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Methodology and Mathematical Modeling

Computer Modeling of Obesity Links
Theoretical Energetic Measures with
Experimental Measures of Fuel Use for
Lean and Obese Men1

Heidi A. Rossow2* and C. Chris Calvert3

2Population Health and Reproduction, School of Veterinary Medicine, and 3Department of Animal Science, University of California at

Davis, Davis, CA

Abstract

The goal of this research was to use a computational model of human metabolism to predict energy metabolism for lean

and obese men. The model is composed of 6 state variables representing amino acids, muscle protein, visceral protein,

glucose, triglycerides, and fatty acids (FAs). Differential equations represent carbohydrate, amino acid, and FA uptake and

output by tissues based on ATP creation and use for both lean and obese men. Model parameterization is based on data

from previous studies. Results from sensitivity analyses indicate that model predictions of resting energy expenditure

(REE) and respiratory quotient (RQ) are dependent on FA and glucose oxidation rates with the highest sensitivity

coefficients (0.6, 0.8 and 0.43, 0.15, respectively, for lean and obese models). Metabolizable energy (ME) is influenced by

ingested energy intake with a sensitivity coefficient of 0.98, and a phosphate-to-oxygen ratio by FA oxidation rate and

amino acid oxidation rate (0.32, 0.24 and 0.55, 0.65 for lean and obese models, respectively). Simulations of previously

published studies showed that the model is able to predict ME ranging from 6.6 to 9.3 with 0% differences between

published and model values, and RQ ranging from 0.79 to 0.86 with 1% differences between published and model values.

REEs >7 MJ/d are predicted with 6% differences between published and model values. Glucose oxidation increases by

;0.59 mol/d, RQ increases by 0.03, REE increases by 2 MJ/d, and heat production increases by 1.8 MJ/d in the obese

model compared with lean model simulations. Increased FA oxidation results in higher changes in RQ and lower relative

changes in REE. These results suggest that because fat mass is directly related to REE and rate of FA oxidation, body fat

content could be used as a predictor of RQ. J. Nutr. 144: 1650–1657, 2014.

Introduction

Using a systems approach to understand mechanisms involved in
obesity allows researchers to focus on the most quantitatively
important information and predict individual responses to
changes in physiologic states. Obesity is not only associated
with changes in diet and body composition but also changes in
fuel use, resting energy expenditure (REE),4 heat production,
organ size, etc. (1). The systems approach, which allows for
interactions between subsystems and their environment input
and output, is ideal for examining obesity because diet, energy
expenditure, energy production, fuel use, and underlying met-
abolic processes such as protein synthesis and fat metabolism
can be represented mathematically to identify differences in
intake, metabolism, and excretion in lean and obese men.
Sensitivity analyses can then be used to quantify the relative
importance of these factors and processes (intake, fuel use) to
metabolic changes associated with obesity. Understanding

changes that occur with obesity is important to understand
why individuals are metabolically different. For instance, the
Harris-Benedict equations are used to predict REE based on
parameters such as body weight (BW), age, and sex. But the best
a regression line can do is predict the mean REE. Many points or
REEs for individuals will not fall on the line, meaning that for
the same BW, for instance, individuals can have very different

4 Abbreviations used: Aa, amino acids; AaAc, amino acid degradation to acetyl

CoA; AaCd, amino acid oxidation rate (in mol/d); AaCdATP, ATP production from

oxidation of amino acids (in mol/d); AaCdOx, oxygen used from amino acid

oxidation (in mol/d); AaGl, glucose production from glucogenic amino acids (in

mol/d); AaPb, amino acids incorporated into muscle protein (in mol/d); AaPbADP,

ADP production from body protein synthesis (in mol/d); AaPl, long turnover

protein pool synthesis (in mol/d); AaPlADP, ADP production from protein

synthesis of long turnover proteins (in mol/d); AaPv, amino acids incorporated

into visceral protein (in mol/d); AaPvADP, ADP production from protein synthesis

of visceral protein (in mol/d); AaUr, urea synthesis (in mol/d); AaUrADP, ADP

production from urea synthesis (in mol/d); Abs, absorbed; AbsAa, absorbed

amino acid (in mol/d); AbsAaADP, ADP production from cost of amino acid

absorption (in mol/d); AbsGl, absorbed glucose (in mol/d); AbsGlADP, ADP

production from cost of glucose absorption (in mol/d); AbsTg, absorbed TG

(in mol/d); AbsTgADP, ADP production from cost of TG absorption (in mol/d);

1 Author disclosures: H. A. Rossow and C. C. Calvert, no conflicts of interest.

* To whom correspondence should be addressed. E-mail: Heidi.Rossow@gmail.
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REEs. By using the systems approach, many more factors can be
used and examined through sensitivity analyses to determine
their role in obesity rather than using linear approximations of
REE based on BW, age, and sex.

Computer modeling based on metabolic mechanisms is a
useful tool for the systems approach to challenge existing
theories, find gaps in knowledge, explain phenomena, predict
responses, develop weight management strategies, and ‘‘simu-
late’’ experiments by using different experimental designs.

