Lawrence Berkeley National Laboratory

Recent Work

Title

Automated High-Throughput Fosmid Isolation and End-Sequencing Using Agencourt's SprintPrep and Reduced Terminator Cycling Sequencing Reaction Kit

Permalink https://escholarship.org/uc/item/60b1j3gm

Author

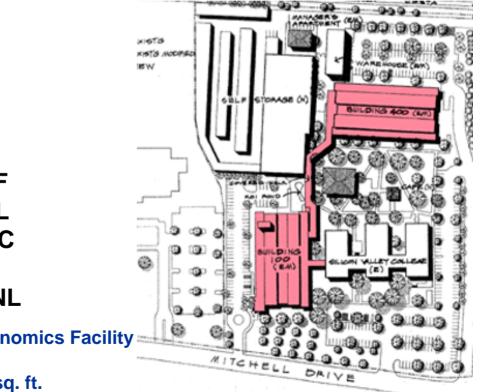
Chen, Feng

Publication Date 2005-01-17

Automated High-Throughput Fosmid Isolation and End-Sequencing Using Agencourt's SprintPrep and Reduced Terminator Cycling Sequencing Reaction Kit

Feng Chen Technology Development

LBNL-57658

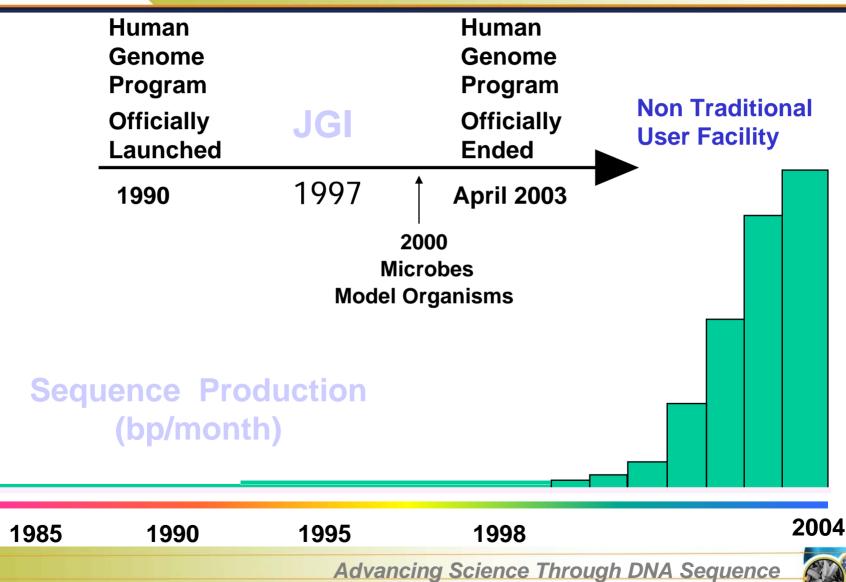


US DOE Joint Genome Institute

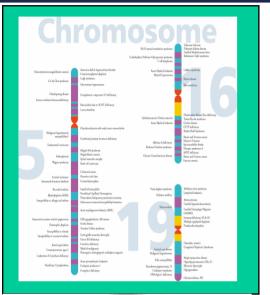
Formed in 1997 as a MOU between DOE Labs LLNL, LBNL and LANL.

www.jgi.doe.gov

165 FTEs PGF 30 FTEs LANL 50 FTEs SHGC 5 FTEs LLNL 2-3 FTEs ORNL


~250 FTEs

PGF-Production Genomics Facility Walnut Creek, CA 2 buildings-60,000 sq. ft.


