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Fitness functions map biological sequences to a scalar property of
interest. Accurate estimation of these functions yields biological
insight and sets the foundation for model-based sequence design.
However, the fitness datasets available to learn these functions
are typically small relative to the large combinatorial space of
sequences; characterizing how much data are needed for accurate
estimation remains an open problem. There is a growing body of
evidence demonstrating that empirical fitness functions display
substantial sparsity when represented in terms of epistatic inter-
actions. Moreover, the theory of Compressed Sensing provides
scaling laws for the number of samples required to exactly recover
a sparse function. Motivated by these results, we develop a
framework to study the sparsity of fitness functions sampled from
a generalization of the NK model, a widely used random field
model of fitness functions. In particular, we present results that
allow us to test the effect of the Generalized NK (GNK) model’s
interpretable parameters—sequence length, alphabet size, and as-
sumed interactions between sequence positions—on the sparsity
of fitness functions sampled from the model and, consequently,
the number of measurements required to exactly recover these
functions. We validate our framework by demonstrating that GNK
models with parameters set according to structural considerations
can be used to accurately approximate the number of samples
required to recover two empirical protein fitness functions and
an RNA fitness function. In addition, we show that these GNK
models identify important higher-order epistatic interactions in
the empirical fitness functions using only structural information.

fitness functions | compressed sensing | epistasis | protein structure

Advances in high-throughput experimental technologies now
allow for the probing of the fitness of thousands, and some-

times even millions, of biological sequences. However, even in
these high-throughput scenarios, the number of measurements
generally represents only a tiny fraction of those required to
comprehensively characterize a fitness function. Thus, methods
to estimate fitness functions from incomplete measurements are
necessary. Many such methods have been proposed, ranging
from the fitting of regularized linear models (1) and parame-
terized biophysical models (2, 3) to nonparametric techniques
(4, 5) and various nonlinear machine-learning approaches (6),
including deep neural networks (7, 8). In addition to providing
basic biological insight, such methods have been used to im-
prove the efficiency and success rate of experimental protein-
engineering approaches (9–11) and are crucial components of in
silico sequence design tools (12–15).

Despite these advances in fitness function estimation, the an-
swer to one fundamental question remains elusive—namely, how
many experimental fitness measurements are required to accu-
rately estimate a fitness function. We refer to this problem as
that of determining the sample complexity of fitness function es-
timation. Insights on this topic can be used to inform researchers
on which of a variety of experimental techniques should be used
to probe a particular fitness function of interest and on how
to restrict the scope of an experimental probe such that the
resulting data allow one to accurately estimate the function under

study. Our central focus herein is to make progress on answering
the open question of the sample complexity of fitness function
estimation.

It has recently been observed that some empirical fitness
functions—those for which experimental fitness measurements
are available for all possible sequences—are sparse when
represented in the Walsh–Hadamard (WH) basis, which encodes
fitness functions in terms of all possible “epistatic” interactions
(i.e., nonlinear contributions to fitness due to interacting
sequence positions) (3, 16, 17). Further, this sparsity property
has been exploited to improve estimators of such functions (18–
20). Indeed, it is well known in the field of signal processing
that sparsity enables more statistically efficient estimation of
functions. Additionally, results from Compressed Sensing (CS), a
subfield of signal processing, provide scaling laws for the number
of measurements required to recover a function in terms of
its sparsity (21, 22). These results suggest that by studying the
sparsity of fitness functions in more depth, we may be able to
predict the sample complexity of fitness function estimation.

Although an increasing number of empirical fitness functions
are available that could allow us to investigate sparsity in par-
ticular example systems, these data necessarily only report on
short sequences in limited environments. A common approach in
evolutionary biology to overcome the lack of sufficient empirical
fitness functions is to instead study “random field” models of
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fitness, which assign fitness values to sequences based on stochas-
tic processes constructed to mimic the statistical properties of
natural fitness functions (23, 24). We follow a similar line of
reasoning and study the sparsity of fitness functions sampled from
random field models, allowing us to probe properties of a much
broader class of fitness functions than the available empirical
data. We make use of a particular random field model, namely,
a generalization of the widely used NK model (25). The NK
model is known to represent a rich variety of realistic fitness
functions, despite requiring only two parameters to be defined:
L, the sequence length,* and K, the maximum degree of epistatic
interactions. In the NK model, each sequence position interacts
with a “neighborhood” of K − 1 other positions that either
include directly adjacent positions or are chosen uniformly at
random (23). NK models have been shown to model a number
of properties of empirical fitness functions, including fitness
correlation functions (26, 27) and adaptive walk statistics (25, 28,
29). The Generalized NK (GNK) model (30) extends the model
by allowing neighborhoods to be of arbitrary size and content.
We refer to simulated fitness functions sampled from the GNK
model as “GNK fitness functions.”

Buzas and Dinitz (30) calculated the sparsity of GNK fitness
functions represented in the WH basis as a function of the se-
quence length and the composition of the neighborhoods. Nowak
and Krug (31) expanded on this work by calculating the spar-
sity of GNK fitness functions with a few specific neighborhood
schemes as a function of only the size of the neighborhoods.
Notably, these works consider only binary sequences and use
sparsity as a tool to understand the properties of adaptive walks
on GNK landscapes, without connecting it to fitness function
estimation. In contrast, our aim is to determine the sample
complexity of estimating GNK fitness functions and to do so in
the biologically relevant scenarios where sequences are made up
of nonbinary elements (e.g., nucleotide or amino acid alphabets).
To achieve this, we extend the results of refs. 30 and 31 to the
case of nonbinary alphabets by employing “Fourier” bases, which
are generalizations of the WH basis that can be constructed for
any alphabet size. We then leverage CS theory to determine the
minimum number of measurements required to recover GNK
fitness functions in the Fourier basis. This framework of using CS
theory in tandem with the GNK model allows us to test the effects
of sequence length, alphabet size, and interaction structure on
the sample complexity of estimating GNK fitness functions.

We validate the practical utility of our framework by demon-
strating that suitably parameterized GNK models can accurately
approximate the sparsity of several empirical landscapes, and,
thus, we can successfully leverage our sample complexity results
to determine how many measurements are needed to accurately
estimate these landscapes. In particular, we use GNK models that
incorporate structural information to show this for two empirical
protein landscapes and one “quasi-empirical” RNA landscape.
Our analysis also demonstrates that structure-based GNK mod-
els correctly identify many of the important higher-order epistatic
interactions in the corresponding empirical fitness functions,
despite using only pairwise structural contact information. This
insight bolsters a growing understanding of the importance of
structural contacts in shaping fitness functions.