Computer modeling provides a unique method to assess what
is known about obesity and metabolism and explores what
metabolic effects (diet, exercise, body composition, mitochon-
drial energy spilling, protein turnover, etc.) have on BW.
Mechanistic computer models have been used successfully to
predict nutrient requirements for lactating cattle (2), to predict
growth (3), and to understand organ metabolism (4). Therefore,
it is possible to represent nutrient metabolism and simulate
metabolic function by using mechanistic computer models. The
objectives of this study are to describe mechanistic computer
models of lean and obese humans based on energy metabolism
and use sensitivity analyses and literature data with model
simulations to explore the effects of changes in BW, composi-
tion, diet, and metabolism on energy metabolism. Sensitivity
analysis will be used to determine the relevance of the mathe-
matical representation, and model simulation of different
metabolic states (changes in protein turnover, diet and body
composition, and metabolic flexibility) will be used to under-
stand why energy requirements, predicted metabolizable energy
(ME), REE, respiratory quotient (RQ), phosphate to oxygen
ratio (PO), glucose oxidation rate (GlCd), and FA oxidation rate
(FaCd) are different in lean and obese individuals.

Materials and Methods

The model diagram (Fig. 1) shows the flow of substrates between pools
and serves as the basis for equations 1–8 in Table 1. State variables

include glucose (Gl), amino acids (Aa), body protein (muscle) (Pb),

visceral protein (Pv), other slow-turnover proteins (Pl), FAs, and adipose

(storage) TGs. Zero or balance pools, i.e., pools that maintain a zero
balance (Fig. 1, dashed lines), are acetyl CoA (Ac), lactate (La), and

glycerol (Gy). Dashed arrows in Figure 1 are flows of substrates between

pools that maintain carbon balance between pools. Mitochondrial and

cytoplasmic Ac pools are considered 1 pool. Urea synthesis represents
deamination of Aa (urine), which then supply carbon chains for Gl and/

or Ac. Fecal excretion is estimated based on the digestibility of Gl, Aa,

and TGs, and therefore is not explicitly shown in Figure 1.
The model simulates changes in energy metabolism, body composi-

tion, and BW over time with an iteration interval of 1 d (Table 1,

equations 9–17). Energy metabolism includes estimating production and

use of cytoplasmic and mitochondrial NADH (cNADH and mNADH,
respectively), ATP, mitochondrial GTP (mGTP), FADH (equations 9, 10,

and 12), oxygen (Ox) (eq. 13), carbon dioxide (Cd) (eq. 16), PO (eq. 14),

and heat production (HP) (eq. 11) based on flow of substrates through

Ac, acetyl CoA (in mol); AcCd, acetyl CoA oxidation (in mol/d); AaCdATP, ATP

production from amino acid oxidation (in mol/d); AcFa, FA synthesis; AcFaADP,

ADP production from FA synthesis from acetyl CoA (in mol/d); AcHy, production

of NADPH from acetyl CoA (in mol/d); AcHyADP, ADP from production of

NADPH from malic enzyme (in mol/d); ADP, high-energy phosphate bond used

(in mol); Ag, a glycerol phosphate; AtAdHt, heat produced as a result of ATP use;

ATP, high-energy phosphate bond (produced) (in mol); ATPADP, ADP produced

from ATP (in mol/d); BasalP, Basal ATP used based on metabolic body size (in

mol/d); BW, body weight; Cd, carbon dioxide (in mol); cFa, blood concentration of

FAs; cGl, blood concentration of glucose; CHO, percentage of carbohydrate in

the diet; cNADH, cytoplasmic NADH (in mol); dPb, change in body protein (in

mol/d); dPl, change in long turnover protein (in mol/d); dPv, change in visceral

protein (in mol/d); dTs, change in storage TG (in mol/d); durea, urea produced (in

mol/d); EB, energy balance; EBB, energy balance body; FaCd, FA oxidation rate

(in mol/d); FaCdATP, ATP production from oxidation of FAs (in mol/d); FaCdCd,

carbon dioxide produced from FA oxidation (in mol); FaCdOx, oxygen used in FA

oxidation (in mol); FaTs, FAs incorporated into storage TG (in mol/d); FaTsADP,

ADP production from storage TG synthesis from FAs (in mol/d); FdIE, ingested

energy intake; FFM, fat-free mass; FeNRG, fecal energy; FSR, fractional protein

synthesis rate; F6P, fructose 6 phosphate (in mol); F6PAc, fructose 6 phosphate

degradation to acetyl CoA (in mol/d); F6PAcADP, ADP production from fructose 6

phosphate conversion to acetyl CoA; Gl, glucose (in mol); GlAa, amino acid

synthesis from glucose (in mol/d); GlAc, rate of glucose conversion to acetyl CoA

