source codes
are available for download2. As a performance baseline, we
employ a CPU-only k-mer counter that is the same as our
k-mer counter without the GPU acceleration and supermer
optimizations. This CPU-only version was derived from the
k-mer analysis component of diBELLA [7], utilizing only the
k-mer counting features.

We use a variety of genomic input datasets, also used in
previous work [6], [13] with k = 17, for our performance
evaluation. The corresponding names and file sizes are shown
in Table I.

Empirical results were collected on the IBM Power System
AC922, Summit, at Oak Ridge National Laboratory. Each
Summit node is a dual socket, with a 22-core IBM Power
9 CPU @3.07GHz, and 3 NVIDIA V100 GPUs per socket.

2https://github.com/PASSIONLab/DEDUKT

Short Name Species and Strain Fastq Size

E. coli 30X Escherichia coli MG1655 strain 792 MB
P. aeruginosa 30X Pseudomonas aeruginosa PAO1 360 MB
V. vulnificus 30X Vibrio vulnificus YJ016 297 MB
A. baumannii 30X Acinetobacter baumannii 249 MB
C. elegans 40X Caenorhabditis elegans Bristol mutant strain 8.90 GB
H. sapien 54X Homo sapiens 317 GB

TABLE I: Datasets used for performance evaluation.

6

(a) 96 GPUs (6 per node) over CPU baseline utilizing 672 cores
(42 per node)

(b) 384 GPUs (6 per node) over CPU baseline utilizing 2,688
cores (42 per node).

Fig. 6: Speedup in overall performance (excl. I/O) over the CPU baseline k-mer counter

Ti
m

e
(s

)

0.00

0.25

0.50

0.75

1.00

1.25

kmer supermer
(m=7)

supermer
(m=9)

kmer counter exchange (incl. MPI_alltoallv)
parse & process kmers

(a) C. elegans 40X

Ti
m

e
(s

)

0

10

20

30

40

kmer supermer
(m=7)

supermer
(m=9)

kmer counter exchange (incl. MPI_alltoallv)
parse & process kmers

(b) H. sapien 54X

Fig. 7: Runtime breakdown of GPU based k-mer counters on 64 nodes with 384 GPUs.

Each node has 512 GB of DDR4 memory accessible to
the CPUs. Each NVIDIA V100 GPU contains 80 streaming
multiprocessors (SMs), 16 GB of high-bandwidth memory
(HBM2), and a 6 MB L2 cache available to the SMs. On
each node, CPUs are connected to the GPUs, and GPUs to
GPUs, via NVIDIA’s high-speed NVLink, providing a peak
bandwidth of 25 GB/s per link. For the experiments with
GPUs, each MPI rank executes on a single core and offloads its
k-mer parsing, hashing, and counting to its GPU counterpart
on the same socket. Data is transferred back from the GPU
to its CPU core counterpart. The many-to-many k-mer and
supermer exchanges are performed by CPU cores only. We use
6 MPI ranks per node (1 per GPU) in total for the experiments
utilizing the GPUs. For the CPU baseline experiments, all 42
cores on node are utilized, with 1 MPI rank mapped to each
core.

Nodes are connected via a Mellanox dual-rail EDR 100G
Infiniband non-blocking fat-tree network, providing per node
injection bandwidth of 23 GB/s. More details on the Sum-
mit architecture can be found on the Oak Ridge Leader-
ship Computing Facility websites, https://www.olcf.ornl.gov
and https://docs.olcf.ornl.gov. The codes were compiled with

GCC-6.4 and IBM Spectrum MPI 10.3.1. NVCC 10.1 was
used for compiling the CUDA code.

B. Speedup in overall performance

The distributed k-mer counters discussed in this paper
primarily consist of three modules: (1) parsing k-mers (super-
mers), (2) copying data back and forth from CPU to GPU and
perform MPI Alltoall, and (3) populating the k-mer counter.
Figure 6a compares the performance of these three modules
excluding the I/O on 16 nodes of Summit cluster. The CPU
baseline uses 672 cores in total (42 cores each node), and the
speedups are shown on 96 GPUs (6 GPUs each) using k-mer-
based and supermer-based k-mer counters. We observe 11×
and 13× speedup on average using k-mer based, supermer
based (m = 7 and m = 9) k-mer counter, respectively.
Figure 6b compares the larger dataset of H. sapien 54X and
C. elegans 40X on 64 nodes with 2688 CPU cores and 384
GPUs. For the H. sapien 54X dataset, our supermer based
solution achieves up to 150× speedup compare to the CPU
based counterpart.