In the next sections, we summarize the relevant background
material required for our main results.

Fitness Functions and Estimation
A fitness function maps sequences to a scalar property of interest,
such as catalytic efficiency (17), binding affinity (2), or fluorescent
brightness (32). In particular, let S(L,q) be the set of all qL

*In the original definition of the model, N is used for the sequence length, but here we
reserve N for the number of observed measurements.

possible sequences of length L whose elements are members of
an alphabet of size q (e.g., q = 4 for nucleotides and q = 20 for
amino acids); then, a fitness function is any function that maps
the sequence space to scalar values, f : S(L,q) → R. In practice,
sequences may contain different alphabets at different positions,
but these can be mapped to a common alphabet of integers. For
instance, one position in a nucleotide sequence may be restricted
to A or T and another to G or C, but both of these can be mapped
onto the binary alphabet {0,1}. In SI Appendix, we consider the
case where the size of the alphabet may be different at each
position.

Any fitness function of sequences of length L and alphabet size
q can be represented exactly as

f =Φβ, [1]

where f is the vector of all qL fitness values (one for each unique
sequence), Φ is a qL × qL orthogonal basis, and β is the vector of
qL coefficients corresponding to the fitness function in that basis.
Although any orthogonal basis may be used, here, we restrict
Φ to refer to either the WH basis (when q = 2) or the Fourier
basis (for q > 2), which will be defined shortly. Each row of Φ
represents an encoding of a particular sequence in S(L,q).

Suppose we observe N fitness measurements, y ∈ R
N , for N

different sequences, each corresponding to one of the rows of Φ.
The goal of fitness function estimation is then to recover a good
approximation to β using these N measurements, which corre-
spond to only a subset of all possible sequences. In general, this is
an underdetermined linear system that requires additional infor-
mation to be solved, and many methods have been developed for
this purpose. The extent to which a fitness function is recovered
by such a method can be assessed by the mean squared error
(MSE) between the estimated and true coefficients. Since Φ is
an orthogonal matrix, this is equivalent to the MSE between the
true fitness values f and those predicted by using the estimated
coefficients.

The field of CS is primarily concerned with studying algorithms
that can solve underdetermined systems and specifying the con-
ditions under which recovery with a specified amount of error
in the estimated coefficients can be guaranteed. Therefore, it
stands to reason that CS may be helpful for characterizing fitness
function estimation problems. The Least Absolute Shrinkage and
Selection Operator (LASSO) algorithm is among the most widely
used and well-studied for solving underdetermined systems, both
in CS and also in machine learning (33). The key determinant of
success of algorithms such as LASSO in recovering a particular
function is how sparse that function is when represented in a
particular basis or how well it can be approximated by a function
that is sparse in that basis. Using the fitness function estimation
problem as an example, a central result from CS (34) states that
if β is an S-sparse vector (meaning that it has exactly S nonzero
elements), then with high probability, LASSO can recover β
exactly with

N ≥ C · S log qL, [2]

noiseless fitness measurements, where C is an unknown constant.
For this bound to hold, the N sequences with observed fitness
measurements must be sampled uniformly at random from the
space of sequences (34). It has also been shown that if β is only
approximately sparse (i.e., it has many small, but nonzero, coef-
ficients) or if there is noise in the measurements, then the error
in the recovery can still be bounded (Materials and Methods).

Eq. 2 shows that if we are able to calculate the sparsity of a
fitness function and estimate a value for the constant C, then
we can calculate the number of samples required to recover that
fitness function with LASSO. Note that the “sparsity” of a fitness
function is defined as the number of nonzero coefficients when
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the fitness function is expanded in a particular basis.† Sparsity is
defined with respect to a particular basis, which must therefore be
chosen carefully. In Fourier Bases for Fitness Functions, we discuss
bases that can be used to represent fitness functions.

Fourier Bases for Fitness Functions
The sparsity of a class of natural signals depends crucially on
the basis with which they are represented. Many fitness functions
have been shown to be sparse in the WH basis (3, 16, 17), which
has also been used extensively in theoretical studies of fitness
landscapes (27, 35–37) and even to unify multiple definitions
of epistasis (38). The WH basis can be interpreted as encoding
fitness functions in terms of epistatic interactions (38, 39). In
particular, when a fitness function of binary sequences of length
L is represented in the form of Eq. 1 (with Φ being the WH
basis), then the sequence elements are encoded as {−1, 1}, and
the fitness function evaluated on a sequence, s= [s1, s2, . . . , sL],
has the form of an intuitive multilinear polynomial (20),

f (s) =
∑
U∈U

βU

∏
i∈U

si , [3]

where U := P({1, 2, . . . ,L}) is the power set of sequence posi-
tion indices. Each of the 2L elements of U is a set of indices that
corresponds to a particular epistatic interaction, with the size of
that set indicating the order of the interaction (e.g., if a U ∈ U is
of size |U |= r , then it represents an r th-order interaction). The
coefficient βU is an element of β, indexed by its corresponding
epistatic interaction set.

The WH basis can only be used to represent fitness functions of
binary sequences, which poses a challenge in biological contexts
where common alphabets include the nucleotide (q = 4) and
amino acid (q = 20) alphabets. This issue is typically skirted by
encoding elements of a larger alphabet as binary sequences (e.g.,
by using a “one-hot encoding”) and using the WH basis to rep-
resent fitness functions of these encoded sequences. However,
doing so results in an inefficient representation, which has dra-
matic consequences on the calculation of sample complexities. To
see this, consider the one-hot encoding scheme of amino acids,
where each amino acid is encoded as a length-20 bit string. The
number of amino acid sequences of length L is 20L, while the
one-hot encodings of these sequences are elements of a binary
sequence space of size 220L = 1, 048, 576L. This latter number
also corresponds to the number of WH coefficients required to
represent the fitness function in the one-hot encoding and is
much too large to be of any practical use.