for FA synthesis (in mol/d); GlAcATP, ATP from production of acetyl CoA

production from glucose (in mol/d); GlAcOx, oxygen used in production of acetyl

CoA production from glucose (in mol/d); GlAg, a glycerol phosphate from glucose

(in mol/d); GlAgADP, ADP production from glucose conversion to a glycerol

phosphate (in mol/d); GlCd, glucose oxidation rate (in mol/d); GlCdATP, ATP

production from oxidation of glucose (in mol/d); GlCdCd, carbon dioxide

produced from glucose oxidation (in mol/d); GlCdOx, oxygen used in glucose

oxidation (in mol/d); GlHy, rate of production of NADPH from glucose passing

through pentose phosphate path (in mol/d); GlHyADP, ADP from production of

NADPH from glucose (pentose phosphate) (in mol/d); GlHyCd, carbon dioxide

produced from NADPH production from glucose (in mol/d); GlLa, lactate

production from glucose (in mol/d); GlLaATP, ATP from production of glucose

from lactate (in mol/d); Gy, glycerol (in mol); GyCd, glycerol oxidation rate (in

mol/d); GyCdATP, ATP produced from glycerol production (in mol/d); GyCdCd,

carbon dioxide produced from glycerol oxidation (in mol/d); GyCdOX, oxygen

used from glycerol oxidation (in mol/d); GyGl, glucose production from glycerol

(in mol/d); GyGlADP, ADP production from glycerol conversion to glucose (in

mol/d); G3P, glyceraldehyde 3 phosphate (in mol/d); G3PAc, glycerol 3

phosphate degradation to acetyl CoA (in mol/d); G3PAcADP, ADP production

from glyceraldehyde 3 phosphate conversion to acetyl CoA (in mol/d); Hc, heat of

combustion; HcPb, heat of combustion of protein; HcTg, heat of combustion of

TG; Heart, ATP use for heart work (in mol/d); HP, heat production; Hy, NADPH (in

mol); iBW, initial body weight; IE, ingested energy; KFaTs, concentration of FAs

needed to reach half the maximal velocity of reaction incorporating FAs into

storage TG; Km, concentration of substrate needed to reach half the maximal

velocity of a reaction; KNaATP, percentage of basal ATP used for sodium

potassium ATPase; La, lactate (in mol); LaCd, lactic acid oxidation rate (in mol/d);

LaGl, glucose production from lactate (in mol/d); LaGlADP, ADP production from

lactate conversion to glucose (in mol/d); ME, metabolizable energy; mGTP,

mitochondrial GTP (in mol); mNADH, mitochondrial NADH (in mol); Ox, oxygen

(in mol); OXUp, total mol oxygen used; Pb, body protein (in mol); PbAa, amino

acids from muscle protein breakdown (in mol/d); PbAaADP, ADP production

from body protein degradation (in mol/d); Pl, other slow-turnover proteins (in

mol); PlAa, long turnover protein degradation to amino acids (in mol/d); PlAaADP,

ADP production from protein degradation of long turnover proteins (in mol/d);

PO, phosphate-to-oxygen ratio; Pv, visceral protein (in mol); PvAa, amino acids

from visceral protein breakdown (in mol/d); PvAaADP, ADP production from

protein degradation of visceral protein (in mol/d); REE, resting energy expendi-

ture; RQ, respiratory quotient; Respiration, ATP use for respiration (in mol/d); [S],

blood concentration of substrate; Ts, storage TG (in mol); TsFa, FAs from

breakdown of storage TG (in mol/d); Ur, urea (in mol); VCO2, volume of carbon

dioxide produced; VFaTs, maximal velocity of FA incorporation into storage TG (in

mol/d); Vmax, maximal velocity of a reaction; VO2, volume of oxygen consumed.

FIGURE 1 Diagram of state variables and their abbreviations in the

model of human metabolism. For definitions of abbreviations please

see the footnote at the beginning of the article.
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metabolic pathways. Estimates of ATP generation and use through each

metabolic pathway are based on data from van Milgen (5). Yield of ATP

from each energy term is a variable so that changes in mitochondrial
efficiency can be simulated. Body composition is estimated by Pv and Pb

accumulation limited by maximum amounts of DNA accumulation.

Therefore, organs and muscle can grow or shrink according to nutrient
supply or exercise within an upper limit. Adipose or storage TG (Ts)

accumulation is unlimited but dependent on nutrient supply. Changes in

BWare the sum of changes in Pb, Pv, and Ts. Other protein turnover rates

such as bone and connective tissue (Pl) are assumed to not change.Model
predictions include final BW and composition, PO, RQ, energy balance

(EB), HP,ME, mols of FAs, Aa, and Gl oxidized (FaCd, AaCd, andGlCd,

respectively), and estimates of body and visceral protein and TG

turnover (AaPb, PbAa, AaPv, PvAa, FaTs, TsFa, respectively).
Differential equations represent the flow of substrates into and

out of whole body nutrient pools (Table 1). Each term in equations 1–8

represents flows of substrates between pools (mol/d), which are dependent
on blood Gl (cGl), TG (cTg), Aa (cAa), or FA (cFa) concentrations.

Equations for each term are 1 of 2 different forms: Michaelis-Menton–

type equations or balance equations, which ensure that zero pools (dashed

lines in Fig. 1) do not retain any substrate. Zero pools are Ac, La, and Gy,
which correspond to balance equations for production of NADPH from

Ac (AcHy), Gl production from lactate (LaGl), and glycerol oxidation

rate (GyCd). Michaelis-Menton–type equations are similar in form to

those described by Baldwin (6). The general form of the equation is as
follows.