7

(a) 16 nodes with 6 MPI ranks per node (96 GPUs). (b) 64 nodes with 6 MPI ranks per node (384 GPUs).

Fig. 8: Speedup of MPI Alltoallv routine using supermers compared to k-mers
.

C. Comparison between GPU based k-mer counters

Figure 7b and 7a show the performance breakdown of the
three main modules of the k-mer counter on H. sapien 54X
and C. elegans 40X dataset, respectively. The figures compare
runtime performance using k-mer-based and supermer-based
k-mer counting on 64 nodes (384 GPUs). For both datasets of
the supermer version, we observe a fair increase in the parse
and process k-mer module (33% in H. sapien 54X) as building
supermer requires extra steps including finding minimizers. A
similar pattern is also observed in the k-mer counting phase
where an extra parsing phase is required to extract k-mers from
the received supermers, resulting in a 27% runtime increase
for the human dataset. However, these costs are offset by the
33% speedup of the supermer-based data exchange module.
Since this expensive phase accounts for up to 80% of the total
time, results show an overall decrease in the run time using our
approach. Detailed analysis of the communication reduction is
discussed in the subsequent subsection.

k-mer supermer
(m=9)

supermer
(m=7)

E. coli 30X 412M 126M 108M
P. aeruginosa 30X 187M 56M 48M
V. vulnificus 30X 154M 47M 41M
A. baumannii 30X 129M 40M 34M
C. elegans 40X 4.7B 1.5B 1.3B
H. sapien 54X 167B 59B 50B

TABLE II: Total number of k-mers and supermers exchanged
in the k-mer- and super-based counters

D. Reduction in communication volume and time

By using supermer-based k-mer counter, we can effectively
reduce the communication volume. Table II presents the num-
ber of supermers using minimizer length of 9 and 7, as well as
the number of k-mers from different datasets. Using a smaller
minimizer length creates an opportunity to have longer but
fewer supermers. Though this directly reduces the communi-
cation volume, it often increases work load imbalance. Note

that this approach requires an extra byte of communication to
identify the length of each supermer.

Results show a significant communication reduction of 4×
using a window length of 15 via the supermer approach. Fig-
ure 8a demonstrates the speedup from MPI Alltoallv routine
by using supermers with minimizer length of 9 and 7, com-
pared to k-mers on 16 nodes with 96 GPUs on comparatively
smaller datasets. Figure 8b presents the improvement over
larger datasets on 64 nodes with 384 GPUs, highlighting up
to a 3× communication speedup for H. sapien 54X dataset.
Note that the variance in the speedup is caused by the load
imbalance of the k-mer distribution of the dataset.

E. Scalability on GPUs

 Nodes (6 GPUs per node)

k-
m

er
s

(B
ill

io
n)

 /
se

c

0

25

50

75

100

4 16 32 64 128

E. coli 30x

P. aeruginosa 30x

V. vulnificus 30x

A. baumannii 30x

C. elegans 40X

H. sapien 54x

Fig. 9: Scalability of k-mer insertion rate (in Billions) using
the computation kernels on GPUs (excl. exchange module)
from 4 to 128 nodes. Both C. elegans 40X and H. sapien 54X
achieve 2.3× speedup on 128 nodes compared to 64 nodes.

Figure 9 presents the scalability of the GPU computation
kernels ranging from 4 nodes (24 GPUs) to 128 nodes (768
GPUs). The smaller datasets (less than 1GB) use up to 32
nodes, and the larger sequences utilize up to 128 nodes. We
observe linear speedup in almost all the datasets. For example,
C. elegans 40X achieves 4×, 8×, 16×, 37× speedup on 16,

8

Average.
#k-mers

kmer supermer (m=7) Load
Imbalancemin max min max

C. elegans 40X 12M 12M 14M 3M 50M 1.16
H. sapien 54X 255M 253M 283M 41M 606M 2.37

TABLE III: Imbalance in the number of k-mers assigned to
each partition (384 GPUs) using k-mer- and supermer-based
counters. We computed the load imbalance as the ratio of the
maximum load over the average load, where the load is defined
as the number of k-mers.