Although it is not widely recognized in the fitness function
literature, it is possible to construct bases analogous to the WH
basis for arbitrarily sized alphabets, which we refer to as Fourier
bases (Materials and Methods; refs. 40 and 41). The WH basis
is the Fourier basis for q = 2. The Fourier basis for a larger
alphabet shares much of the WH basis’s intuition of encod-
ing epistatic interactions between positions in a sequence. In
particular, we have an analogous expression to Eq. 3 for the
Fourier basis, in which the fitness function is represented as
a sum of 2L terms, each of which corresponds to an epistatic
interaction. In the WH basis, an r th-order epistatic interaction
U in a sequence s is encoded as the scalar

(∏
i∈U si

)
∈ {−1, 1},

while in the Fourier basis, it is represented by a length (q − 1)r

vector, which we denote as φU (s). Similarly, in the WH basis,
each epistatic interaction is associated with a single coefficient,
while in the Fourier basis, each epistatic interaction is associated
with (q − 1)r coefficients. All together, the evaluation of a fitness

†In a quirk of common terminology, a signal is considered sparse when it contains
many zero coefficients, but the sparsity is formally defined as the number of nonzero
coefficients. Thus, a sparse signal has low sparsity.

function represented in the Fourier basis on a sequence s is given
by

f (s) =
∑
U∈U

(βU )T φU (s). [4]

It is shown in Results that when GNK fitness functions are
represented in the Fourier basis, then we have the intuitively
pleasing result that all of the Fourier coefficients associated with
a particular epistatic interaction are identically distributed, and,
thus, the GNK model can be interpreted in terms of epistatic
interactions.

The GNK Model
Sampling fitness functions from a random field model provides a
means to simulate fitness functions of sequences of any length
or alphabet size. A random field model specifies a stochastic
process that assigns fitness values to all possible sequences. This
process implicitly defines a joint probability distribution over the
fitness values of all sequences and another over all of the Fourier
coefficients, β.

Herein, we focus on the GNK random field model (30). In
order to be defined, the GNK model requires the specification
of the sequence length L, alphabet size q, and an interaction
neighborhood for each position in the sequence. A neighbor-
hood, V [j ], for sequence position j is a set of position indices
that contains j itself and Kj − 1 other indices, where we define
Kj := |V [j ]| to be the size of the neighborhood. Given L, q,
and a neighborhood for each position, the GNK model assigns
fitness to every sequence in the sequence space via a series of
stochastic steps (Materials and Methods). In the GNK model,
two sequences have correlated fitness values to the extent that
they share subsequences corresponding to the positions in the
neighborhoods. For example, consider a GNK model defined
for nucleotide sequences of length three, where the first neigh-
borhood is V [1] = {1, 3}. Then, the sequences ACG and AAG
will have partially correlated fitness values because they both
contain the subsequence AG in positions 1 and 3. One of the key
intuitions of the GNK model is that larger neighborhoods will
produce more “rugged” fitness functions, in which many fitness
values are uncorrelated, because it is less likely for two sequences
to share subsequences when the neighborhoods are large. Note
that larger neighborhoods also imply the presence of higher-
order epistatic interactions.

The key choice in specifying the GNK model is in how
the neighborhoods are constructed. We will consider three
“standard” schemes for constructing neighborhoods (31, 36):
the Random, Adjacent, and Block Neighborhood schemes.
These schemes all restrict every neighborhood to be the same
size, K, which allows for a direct comparison of how different
interaction structures induce sparsity in fitness functions.
Graphical depictions of these three schemes are shown in Fig. 1.
We will additionally consider a scheme where neighborhoods are

A B C

Fig. 1. Graphical depictions of GNK neighborhood schemes for L = 9 and
K = 3. In each grid, rows represent neighborhoods, and columns represent
sequence positions. A filled square in the (i, j)th position in the grid denotes
that sequence position j is in the neighborhood V [i]. (A) Random neighbor-
hoods. (B) Adjacent neighborhoods. (C) Block neighborhoods.
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constructed based on contacts between residues in an atomistic
protein structure, which is described in more detail in Results.

Notably, the GNK model is an example of a spin glass, a
popular model in statistical physics, with different neighborhood
schemes corresponding to different types of spin glasses (42).
Further, the recovery of sparse spin-glass Hamiltonians has been
investigated in some depth (43).

In Results, we present results that enable us to calculate the
sparsity of GNK fitness functions given the sequence length,
alphabet size, and a set of neighborhoods. The proofs of these
results are given in SI Appendix.

Results
The Sparsity of GNK Fitness Functions. A somewhat remarkable
feature of the GNK model is that it can be shown that the Fourier
coefficients of GNK fitness functions are independent normal
random variables whose mean and variance can be calculated
exactly given the sequence length, alphabet size, and neighbor-
hoods. In particular, the Fourier coefficients of fitness func-
tions sampled from the GNK model are distributed according to
β ∼N (0,λI), where λ is a vector of variances corresponding to
each element of β and I is the qL × qL identity matrix. Further,
each of the (q − 1)r Fourier coefficients corresponding to an r th

order epistatic interaction, U, have equal variances given by

λU =
1

L

L∑
j=1

qL−Kj I (U ⊆ V [j ]), [5]

where, with a slight abuse of notation, I (U ⊆ V [j ]) is an indicator
function that is equal to one if U is a subset of the neighborhood
V [j ] and zero otherwise. Eq. 5 shows that the variance of a
Fourier coefficient is roughly proportional to the number of
neighborhoods that contain the corresponding epistatic inter-
action as a subset. Most importantly for our purposes, Eq. 5
implies that a Fourier coefficient only has nonzero variance when
the corresponding epistatic interaction is a subset of at least
one neighborhood; otherwise, the coefficient is deterministically
zero. Consequently, we can use Eq. 5 to calculate the total
number of Fourier coefficients that are not deterministically zero
in a specified GNK model, which is equal to the sparsity of
all fitness functions sampled from the model. In particular, the
sparsity, S(f ), of a fitness function f sampled from a GNK model
is given by

S(f ) =
∑
U∈T

(q − 1)|U |, [6]

where T :=
⋃L

j=1 P(V [j ]) is the union of the power sets of
the neighborhoods. Eq. 6 makes the connection between neigh-
borhoods and epistatic interactions concrete: The GNK model
assigns nonzero Fourier coefficients to any epistatic interactions
whose positions are included in at least one of the neighborhoods.
For example, if positions 3 and 4 in a sequence are both in some
neighborhood V [j ], then all elements of β{3,4} are nonzero. Fur-
ther, by the same reasoning, the coefficients corresponding to all
subsets of positions {3, 4} are also nonzero (i.e., the coefficients
corresponding to the first-order effects associated with positions
3 and 4).

Eq. 6 provides a general formula for the sparsity of GNK
fitness functions as a function of L, q, and the neighborhoods.
We can use this formula to calculate the sparsity of GNK fitness
functions with each of the standard neighborhood schemes—
Random, Adjacent, and Block—for a given neighborhood size,
K. In Materials and Methods, we provide exact results for the
sparsity of GNK fitness functions with Adjacent and Block neigh-
borhoods and the expected sparsity of GNK fitness functions
with Random neighborhoods. We also provide an upper bound

on sparsity of GNK fitness functions with any neighborhood
scheme with constant neighborhood size, K. In Fig. 2 A and B,
we plot this upper bound for a variety of settings of L, q, and
K. Further, in Fig. 2C, we plot the upper bound along with the
exact or expected sparsity of GNK fitness functions with each of
the standard neighborhood schemes. We can see that, even at
the same setting of K, different neighborhood schemes result in
striking differences in the sparsity of sampled fitness functions.