Rateðmol=dÞ ¼ Vmaxðmol=dÞ=ð1þ Km=½S�Þ

Vmax is the maximal velocity of the reaction (mol/d), Km is the

concentration of substrate at half maximal velocity (mol/L), and [S] is
the current concentration of substrate (mol/L). For example, to represent

the synthesis of TG from FAs (FaTs) the equation is FaTs = VFaTs / (1 +

KFaTs / cFa). The term VFaTs is the maximal velocity (mol/d) of TG

synthesis, KFaTs is the concentration of FAs at half maximal velocity
(mol/L), and cFa is the blood concentration of FAs (mol/L). For the

Michaelis-Menton–type equation terms Ac from Gl (GlAc), Gl to La

(GlLa), adipose synthesis from FAs (FaTs), adipose degradation to FAs

(TsFa), and FA oxidation (FaCd), Km is the reference blood concentra-

tion cGl 0.007 mol/L, cFa 0.0002mol/L lean or 0.0004 mol/L obese, cTg
0.0006 mol/L lean or 0.001 mol/L obese, cAc 0.002 mol/L, and cAa

0.003 mol/L from Marques-Lopes et al. (1). Vmax was then set to make

the terms equal to fluxes in Table 2. Other terms associated with fat
synthesis and degradation such as NADPH production from Gl through

glyceraldehyde 3 phosphate and fructose 6 phosphate (GlHy from

G3PAc and F6PAc), the need for NADPH from the malic enzyme

(AcHy), FAs synthesized from Ac (AcFa), and glycerol degradation and
synthesis (GyGl, GlAg) are based on stoichiometric relations with Fa

synthesis (driven by GlAc). Palmitic acid is assumed to be the FA

synthesized. Gl is oxidized (GlCd) based on the need for ATP not met by

FaCd.
AaCd is 0.415 mol/d for lean and 0.605 mol/d for obese men based

on Marques-Lopes et al. (1). Aa consumed in excess of oxidation and

protein turnover (8) are deaminated to form urea (Ur) for gluconeogen-
esis (AaGl) or ketogenesis (AaAc). The proportion of gluconeogenic Aa

and ketogenic Aa is based on a generalized amino acid profile of animal

protein. Protein turnover is classified into 3 different pools based on fast,

medium, and slow rates. Rates were set according to Kleiber (8).
Absorption of nutrients (AbsGl, AbsAa, and AbsTg) is based on diet

composition and percent digestibility (9).

The model was initially parameterized for a lean 63.5-kg adult man

and an obese 96.1-kg adult manwho are weight stable and not exercising
(1). That is, body protein and storage TG pools are not changing in size

over time. Initial simulation results based on data from Marques-Lopes

et al. (1) are compared for the default lean and obese humans in Table 2.

Columns 1 and 3 represent observed values from Marques-Lopes et al.
(1), and columns 2 and 4 represent model simulation results of those

values. The sensitivity analyses results are presented in Table 3. Then the

model was used to simulate experiments from previously published data
to examine model responses from lean and obese men for predictions of

ingested energy (FdIE) and ME intake (Table 4), REE (Table 5), and

changes in energy metabolism with different diets and body composi-

tions (Table 6). For Tables 4–6, data from published studies (first data
columns, published values) are compared with model simulation results

TABLE 1 Equations in the human model for lean and obese men1

Nonzero substrate pools Equations Equation no.

Gl (mol/d) AbsGl + AaGl + LaGl + GyGl + dGc – GlAa – GlHy – GlAg – GlLa – GlAc – GlCd 1

Ac (mol/d) GlAc + AaAc + G3PAc + F6PAc – AcHy – AcFa – AcCd 2

Aa (mol/d) AbsAa + PbAa + GlAa + PvAa + PlAa – AaGl – AaAc – AaPb – AaPv – AaPl – AaCd 3

Pb (mol/d) AaPb – PbAa 4

Pv (mol/d) AaPv – PvAa 5

Pl (mol/d) AaPl – PlAa 6

FAs (mol/d) AbsTg + AcFa + TsFa – FaTs – FaCd 7

Ts (mol/d) FaTs – TsFa 8

Energy metabolism

ADPATP (mol/d) GlAc 3 GlAcATP + GlLa 3 GlLaATP + GlCd 3 GlCdATP + FaCd 3 FaCdATP + AaCd 3 AaCdATP 9

ATPADP (mol/d) Heart 3 OxUp + Respiration 3 OxUp + KNaATP 3 BasalP + AaPb 3 AaPbADP + PbAa 3 PbAaADP + FaTs 3

FaTsADP + AbsGl 3 AbsGlADP + AbsAa 3 AbsAaADP + AbsTg 3 AbsTgADP + AaPl 3 AaPlADP + PlAa 3

PlAaADP + AaPv 3 AaPvADP + PvAa 3 PvAaADP + GlHy 3 GlHyADP + AcHy 3 AcHyADP + G3Pac 3