10⁹

JGI History and Future

Completion of Three Human Chromosomes at JGI

articles

The sequence and analysis of duplication-rich human chromosome 16

Joel Martin¹, Cliff Han², Laurie A. Gordon¹, Astrid Terry¹, Shyam Prabhakar⁴, Xinwei She⁵, Gary Xie^{1,2}, Uffe Hellsten¹, Yee Man Chan⁶, Michael Althern^{1,2}, Olivier Couronne⁴, Andrea Aerts¹, Eva Bajorek⁶, Stacev Black⁶, Heather Blumer², Elbert Branscomb^{1,3}, Nancy C, Brown², William J. Bruno², Judith M. Buckingham², David F. Callen², Connie S. Campbell², Mary L. Campbell², Evelyn W. Campbell², Chenier Caoile⁶, Jean F. Challacombe², Leslie A. Chasteen², Olga Chertkov², Han G. Chi², Mari Christensen³, Lynn M. Clark², Judith D. Cohn², Mirian Denys⁶, John C. Detter¹, Mark Dickson⁶, Mira Dimitrijevic-Bussod², Julio Escobar⁶, Joseph J. Fawcett², Dave Flowers⁶, Dea Fotopulos⁶, Tilana Glavina¹, Maria Gomez⁶, Eidelyn Gonzales⁶, David Goodstein¹, Lynne A, Goodwin², Deborah L, Grady², Igor Grigoriev¹, Matthew Groza³, Nancy Hammon¹, Trevor Hawkins¹, Lauren Haydu⁶, Carl E, Hildebrand², Wayne Huang¹, Saniay Israni¹, Jamie Jett¹, Phillip B, Jewett², Kristen Kadner¹, Heather Kimball¹, Arthur Kobavashi¹³, Marie-Claude Krawczyk², Tina Levba², Jonathan L. Longmire², Frederick Lopez⁶, Yunian Lou¹, Steve Lowry¹, Thom Ludeman², Chitra F. Manohar³, Graham A. Mark², Kimberly L. McMurray², Linda J. Meincke², Jenna Morgan¹, Robert K. Movzis², Mark O. Mundt², A. Christine Munk², Richard D. Nandkeshwar³, Sam Pitluck¹, Martin Pollard¹, Paul Predki¹, Beverly Parson-Quintana², Lucia Ramirez⁶, Sam Rash¹, James Retterer⁶, Darryl O. Ricke², Donna L. Robinson², Alex Rodriguez⁶, Asaf Salamov¹, Elizabeth H. Saunders², Duncan Scott¹, Timothy Shough², Raymond L. Stallings², Malinda Stalvey², Robert D. Sutherland², Roxanne Tapla², Judith G. Tesmer², Nina Thayer^{1,2}, Linda S. Thompson², Hope Tice¹, David C. Torney², Mary Tran-Gyamfi¹, Ming Tsal⁵, Levy E. Ulanovsky², Anna Ustaszewska¹, Nu Vo⁶, P. Scott White², Albert L. Williams², Patricia L. Wills², Jung-Rung Wu², Kevin Wu⁶, Joan Yang⁶, Pieter DeJong⁷, David Bruce², Norman A. Doggett², Larry Deaven², Jeremy Schmutz⁶, Jane Grimwood⁶, Paul Richardson¹, Daniel S. Rokhsar¹, Evan E. Eichler⁵, Paul Gilna², Susan M. Lucas¹, Richard M. Myers⁶, Edward M. Rubin^{1,4} & Len A. Pennacchio^{1,4}

¹DOE Joint Genome Institute, 2800 Mischell Avenue, Walnut Creek, California 94598, USA
²Los Alamos National Laboratory, Los Alamos, New Mecico 87545, USA
³Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
⁴Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
⁵Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
⁶Stanford Human Genome Center, Department of Genetics, Stanford University School of Medicine, 975 California Avenue, Palo Alto, California 94304, USA
⁷Children's Hospital Oakland, Oakland, California 94609, USA

Nature 432, 988 - 994 (23 December 2004)

Users:

- DOE Microbial Program
- Other Governmental Agencies
- Community Sequencing Program (CSP)
- Will provide the scientific community access to high throughput sequencing at the JGI
- A wide range of projects will be accepted. Ultimately, the most important factor in determining acceptance is a project's scientific merit
- The deliverables can range from raw sequence traces to well-annotated assembled genomes