32, 64 and 128 nodes, respectively. Both C. elegans 40X and
H. sapien 54X datasets scale by 2.3× on 128 nodes from
64 nodes. However, a degradation in performance or non-
linear speedup (V. vulnificus 30X scales 5× faster compare
on 32 nodes to baseline 4 nodes, where C. elegans 40X
scales 8× faster), are often caused by inherent skewness of
the datasets which results in imbalanced partitions and higher
k-mer counting overhead due skewed to k-mer profile.

Table III presents the minimum and maximum number
of k-mers instances counted at each node. In the k-mer-
based approach, the load imbalance in the number of k-
mer counts across nodes in low (1.13) which is due to an
even partitioning of data. However, using the supermer-based
approach increases the load imbalance to 2.37. This is caused
because of the skewness introduced in the partitioning due the
use of minimizer-based partitioning. This will result in under
utilization of nodes that receive a smaller portion of k-mers
to count.

VI. RELATED WORK

There are a plethora of approaches and implementations for
counting k-mers on single-node shared-memory systems (see
recent survey by Manekar and Sathe, 2018 [17]). Gerbil [8]
and KMC3 [14] stand out as state-of-the-art tools that also
employ GPUs and supermers, respectively, for k-mer counting.
Further, they can accommodate datasets exceeding single node
shared memory resources. In order to do so, however, each
relies on file system resources, and incurs the egregious
overheads thereof. Distributed memory k-mer counters, by
contrast, support ever growing bioinformatics workloads by
splitting data and computation across multiple compute nodes.
Necessary communication is performed over network intercon-
nects, designed for scalable parallel communication, unlike file
systems.

Most k-mer counting solutions, for both shared and dis-
tributed memory, focus on counting k-mers from “second
generation” sequences, and in particular, optimize for (and
are limited to) their short lengths (typically 100-250 bps).
“Third generation” sequence lengths by contrast are typically
1,000-100,000 bps, and can vary widely within the same input
dataset. Our distributed memory k-mer counter is built using
the histogram functionality of diBELLA’s [7] k-mer analysis
component, which supports both second and third generation
sequence lengths.

Other noteworthy distributed memory k-mer counting tools
include HipMer’s k-mer analysis module [12] [11], Bloom-

fish [9], and Kmerind [21] [22]. HipMer’s distributed memory
k-mer analysis innovations, for second generation sequences,
are incorporated and extended in diBELLA’s k-mer analysis
for third generation sequences. Both of these and this work are
bulk-synchronous MPI. This work, however, focuses just on
the k-mer counting aspect of the analyses, as do Bloomfish
and Kmerind. Bloomfish is an alternative MapReduce-style
distributed memory parallelization of the single-node k-mer
counter, Jellyfish [19]. Kmerind is a hybrid MPI-OpenMP
library that provides a number of optimized k-mer indexing
capabilities for second generation sequences. None of these
distributed memory tools employ supermers or GPU acceler-
ation.

To the best of our knowledge, ours is the first work to
accelerate k-mer counting with GPUs or to employ supermers
in a distributed memory setting. Our analysis in Section V
studies the scalability impacts thereof, particularly the affects
on computation to communication ratios, in contrast to a CPU-
only k-mer counter derived from diBELLA’s k-mer analysis
implementation.

VII. CONCLUSIONS

We presented a massively parallel algorithm for k-mer
counting, a kind of string histogramming which is funda-
mental to many bioinformatic analyses. Our work combines
distributed memory parallelization, GPU parallelism within a
node, and a novel technique to improve spatial locality and re-
duce communication by hashing k-mers based on their context
and communicating longer substrings called supermers. We
believe this is the first use of either GPUs or supermers in the
context of distributed memory parallelization for this problem.
Our GPU optimizations successfully reduce overall run time
by two orders of magnitude on the human genome data set,
the largest example we use here. In general, the benefits of
GPUs are strongest as the data sets grow, suggesting they will
be increasingly important in future data sets involving several
related species, microbial communities, or across a database
of proteins or genomes.