G3PAcADP + F6Pac 3 F6PAcADP + GlAg 3 GlAgADP + GyGl 3 GyGlADP + LaGl 3 LaGlADP + AcFa 3

AcFaADP + AaUr 3 AaUrADP

10

HP (MJ/d) ATPADP 3 AtAdHt 11

P (mol/d) GlCd x GlCdATP + FaCd 3 FaCdATP + GyCd 3 GyCdATP + GlAc 3 GlAcATP + AaCd 3 AaCdATP 12

Ox (mol/d) 2 3 (GlCd 3 GlCdOx + FaCd 3 FaCdOx + GlAc 3 GlAcOx + GyCd 3 GyCdOX + AaCd 3 AaCdOx) 13

PO P / Ox 14

Cd (mol/d) GlCd 3 GlCdCd + FaCd 3 FaCdCd + GyCd 3 GyCdCd + GlHy 3 GlHyCd 15

RQ Cd / Ox 16

ME (MJ/d) FdIE 2 (durea 3 HcUr) 2 FeNRG 17

EB ME (MJ/d) ME – HP 18

EBB (MJ/d) (dPb + dPv + dPl) 3 HcPb + dTs 3 HcTg 19

1 For definitions of abbreviations please see the footnote at the beginning of the article.
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(second data columns, model predictions) with references for the data

given in the first column of the tables. Finally, the model was used to

predict the impact of changes in protein synthesis based on published
rates of energy metabolism (Table 7) and changes in mitochondrial

efficiency of metabolic flexibility (Table 8). Metabolic flexibility is the

ability of mitochondria to switch between fuels and is measured by the
change in RQ. Therefore, higher changes in RQ between high-fat and

high-Gl diets indicate higher metabolic flexibility (21). Results in Table 8

are model simulations in which ATP yield per NADH was altered to

represent changes in mitochondrial efficiency and its impact on fuel use
(metabolic flexibility) and energy expenditure. Table 7 results are based

on changing the reference protein synthesis rates presented in Table 2 to

rates from the published studies in Table 7 (column 1, from references

listed in the same column).

Data needed to parameterize and simulate energy states include
initial BW (iBW) and body composition, diet composition as the

percentage of Gl, protein, and TGs (AbsGl, AbsAa, and AbsTg,

respectively), and amount eaten. Unfortunately, it was difficult to find

published data that included all of the data needed. In those cases,
reference values from Table 2 simulations were used. For instance, in

Table 4, digestibility data from Kruskall et al. (10) was missing,

therefore, default digestibilities were used. In Table 5, references 13 and

14 did not include diet composition, so default diets from Marques-
Lopes et al. (1) were used. In Table 6, none of the references included dry

matter intake, therefore, default dry matter intakes fromMarques-Lopes

et al. (1) were used. In Tables 7 and 8, lean and obese models from Table
2 were used and only protein synthesis rates (Table 7, column 1) or ATP

yield/NADH were changed (Table 8, column 1).

Model algorithm and software. The model was written in Advanced
Continuous Simulation Language (v. 3.0.1.6; Aegis Technologies Group)

using a 4th order Runge-Kutta algorithm to perform simulations by

numerically estimate differential equation solutions. Global sensitivity

analyses (22,23) were then performed to identify what energy param-
eters (REE, RQ,ME, PO) would be affected the most by changes in input

parameters such as BW, energy intake, and oxidation rates (Table 3).

Global sensitivity analyses essentially measure the variance attributed to
an input relative to the total variance using the Fourier amplitude

sensitivity test described by Saltelli et al. (22,23).

Results and Discussion

Other models describing relations between energy intake, energy
expenditure, and EB have been published (24–26). These models
are based on observational data used to represent cause and
effect, i.e., a population approach. The model described herein
uses a fundamentally different approach in that tissue substrate
use predicts theoretical estimates of ATP creation and use based
onmetabolic terms representing pathways (an integrative approach).
Results from theoretical estimates are then compared with observed
data. Both approaches are necessary because models built with
observational data will yield better predictions, but models based
on an integrative approachwill give insight into how tissuemetabolic
function changes with obesity where understanding and data are
lacking.

Mostly mechanistic models of energy metabolism represent
theoretical estimates of ATP use and Ox, Cd, and dietary sub-
strate usage. Although theoretical estimates of energy metabo-
lism from models will never exactly predict experimental results
because of error, the models will show weaknesses in our un-
derstanding of energy transactions and can lead to identifying

TABLE 2 Reference values and model simulation results at the
end of a 30-d simulation for the default state of a lean 63.5-kg and
an obese 96.1-kg BW and composition-stable sedentary men1