Fosmid end-sequencing is critical in whole genome shotgun sequencing

- Building assembly scaffold
- Filling gaps and bridging contigs in finishing process

Obstacles for fosmid end-sequencing

- Cost of sequencing
- Low copy number and low DNA yields
- Labor intensive and difficult-to-automate isolation procedure

□ Shotgun small-insert sequencing

- 3 kb and 8 kb libraries
- 10x coverage draft

Given State State

- ~ 0.5x sequencing coverage
- Assembling
- Prefinishing
- Finishing
- Annotation

WGS Sequencing Strategies Flow Chart

PHASE I PHASE II 2.5X Draft Production 10 Plate QC Sequencing Assembly PHASE III 10X Draft Assembly PHASE IV PHASE V High Throughput Finishina Prefinishing Automated Automated Repeat Repeat Resolution Resolution Chemistries Autofinish for gap closure Manual Repeat Resolution Order and Orientation Final finish Final prefinish assembly assembly JGI FTP and Annotation by Web ORNL Publishing

PHASE I - 10 Plate QC 10 plates are sequenced and QC performed to look for contamination.

PHASE II - 2.5 Draft Assembly Draft sequence is performed to 2.5X coverage. QC is performed to look for contamination.

PHASE III - 10X Draft Assembly Draft sequence is performed to 10X coverage. Final draft assembly is done and flagged for Finishing.

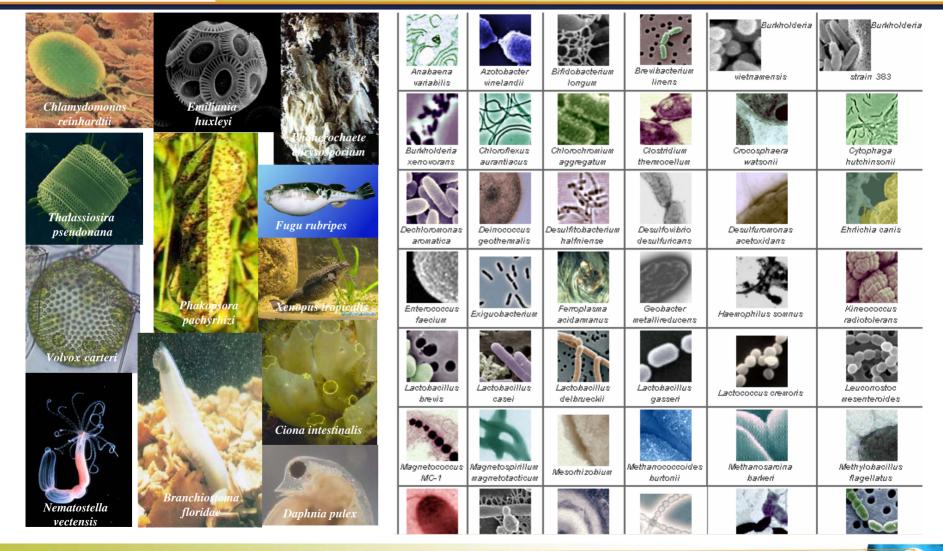
PHASE IV - High Througput Prefinishing

Semi-automated Prefinishing is accomplished by resolving misassemblies and closing gaps <3kb through Autofinish. Once done, the assembly is order and oriented and the results are sent to ORNL for annotation and posted on the JGI FTP site for public access.

PHASE V - Finishing

Assembled contigs from Phase IV are analyzed for gaps and misassemblies. Automated repeat resolution, manual repeat resolution and primer walking are performed in an iterative process to resolve misassembled regions and close remaining gaps. The final assembly is order and oriented and the results are sent to ORNL for annotation and posted on the JGI FTP site for public access.