Exact Recovery of GNK Fitness Functions. The sparsity result of
Eq. 6 allows us to apply CS theory to determine the number of
fitness measurements required to recover GNK fitness functions
exactly. Specifically, we can use Eq. 2 to determine a minimal N
such that exact recovery is guaranteed for an S(f )-sparse fitness
function f when there is no measurement noise. However, to do
so, we first needed to determine an appropriate value for the
constant C in Eq. 2, which we did via straightforward numerical
experiments. In particular, we used LASSO to estimate GNK
fitness functions using varying numbers of randomly sampled,
noiseless fitness measurements and analyzed these estimates to
determine the minimum number of training samples required to
exactly recover the fitness functions (allowing for a small amount
of numerical error—see Materials and Methods for more details).
We then determined the minimum value of C such that Eq. 2
holds in each tested case. Fig. 2D summarizes the experiments,
showing that C = 2.62 is sufficiently large to ensure recovery of
all of the over 900 tested fitness functions, and we use this value
for all further calculations. A more detailed analysis of these
experiments is shown in SI Appendix, Fig. S3, which makes clear

Fig. 2. The sparsity of GNK fitness functions. (A) Upper bound on sparsity
of GNK fitness functions with constant neighborhood sizes for q = 2 and a
range of settings of the L and K parameters. (B) Upper bound for L = 20
and a range of settings of the alphabet size q and the K parameter (colors
as in A). Alphabet sizes corresponding to binary (q = 2), nucleotide (q = 4),
and amino acid (q = 20) alphabets are highlighted with open circles. (C)
Sparsity of GNK fitness functions with neighborhoods constructed with each
of the standard neighborhood schemes for L = 20, q = 2, a range of settings
of K, denoted by markers. (D) Fraction of sampled GNK fitness functions
with Random neighborhoods recovered at a range of settings of C. Each
gray curve represents sampled fitness functions at a particular value of L ∈
{5, 6, . . . , 13}, q ∈ {2, 3, 4}, and K ∈ {1, 2, 3, 4, 5}. The red curve averages
over all 907 sampled functions. The value C = 2.62, which we chose to use
for subsequent numerical experiments, is highlighted with a dashed line.
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that the minimum possible setting of C is a function of L, q, and
K and, therefore, that C = 2.62 may be a conservative setting for
certain reasonable settings of these parameters.

We next used this estimate of C, along with our results for the
sparsity of GNK fitness functions, and the CS result of Eq. 2 to
determine the minimum number of measurements required to
exactly recover GNK fitness functions. Fig. 3 shows examples of
these calculations, where we used the bound on sparsity for GNK
fitness functions with constant neighborhood sizes to calculate
an upper bound on the minimum number of samples required to
recover these fitness functions. A number of important insights
can be derived from Fig. 3. First, the number of measurements
required to perfectly estimate these fitness functions is much
smaller than both the total size of sequence space and the total
number of possible interactions in the fitness functions. Consider,
for instance, the K = 5 curve in Fig. 3A at L= 50; in this case,
the size of sequence space is 250 ≈ 1015, and the total number of
interactions is

∑5
r=0

(
50
r

)
≈ 2× 106, while the number of mea-

surements required to recover these fitness functions is about
5× 104.

Additionally, comparing Fig. 3 A and B clearly indicates that
increasing the alphabet size within biologically relevant ranges
increases the number of samples required to recover fitness func-
tions at a faster rate than increasing the length of the sequence.

Analysis of Empirical Protein Fitness Functions. In order to validate
our framework, we next tested the extent to which our results
could be used to predict the sample complexity of estimating
empirical protein fitness functions. To do so, we made use of
a scheme for constructing GNK neighborhoods that uses infor-
mation derived from the three dimensional structure of a given
protein, which we call the Structural neighborhood scheme. In
particular, Structural neighborhoods are constructed based on
contacts between amino acid residues in a given atomistic protein
structure, where, following refs. 4 and 44, we define two residues
to be in contact if any two atoms in the residues are within 4.5 Å
of each other. Then, the Structural neighborhood of a position j
contains all positions that are in structural contact with it.

An interesting aspect of the Structural neighborhood scheme
is how it encodes epistatic interactions through Eq. 6. In partic-
ular, in a GNK model with Structural neighborhoods, higher-
order epistatic interactions arise from only pairwise structural
contact information—that is, an r th-order epistatic interaction
has nonzero Fourier coefficients when r − 1 positions are in
structural contact with a central position.

Fig. 3. Minimum number of measurements required to exactly recover GNK
fitness functions with constant neighborhood sizes. (A) Upper bound on the
minimum N required to recover GNK fitness functions with constant neigh-
borhood sizes for q = 2 and a range of settings of the L and K parameters.
(B) Upper bound for L = 20 and a range of settings of the alphabet size
q and the K parameter (colors as in A). Alphabet sizes corresponding to
binary (q = 2), nucleotide (q = 4), and amino acid (q = 20) alphabets are
highlighted with open circles.

We instantiated GNK models with Structural neighborhoods
for two proteins: the TagBFP fluorescent protein (45) and the
protein encoded by the His3 gene in Saccharomyces cerevisiae
(His3p). We then used the results described in Exact Recovery of
GNK Fitness Functions to calculate the sparsity of GNK fitness
functions with these Structural neighborhoods, the variance of
each the functions’ Fourier coefficients, and the sample complex-
ity of estimating these functions.

Both TagBFP and His3p are associated with empirical fitness
functions with complete or nearly complete sets of experimental
measurements. We calculated the Fourier coefficients associated
with each of these empirical fitness functions using Ordinary
Least Squares (or regression with a small amount of regulariza-
tion when the measurements were only nearly complete), so as
to be able to compare the resulting sparsity and magnitude of the
empirical Fourier coefficients to those of the corresponding GNK
fitness functions with Structural neighborhoods. Next, to assess
whether the sample complexity of estimating GNK fitness func-
tions with Structural neighborhoods can be used to inform the
sample complexity of estimating real protein fitness functions,
we fit LASSO estimates of the empirical fitness functions with
varying numbers of randomly sampled empirical measurements
and determined how well each recovered the empirical fitness
function.