Pool sizes
and rates

Reference
values for
lean men

Model
values for
lean men

Reference
values for
obese men

Model
values for
obese men

PO 3 maximum 2.32 3 maximum 2.32

Nonprotein RQ 0.952 0.92 1.052 0.94

EBB, MJ/d 0 0 0 0

EB ME, MJ/d 0 0 0 0

HP, MJ/d 7.12 7.1 8.92 9.2

ME, MJ/d 7.12 7.1 8.92 9.2

AbsAa, mol/d 0.552 0.55 0.682 0.68

AbsGl, mol/d 1.32 1.3 1.62 1.6

AbsTg, mol/d 0.0702 0.070 0.0862 0.086

Pb, mol 1772 177 2672 267

Pv, mol 312 31 472 47

Pl, mol 2593 259 2943 294

Ts, mol 12.12 12.1 32.42 32.4

cGl, mol/L 0.0072 0.007 0.0072 0.007

cFa, mol/L 0.00022 0.0002 0.00042 0.0004

FaCd, mol/d 0.2852 0.286 0.2732 0.274

GlCd, mol/d 0.6862 0.688 1.052 1.05

AaCd, mol/d 0.4152 0.415 0.6052 0.605

Metabolic processes

AaPb, PbAa, mol/d 1.774 1.77 2.04 2.0

AaPv, PvAa, mol/d 2.574 2.56 3.854 3.85

AaPl, PlAa, mol/d 03 0 03 0

FaTs, TsFa, mol/d 0.292 0.33 0.792 0.80

1 For definitions of abbreviations please see the footnote at the beginning of the

article.
2 From lean, postprandial men (1).
3 Calculated based on body composition for slow-protein turnover tissues (7).
4 Calculated based on ATP use for protein synthesis and TG turnover in lean and obese

men from Kleiber (8).

TABLE 3 Sensitivity coefficients of key model parameters for predicting REE, RQ, ME, and PO for lean and obese men1

GlCd FaCd AaCd GyCd LaCd GlHy GlAc FeNRG AbsTg FdIE AaUr iBW

Lean

REE 0.43 0.60 0.006 — — 0.006 — — — — 0.006 0.006

RQ 0.15 0.80 — 0.022 0.022 0.035 — — — — — 0.022

ME — — — — — — — 0.013 0 0.98 0 —

PO 0.038 0.32 0.55 0.011 0.011 — 0.011 — — — — 0.011

Obese

REE 0.43 0.60 0.006 — — 0.006 — — — — 0.006 0.006

RQ 0.13 0.80 — 0.022 0.022 0.040 — — — — — 0.022

ME — — — — — — — 0.014 0 0.98 0 —

PO 0.028 0.24 0.65 0.011 0.011 — 0.011 — — — — 0.011

1 For definitions of abbreviations please see the footnote at the beginning of the article.
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relations among participant characteristics and their metabolic
function. One limitation to this approach is that studies that
describe participants, dietary conditions, and metabolic fluxes
are difficult to conduct, and therefore, it is hard to find complete
data sets in published literature. For this modeling analysis, the
lean man model was created first using equations described in
Table 1, and then minimal changes were made to parameters
within the model to calibrate it for an obese human (Table 2).
Specifically, only BW and composition, diet, cFa, AaPb, PbAa,
AaPv, PvAa, FaTs, and TsFa, and maximal FaCd were changed
to simulate the obese man. Changes made to create the obese
man model, however, were all based on data from Marques-
Lopes et al. (1). The model was able to duplicate both the lean
and obese participants with the exception of the RQ for the
obese man (Table 2). Therefore, the models were able to
duplicate data from Marques-Lopes et al. (1) for both lean and
obese men. Metabolic differences between lean and obese men
were higher HP, ME, body protein, body fat, blood TGs, GlCd,
AaCd, and rates of protein and fat turnover in obese men. FaCd,
however, was lower in obese men. As described in Marques-
Lopes et al. (1), much of these changes are expected in obese men

because of higher intakes, increased BW, and increased organ
sizes for processing nutrients from higher daily intakes.

RQ estimates for obese participants (1) varied from 0.82 to
1.1 and from 0.81 to 0.95 for lean participants over a 6-h period
that included a test meal. There is considerable error in
measurement of RQ depending on timing of the diet and the
length of measurement. Therefore, under prediction of RQ in the
obese model is still within range of observed values. Interpre-
tation of RQ usually only considers GlCd and FaCd.With model
predictions, if only GlCd and FaCd are considered, RQ pr-
edictions are as expected; RQ = 1 for complete Gl oxidation and
RQ = 0.7 for complete FA oxidation. However, the model also
includes oxidation of La, Gy, and Ac in addition to FaCd and
GlCd. Supply of Gy and Ac for oxidation are dependent on TG
turnover. Although predictions of RQ by the model are mostly
sensitive to GlCd and FaCd, Gy and La affect RQ and FA
synthesis (AcFa—NADPH production from Gl). Experimental
estimates of these oxidation rates with estimates of RQ would
improve predictions, and it is possible that there are other
substrate oxidation rates that are not included in the model that
may provide better predictions of RQ.