Fosmid end sequencing critical for finishing


- Chlamydomonas reinhardtii (green alga)
- Emiliania huxleyi (marine coccolith)
- Phanerochaete chrysosporium (white rod fungus)
- Daphnia pulex (water flea)
- Branchiostoma Floridae (Florida lancelet)
- Thalassiosira pseudonana (diatom)
- □ AOM (anaerobic oxidation of methane) microbial community
- Many other microbial genomes

Diversity of species Some of these species are G/C rich

How many do you recognize?

Filtration based, high yields but labor intensive and time consuming

- Qiagen's REAL prep
- Millipore's Montage BAC₉₆
- Other kits

SPRI magnetic bead based, lower yields but easy to automate and quick

- Agencourt's CosMCPrep
- Agencourt's SprintPrep
- Other SPRI kits

Fosmid DNA Isolation Procedure Using SprintPrep

Cell culture growth

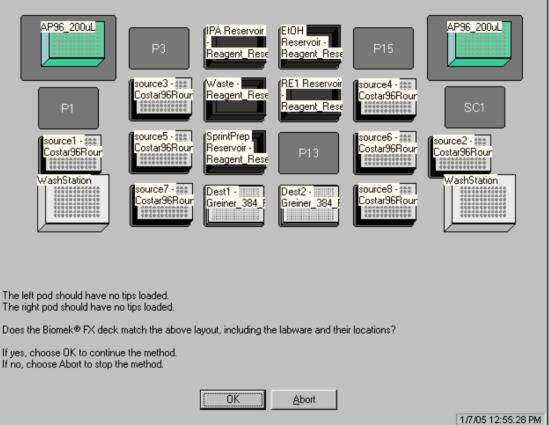
2-YT in 96-well plate 20 hours 37°C, 85% humidity and 600 rpm

One-step lysis and DNA binding

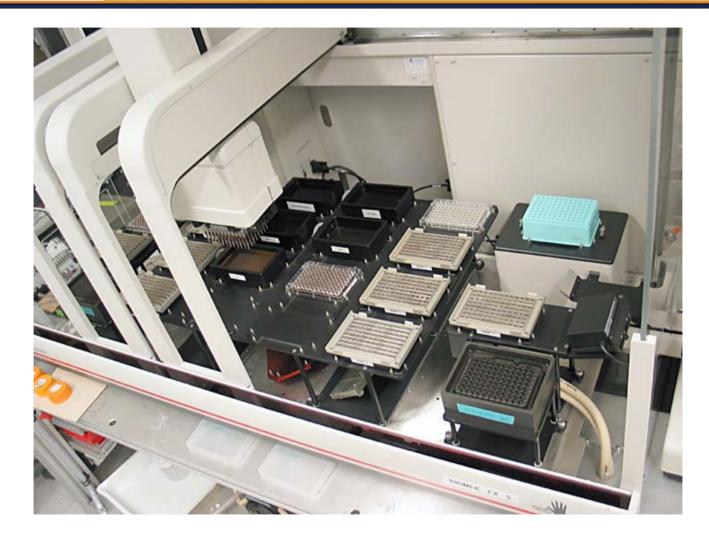
Add SprintPrep solution Add isopropanol Mix 36 times and incubate for 3 min Incubate on magnet for 5 min Wash with 70% ethanol for 6 times Blowing dry at 37°C for 9 min