In the case of the TagBFP structure, the associated empirical
fitness function contains functional observations (blue fluores-
cence brightness) of mutations to the mTagBFP2 protein (18),
which is closely related to TagBFP, but has no available structure.
This data contain measurements for all combinations of two
possible amino acids in 13 positions, (i.e., L= 13 and q = 2),
yielding 213 = 8, 192 total fitness observations. A graphical de-
piction of the Structural neighborhoods associated with these 13
positions is shown in Fig. 4 A, Top. Using Eq. 6 for the GNK
model with these Structural neighborhoods yielded a sparsity of
S(f ) = 56, while application of Eq. 5 enabled us to determine
the distribution of these 56 nonzero Fourier coefficients and the
epistatic interactions to which they corresponded.

For the case of His3p, we used a nearly combinatorial complete
empirical fitness function that is embedded in the data of ref.
46. In particular, the data contain 2,030 out of the possible 2,048
fitness observations for sequences corresponding to 11 positions
in His3p, each taking on one of two amino acids (i.e., L= 11 and
q = 2). We constructed Structural neighborhoods based on the I-
TASSER (47) predicted structure of His3p (46) (Fig. 4 A, Middle),
which resulted in sparsity S(f ) = 76 for GNK fitness functions
with these neighborhoods. We again computed the distribution
of these coefficients and determined the corresponding epistatic
interactions.

The comparisons of the mTagBFP2 and His3p empirical fit-
ness functions with the associated GNK models with Structural
neighborhoods are summarized in Fig. 4. First, we examined
the magnitudes of the Fourier coefficients of the empirical and
GNK fitness functions. Since the Fourier coefficients in the GNK
model are independent normal random variables, the expected
magnitude of a coefficient with variance λ is

√
2λ/π. A com-

parison of all coefficients corresponding to up to 5th and 6th-
order epistatic interactions are shown in Fig. 4B for the TagBFP
and His3p cases, respectively. Many of the epistatic interactions
with the largest empirical coefficients also have nonzero coef-
ficients in the GNK model with Structural neighborhoods. In
SI Appendix, we quantify the overlap between the largest coef-
ficients in the empirical and GNK fitness functions. Although
the expected magnitudes of the GNK coefficients do not neces-
sarily approximate the magnitudes of the empirical coefficients
(SI Appendix, Fig. S9), the coefficients with nonzero variance in
the GNK model have significantly higher ranks in the empirical
coefficients than those that are deterministically zero in the GNK
model (SI Appendix, Figs. S10–S13).
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Fig. 4. Comparison of empirical fitness functions to GNK models with Structural neighborhoods. (Top) Comparison to mTagBFP2 fitness function from ref. 18.
(Middle) Comparison to His3p fitness function from ref. (46). (Bottom) Comparison to quasi-empirical fitness function of the Hammerhead ribozyme HH9. (A)
Structural neighborhoods derived from crystal structural of TagBFP (Top), I-TASSER predicted structure of His3p (Middle), and predicted secondary structures
of the Hammerhead Ribozyme HH9 (Bottom). (B) Magnitude of empirical Fourier coefficients (upper plot, in blue) compared to expected magnitudes of
coefficients in the GNK model (reverse plot, in red). Dashed lines separate orders of epistatic interactions, with each group of rth-order interactions indicated.
(C) Percent variance explained by the largest Fourier coefficients in the empirical fitness functions and in fitness functions sampled from the GNK model.
The dotted line indicates the exact sparsity of the GNK fitness functions, which is 56 in Top, 76 in Middle, and 1,033 in Bottom, at which points 97.1%,
90.4%, and 97.5% of the empirical variances are explained, respectively. Std. dev., SD. (D) Error of LASSO estimates of empirical fitness functions at a range
of training set sizes. Each point on the horizontal axis represents the number of training samples, N, that were used to fit the LASSO estimate of the fitness
function. Each point on the blue curve represents the R2 between the estimated and empirical fitness functions, averaged over 50 randomly sampled training
sets of size N. The point at the number of samples required to exactly recover the GNK model with Structural neighborhoods (N = 575 in Top, N = 660 in
Middle, and N = 13, 036 in Bottom) is highlighted with a red dot and dashed lines; at this number of samples, the mean prediction R2 is 0.948 in Top, 0.870
in Middle, and 0.969 in Bottom. Error bars indicate the SD of R2 over training replicates. D, Insets show paired plots between the estimated and predicted
fitness function for one example training set of size N = 575 (Top), N = 660 (Middle), and N = 13, 036 (Bottom).

Fig. 4 B, Top and Middle display a number of false positives
(i.e., coefficients that have nonzero variance in the GNK model,
but are very small in the empirical fitness function) and false neg-
atives that deserve some comment. To explain these errors, it is
first important to remember that the red bars in Fig. 4B represent
the expected magnitudes of zero-mean GNK coefficients; even
among fitness functions sampled directly from the GNK model,
we would expect to see “false positives” where the sampled mag-
nitudes were smaller than the expected magnitudes. The false
negatives may be explained by three similar causes, all regarding
the insufficiency of using a single crystal or predicted structure
to construct Structural neighborhoods for proteins. First, the
structures we used may simply be inaccurate: In one case, we used
the TagBFP crystal structure, while the fitness function reports on
mutations to mTagBFP2; in the His3p case, we used an I-TASSER
predicted structure that may have inaccuracies. Secondly, static
structures do not capture dynamical effects that may impact
fitness; for instance, two residues may be in contact in a nonnative
conformation of the protein that differs from the crystallized or
predicted conformation. Finally, the crystal or predicted struc-
tures of wild-type proteins cannot capture the potential structural
changes that may occur when the protein is mutated, as is done
to collect fitness data. Additionally, we used a fixed contact
threshold of 4.5 Å, but adjusting this threshold can moderately
change the GNK Fourier coefficients (SI Appendix, Figs. S4–S7);
most notably, the largest empirical r = 6 coefficient in the His3p

fitness function has nonzero variance in the GNK model when
the cutoff distance is increased to 7 Å.