The model was able to predict ME well based on FdIE
(Table 4). However, partitioning of energy excretion as urea
was overpredicted and feces were underpredicted with data
from Coles et al. (9). For all diets, FdIE had to be increased in
the model to match published values, indicating that dietary
means and energy measurements were insufficient to repre-
sent energy intake. The model is very sensitive to nutrient

TABLE 4 Results of testing model predictions with previously
published data (prediction of ME)1

References and
parameters Published values Model predictions

MJ/d MJ/d

102 (Men, 66–70 y)

IE 13 13

Energy in urine 0.32 0.32

Energy in feces 2.8 2.8

ME 10 10

REE 6.6 6.6

93 (Women)

Model 1

IE 9.4 9.4

Energy in urine 0.55 0.81

Energy in feces 0.62 0.47

ME 8.2 8.2

Model 2

IE 8.1 8.1

Energy in urine 0.47 0.65

Energy in feces 0.29 0.21

ME 7.4 7.3

Model 3

IE 10 10

Energy in urine 0.27 0.43

Energy in feces 0.39 0.27

ME 9.3 9.3

Model 4

IE 8.7 8.7

Energy in urine 0.25 0.35

Energy in feces 0.68 0.52

ME 7.8 7.8

1 For definitions of abbreviations please see the footnote at the beginning of the

article.
2 Model inputs were height, weight, body fat percentage, and carbohydrate, fat, and

protein intakes (g/d). REE in model simulations was estimated using the Weir equation

(11).
3 Each model represents a different dietary treatment with different intake energy

levels. Model inputs were height, weight, carbohydrate, fat, and protein intakes (g/d),

and fecal digestibilities (%).

TABLE 5 Results of testing model predictions with previously
published data (prediction of REE)1

References and parameters Published values Model predictions

MJ/d MJ/d

12 (Men and women, BMI , 18.5 kg/m2)

ME 8.4 8.4

REE2 4.1 5.4

12 (Men and women, BMI 19–28 kg/m2)

ME 10 10

REE2 6.6 6.6

12 (Men and women, BMI . 30 kg/m2)

ME 9.9 9.9

REE2 7.1 7.2

13 (Men, 22–31 y, BMI 22.5 kg/m2)

REE3 7.2 7.2

13 (Men, 60–82 y, BMI 25 kg/m2)

REE3 5.7 6.4

14 (Women, 34–40 y, BMI 20 kg/m2)

REE3 5.6 6.0

14 (Men, 23–40 y, BMI 24 kg/m2)

REE3 8.0 7.5

15 (Men, 18–28 y, intake 3250 kcal/d)

ME 13 13

REE2 7.9 8.1

15 (Men, 18–28 y, intake 1950 kcal/d)

ME 8.2 8.2

REE2 7.0 8.0

1 For definitions of abbreviations please see the footnote at the beginning of the

article.
2 Model inputs were height, weight, body fat percentage, body protein, visceral mass,

and carbohydrate, fat, and protein intakes (g/d). REE was estimated using the Weir

equation (11).
3 Model inputs were BW and composition data.
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intake (g/d) as indicated by a very large sensitivity value for
FdIE in Table 3. In most cases, rounding up mean IE intake
values for protein, fat, and carbohydrates resulted in match-

ing published IE intakes. Data from Coles et al. (9) included
apparent fecal digestibilities, which were used in the model to
predict fecal energy excretion but did not improve predictions

TABLE 6 Results of model predictions of energy metabolism with previously published diets
and participant descriptions1

References and
diets

Published
values

Model
predictions

Diet descriptions RQ REE GlCd FaCd RQ REE2

% Energy intake MJ/d mol/d mol/d MJ/d

16 (Men and women)3

CHO 57 0.83 7.8 0.13 0.522 0.83 7.8

Fat 27

Protein 15

16 (Men and women)4

CHO 45 0.82 7.8 0.10 0.522 0.82 7.8

Fat 27

Protein 27

17 (Men)5

CHO 50 0.85 — 0.047 0.478 0.86 8.3

Fat 35

Protein 15

18 (Men and women)6

CHO 60 0.86 8.3 0.30 0.48 0.87 8.3

Fat 20

Protein 20

18 (Men and women)7

CHO 20 0.75 8.0 0.035 0.522 0.80 8.0

Fat 60

Protein 20

18 (Men and women)8

CHO 35 0.79 8.6 0.017 0.539 0.81 8.6

Fat 45

Protein 20

1 For definitions of abbreviations please see the footnote at the beginning of the article.
2 REE was estimated using the Weir equation (13).
3 Model inputs were BW = 93.7 kg, body fat = 40.4 kg, FFM = 50.5 kg, ME = 8.2 MJ/d.
4 Model inputs were BW = 93.7 kg, body fat = 40.4 kg, FFM = 50.5 kg, ME = 8.1 MJ/d.
5 Model inputs were BW = 69 kg, body fat = 12.3 kg, FFM = 60.8 kg, ME = 12 MJ/d.
6 Model inputs were BW = 96.9 kg, body fat = 33 kg, FFM = 63.6 kg, ME = 9.8 MJ/d.
7 Model inputs were BW = 96.9 kg, body fat = 33 kg, FFM = 63.6 kg, ME = 9.6 MJ/d.
8 Model inputs were BW = 96.9 kg, body fat = 33 kg, FFM = 63.6 kg, ME = 11 MJ/d.