Elution

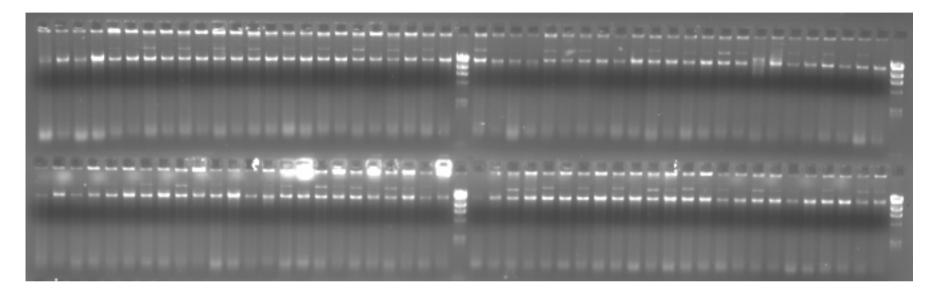
RE1 with 0.0625% of Triton X-100



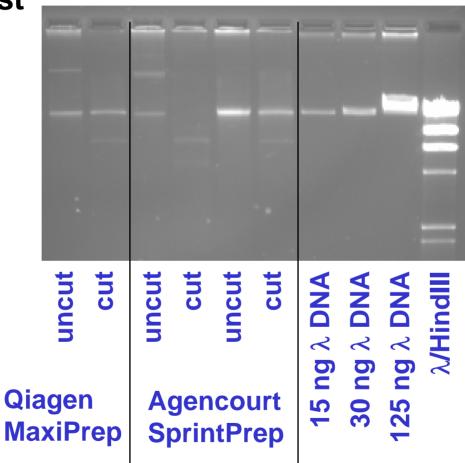
Automation on Biomek FX


Biomek® FX

Automation on Biomek FX


Automation on Biomek FX

Prep Optimization


Alternating lanes show DNA from different prep conditions

- Culture volume and condition
- Amount of SprintPrep
- Wash times
- Length of drying

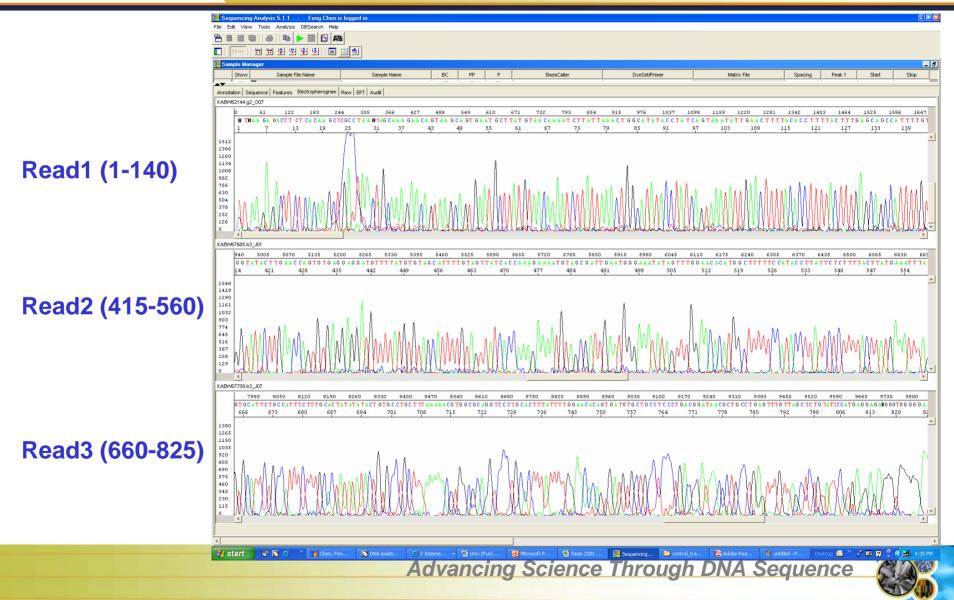
Notl digest

Production Results

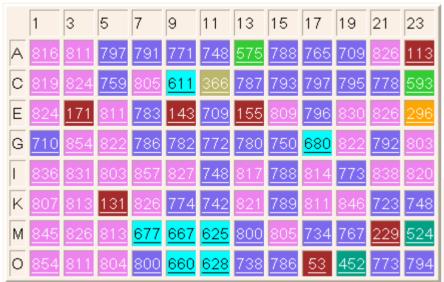
QC Agarose gel from 11-29-04 production

Throughput: 8 96-well plates in 1.5 hours

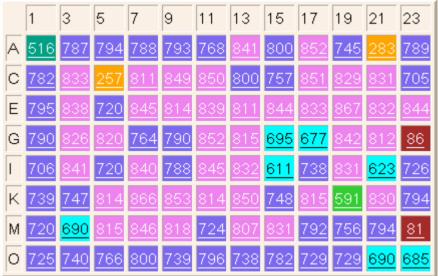
□ 1/10 or 1/16 BigDye terminator reaction