None of the empirical Fourier coefficients are exactly zero;
however, these coefficients display substantial approximate spar-
sity. In particular, over 95% and 80% of the total variance in
the coefficients can be explained by the 25 coefficients with the
largest magnitude in the mTagBFP2 and His3p fitness functions,
respectively. To more holistically assess whether GNK fitness
functions with Structural neighborhoods approximate the spar-
sity of the empirical fitness functions well, we compared the
percent variance explained by the S Fourier coefficients with
the largest magnitudes in both the empirical and GNK fitness
functions for a range of settings of S. Fig. 4C shows the results
of this comparison, with the blue curve showing the percent
variance explained by the largest empirical coefficients and the
red curve and red shaded region showing the mean and SD,
respectively, of the percent variance explained by the largest
coefficients in 1,000 sampled GNK fitness functions. Considering
that these plots show only the first few of all possible coefficients
that could be included on the horizontal axis (75 out of the
8,192 for TagBFP and 100 out of 2,048 for His3p), it is clear
that the GNK model approximates the sparsity of the empirical
fitness function qualitatively well. Of particular importance is
the point at which all of the nonzero coefficients of the GNK
fitness functions are included in the calculation (i.e., 100% of the
variance is explained), which occurs at S = 56 and S = 76 in the
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TagBFP and His3p cases, respectively; at this point, more than
90% of the empirical variance is explained in both cases.

These promising sparsity comparisons suggest that the sample
complexity of estimating GNK fitness functions with Structural
neighborhoods may be used to approximate the number of mea-
surements required to effectively estimate protein fitness func-
tions. We confirmed this by using LASSO to estimate the empir-
ical fitness functions with varying number of training points and
regularization parameter chosen by cross-validation (Fig. 4D).
Our framework predicts that 548 and 630 samples are minimally
needed for exact recovery of the GNK fitness functions with
TagBFP and His3p Structural neighborhoods, respectively. In
both cases, we see these sample sizes produce effective estimates
of the corresponding empirical fitness functions, with a mean R2

of 0.95 and 0.87 for estimates of the mTagBFP2 and His3p fitness
functions, respectively.

In SI Appendix, we show analogous results to those in Fig. 4
for another nearly complete subset of the His3p fitness data of
ref. 46 that contains 48,219 out of 55,296 fitness measurements
for the same 11 positions discussed above and alphabets that
differ in size at each position. All together, these results suggest
that the GNK model with Structural neighborhoods can be used
to approximate the sparsity of protein fitness functions and the
sample complexity of estimating such functions.

Analysis of a Quasi-empirical RNA Fitness Function. As further
validation, we next tested the ability of our framework to
predict the sample complexity of estimating a quasi-empirical
RNA landscape. In particular, we studied the fitness function
of all possible mutations to the Erinaceus Europaes Hammer-
head ribozyme HH9 wild-type sequence (Rfam accession no.
AANN01066007.1) at positions 2, 20, 21, 30, 43, 44, 52, and 70,
where the fitness of each sequence in this L= 8, q = 4 sequence
space is given by the Minimum Free Energy of the secondary
structures associated with the sequence, as calculated by the
ViennaRNA package (48). We follow ref. 49 in referring to this
as a quasi-empirical fitness function, as it is constructed from
an established physical model rather than direct experimental
measurements. The magnitudes of the Fourier coefficients
associated with this fitness function are shown as blue bars in
Fig. 4 B, Bottom. This is a sparse landscape, with the largest 150
out of 65,536 possible coefficients explaining over 90% of the
quasi-empirical variance.

We then used a GNK model with RNA-specific Structural
neighborhoods to predict the sample complexity of estimating
this quasi-empirical landscape. In order to construct these neigh-
borhoods, we first used ViennaRNA to sample 10,000 secondary
structures from the Boltzmann ensemble of structures associated
with the wild-type sequence. We then built neighborhoods where
a position j was included in the neighborhood of position k if
1) j and k were directly adjacent in the sequence or 2) j and k
were paired in any of the sampled secondary structures (Fig. 4
A, Bottom). The expected magnitudes of the Fourier coefficients
in the GNK model with these neighborhoods are shown as red
bars in Fig. 4B. Once again, we see that the GNK model with
Structural neighborhoods identifies many of the most important
higher-order epistatic interactions in this fitness function.

As with the empirical protein fitness functions, we compared
the sparsity of the GNK and quasi-empirical fitness functions
(Fig. 4 C, Bottom) and tested the ability of our framework to
predict the sample complexity of estimating the quasi-empirical
fitness function with LASSO (Fig. 4 D, Bottom). These results
demonstrate that a suitably parameterized GNK model can ac-
curately model the sparsity of a realistic RNA fitness function,
which bolsters our results on empirical protein fitness functions
and further suggests that the GNK model can be a practical
tool for estimating the sample complexity of fitness function
estimation.

Discussion
By leveraging perspectives from the fields of CS and evolutionary
biology, we developed a framework for calculating the sparsity
of fitness functions and the number of fitness measurements
required to exactly recover those functions with the LASSO
algorithm (or another sparse recovery algorithm with CS guaran-
tees) under a well-defined set of assumptions. These assumptions
are that 1) the fitness functions are sampled from a specified
GNK model; 2) fitness measurements are noiseless; 3) fitness
measurements correspond to sequences sampled uniformly at
random from the space of sequences; and 4) the fitness functions
are represented in the Fourier basis. Under these assumptions,
our results allow us to test the effect of sequence length, alphabet
size, and positional interaction structure on the sparsity and
sample complexity of fitness function estimation.

We have additionally demonstrated that, in certain cases, our
results can be used to estimate the sample complexity of esti-
mating protein fitness functions when assumptions (1) and (2)
may not be exactly satisfied. In particular, we showed that GNK
models with Structural neighborhoods accurately approximate
the sparsity of two empirical protein fitness functions and a quasi-
empirical RNA fitness function and can be used to estimate the
number of measurements required to recover those empirical
fitness functions with high accuracy. The success of applying our
framework to these fitness functions, which are neither exactly
sparse nor noiseless (in the case of the protein fitness functions),
is at least partially due to the fact that sparse recovery algorithms
such as LASSO are robust to approximate sparsity and noisy
measurements (Materials and Methods, Eq. 8).

It should be noted that assumptions (3) and (4) likely result
in conservative estimates for the sample complexity of fitness
function estimation. Uniform sampling of sequences is optimal
when one has no a priori knowledge about the fitness function;
however, if one knows which coefficients in a fitness function
are likely to be nonzero, then it may be possible to construct
alternative sampling schemes, or deterministic sets of sequences
to measure, such that the fitness function can be recovered
with many fewer measurements than with uniform sampling.
Additionally, it may be possible to construct a basis in which
certain classes of fitness functions are more sparse than in the
Fourier basis, and this will, in turn, result in fewer measurements
being required to recover those fitness functions when they are
represented in the alternative basis.