Our GPU optimizations effectively turn a compute-bound
problem into one dominated by communication. In particu-
lar, many-to-many k-mer exchange for redistributing k-mers
tends to be the secondary bottleneck at small scales and the
primary bottleneck at large scale of distributed memory k-
mer counters [7], [10], [22], [33]. Our novel use of supermers
in distributed memory parallelization is combined with GPU
optimizations, improving communication costs by reducing
communication volume. Prior approaches compute each k-
mer before redistributing k-mers across processors, increasing
the working data set size by an order of magnitude before
communication. In contrast, we communicate larger supermer
strings from which individual k-mers can be computed at
the destination. We show a significant improvement of 1.5×
using supermers on top of our GPU optimizations, resulting
in overall speedups of up to 150×.

Implemented as a general purpose k-mer counter, our tool
can be used for counting k-mers in single genome, a microbial

9

community (metagenome), comparisons to massive genome or
protein databases, and the growing set of application problems
and datasets involving sequence data.

In future work, we plan to investigate the issue of the high
load imbalance introduced due to the use of supermers. We
plan to devise a better partitioning algorithm that maintains
the locality and at the same time partitions data evenly.

ACKNOWLEDGMENTS

This work is supported by the Advanced Scientific Comput-
ing Research (ASCR) program within the Office of Science
of the DOE under contract number DE-AC02-05CH11231.
We used resources of the NERSC supported by the Office of
Science of the DOE under Contract No. DEAC02-05CH11231.
This research was also supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

REFERENCES

[1] F. Almodaresi, J. Khan, S. Madaminov, P. Pandey, M. Ferdman, R. John-
son, and R. Patro, “An incrementally updatable and scalable system for
large-scale sequence search using lsm trees,” bioRxiv, 2021.

[2] F. Almodaresi, P. Pandey, M. Ferdman, R. Johnson, and R. Patro,
“An efficient, scalable, and exact representation of high-dimensional
color information enabled using de bruijn graph search,” Journal of
Computational Biology, vol. 27, no. 4, pp. 485–499, 2020.

[3] G. Benoit, P. Peterlongo, M. Mariadassou, E. Drezen, S. Schbath,
D. Lavenier, and C. Lemaitre, “Multiple comparative metagenomics
using multiset k-mer counting,” PeerJ Computer Science, vol. 2, p. e94,
2016.

[4] R. Chikhi, A. Limasset, and P. Medvedev, “Compacting de bruijn graphs
from sequencing data quickly and in low memory,” Bioinformatics,
vol. 32, no. 12, pp. i201–i208, 2016.

[5] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “Kmc
2: fast and resource-frugal k-mer counting,” Bioinformatics, vol. 31,
no. 10, pp. 1569–1576, 2015.

[6] M. Ellis, “Parallelizing irregular applications for distributed memory
scalability: Case studies from genomics,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, 2020.

[7] M. Ellis, G. Guidi, A. Buluç, L. Oliker, and K. Yelick, “diBELLA:
Distributed long read to long read alignment,” in Proceedings of the
48th International Conference on Parallel Processing, 2019, pp. 1–11.

[8] M. Erbert, S. Rechner, and M. Müller-Hannemann, “Gerbil: a fast
and memory-efficient k-mer counter with GPU-support,” Algorithms for
Molecular Biology, vol. 12, no. 1, p. 9, 2017.

[9] T. Gao, Y. Guo, Y. Wei, B. Wang, Y. Lu, P. Cicotti, P. Balaji, and
M. Taufer, “Bloomfish: a highly scalable distributed k-mer counting
framework,” in 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 2017, pp. 170–179.

[10] E. Georganas, “Scalable parallel algorithms for genome analysis,” Ph.D.
dissertation, EECS Department, University of California, Berkeley,
2016.

[11] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan,
L. Oliker, D. Rokhsar, and K. Yelick, “HipMer: an extreme-scale de
novo genome assembler,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2015, pp. 1–11.

[12] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “Parallel de bruijn graph construction and traversal for de
novo genome assembly,” in SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2014, pp. 437–448.

[13] G. Guidi, M. Ellis, D. Rokhsar, K. Yelick, and A. Buluç, “Bella: Berke-
ley efficient long-read to long-read aligner and overlapper,” bioRxiv, p.
464420, 2020.

[14] M. Kokot, M. Długosz, and S. Deorowicz, “Kmc 3: counting and
manipulating k-mer statistics,” Bioinformatics, vol. 33, no. 17, pp. 2759–
2761, 2017.

[15] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam, “MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de bruijn graph,” Bioinformatics, vol. 31, no. 10,
pp. 1674–1676, 2015.