with or without DMSO

- □ 16% of fosmid DNA from SprintPrep product
- 6 ul total reaction volume
- **99** thermocycles
- **Standard magnetic beads clean-up**
- □ ABI 3730xl detection with modified run condition



Sequencing Results: Trace View



Sequencing Results: Plate View

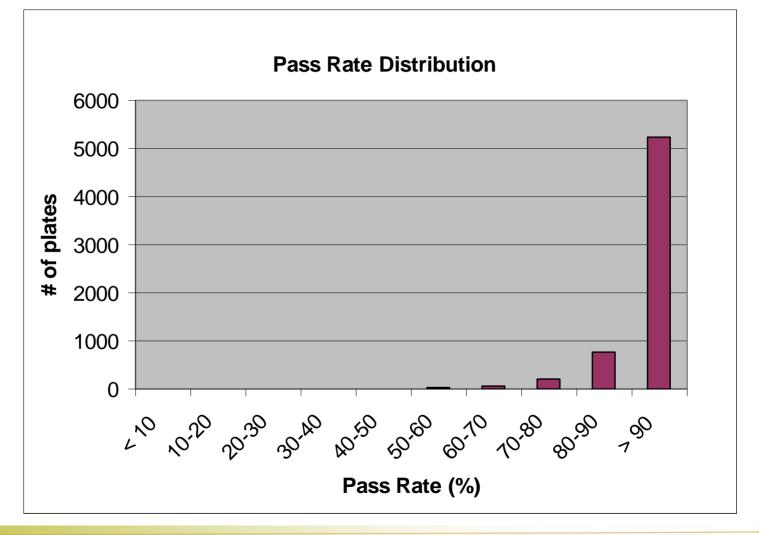
ASXY0009A

APWS1181A

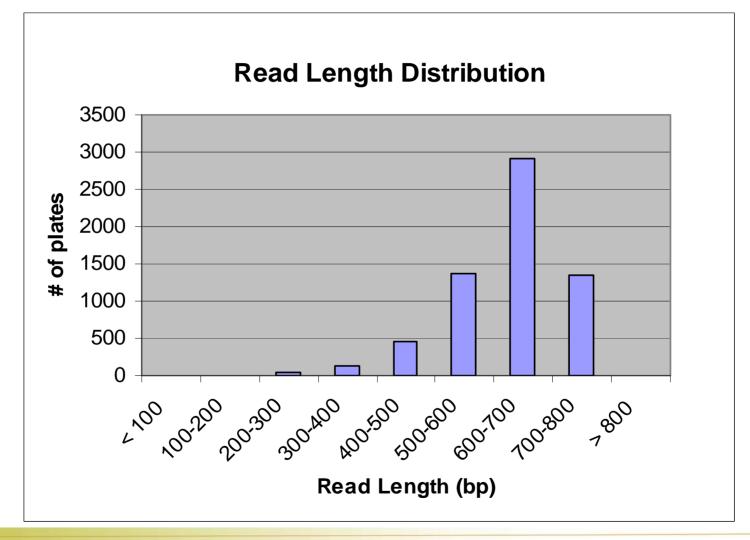
0-1 2-250 251-350 351-450 451-525 526-600 601-700 701-800 >800