TABLE 7 Results of model predictions of energy metabolism with previously published rates
of fractional protein synthesis1

References and
tissues

Published

Lean model
predictions

Obese model
predictions

protein FSR2 GlCd FaCd RQ REE GlCd FaCd RQ REE

%/d mol/d mol/d MJ/d mol/d mol/d MJ/d

8

Viscera 8.5 0.69 0.29 0.92 6.4 1.2 0.27 0.92 8.2

Muscle 0.99

192

Splanchnic 12 0.90 0.29 0.89 7.0 1.5 0.27 0.95 9.1

Muscle 1.5

20

Muscle 0.72 0.59 0.29 0.88 6.0 1.2 0.27 0.94 8.0

20

Muscle 2.1 0.88 0.29 0.92 6.9 1.5 0.27 0.95 9.0

1 For definitions of abbreviations please see the footnote at the beginning of the article.
2 Participant descriptions were not included in the article; therefore, the lean and obese men defaults including diets (Table 2)

were used.
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of energy excretion partitioning in feces. In addition, the
model does not represent endogenous energy losses, which
could account for some of the discrepancies among published
values and model predictions. However, fecal energy has a
relatively low contribution to estimates of ME (Tables 3 and
4), and therefore, estimates of ME by the model are very close
to experimental values.

Prediction of REE was more problematic than prediction of
ME intake (Table 5). REE is predicted in the model based on the
Weir equation (11). The abbreviated Weir equation uses volume
of carbon dioxide produced (VCO2) and volume of oxygen
consumed (VO2) to predict REE, and so model predictions are
based largely on oxidative metabolism. The model is also more
sensitive to GlCd and FaCd than diet and BW when predicting
REE (Table 3). However, REE was consistently overpredicted in
underweight, older, and women participants as well as partic-
ipants who lacked body composition data and ME intake as
inputs to the model. This agrees with results fromWestphal et al.
and Gallagher et al. (12–14), which found that fat-free mass
accounted for a majority of the variation in REE and that
skeletal mass and liver mass accounted for 86% and 48% of the
variation in REE, respectively. When calorie intakes were
matched in the model but groups differed in BW and compo-
sition (12–14), predictions of REE changed to match observed
results (data not shown). Because the Weir equation does not
include body composition data in its predictions, the ability of
the model to predict REE at lower REE values was limited.
However, body composition data within the model could be
manipulated to match REE values for all participants. These
simulation results suggest that it is important to measure and
report body composition and ME to estimate REE in addition
to VCO2 and VO2. Table 6 shows an improvement in model
results when more detailed information on body composition
and energy intake are included in participant and treatment
descriptions.

The model did predict the effect of changing diets on fuel use
(GlCd, FaCd, RQ, and REE) (Table 6). Viscera and connective
tissue mass and dry matter intakes were adjusted to match
published values of ME and REE. FaCd was the primary
determinant of RQ (Table 3) and was lower for moderately
obese and obese simulations leading to higher predictions of
GlCd. A lowered ability to use FAs as fuel in obese participants
was observed (1,21,27) and is also supported by model
simulation results.

Predictions of RQ are dependent on maximal velocity of fat
oxidation, which appears to be closely related to the relative
fatness of the participant. Therefore, model results suggest that
the level of obesity may be a predictor of RQ. Protein turnover
rate also changes REE and RQ (Table 7). Previous estimates of
actively metabolic tissue and muscle fractional protein synthesis

rates range from 8.5% to 12%/d and 0.72% to 2.06%/d,
respectively. Using these rates to set protein turnover rates
increased RQ with muscle protein and viscera turnover in the
lean model but only viscera protein turnover in the obese model.
REE predictions increased 0.60–1.0 MJ/d with higher increases
in the obese model predictions because of larger estimates
of visceral mass. Similarly, decreasing ATP yield (decrease
mitochondrial efficiency) increased GlCd in both models, but
increases in REE and RQ were small in the obese model
compared with lean model predictions. In the lean model
simulations, the higher energy demand of increased protein
turnover increases REE and results in more GlCd. But, in the
obese model simulations, the small increase in REE and RQ is
due to already higher energy costs associated with more visceral
and splanchnic tissue and requiring more GlCd and amino acid
oxidation (Table 3) to supply energy for increased protein
turnover.

Simulations using the lean and obese models to show changes
in metabolic flexibility caused by decreased mitochondrial
efficiency show similar results (Table 8). Decreased mitochon-
drial efficiency in the lean human increases REE and RQ because
more Gl must be oxidized to maintain EB. Metabolic flexibility
or the change in RQ is 0.07 for the lean simulations compared
with 0.02 for the obese simulations. GlCd and REE also increase
for the obese human, but metabolic flexibility is much lower,
implying an inability of obese participants to burn fuels other
than Gl.

Mathematical models representing theoretical estimates of
metabolism and energy creation and use can be useful tools to
help explain and predict relations among metabolic parameters
that account for differences in energy use among individual
participants. Because fat mass is directly related to REE predic-
tions and FaCd, Ts could be used as a predictor of RQ. The model
is also able to predict increased energy requirements caused by
increased tissue turnover rates and metabolic flexibility caused by
increasing energy requirements.
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