Our sample complexity predictions could be used to guide
experimental probes of fitness by suggesting how one might con-
sider restricting the scope of mutagenesis such that the resulting
data can likely be used to accurately estimate the fitness function
under study. For example, one might restrict the number of
mutated positions, informed by biophysical considerations (3,
50) or previous experimental results (51–54). Alternatively, one
might restrict the alphabet of amino acids that are allowable at
a position, for instance, by choosing only amino acids present
in homologous sequences (17, 18, 46). Of course, one should
take care not to minimize the sample-size requirements at the
expense of probing important areas of the protein or nucleotide
sequences under study.

Few attempts have been made at understanding how many
measurements are required to estimate fitness functions, despite
the practical importance of this question for experimental de-
sign. By making the connection between this question and the
known sparsity of fitness functions in certain bases, we provide
a much-needed framework for probing the sample complexity
of estimating fitness functions. Further, we show that the GNK
model, given protein and RNA structural information, can gauge
the sparsity of empirical fitness functions enough to make use-
ful statements about the sample complexity of estimating such
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functions. As biotechnology progresses to reveal more complete
and larger empirical landscapes, the tools and theoretical frame-
works to analyze sample complexity may have to correspondingly
progress; our work provides a solid foundation on which to
do so.

Materials and Methods
Compressed Sensing. As described in Fitness Functions and Estimation, the
fitness function estimation problem is to solve the underdetermined linear
system y = Xβ for an unknown β, where y is a vector of N fitness mea-
surements, and X is a matrix containing the N corresponding rows of Φ

that represent the sequences with fitness measurements. Here, we assume
that each element of y is corrupted with independent Gaussian noise with
variance σ2. LASSO solves for an estimate of the Fourier coefficients by
solving the following convex optimization program:

min
β̂

‖y − Xβ̂‖2
2 + ν‖β̂‖1, [7]

where ν is a hyperparameter that determines the strength of regularization.
Candes and Plan (34) proved that when the rows of an orthogonal basis, such
as Φ, are sampled uniformly at random, and the number of samples satisfies
Eq. 2, then the solution to the program in Eq. 7, denoted β∗, satisfies with
high probability

‖β − β
∗‖2 ≤ C1

‖β − βS‖1√
S

+ C2σ, [8]

where C1 and C2 are constants and βS is the best S-sparse approximation
to β, i.e., the vector that contains the S elements of β with the largest
magnitude and sets all others elements to zero. Eq. 8 has a number of
important implications. First, it tells us that if β is itself S-sparse, then, in a
noiseless setting, it can be recovered exactly with O(S log qL) measurements.
Otherwise, if β is not exactly sparse, but is well approximated by a sparse
vector, then it can be approximately recovered with error on the order of

1√
S
‖β − βS‖1, which is proportional to the sum of the magnitudes of the

qL − S elements of β with the smallest magnitudes.
We primarily focus on cases where a fitness function is exactly sparse in

the Fourier basis and we can calculate the sparsity. Although natural fitness
functions are unlikely to be exactly sparse, they may be well approximated
by sparse vectors, and Eq. 8 tells us that the error of the estimator will be
well controlled in this case. Similarly, measurement noise in experimental
fitness data is unavoidable, but Eq. 8 shows that the error induced by
this noise is dependent on the variance of the measurement noise, and
not on the properties of the fitness function itself. Since here we are
primarily concerned with understanding how assumed properties of fitness
functions affect the sample complexity of estimating those functions, it is
most appropriate to consider the noiseless setting and leave the estimation
of error due to measurement noise to future work.

Fourier Bases. Our generalization of the WH basis to larger alphabets
is based on the theory of Graph Fourier bases. The Graph Fourier basis
corresponding to a given graph is a complete set of orthogonal eigenvectors
of the Graph Laplacian of the graph. Graph Fourier bases have many useful
properties and have been used extensively for processing signals defined on
graphs (55).

The WH basis is specifically the Graph Fourier basis corresponding to the
Hamming graph H(L, 2) (56). The vertices of H(L, 2) represent all unique
binary sequences of length L; two sequences are adjacent in H(L, 2) if they
differ in exactly one position (i.e., the Hamming distance between the two
sequences is equal to one). The Hamming graphs H(L, q) are defined in the
same way for sequences with alphabet size q. Thus, we can construct an
analogous Graph Fourier basis to the WH basis to represent sequences with
larger alphabets by calculating the eigenvectors of the Graph Laplacian of
H(L, q). Since we only consider functions defined on Hamming graphs, we
refer to Graph Fourier bases corresponding to Hamming graphs simply as
Fourier bases.

An important property of the Hamming graph H(L, q) is that it can be
constructed as the L-fold Graph Cartesian product of the “complete graph”
of size q (56). The complete graph of size q, denoted K(q), has q vertices
(which represent elements of the alphabet in our case) and edges between
all pairs of vertices. Due to the spectral properties of graph products, the
eigenvectors of the Hamming graph (i.e., the Fourier basis) can be calculated
as a function of the eigenvectors of the complete graph. An orthonormal set
of eigenvectors of the Graph Laplacian of the complete graph K(q) is given
by the columns of the following Householder matrix:

Pq := Iq −
2wwT

‖w‖2
2

, [9]

where w := 1q − √
qe1, 1q is the vector of length q whose elements are all

equal to one, e1 is the length q with the first element set to one and all
others set to zero, and Iq is the q × q identity matrix.

The complete graph is equal to the Hamming graph H(1, q), and, thus, Eq.
9 constructs the Fourier basis for sequences of length one and alphabet size
q. Each row of Pq corresponds to a sequence of length one; the first column
is constant for all rows, while the remaining q − 1 columns encode the
alphabet elements (i.e., the final q − 1 elements of a row uniquely identify
the alphabet element to which the row corresponds). More specifically, let
P̃q be the matrix containing the final q − 1 unnormalized columns of Pq,

such that Pq = 1√
q

[
1q | P̃q

]
, where | denotes column-wise concatenation.

Then, the ith row of P̃q encodes the ith element of the alphabet; we denote
each of these encodings as pq(s), where s is an element of the alphabet (i.e.,
each pq(s) is a row of P̃q).

Then, it can be shown that the Fourier basis corresponding to the
Hamming graph H(L, q), which can be used to represent fitness functions of
sequences of length L and alphabet size q, is given by the L-fold Kronecker
product of the eigenvectors of the complete graph. More concretely, an
orthonormal set of eigenvectors of the Graph Laplacian of the Hamming
graph H(L, q) is given by the columns of following the qL × qL matrix (57):

Φ =

L⊗
i=1

Pq, [10]

where Pq is defined in Eq. 9. In the basis defined in Eq. 10, an epistatic
interaction between positions in the set U is encoded by the length
(q − 1)|U| vector φU(s) := 1√

qL

⊗
i∈U pq(si). These encodings are used in

the Fourier basis representation of fitness functions shown in Eq. 4. The
results of Eqs. 9 and 10 are proved in SI Appendix. Note that an equivalent
form of this basis for q = 4 was given in ref. 40, and an alternative form for
any alphabet size was given in ref. 41.