[16] Y. Li et al., “Mspkmercounter: a fast and memory efficient approach for
k-mer counting,” arXiv preprint arXiv:1505.06550, 2015.

[17] S. C. Manekar and S. R. Sathe, “A benchmark study of k-mer counting
methods for high-throughput sequencing,” GigaScience, vol. 7, no. 12,
p. giy125, 2018.

[18] G. Marçais, D. DeBlasio, P. Pandey, and C. Kingsford, “Locality-
sensitive hashing for the edit distance,” Bioinformatics, vol. 35, no. 14,
pp. i127–i135, 2019.

[19] G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers,” Bioinformatics, vol. 27,
no. 6, pp. 764–770, 2011.

[20] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in DNA
sequences using a Bloom filter,” BMC bioinformatics, vol. 12, no. 1, p.
333, 2011.

[21] T. Pan, P. Flick, C. Jain, Y. Liu, and S. Aluru, “Kmerind: A flexible
parallel library for k-mer indexing of biological sequences on distributed
memory systems,” IEEE/ACM transactions on computational biology
and bioinformatics, 2017.

[22] T. C. Pan, S. Misra, and S. Aluru, “Optimizing high performance dis-
tributed memory parallel hash tables for dna k-mer counting,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 135–147.

[23] P. Pandey, F. Almodaresi, M. A. Bender, M. Ferdman, R. Johnson, and
R. Patro, “Mantis: A fast, small, and exact large-scale sequence-search
index,” Cell systems, vol. 7, no. 2, pp. 201–207, 2018.

[24] P. Pandey, M. A. Bender, R. Johnson, and Patro, “Squeakr: an exact and
approximate k-mer counting system,” Bioinformatics, vol. 34, no. 4, pp.
568–575, 2018.

[25] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “debgr: an effi-
cient and near-exact representation of the weighted de bruijn graph,”
Bioinformatics, vol. 33, no. 14, pp. i133–i141, 2017.

[26] R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford,
“Salmon provides fast and bias-aware quantification of transcript ex-
pression,” Nature methods, vol. 14, no. 4, pp. 417–419, 2017.

[27] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke,
“Reducing storage requirements for biological sequence comparison,”
Bioinformatics, vol. 20, no. 18, pp. 3363–3369, 2004.

[28] M. Roberts, B. R. Hunt, J. A. Yorke, R. A. Bolanos, and A. L. Delcher,
“A preprocessor for shotgun assembly of large genomes,” Journal of
computational biology, vol. 11, no. 4, pp. 734–752, 2004.

[29] B. Solomon and Kingsford, “Improved search of large transcriptomic
sequencing databases using split sequence bloom trees,” in International
Conference on Research in Computational Molecular Biology. Springer,
2017, pp. 257–271.

[30] B. Solomon and C. Kingsford, “Fast search of thousands of short-read
sequencing experiments,” Nature Biotechnology, vol. 34, no. 3, p. 300,
2016.

[31] C. Sun, R. S. Harris, R. Chikhi, and P. Medvedev, “Allsome sequence
bloom trees,” Journal of Computational Biology, vol. 25, no. 5, pp.
467–479, 2018.

[32] D. E. Wood and S. L. Salzberg, “Kraken: ultrafast metagenomic se-
quence classification using exact alignments,” Genome biology, vol. 15,
no. 3, pp. 1–12, 2014.

[33] K. Yelick, A. Buluç, M. Awan, A. Azad, B. Brock, R. Egan,
S. Ekanayake, M. Ellis, E. Georganas, G. Guidi et al., “The parallelism
motifs of genomic data analysis,” Philosophical Transactions of the
Royal Society A, vol. 378, no. 2166, p. 20190394, 2020.

10

	Introduction
	Background
	k-mer counting
	Minimizers

	Distributed-Memory k-mer counter on GPUs
	k-mer counter on CPU georganas2014debruijn
	k-mer counter on GPU
	Parse & process k-mers
	Exchange k-mers
	Build k-mer counter

	GPU acceleration and communication bottleneck

	Optimizing communication
	Supermers
	Using window to build supermers on GPUs
	Supermer implementation
	Theoretical analysis

	Results and Discussion
	Experiment setup
	Speedup in overall performance
	Comparison between GPU based k-mer counters
	Reduction in communication volume and time
	Scalability on GPUs

	Related Work
	Conclusions
	References