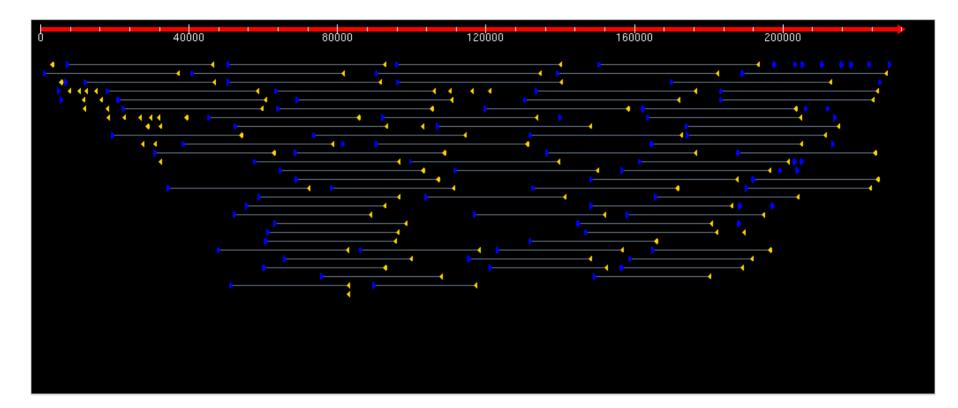
Summary of Sequencing Results (from last 45 days of 2004 production)

Pass Rate (> 50 bp): "Good" Rate (> 450 bp):

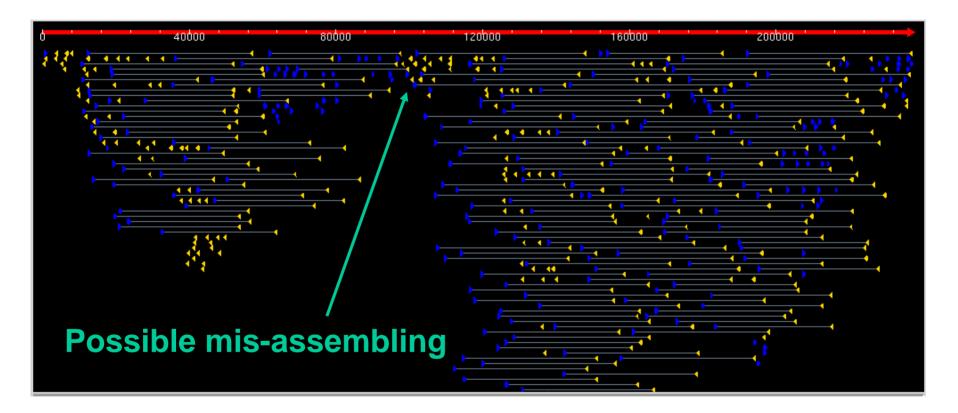

93.4% 75.4%

Average Read length (all lanes): Paired ends (>50 bp): 626 bp (Q20) 90%


Result Summary


Result Summary

Assembly View with Fosmid Reads Aligned to Contig



Syntrophobacter fumaroxidans

Assembly View with Fosmid Reads Aligned to Contig

Syntrophomonas wolfei

DOE JOINT GENOME INSTITUTE US DEPARTMENT OF ENERGY OFFICE FOR SCIENCE

□ More automation

Utilizing stackers and relaxing time constraint

□ Higher throughput

From 80 96-well plates to 120

□ 384-well format

Reducing culture volume Reducing wash volume Automation

DOE JOINT GENOME INSTITUTE US DEPARTMENT OF ENERGY OFFICE OF SCIENCE

Genomic Technologies

Joe Alessi, Dou-Shuan Yang, Jamie Jett, and Paul Richardson

□ Library Construction

Chris Detter

□ Sequencing Production

Tijana Glavina, Marty Pollard, and Susan Lucas

Microbe Program

Alla Lapidus

This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76SF00098 and Los Alamos National Laboratory under Contract No. W-7405-ENG-36. LBNL-57658

For comments, suggestions and protocol request:

Feng Chen, Ph.D. Group Leader Technology Development US DOE Joint Genome Institute 925 296 5733 fchen@lbl.gov