GNK Model. Given sequence length L, alphabet size q, and set of neigh-
borhoods V := {V [j]}L

j=1, a fitness function sampled from the GNK model

assigns a fitness to every sequence s ∈ S(L,q) with the following two steps:

1. Let s[j] := (sk)k∈V[j] be the subsequence of s corresponding to the indices

in the neighborhood V [j]. Assign a “subsequence fitness,” fj(s
[j]), to

every possible subsequence, s[j], by drawing a value from the normal
distribution with mean equal to zero and variance equal to 1/L. In
other words, fj(s

[j]) ∼ N (0, 1/L) for every s[j] ∈ S(Kj ,q), and for every
j = 1, 2, . . . , L.

2. For every s ∈ S(L,q), the subsequence fitness values are summed to
produce the total fitness values f(s) =

∑L
j=1 fj(s

[j]).

This definition of the GNK model is slightly more restrictive than that
presented in ref. 30. In particular, in ref. 30, the authors allow subsequence
fitness values to be sampled from any appropriate distribution, whereas for
simplicity, we consider only the case where subsequence fitness values are
sampled from the scaled unit normal distribution.

Standard Neighborhood Schemes. We consider three standard neighbor-
hood schemes: the Random, Adjacent, and Block neighborhood schemes.
In all of these, each neighborhood is of the same size, K (i.e., Kj = K for
all j = 1, 2, . . . , L). In the Random scheme, each neighborhood V [j] contains
j and K − 1 other position indices selected uniformly at random from
{1, 2, . . . , L}\j. In the Adjacent scheme, when K is an odd number, each
neighborhood V [j] contains the K−1

2 positions immediately clockwise and
counterclockwise to j when the positions are arranged in a circle. When K
is an even number, the neighborhood includes the K−2

2 counterclockwise
positions and the K

2 clockwise positions. The Block scheme [also known as
the Block Model (58, 59)] splits positions into L

K blocks of size K and lets
each block be “fully connected” in the sense that every neighborhood of
a position in the block contains all other positions in the block, but no
positions outside of the block. In order for Block neighborhoods to be
defined, L must be a multiple of K.

Standard Neighborhood Sparsity Calculations. The sparsity of GNK fitness
functions with the standard neighborhood schemes can be calculated ex-
actly as functions of L, q, and K. The following results are used in Results
and are all proved in SI Appendix. First, the sparsity of any GNK fitness with
constant neighborhood sizes is bounded above by
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S(f) ≤ 1 + L(q − 1) + L(qK − Kq + K − 1). [11]

All curves in Fig. 2 A and B are calculated with this bound, and it is also
used for the sample complexity calculations shown in Fig. 3. It is also plotted
as the dashed blue curve in Fig. 2C with L = 20 and q = 2. Additionally, the
sparsity of GNK fitness functions with Block neighborhoods can be calculated
exactly as

S(f) =
L

K
(qK − 1) + 1. [12]

Eq. 12 is plotted as the red curve in Fig. 2C with L = 20 and q = 2. Similarly,
the sparsity of GNK fitness functions with Adjacent neighborhoods is given
by

S(f) = 1 + LqK−1
(q − 1), [13]

which is plotted as the green curve in Fig. 2C with L = 20 and q = 2. Finally,
the expected sparsity of GNK fitness functions with Random neighborhoods,
with the expectation taken over the randomly assigned neighborhoods, is
given by

E[S(f)] =
K∑

r=0

(L

r

)
p(r)(q − 1)r , [14]

where

p(r) = 1 − (1 − α(r))r
(

1 − α(r)
K − r

L − r

)L−r

,

and α(r) = (K−1)!
(L−1)!

(K−r)!
(L−r)! . Eq. 14 with L = 20 and q = 2 is shown as the solid

blue curve in Fig. 2C. The results of Eqs. 11–14 are proved in SI Appendix.

Numerical Calculation of C. In order to determine an appropriate value of
C, we ran experiments where we 1) sampled a fitness function from a GNK
model, 2) subsampled N sequence-fitness pairs uniformly at random from
the complete fitness function for a range of settings of N, 3) ran LASSO on
each of the subsampled datasets, and 4) determined the smallest N such that
the fitness function is exactly recovered by LASSO. Letting N̂ be the minimum
N for which exact recovery occurs, then

Ĉ =
N̂

S(f) log10(qL)
, [15]

is the minimum value of C that satisfies Eq. 2, where S(f) is calculated with
Eq. 6. We ran multiple replicates of this experiment for neighborhoods sam-
pled according to the Random neighborhood scheme for different settings

of L, q, and K. This resulted in a test for 907 total fitness functions. For
each of these fitness functions, we ran LASSO with five randomly sampled
training sets for each size N and a regularization parameter, ν, determined
by cross-validation. We deemed the fitness function exactly recovered when
the estimates resulting from all five training sets explained > 99.99% of the
variance in the fitness function’s coefficients.

Equipped with an estimate of C, we calculated the minimum number of
samples required to exactly recover a GNK fitness function by using Eq. 2
along with the sparsity calculations of Eq. 6. Specifically,

N = �C · S(f) log10(q
L
)�, [16]

is the minimum number of samples that guarantees exact recovery, where
�� represents the ceiling operator. Eq. 16 was used along with the bound in
Eq. 11 to calculate the curves in Fig. 3.

Percent Variance Explained. In Fig. 4C, we computed the percent of total
variance in the Fourier coefficients explained by the S coefficients with the
largest magnitudes for a range of settings of S. We refer to this as the
“percent variance explained” by the largest S coefficients and calculate it
as:

% variance explained (S) := 100% ·
(

1 −
‖βS − β‖2

2

‖β‖2
2

)
. [17]

Data Availability. The code for our analyses is available on GitHub,
https://github.com/dhbrookes/FitnessSparsity. The mTagBFP2 fitness data
used in this work is available in Supplementary Data 3 of ref. 18
(https://doi.org/10.1038/s41467-019-12130-8). The His3p fitness data used in
this work is described in ref. 46 and is available in the NCBI Gene Expression
Omnibus repository, accession no. GSE99990. All other data generated or
analyzed in this study are included in the article and/or supporting informa-
tion.
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